OPENING NODES IN THE DPW METHOD: CO-PLANAR CASE

MARTIN TRAIZET

Abstract: we combine the DPW method and opening nodes to construct embedded surfaces of positive
constant mean curvature with Delaunay ends in euclidean space, with no limitation to the genus or number
of ends.

AMS classification : 53410, 55C42

1. INTRODUCTION

In [5], Dorfmeister, Pedit and Wu have shown that harmonic maps from a Riemann surface to a
symmetric space admit a Weierstrass-type representation, which means that they can be represented in
terms of holomorphic data. In particular, surfaces with constant mean curvature one (CMC-1 for short)
in euclidean space admit such a representation, owing to the fact that the Gauss map of a CMC-1 surface
is a harmonic map to the 2-sphere. This representation is now called the DPW method and has been
widely used to construct CMC-1 surfaces in R? and also constant mean curvature surfaces in homogeneous
spaces such as the sphere S* or hyperbolic space H?: see for example [4, 6, 9, 10, 11, 14, 15, 22].

The input data for the DPW method is called the DPW potential. In principle, all CMC surfaces
can be obtained by the DPW method. But in practice, one has to solve a Monodromy Problem, akin
to the Period Problem for the construction of minimal surfaces via the Weierstrass Representation. So
in general the topology of the constructed examples is limited or symmetries are imposed in order to
reduce the number of equations to be solved. In contrast, Kapouleas [13] has constructed embedded
CMC surfaces with no limitation on the genus or number of ends by gluing round spheres and pieces
of Delaunay surfaces, using PDE methods. It seems an interesting question to see whether such gluing
constructions can be achieved by the DPW method.

In [28], we proposed a DPW potential for CMC n-noids: genus zero CMC-1 surfaces with n Delaunay-
type ends. They look like a round sphere with n half-Delaunay surfaces with small necksize attached at
prescribed points. They are a particular case of the construction of Kapouleas in [13]. The potential is
natural, in the sense that it is a perturbation of the standard spherical potential. This potential has been
adapted to minimal surfaces in H* and AdS? in [1] and CMC>1 surfaces in H? in [21].

In [29], we proposed a DPW potential for another type of CMC n-noids which look like a minimal
n-noid (a genus zero minimal surface with n catenoidal ends) whose catenoidal ends have been replaced
by Delaunay ends. They had already been constructed by Mazzeo and Pacard in [18] using PDE methods.
The potential is derived in a natural way from the Weierstrass data of the minimal n-noid. It has also
been adapted to CMC>1 surfaces in H? in [21].

Our goal in this paper is to propose a DPW potential for the higher genus surfaces constructed by
Kapouleas in [13] in the case where all the centers of the spheres to be glued together are in the same
plane. The resulting CMC surfaces are invariant by symmetry with respect to that plane. The symmetry
allows us to take advantage of the fact that the standard holomorphic frame for Delaunay surfaces is
unitary on the unit circle, which is a big asset for the resolution of the Monodromy Problem.
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The underlying Riemann surface is defined by opening nodes, which is a standard model for Riemann
surfaces with “small necks”. The theory of opening nodes has been used by the author to construct
minimal surfaces in euclidean space via the classical Weierstrass Representation (see for example [24] or
[25]) or CMC-1 surfaces in hyperbolic space via Bryant Representation [27].

One difficulty with the DPW method is that unlike the Weierstrass data of minimal surfaces, the
DPW potential has little geometric content so it is hard to guess a candidate for the construction of
CMC surfaces with given geometric features. The heuristic that we follow is that the DPW potential
should be a perturbation of the spherical potential where the surface is close to a round sphere and of
the catenoidal potential where the surface has small catenoidal necks.

This paper opens up the possibility of opening nodes in the DPW method. We hope the ideas developed
in this paper will be useful to the contruction of minimal and CMC surfaces in other space forms.

