Closed curves with prescribed curvature

Matthias Schneider

University of Darmstadt

Seillac, September 7, 2012
Classical results

- Theorem (Lyusternik and Fet, 1951)
 Any compact Riemannian manifold \((M, g)\) contains a closed geodesic.

- Theorem (Lyusternik and Schnirelmann, 1929)
 Any \((S^2, g)\) contains at least three embedded closed geodesics.

What happens, if you consider closed curves with constant or prescribed curvature instead of closed geodesics?
The problem

Given

- an oriented (compact) surface \((M, g)\) with a Riemannian metric \(g\),
- a smooth (positive) function \(k : M \rightarrow \mathbb{R}\).

Problem: Existence of a closed \(k\)-curve, i.e. a closed immersed curve \(\gamma : S^1 \rightarrow M\) with geodesic curvature \(k_g(\gamma, t) = k(\gamma(t))\).
The problem

Given

- an oriented (compact) surface \((M, g)\) with a Riemannian metric \(g\),
- a smooth (positive) function \(k : M \to \mathbb{R}\).

Problem: Existence of a closed \(k\)-curve, i.e. a closed immersed curve \(\gamma : S^1 \to M\) with geodesic curvature \(k_g(\gamma, t) = k(\gamma(t))\).

Geodesic curvature:
\[
k_g(\gamma, t) := |\dot{\gamma}(t)|^{-3} \langle D_t g \dot{\gamma}(t), J_g(\gamma(t)) \dot{\gamma}(t) \rangle_g,
\]

\(J_g(p)\): rotation by \(+\pi/2\) in \(T_p M\) w.r.t. the given orientation and metric.
The problem

Given

- an oriented (compact) surface \((M, g)\) with a Riemannian metric \(g\),
- a smooth (positive) function \(k : M \to \mathbb{R}\).

Problem: Existence of a closed \(k\)-curve, i.e. a closed immersed curve \(\gamma : S^1 \to M\) with geodesic curvature \(k_g(\gamma, t) = k(\gamma(t))\).

- **Geodesic curvature:**
 \[k_g(\gamma, t) := |\dot{\gamma}(t)|_g^{-3}\langle D_{t,g} \dot{\gamma}(t), J_g(\gamma(t))\dot{\gamma}(t)\rangle_g, \]

 \(J_g(p)\): rotation by \(+\pi/2\) in \(T_pM\) w.r.t. the given orientation and metric.

- These curves are called **magnetic geodesics**. They correspond to trajectories of a charged particle on \(M\) in a magnetic field with magnetic form \(kd\mu_g\) and solve

 \[D_{t,g} \dot{\gamma} = |\dot{\gamma}|_g k(\gamma) J_g(\gamma) \dot{\gamma}. \]
Methods and approaches

- **Theory of dynamical systems:** Arnold ’86, Ginzburg ’96
 Magnetic geodesics are periodic orbits of a *twisted* Hamiltonian flow.
Methods and approaches

- **Theory of dynamical systems:** Arnold ’86, Ginzburg ’96
Magnetic geodesics are periodic orbits of a *twisted* Hamiltonian flow.

- **Morse-Novikov theory:** Novikov ’84, Taimanov ’92
Minimize $E(\gamma) := \int_{S^1} |\dot{\gamma}| + \int_B k \mu_g$ where $\partial B = \gamma$.
If $d\theta = k \mu_g$, then $\int_B k \mu_g = \int_\gamma \theta$.
In general, the functional E is multi-valued.
Methods and approaches

- **Theory of dynamical systems:** Arnold ’86, Ginzburg ’96
 Magnetic geodesics are periodic orbits of a *twisted* Hamiltonian flow.

- **Morse-Novikov theory:** Novikov ’84, Taimanov ’92
 Minimize $E(\gamma) := \int_{S^1} |\dot{\gamma}| + \int_B k\mu_g$ where $\partial B = \gamma$.
 If $d\theta = k\mu_g$, then $\int_B k\mu_g = \int_{\gamma} \theta$.
 In general, the functional E is multi-valued.

- **Aubry-Mather-theory:** Contreras, Macarini, Paternain ’04
 Existence of closed k-curves on compact surfaces, if $k\mu_g$ is exact.
Existence results for large curvature

Let (M, g) be a compact oriented Riemannian surface and $k : M \rightarrow \mathbb{R}$ positive.

- (Ye '91, Pacard-Xu '09)
 - If $k \equiv \text{const}$ is large, there are at least two embedded closed k-curves for $M = S^2$ and at least three otherwise.
 - These curves are perturbations of geodesic circles.
 - Any nondegenerate critical point of the Gauss curvature K_g of (M, g) leads to a local foliation with k-curves.
Existence results for large curvature

Let \((M, g)\) be a compact oriented Riemannian surface and \(k : M \to \mathbb{R}\) positive.

▶ (Ye '91, Pacard-Xu '09)
 ▶ If \(k \equiv const\) is large, there are at least two embedded closed \(k\)-curves for \(M = S^2\) and at least three otherwise.
 ▶ These curves are perturbations of geodesic circles.
 ▶ Any nondegenerate critical point of the Gauss curvature \(K_g\) of \((M, g)\) leads to a local foliation with \(k\)-curves.

▶ (Taimanov '92, Ginzburg '96)
 ▶ If \(k\) is large, there are at least two embedded closed \(k\)-curves for \(M = S^2\) and at least three otherwise.
 ▶ If, moreover, \(k\) is a Morse function, these closed \(k\)-curves are near critical points of \(k\).
Conjectures

- **Conjecture (**1**: (Arnold ’81)
 If \((M, g)\) is compact oriented surface and \(k\) is positive, then there is a closed \(k\)-curve.
 More precisely, there are at least two for \(M = S^2\) and at least three in all other cases.

Arnold ’84: (**1** is true for a flat torus \((T^2, g_0)\).

Hedlund ’36: Nonexistence of \(k\)-curves (“Horocycle flow”) (**1** is wrong for \((H/\Gamma, g_0)\) with \(K g_0 \equiv -1\) and \(k \equiv 1\).

- **Conjecture (**2**: (Novikov ’82, Rosenberg and Smith ’11)
 On \((S^2, g)\) with \(k\) positive, there is an embedded closed \(k\)-curve.
Conjectures

- **Conjecture (*1):** (Arnold ’81)
 If \((M, g)\) is compact oriented surface and \(k\) is positive, then there is a closed \(k\)-curve.
 More precisely, there are at least two for \(M = S^2\) and at least three in all other cases.
 - Arnold ’84: (*1) is true for a flat torus \((T^2, g_0)\).
Conjectures

- **Conjecture (*1):** (Arnold ‘81)
 If \((M, g)\) is compact oriented surface and \(k\) is positive, then there is a closed \(k\)-curve. More precisely, there are at least *two* for \(M = S^2\) and at least *three* in all other cases.
 - Arnold ‘84: (*1) is true for a flat torus \((T^2, g_0)\).
 - Hedlund ‘36: Nonexistence of \(k\)-curves ("Horocycle flow") (*1) is wrong for \((\mathbb{H}/\Gamma, g_0)\) with \(K_{g_0} \equiv -1\) and \(k \equiv 1\).
Conjecture (*1): (Arnold ’81)
If \((M, g)\) is compact oriented surface and \(k\) is positive, then there is a closed \(k\)-curve.
More precisely, there are at least two for \(M = S^2\) and at least three in all other cases.

- Arnold ’84: (*1) is true for a flat torus \((T^2, g_0)\).
- Hedlund ’36: Nonexistence of \(k\)-curves (”Horocycle flow”)
 (*1) is wrong for \((\mathbb{H}/\Gamma, g_0)\) with \(K_{g_0} \equiv -1\) and \(k \equiv 1\).

Conjecture (*2): (Novikov ’82, Rosenberg and Smith ’11)
On \((S^2, g)\) with \(k\) positive, there is an embedded closed \(k\)-curve.
Nonexistence of k-curves

Hedlund '36: There is no closed k_0-curve in $(\mathbb{H}/\Gamma, g_0)$, where $k_0 \equiv 1$ and Γ is a subgroup of orientation preserving isometries of (\mathbb{H}, g_0), such that $(\mathbb{H}/\Gamma, g_0)$ is a compact oriented surface with Gauss curvature $K_{g_0} \equiv -1$.

\[\mathbb{H} = B_1(0) \subset \mathbb{R}^2 \]
\[g_0 = 4(1 - |x|^2)^{-2} g_{\mathbb{R}^2} \]
Results

- (*1) is true for \((S^2, g)\), if \(K_g \geq 0\) and \(k > 0\), i.e. there are two closed \(k\)-curves in this case. (S. ’12)

- There is a closed \(k\)-curve on \((H/\Gamma, g)\), if \(K_g \geq -1\) and \(k > 1\). (S. ’12)

- (*2) holds for \((S^2, g)\), i.e. there are two closed embedded \(k\)-curves, under each of the following assumptions:
 1. \(k > 0\) and \(g\) is 14-pinched (\(\sup K_g < 4 \inf K_g\)). (S. ’11)
 2. \(K_g > 0\) and \(k\) is small enough. (Rosenberg & S. ’11)
Results