Remark 1. In an unpublished paper [30], I proposed a DPW potential for all the surfaces constructed
by Kapouleas in [13], with no symmetry assumption. The potential was, however, quite complicated and
hardly natural, and the paper was long and technical. [30] will not be published in its present form, as
I hope a simpler potential will be found in the general case. The result of Appendix B of [30] has been
moved to the appendix of the present paper to make it self-contained. For the interested reader, the
result of Appendix A of [30] has been moved to [12] where it is needed.

2. MAIN RESULT

Our goal is to contruct CMC surfaces by gluing spheres and half-Delaunay surfaces. The layout of
these pieces is encoded by a weighted graph in the horizontal plane.

Definition 1. A horizontal weighted graph I' is the following data:

e A finite number of points v; € R? for j € J, called vertices. Here J C N* is a finite set used to
index vertices.

o A symmetric subset E C (J x J)\ A where A is the diagonal of J x J, whose elements are called
edges. Two vertices v; and vy, are adjacent if (j,k) € E.

e A finite set of half-lines A, C R? for (j, k) € R, called rays, such that A has endpoint v;. Here
R C J x (N*\ J) is a finite set used to index rays.

e Each edge or ray is given a non-zero weight 7,1, (j, k) € EU R, with 7j, = 7; for (j, k) € E.

For j € J, we denote E; = {k € J : (j,k) € E} the set of edges issued from the vertex v;, and
R; = {k € N*,(j,k) € R} the indices of the rays issued from the vertex v;. Also we denote ET =
{(j,k) € E:j <k}

Given a horizontal weighted graph I" with length-2 edges, we can construct a singular CMC-1 surface
M, as follows. We identify R? with the horizontal plane z3 = 0.

e For j € J, place a radius-1 sphere centered at the vertex v;, so if v; and v, are adjacent, the
corresponding spheres are tangent.

e For each (j, k) € R, place an infinite chain of radius-1 spheres with centers on A at even distance
from v;.

Our goal in this paper is to construct a family of CMC-1 surfaces (M;)o<t<e by desingularizing Mo,
replacing all tangency points between adjacent spheres by catenoidal necks of size ~ t7;;, (see Figure 1).
This is only a heuristic way to describe the result, and is not the way we will construct M; (although
this is how Kapouleas does in [13]).

For the construction to succeed, the weighted graph T' must satisfy a balancing condition. For (4, k) €
E, we denote £ = |v; — vg| and u; the unitary vector (vy — v;)/¢;k, S0 uk; = —uj. For (j, k) € R, we
denote u;j, the unitary vector in the direction of the ray Ajy.
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FIGURE 1. Left: a balanced graph with 6 edges and 6 rays. All edges and rays have
weight 1. Right: a CMC-1 surface of genus 1 with 6 Delaunay-type ends in the corre-
sponding family. Computer image by N. Schmitt [2].

Definition 2. For j € J, we define the force F; on the vertex v; by

(1) Fi= > T

kEEj URJ‘
A horizontal weighted graph I' is balanced if F; = 0 for all j € J.

To solve our problem, we need to perturb I' in order to prescribe small variations of edge-lengths and
forces. The parameters available to deform I' are the vertices v; € R? for j € J, the unitary vectors u;y
for (j,k) € R and the weights 7;, € R for (j,k) € ET UR.

Definition 3. A horizontal weighted graph I is non-degenerate if the jacobian of the map ((Fj)jej, (éjk)(j’k)eEJr)
with respect to the above parameters is onto.

Theorem 1. Let ' be a balanced, non-degenerate horizontal weighted graph with length-2 edges. There
exists a smooth 1-parameter family of immersed CMC-1 surfaces (My;)o<i<e with the following properties:

(1) (M) converges to My ast — 0. The convergence is for the Hausdorf distance on compact sets
of R3.

(2) M; is homeomorphic to the boundary of a small tubular neighborhood of T'.

(3) M; is symmetric with respect to the horizontal plane.

(4) For each (j, k) € R, My has a Delaunay end with weight ~ 2mtT;, and whose axis converges as
t — 0 to the ray Ajy.

(5) If all weights are positive, then M, is Alexandrov-embedded.