(*1) is true for \((S^2, g)\), if \(K_g \geq 0\) and \(k > 0\), i.e. there are two closed \(k\)-curves in this case. (S. ’12)

There is a closed \(k\)-curve on \((\mathbb{H}/\Gamma, g)\), if \(K_g \geq -1\) and \(k > 1\). (S. ’12)
Results

- (*1) is true for \((S^2, g)\), if \(K_g \geq 0\) and \(k > 0\), i.e. there are two closed \(k\)-curves in this case. (S. ’12)
- There is a closed \(k\)-curve on \((\mathbb{H}/\Gamma, g)\), if \(K_g \geq -1\) and \(k > 1\). (S. ’12)
- (*2) holds for \((S^2, g)\), i.e. there are two closed embedded \(k\)-curves, under each of the following assumptions:
Results

- (*1) is true for \((S^2, g)\), if \(K_g \geq 0\) and \(k > 0\), i.e. there are two closed \(k\)-curves in this case. (S. ’12)

- There is a closed \(k\)-curve on \((\mathbb{H}/\Gamma, g)\), if \(K_g \geq -1\) and \(k > 1\). (S. ’12)

- (*2) holds for \((S^2, g)\), i.e. there are two closed embedded \(k\)-curves, under each of the following assumptions:

 1. \(k > 0\) and \(g\) is \(\frac{1}{4}\)-pinched (\(\sup K_g < 4 \inf K_g\)). (S. ’11)
Results

► (*1) is true for \((S^2, g)\), if \(K_g \geq 0\) and \(k > 0\), i.e. there are two closed \(k\)-curves in this case. (S. ’12)

► There is a closed \(k\)-curve on \((\mathbb{H}/\Gamma, g)\), if \(K_g \geq -1\) and \(k > 1\). (S. ’12)

► (*2) holds for \((S^2, g)\), i.e. there are two closed embedded \(k\)-curves, under each of the following assumptions:

1. \(k > 0\) and \(g\) is \(\frac{1}{4}\)-pinched (\(\sup K_g < 4 \inf K_g\)), (S. ’11)
2. \(K_g > 0\) and \(k\) is small enough. (Rosenberg & S. ’11)
An outline of the proof

Closed k-curves correspond to zeros of the vector field $X_{g,k}$ on $H^{2,2}(S^1, M)$ given by

$$X_{k,g}(\gamma) := (-D^2_{t,g} + 1)^{-1}(-D_{t,g}\dot{\gamma} + |\dot{\gamma}|_g k(\gamma)J_g(\gamma)\dot{\gamma}).$$

Note that

$$T_{\gamma}H^{2,2}(S^1, M) = \{ \text{Periodic } H^{2,2} - \text{vector fields along } \gamma \}.$$

For $\theta \in S^1 = \mathbb{R}/\mathbb{Z}$ consider the action on $H^{2,2}(S^1, M)$ defined by

$$(\theta \ast \gamma)(t) := \gamma(t + \theta).$$

The vector field $X_{k,g}$ is invariant under the S^1-action and any zero comes along with a S^1 orbit of zeros.
An outline of the proof

- **Step 1:** Count zero orbits, i.e. define a S^1-degree.
An outline of the proof

- **Step 1**: Count zero orbits, i.e. define a S^1-degree.
- **Step 2**: Compute the S^1-degree in an unperturbed situation. e.g. constant curvature and k.
An outline of the proof

- **Step 1:** Count zero orbits, i.e. define a S^1-degree.
- **Step 2:** Compute the S^1-degree in an unperturbed situation. e.g. constant curvature and k.
- **Step 3:** Prove compactness of the set of zero orbits and use a homotopy argument.
Step1: The S^1-degree

We follow the degree theory of Tromba ’78 for Fredholm vector fields on Banach manifolds and give a S^1-equivariant version.

Degree theories in the context of geometric problems have also been developed by White ’87 and Rosenberg and Smith ’11.

There are two equivalent ways to define the S^1-degree in our case:

- **functional analytic setting**
 - Leray-Schauder degree
 - count negative eigenvalues of Jacobi operators

- **geometric setting**
 - fixed point index of the Poincaré map
The S^1-degree (functional analytic setting)

Fix a zero γ of $X_{k,g}$.

- Due to the S^1-action, $\dot{\gamma}$ is in the kernel of $D_{g \gamma}X_{k,g}$.
The S^1-degree (functional analytic setting)

Fix a zero γ of $X_{k,g}$.

- Due to the S^1-action, $\dot{\gamma}$ is in the kernel of $D_g X_{k,g}|_{\gamma}$.
- Define a vector field W_g on $H^{2,2}(S^1, M)$ by

$$W_g(\gamma) = \left(-(D_t, g)^2 + 1 \right)^{-1} \dot{\gamma}.$$

The vector field $X_{k,g}$ is orthogonal to W_g. Consequently,

$$D_g X_{k,g}|_{\gamma} : T_{\gamma}H^{2,2}(S^1, M) \to \langle W_g(\gamma) \rangle^\perp.$$
The S^1-degree (functional analytic setting)

Fix a zero γ of $X_{k,g}$.

- Due to the S^1-action, $\dot{\gamma}$ is in the kernel of $D_{g}X_{k,g}\big|_{\gamma}$.
- Define a vector field W_{g} on $H^{2,2}(S^1, M)$ by

$$W_{g}(\gamma) = (- (D_{t,g})^2 + 1)^{-1} \dot{\gamma}.$$

The vector field $X_{k,g}$ is orthogonal to W_{g}. Consequently,

$$D_{g}X_{k,g}\big|_{\gamma} : T_{\gamma}H^{2,2}(S^1, M) \rightarrow \langle W_{g}(\gamma) \rangle^\perp.$$

- $\dot{\gamma} \notin \langle W_{g}(\gamma) \rangle^\perp$.
The S^1-degree (functional analytic setting)

Definition
The zero orbit $S^1 \ast \gamma$ is called *nondegenerate*, if

$$D_{gX_k,g|\gamma} : \langle W_g(\gamma) \rangle^\perp \rightarrow \langle W_g(\gamma) \rangle^\perp$$

is an isomorphism. In this case we define the local S^1-degree by

$$\text{deg}_{\text{loc},S^1}(X_{k,g}, S^1 \ast \gamma) := \text{sgn}D_{gX_k,g|\gamma},$$

where $\text{sgn}D_{gX_k,g|\gamma}$ denotes the usual Leray-Schauder degree.
The S^1-degree (functional analytic setting)

Let \mathcal{M} be an open S^1-invariant subset of curves in $H^{2,2}(S^1, \mathcal{M})$. We assume that $X_{k,g}$ is proper in \mathcal{M}, i.e.

$$\{ \gamma \in \mathcal{M} : X_{k,g}(\gamma) = 0 \}$$

is compact.

Using an equivariant version of the Sard-Smale lemma, the S^1-degree $\chi_{S^1}(X_{k,g}, \mathcal{M}) \in \mathbb{Z}$ is defined by

$$\chi_{S^1}(X_{k,g}, \mathcal{M}) := \sum_{\{ S^1 \ast \gamma \subset \mathcal{M} \ where Y_{k,g}(S^1 \ast \gamma) = 0 \} \ deg_{loc,S^1}(Y_{k,g}, S^1 \ast \gamma),}$$

where $Y_{k,g}$ is a small perturbation of $X_{k,g}$ with only finitely many critical orbits in \mathcal{M}, that are all nondegenerate.
The Poincaré map

Let $S^1 \ast \gamma$ be an isolated zero orbit of $X_{k,g}$ and consider the corresponding periodic orbit in the unit tangent bundle

$$\Sigma_1 M := \{ (x, V) \in TM : |V|_g = 1 \}.$$

We fix a transversal section E in $\Sigma_1 M$ at the point $\theta := (\gamma(0), |\dot{\gamma}(0)|^{-1} \dot{\gamma}(0))$ and denote by $P : B_1 \cap E \to B_2 \cap E$ the Poincaré map, where B_1, B_2 are open neighborhoods of θ.
The Poincaré map

If $S^1 \ast \gamma$ is an isolated zero orbit of $X_{k,g}$ then

- θ is an isolated fixed point of P
The Poincaré map

If $S^1 \ast \gamma$ is an isolated zero orbit of $X_{k,g}$ then

- θ is an isolated fixed point of P
- $\text{deg}_{loc,S^1}(X_{k,g}, S^1 \ast \gamma) = -i(P, \theta)$, where $i(P, \theta)$ denotes the index of the isolated fixed point θ.

(Nikishin '74, Simon '74): $-i(P, \theta) \geq -1$, $i(P, \theta) = 1 + \frac{1}{2}(E - H)$.