(6) If moreover T' is pre-embedded, then M, is embedded.

Definition 4. Following Kapouleas (Definition 2.2 in [13]), we say that I" is pre-embedded if the distance
between any two edges or rays which have no common endpoint is greater than 2 and the angle between
any two edges or rays with a common endpoint is greater than 60°.

Remark 2. A balanced graph with even length edges can be transformed into a graph with length-2
edges by adding vertices, transforming an edge of length 2k into k edges of length 2, with the same weight.
Clearly the resulting graph is balanced, and it is easy to see that non-degeneracy is preserved.
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3. BACKGROUND

3.1. Functional spaces. The DPW method uses loop groups, which are groups of smooth functions
from the unit circle S' ¢ C to a matrix group. The circle variable is denoted \. The DPW method
is usually formulated in the category of smooth maps, but since we plan to use the Implicit Function
Theorem, we need a Banach space. We adopt the following choice, following [28, 29].

Fix some p > 1 and let D, C C be the disk |A\| < p and A, C C the annulus p~! < [A\| < p. We
decompose a smooth function f : S! — C in Fourier series

FO) =D N

€L

£l =" Ifil o™
€T

Let W be the space of functions f with finite norm. This is a Banach algebra, owing to the fact that the
weight pl’l is submultiplicative (see Section 4 in [8]). Functions in W extend holomorphically to A,.

We define W20, W>0 W=0 and W<O as the subspaces of functions f such that f; = 0 for i < 0,
i < 0,4 >0 and i > 0, respectively. Functions in W=° extend holomorphically to the disk D, and
satisfy |f(N)] < || f| for all A € D,. We write W° ~ C for the subspace of constant functions, so we have
a direct sum W = W<% @ W° ¢ W>0. A function f will be decomposed as f = f~ + f° + f+ with
(f=, O 1) e w<0 x WO x W>0 (and of course f° = fy).

We define the conjugation operator by

and define

FO) = 700 = ST
i€Z
We denote Re(f) = 3(f + f) and Im(f) = 5 (f — f) and define Wy as the subspace of functions in W
0

such that Tm(f) = 0, and Wz° = W N W=
We also define the star operator by

) = FON) = ST

i€

The involution f +— f* exchanges W2° and W<°. We have \* = A~! and ¢* = ¢ if ¢ is a constant. A
function f is real on the unit circle if and only if f = f*. Note that conjugation and star commute.

There is a theory of holomorphic functions between complex Banach space, which retain most prop-
erties of holomorphic functions of several variables. A good reference is [3].

3.2. Loop groups.

o If G is a matrix Lie group, we denote AG the Banach Lie group of maps ® : S! — G whose
entries are in W.
e If g is the Lie algebra of G, the Lie algebra of AG is the set of maps ¢ : S' — g whose entries are
in W and is denoted Ag.
e A SL(2,C) c ASL(2,C) is the subgroup of maps B whose entries are in W=% with B |y~
upper triangular.
e ARSL(2,C) c A4 SL(2,C) is the subgroup of maps B such that B [\— has positive entries on
the diagonal.
The following result is the corner stone of the DPW method. It is usually formulated for smooth loops
[19], but adapts with no difficulty to loops with entries in W (see details in Section 3.6 of [29]).

Theorem 2 (Iwasawa decomposition). The multiplication ASU(2) x AFSL(2,C) — ASL(2,C) is a
smooth diffeomorphism (in the sense of smooth maps between Banach manifolds). The unique splitting
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of an element ® € ASL(2,C) as ® = FB with F € ASU(2) and B € ARSL(2,C) is called Twasawa
decomposition. F is called the unitary factor of ® and denoted Uni(®). B is called the positive factor
and denoted Pos(P).

3.3. The DPW method. In the DPW method, one identifies R?* with the Lie algebra su(2) by

) 3 L —I3 T + 129

(z1,29,23) €R 1 < 21 — it 25 ) € su(2).