P is area preserving.
The Poincaré map

If $S^1 \ast \gamma$ is an isolated zero orbit of $X_{k,g}$ then

- θ is an isolated fixed point of P
- $\deg_{loc,S^1}(X_{k,g}, S^1 \ast \gamma) = -i(P, \theta)$, where $i(P, \theta)$ denotes the index of the isolated fixed point θ.
- (Nikishin ’74, Simon ’74): $-i(P, \theta) \geq -1$

\[
i(P, \theta) = 1 + \frac{1}{2}(E - H).
\]

P is area preserving.
Step 2: Computation of the S^1 degree

We consider the set of curves

$$\mathcal{M}_A := \{ \gamma \in H^{2,2}(S^1, M) : \dot{\gamma} \neq 0, \gamma \text{ is Alexandrov embedded} \}$$

and additionally for $M = S^2$

$$\mathcal{M}_E := \{ \gamma \in H^{2,2}(S^1, S^2) : \dot{\gamma} \neq 0, \gamma \text{ is embedded} \}$$
Step 2: Computation of the S^1 degree

Fix (M, g_0) with a constant curvature metric g_0 and

$$\begin{cases} k_0 > 0, & \text{if } M = S^2 \\ k_0 >> 1, & \text{if } M \neq S^2, \end{cases}$$

The zero orbits in \mathcal{M}_A as well as in \mathcal{M}_E are parametrized by M.

The round sphere (S^2, g_0) with $k \equiv k_0$.

The hyperbolic plane $(\mathbb{H}, g_\mathbb{H})$ with $K_{g_\mathbb{H}} \equiv -1$ and $k \equiv k_0 > 1$.
Step 2: Computation of the S^1 degree

The zero orbits in \mathcal{M}_A as well as in \mathcal{M}_E are parametrized by M. To compute the S^1-degree, choose a Morse function k_1 on M and replace k_0 by $k_0 + \varepsilon k_1$. As $\varepsilon \to 0^+$ we find:

- To every critical point $w \in M$ of k_1 corresponds exactly one zero orbit $S^1 \ast \gamma_w$ of $X_{k_0 + \varepsilon k_1, g_0}$.

These are all zero orbits in \mathcal{M}_A or \mathcal{M}_E. Hence

$$\chi_{S^1}(X_{k_0, g_0}, \mathcal{M}_E) = \chi_{S^1}(X_{k_0 + \varepsilon k_1, g_0}, \mathcal{M}_A) = -\chi(M).$$
Step 2: Computation of the S^1 degree

The zero orbits in \mathcal{M}_A as well as in \mathcal{M}_E are parametrized by M. To compute the S^1-degree, choose a Morse function k_1 on M and replace k_0 by $k_0 + \varepsilon k_1$. As $\varepsilon \to 0^+$ we find

- To every critical point $w \in M$ of k_1 corresponds exactly one zero orbit $S^1 \ast \gamma_w$ of $X_{k_0 + \varepsilon k_1, g_0}$.
- $\deg_{loc, S^1}(X_{k_0 + \varepsilon k_1, g_0}, S^1 \ast \gamma_w) = -\deg_{loc, S^1}(\nabla k_1, w)$.

These are all zero orbits in \mathcal{M}_A or \mathcal{M}_E. Hence

$$\chi_{S^1}(X_{k_0, g_0}, \mathcal{M}_E) = \chi_{S^1}(X_{k_0 + \varepsilon k_1, g_0}, \mathcal{M}_A) = -\chi(\mathcal{M}).$$
Step 2: Computation of the S^1 degree

The zero orbits in \mathcal{M}_A as well as in \mathcal{M}_E are parametrized by M. To compute the S^1-degree, choose a Morse function k_1 on M and replace k_0 by $k_0 + \epsilon k_1$. As $\epsilon \to 0^+$ we find

- To every critical point $w \in M$ of k_1 corresponds exactly one zero orbit $S^1 \ast \gamma_w$ of $X_{k_0 + \epsilon k_1, g_0}$.
- $\deg_{\text{loc},S^1}(X_{k_0 + \epsilon k_1, g_0}, S^1 \ast \gamma_w) = -\deg_{\text{loc},S^1}(\nabla k_1, w)$.
- These are all zero orbits in \mathcal{M}_A or \mathcal{M}_E.
Step 2: Computation of the S^1 degree

The zero orbits in \mathcal{M}_A as well as in \mathcal{M}_E are parametrized by M. To compute the S^1-degree, choose a Morse function k_1 on M and replace k_0 by $k_0 + \varepsilon k_1$. As $\varepsilon \to 0^+$ we find:

- To every critical point $w \in M$ of k_1 corresponds exactly one zero orbit $S^1 \ast \gamma_w$ of $X_{k_0 + \varepsilon k_1, g_0}$.
- $\deg_{loc, S^1}(X_{k_0 + \varepsilon k_1, g_0}, S^1 \ast \gamma_w) = - \deg_{loc, S^1}(\nabla k_1, w)$.
- These are all zero orbits in \mathcal{M}_A or \mathcal{M}_E.

Hence

$$
\chi_{S^1}(X_{k_0, g_0}, \mathcal{M}_E) = \chi_{S^1}(X_{k_0, g_0}, \mathcal{M}_A) \\
= \chi_{S^1}(X_{k_0 + \varepsilon k_1, g_0}, \mathcal{M}_A) = -\chi(M).
$$
Step 3: Compactness

A priori estimates: Fix \((M, g)\) and \(\gamma \in \mathcal{M}_A\), i.e. there is an immersion \(F : B \to M\) such that \(\gamma = F(\partial B)\). Gauss-Bonnet applied to \((B, F^*g)\) yields

\[
2\pi = \int_B K_{F^*g} dV_{F^*g} + \int_{\partial B} k_{F^*g} dS_{F^*g}
\geq \min(K_g) \text{vol}(B) + \int_{\gamma} k_g dS_g
\geq \min(K_g) \text{vol}(B) + L(\gamma) \min(k)
\]

If \(K_g \geq 0\), then \(L(\gamma) \leq 2\pi (\min(k) - 1)\).

If \(K_g \equiv -1\), then the (hyperbolic) isoperimetric inequality gives \(L(\gamma) \geq \text{vol}(B)\). Hence \(L(\gamma) \leq 2\pi (\min(k) - 1) - 1\).

For the general case \(K_g \geq -1\) we use a conformal change of the metric in \(B\).
Step 3: Compactness

A priori estimates: Fix (M, g) and $\gamma \in \mathcal{M}_A$, i.e. there is an immersion $F : B \to M$ such that $\gamma = F(\partial B)$. Gauss-Bonnet applied to (B, F^*g) yields

$$2\pi = \int_B K_{F^*g} dV_{F^*g} + \int_{\partial B} k_{F^*g} dS_{F^*g}$$

$$\geq \min(K_g) \text{vol}(B) + \int_{\gamma} k_g dS_g$$

$$\geq \min(K_g) \text{vol}(B) + L(\gamma) \min(k)$$

- If $K_g \geq 0$, then $L(\gamma) \leq 2\pi (\min(k))^{-1}$.
Step 3: Compactness

A priori estimates: Fix \((M, g)\) and \(\gamma \in \mathcal{M}_A\), i.e. there is an immersion \(F : B \to M\) such that \(\gamma = F(\partial B)\). Gauss-Bonnet applied to \((B, F^*g)\) yields

\[
2\pi = \int_B K_{F^*g} dV_{F^*g} + \int_{\partial B} k_{F^*g} dS_{F^*g}
\]

\[
\geq \min(K_g) \text{vol}(B) + \int_\gamma k_g dS_g
\]

\[
\geq \min(K_g) \text{vol}(B) + L(\gamma) \min(k)
\]

- If \(K_g \geq 0\), then \(L(\gamma) \leq 2\pi (\min(k))^{-1}\).
- If \(K_g \equiv -1\), then the (hyperbolic) isoperimetric inequality gives \(L(\gamma) \geq \text{vol}(B)\). Hence \(L(\gamma) \leq 2\pi (\min(k) - 1)^{-1}\).

For the general case \(K_g \geq -1\) we use a conformal change of the metric in \(B\).
Step 3: Compactness

This yields compactness in \mathcal{M}_A, because the limit of Alexandrov embedded locally convex curves remains Alexandrov embedded. Using the homotopy invariance of the S^1-degree, we find

$$-\chi(M) = \chi_{S^1}(X_{k_0, g_0}, \mathcal{M}_A) = \chi_{S^1}(X_k, g, \mathcal{M}_A).$$

In particular, if $M = S^2$, the S^1-degree is -2. Since the local S^1-degree of an isolated zero orbit is greater than or equal to -1, there are at least two zero orbits.
Step 3: Compactness

To prove compactness of embedded curves in \((S^2, g)\) of small positive geodesic curvature \(k\) with positive Gauss curvature \(K_g > 0\), we use Reilly’s formula (see also Choi and Wang ’83):
Step 3: Compactness

To prove compactness of embedded curves in \((S^2, g)\) of small positive geodesic curvature \(k\) with positive Gauss curvature \(K_g > 0\), we use Reilly’s formula (see also Choi and Wang ’83):

- Let \((M, g)\) be a compact Riemannian manifold with boundary \(\partial M\), \(f \in C^\infty(M)\), \(z = f|_{\partial M}\) and \(u = \frac{\partial f}{\partial n}\) on \(\partial M\), where \(n\) denotes the outer normal. Then

\[
\int_M (\bar{\Delta} f)^2 - |\bar{\nabla}^2 f|^2 = \int_M \text{Ric}(\bar{\nabla} f, \bar{\nabla} f)
\]

\[
+ \int_{\partial M} (\Delta z + Hu) u - \langle \nabla z, \nabla u \rangle + \Pi(\nabla z, \nabla z),
\]

where we denote by \(\bar{\Delta}, \Delta\) and \(\bar{\nabla}, \nabla\) the Laplacians and covariant derivatives on \(M\) and \(\partial M\) respectively; \(H\) is the mean curvature and \(\Pi\) is the second fundamental form of \(\partial M\).
Step 3: Compactness

If γ is embedded, we are in the above situation with $\partial M = \gamma$.