The input data for the DPW method is a quadruple (X, ¢, 2o, ¢o) where X is a Riemann surface, £ is a
Asl(2, C)-valued holomorphic 1-form on ¥ of the following special form

[ a XT1B
©) e=(227)
where «, 3, v are W2%valued holomorphic 1-forms on ¥, zy € ¥ is a base point and ¢y € ASL(2,C) is
an initial condition. & is called the DPW potential. If ¥ is simply connected, the DPW method is the
following procedure:

e Solve the Cauchy Problem on 3:

3 { 4D = d¢

®(20) = 9o
to obtain a solution ® : ¥ — ASL(2,C).
e Compute the Iwasawa decomposition (F'(z), B(z)) of ®(z) for z € X.
e Define f: ¥ — su(2) ~ R? by the Sym-Bobenko formula:

B .. 0F(2)
(4) f(z) = Bym(F(z)) = —2i —+

Then f is a CMC-1 (branched) conformal immersion. f is regular at z (meaning unbranched) if
and only if 8°(z) # 0. Its Gauss map is given by

F(z)™ =1 -

. -1 0 _
®) NG = Nor( () = -7 (5§ )@ b
The DPW method actually constructs a moving frame for f and the differential of f is given by
. 0 BY(2) _
0 ()2 1
0 ) =2 (g T ) FO

3.4. The Monodromy Problem. If ¥ is not simply connected, lift the DPW potential £ to the universal
cover ¥ of ¥ and choose a point Zy in the fiber of zy. Solve the Cauchy Problem d® = ®¢ in Y with
initial condition ®(3) = ¢ to define ® : & — ASL(2,C). The DPW method produces an immersion
f: ¥ — R3.
For v € m1(%, 20), let § be the lift of v to 3 such that ¥(0) = 2. The monodromy of ® with respect
to 7y is
M(@,7) = 2(3(1))@(5(0)) "

The standard condition which ensures that the immersion f descends to a well defined immersion on X
is the following system of equations, called the Monodromy Problem:

M(®,v) € ASU(2) (1)
(7) V’}/ € 71'1(2,2’0) M(‘I’,’y) |)\:1= +15 (ZZ)

DM(®,7) [xer1=0 (i)
We will formulate the Monodromy Problem using the notion of principal solution (see Chapter 3.4 in
[23]).
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Definition 5. Let v : [0,1] — X be a path, not necessarily closed. Let Y : [0,1] — ASL(2,C) be the
solution of the Cauchy Problem

{ Y'(s) =Y(s)€(v(s))(7'(s))
Y(0) =1,
The principal solution of £ with respect to v is P(£,y) = Y(1).

In other words, P(&,~) is the value at (1) of the analytical continuation along v of the solution of
the Cauchy Problem (3) with initial condition ®(y(0)) = I». If p, ¢ are two points on ¥ and the path =
from p to ¢ is clear from the context, we will sometime write P(&, p, q) for P(&, ). The principal solution
has the following properties, which follow easily from its definition:

e P(&,7) only depends on the homotopy class of 7.
e The principal solution is a morphism for the product of paths: If v; and 7» are two paths such
that ~1(1) = 72(0) then

P(&mv2) = P(&71)P (€, 72)-
e If ¢ : 3 — 35 is a holomorphic map, £ is a potential on X5 and + is a path on X7, then

P E,y) =PEv(0n)-

e If 0 : X1 — X5 is a anti-holomorphic map, then

P(07€,7) = P(& 0 (7))-
Back to the DPW method, if the initial condition is ®(zg) = I5, which will be the case in this paper, the
Monodromy Problem is equivalent to the following problem:
P(§,7) € ASU(2) (4)
(8) Vv € 71'1(2, Zo) 73(5,7) |)\:1: +1s (ZZ)
a5PE) =0 (Gii)

3.5. Gauging and the Regularity Problem.
Definition 6. A gauge on X is a holomorphic map G : ¥ — AL SL(2,C).

Let ® be a solution of d® = ®¢ and G be a gauge. Let ® = ®G. Then ® and & define the same
immersion f via the DPW method. The gauged potential is

£:=314d = GG+ GLdaG
and is denoted £ - G, the dot denoting the action of the gauge group on the potential. Gauging does not

change the monodromy of ®.