- **Reilly’s formula**

\[
\int_M (\bar{\Delta} f)^2 - |\bar{\nabla}^2 f|^2 = \int_M \text{Ric}(\bar{\nabla}f, \bar{\nabla}f)
\]
\[
+ \int_{\partial M} (\Delta z + Hu) u - \langle \nabla z, \nabla u \rangle + \Pi(\nabla z, \nabla z).
\]
Step 3: Compactness

If γ is embedded, we are in the above situation with $\partial M = \gamma$.

- **Reilly’s formula**

\[
\int_M (\Delta f)^2 - |\nabla^2 f|^2 = \int_M \text{Ric}(\nabla f, \nabla f)

+ \int_{\partial M} (\Delta z + Hu)u - \langle \nabla z, \nabla u \rangle + \Pi(\nabla z, \nabla z).
\]

- We let z be an eigenfunction to the first nontrivial eigenvalue λ_1 of $\Delta z + \lambda_1 z = 0$ on ∂M, and f its harmonic extension to M. In dimension two, this leads to

\[
0 \geq \left(\inf_M K_g \right) \int_M |\nabla f|^2 - 2\lambda_1 \int_{\partial M} zu.
\]
Step 3: Compactness

If γ is embedded, we are in the above situation with $\partial M = \gamma$.

- **Reilly’s formula**

\[
\int_M (\bar{\Delta} f)^2 - |\bar{\nabla}^2 f|^2 = \int_M \text{Ric}(\bar{\nabla} f, \bar{\nabla} f) \\
+ \int_{\partial M} (\Delta z + Hu)u - \langle \nabla z, \nabla u \rangle + \Pi(\nabla z, \nabla z).
\]

- We let z be an eigenfunction to the first nontrivial eigenvalue λ_1 of $\Delta z + \lambda_1 z = 0$ on ∂M, and f its harmonic extension to M. In dimension two, this leads to

\[
0 \geq \left(\inf_M K_g \right) \int_M |\bar{\nabla} f|^2 - 2\lambda_1 \int_{\partial M} zu.
\]

- Integration by parts yields

\[
\int_{\partial M} zu = \int_M |\bar{\nabla} f|^2 + f \bar{\Delta} f = \int_M |\bar{\nabla} f|^2 > 0.
\]
Step 3: Compactness

Consequently, if γ is an embedded closed curve with nonnegative geodesic curvature on (S^2, g) with positive Gauss curvature K_g, then

$\inf_{S^2} K_g \leq 2\lambda_1$.

Step 3: Compactness

Consequently, if γ is an embedded closed curve with nonnegative geodesic curvature on (S^2, g) with positive Gauss curvature K_g, then

- $\inf_{S^2} K_g \leq 2\lambda_1$.
- The first nontrivial eigenvalue λ_1 depends only on the length of $\partial M = \gamma$ and is given by

$$\lambda_1 = \frac{4\pi^2}{L(\gamma)^2}.$$
Step 3: Compactness

Consequently, if γ is an embedded closed curve with nonnegative geodesic curvature on (S^2, g) with positive Gauss curvature K_g, then

- $\inf_{S^2} K_g \leq 2\lambda_1$.
- The first nontrivial eigenvalue λ_1 depends only on the length of $\partial M = \gamma$ and is given by
 \[\lambda_1 = \frac{4\pi^2}{L(\gamma)^2}. \]
- Hence, we get a uniform bound
 \[L(\gamma) \leq 2\pi \sqrt{2} \left(\inf_{S^2} K_g \right)^{-\frac{1}{2}}. \]
Step 3: Compactness

- A geodesic cannot touch itself.
Step 3: Compactness

- A geodesic cannot touch itself.
- Using the uniform bound from Reilly’s formula this continues to hold for curves with small positive geodesic curvature.
Step 3: Compactness

- A geodesic cannot touch itself.
- Using the uniform bound from Reilly’s formula this continues to hold for curves with small positive geodesic curvature.
- This allows to carry out the degree argument within the class of embedded curves.
Open problems: Flow approach

Consider \((S^2, g)\), \(k : S^2 \to \mathbb{R}\) positive and

\[
\frac{\partial \gamma}{\partial t} = (k_g - k) N
\]

\[
\gamma|_{t=0} = \gamma_0
\]

- Embedded curves need not to remain embedded.
- Alexandrov embedded curves remain Alexandrov embedded.