Definition 7. We say that ¢ is regular at p € X if 8%(p) # 0. This ensures that the immersion f is
unbranched at p.

In general ¥ is a compact Riemann surface Y minus a finite number of points, and the potential &
extends meromorphically to 3.

Definition 8. We say that a pole p of £ is an apparent singularity if there exists a meromorphic gauge
G, defined in a neighborhood of p, such that £ - G extends holomorphically at p and is regular. This
ensures that the immersion f extends analytically at p.

Our potential will have two kinds of poles: some of them will be ends of the immersion f, the others
will be apparent singularities. Note that { must have apparent singularities at the zeros of B0 for f to be
regular. If ¥ has positive genus, 8° must have zeros on ¥ so apparent singularities cannot be avoided.
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3.6. Dressing and rigid motions. Let ® be a solution of the Cauchy Problem (3). Let H € ASU(2)
and define ®(z) = H®(z). Then ® solves d® = B¢ and the Iwasawa decomposition of ® is F' = HF and
B = B. The Sym-Bobenko formula gives

Flo) = sy (o)) = (#7870 25 ) s

Consequently, we define a left action of ASU(2) on su(2) by

0H
(9) Hx:<HxH_ _25}1 ))\_1.

The action is by rigid motion and f = H - f. The Monodromy Problems for & and H® are equivalent
because H € ASU(2).

3.7. Spherical and catenoidal potentials. Delaunay surfaces are obtained from the following standard
potential on C*:
_ 0 Alr s dz
&= ( AT+ s 0 ) Z

with initial condition ®(1) = I, where r, s are non-zero real numbers such that r + s = % There are two
limiting cases of interest to us:

e Spherical limit: (r,s) = (1/2,0) gives

S 0 )\_1/2 dz
=2 o )7

which we call the spherical Delaunay potential. The corresponding solution is

1 z+1 A Hz-1)
(I)S(Z)_Q\/Z</\(z—1) z+1 )

It Iwasawa decomposition is
FS(2) = Z+1  Alz-1) wEe0
\f/1+| 2 AM1-2) z+1 0 e /2
B%(z) =

2|z| 0 )
NoENEAEE |z«/1+|z|2 ( Al2P=1) 1+

where 6 = arg(z). The Sym-Bobenko formula (4) and Equation (5) give

s, i —|z =12 1—|22—2+2 1 e e
&= 1 ( 12 Ptz-z  |a—1P T (L [ —21me) 2~ 1F)
L+ |22\ s —1+Z~2 z2+Z 1+ |2]2 ’ ’ '
Consider the rigid motion
(10) \11(1‘1,332,.I3) = (1 —J)3,—$2,—l‘1).
Then
1
(11) o f9(2) 5 (2Re(2),2Im(2), 2> — 1) =77 '(2)
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where 7 : CU {oc} — S? is the stereographic projection from the north pole. The poles at 0 and
oo are of course apparent singularities. This is confirmed by the following gauge:

g
oo )
vz 1+2z

S qs_ [0 AT dz
o ‘(0 0 )2<z+1>2

which is regular at 0 and oo.
e Catenoidal limit: (r,s) = (0,1/2) gives

¢ = 0 1/2\dz
1/2 0 z
which we call the catenoidal Delaunay potential. The corresponding solution is
1 z+1 z—-1
Cr.y —
(I)(Z)Q\/E<z—1 z+1>
which does not depend on A, so the immersion degenerates into the point 0. A computation gives

1
IREAEE

A computation gives

N (z) (1—|2*,2Im(z), 2Re(2)) .

which is a conformal diffeomorphism from C U {co} to SZ.

3.8. Duality. Let
0 dAT/2
K()‘):< ial/2 0 )

Definition 9. The dual potential of £ is
_ Pt
F=Kek ' =( ¢ 7 ) :
6=t =

@

The Delaunay spherical and catenoidal potentials are dual to each other. Note that K is not a
gauge. Duality transforms the immersion in the following explicit way. Let ®' = K®K~! be the
solution of d®f = ®T¢T with initial condition ®7(z9) = K®(29)K~!. The Iwasawa decomposition of ®F
is F1 = KFK~! and Bf = KBK~'. The Sym-Bobenko formula gives:

fT(z)(? é){f(Z)JrN(Z)i(é _01 )](—Oz BZ)

In other words, up to a rigid motion, the dual (branched) immersion f1 is the parallel surface at distance
one to f.

4. STRATEGY

Fix a horizontal weighted graph I'. Until Section 9, we do not assume that I' is balanced nor has
length-2 edges. Without loss of generality, we may assume (by rotating the graph I') that u;, # £1 for
all (j, k) € EUR. We denote C the Riemann sphere CU {oo}. Take a copy of the Riemann sphere C; for
each j € J, and a copy of the Riemann sphere C;j, for each (j, k) € E*. For each (j,k) € ET, identify
the point z = u;;, in @j with the point z =1 in @jk, and the point z = uy; in C}, with the point z = —1
in @j % This defines a compact Riemann surface with nodes ¥y (the nodes are the double points created
when identifying pairs of points).
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Consider the meromorphic DPW potential & on Yo defined by & = ¢% in C; for j € J and & = £¢
in C;, for (j,k) € ET. Fix an arbitrary jo € J and take as base point 2o the point z = 1 in Cj,
and the initial condition ®(z9) = I. The fundamental group m; (2o, o) is generated by paths made of
unit circular arcs connecting the nodes. Whenever a path « crosses a node, we require the fundamental
solution P(&p,~) to be continuous at the node. (This seems natural and is justified by the theoretical
results of Appendix B: see Remark 14.)

The spherical and catenoidal potentials both take value in Asu(2) when z € S!. So if all points
uj), are on the unit circle, the fundamental solution P(&y,~) will be in ASU(2) for all v € (X0, 20).
Unitarization is the hard task in solving the Monodromy Problem, so this explains why we restrict to
horizontal planar graphs T'.

The strategy of the construction is the following: for small ¢ # 0, we define a genuine Riemann surface
¥, by opening the nodes of ¥y. We define a meromorphic potential & on X, as a perturbation of the
above potential £y, depending on some parameters. These parameters are determined by solving the
Regularity and Monodromy Problems by an implicit function argument at ¢ = 0.

4.1. Symmetry. In all the paper, o(z) = 1/Z denotes the inversion with respect to the unit circle. The
potentials £€% and £ both have the symmetry

—= —1 . i 0
(12) o*¢ = DED with D= 0 —i |-
A potential having the symmetry (12) will be called o-symmetric. With appropriate initial condition,
the solution of the Cauchy Problem (3) satisfies

(13) o*® = DOD .

The corresponding surface is invariant by the isometry X + DXD™! in the su(2)-model, which corre-
sponds to the symmetry with respect to the plane ;1 = 0. We keep the o-symmetry throughout the
construction, and in the end apply the rigid motion ¥ so that the surface is symmetric with respect to
the horizontal plane x3 = 0.

5. OPENING NODES

In this section, we define a family of Riemann surfaces 3; , depending on a small real parameter ¢ and
a certain number of other parameters, which we denote x. We start by defining the Riemann surface with
nodes i(),x- We proceed as in Section 4 except that the position of the nodes in @j become parameters.
(We can fix the nodes at 1 and —1 in C;;, by a Mé&bius transformation.) Consider a copy C; of the
Riemann sphere for j € J and a copy Cji of the Riemann sphere for (j,k) € E*. For (j, k) € ET,
introduce two complex parameters p;, and pi; in a neighborhood of respectively w;, and ug;. It will be
convenient to denote p}k =1 and pjﬁj = —1 the nodes in @jk. Identify the point z = pj; in C]- with the
point z = p;k in Cj and the point z = py; in Ci with the point z = pgcj in C;i, to create two nodes per
edge. This defines a compact Riemann surface with nodes denoted g .