Conjecture: There are at least two Alexandrov embedded closed \(k\)-curves on \((S^2, g)\) for any metric \(g\) and any \(k > 0\).
Open problems: Higher dimensional versions

Theorem (Jost, 1989)
Every \((S^3, g)\) contains four embedded minimal spheres.

Theorem (White, 1989)
Every \((S^3, g)\) with positive Ricci curvature contains an embedded minimal torus.

What happens, if you consider surfaces with prescribed mean curvature instead of minimal surfaces?

Conjecture: (Rosenberg and Smith ’11)
Given \((S^3, g)\) with positive (Ricci) curvature and \(H : S^3 \to \mathbb{R}\) positive, then there is an (embedded) sphere with prescribed mean curvature \(H\).
Hopf tori in S^3

Following *Pinkall* '85 and *Barros et al.* '99 we consider

$$S^3 = \{(z_1, z_2) : z_1, z_2 \in \mathbb{C}, |z_1|^2 + |z_2|^2 = 4\}$$

and the Hopf map $\mathcal{H} : S^3 \to S^2$ defined by

$$\mathcal{H}(z_1, z_2) := \frac{1}{4}(|z_1|^2 - |z_2|^2, 2z_1 \overline{z_2}) \in \partial B_1(0) \subset \mathbb{R}^3.$$

For any metric metric g on S^2, we define a metric \tilde{g} on S^3 by

$$\tilde{g}(V, W) := \mathcal{H}^* g(V, W) + \theta(V)\theta(W),$$

where $\theta|_x(V) := \frac{1}{2}\langle ix, V \rangle_{\mathbb{R}^4}$.

If γ is a closed (embedded) curve in S^2, then $\mathcal{H}^{-1}(\gamma)$ is a flat (embedded) torus in S^3 with mean curvature

$$H_{\tilde{g}}\mathcal{H}^{-1}(\gamma(t)) = \frac{1}{2} k_g(\gamma, t).$$
Hopf tori in S^3

Consequently we find (Wojtowytsch ’11)

- Given $k : S^2 \to \mathbb{R}$ positive, then there are two embedded tori in the round S^3 with prescribed mean curvature $k \circ \mathcal{H}$.

- Given a $\frac{1}{4}$-pinched metric g on S^2 and $c > 0$, then there are two embedded tori in (S^3, \tilde{g}) with constant mean curvature c.
Closed k-curves correspond to periodic trajectories of a vector field $\tilde{\Phi}$ on the unit tangent bundle of (S^2, g)

$$\Sigma_1 S^2 := \{(x, V) \in TS^2 : |V|^g = 1\} \cong \mathbb{RP}^3 \xleftarrow{1:2} S^3$$

Lift $\tilde{\Phi}$ to a vector field Φ on S^3.

The Legendrian Seifert conjecture
The Legendrian Seifert conjecture

- *Seifert ’50:* Exists a vector field on S^3 without periodic orbit?
The Legendrian Seifert conjecture

- **Seifert ’50**: Exists a vector field on S^3 without periodic orbit?
- **Kuperberg ’94**: There is a smooth vector field on S^3 without periodic orbit.
- **Hofer ’93**: Every Reeb vector field V on (S^3, λ) has a periodic orbit.

 contact structure: $\lambda \wedge d\lambda \neq 0$, Reeb vector field: $d\lambda(V, \cdot) = 0$ and $\lambda(V) = 1$. (*Weinstein conjecture, Taubes ’07.*)
The Legendrian Seifert conjecture

- **Seifert ’50:** Exists a vector field on S^3 without periodic orbit?
- **Kuperberg ’94:** There is a smooth vector field on S^3 without periodic orbit.
- **Hofer ’93:** Every Reeb vector field V on (S^3, λ) has a periodic orbit.

contact structure: $\lambda \wedge d\lambda \neq 0$, Reeb vector field: $d\lambda(V, \cdot) = 0$ and $\lambda(V) = 1$. (*Weinstein conjecture, Taubes ’07.*)

- **Φ** is Legendrian for the (standard) contact structure λ lifted from $\Sigma_1 S^2$, i.e. $\lambda(\Phi) = 0$.

- **Arnold ’96:** Open problem: Existence of periodic orbits of Legendrian vector fields on S^3 (with standard contact structure)?