To open nodes for ¢ # 0, we introduce local complex coordinates in a neighborhood of p;, and p; . for
(j, k) € E:

.2 — Pjk ~
zjp = —2i——— : V;i, C C; — D(0,¢).
Jk 2+ pik Jk J ( )
‘Z—p’-k — ~
2 = =20 2.V c Ci — D(0,¢).
ik Z+p;<k ik ik ( )

(These coordinates are chosen so that ¥, has the desired symmetry: see Proposition 1.) We assume
that € > 0 is small enough so that the disks Vjj for k € E; are disjoint. For (j,k) € E, we introduce a
non-zero real parameter 75 in a neighborhood of 7, and set ¢;, = r;,t. Assume that ¢ is small enough so
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that [t;x| < *. Remove the disks |z;x| < [t|/c and |2}, | < |t;x|/e. Identify each point 2 in the annulus
ltjkl/e < |zjk| < e with the point 2’ in the annulus |t;x]/e < [2};| < e such that
%k (2) 21, (2) = L.

In particular, the circle |zjz| = |t;jx|'/? is identified with the circle I |tjx|'/?, with the reverse
orientation. This creates two necks per edge. The resulting compact Riemann surface is denoted EM.
Note that it does not depend on A. The points z =0, z =1 and z = oo in @j are denoted respectively
0;, 1; and oo;. The points z =0 and z = oo in @jk are denoted 0;;, and oojy.

Remark 3. The Riemann surface it}X does not depend on the number £ > 0 used to define the domains
Vik, but the smaller ¢, the smaller ¢ must be since we need |t;| < 2.

5.1. Symmetry.

Proposition 1. Assume that p;j, € St for all (j, k) € E. Then X, « admits an anti-holomorphic involution
o defined by o(z) =1/z in C; for j € J and Cj, for (j,k) € ET.

Proof: a straightforward computation gives, for pj; € S!
zik(1/Z) = zji(2).
A similar relation holds for z;.k. Hence since t;, is real,
zik(2)2j(2) =t = zr(0(2))2)(0(2)) =tk
So if 2 ~ 2’ in ¥ 4, then o(2) ~ o(2/) in X 4. O

5.2. Meromorphic 1-forms on ;.. We denote C(p,i) the circle |zj;| = ¢ and C(pjy,) the circle

|| = €. Assume t # 0 and let w be a meromorphic 1-form on 3¢« with poles outside of the annuli
tik|/e < |zjk| < e. We have

(14) / w:—/ w for (j,k) € E
Clpsr) Cwy)

because C(p;x) is homologous to —C'(pf, ) in 3¢ x. By the Residue Theorem in C;

(15) Z/C w+27riZResqw:0 forjedJ

keE; Y CPir) q€C;

where the sum is taken on all poles ¢ of w in C;. In the same way,

(16) / w —|—/ w + 2mi Z Resqw =0 for (j,k) € E*.
Cw'y) C(p},)

q€Cjp

Definition 10 (Bers). A regular differential on the Riemann surface with nodes ¥ x is a meromorphic
1-form with simple poles at the nodes p;; and p}k for (j,k) € E, with opposite residues, and possibly
poles of arbitrary order away from the nodes.

Theorem 3. A meromorphic 1-form w on Swgo,x (respectively a reqular differential w on g x ) is uniquely
defined by prescribing its poles, principal parts at the poles and periods on the circles C(pj;i) and C’(p;-k)
for (4, k) € E, subject only to the constraints (14), (15) and (16). Moreover, away from the nodes and
the poles, w depends holomorphically on t in a neighborhood of O and all parameters in the construction.
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This is proved for holomorphic 1-forms in [7] and for meromorphic 1-forms with simple poles in [17]
using algebraic-geometric methods. A proof for poles of arbitrary order is given in [26]. The holomorphic
dependence away from the nodes and the poles means the following: for € > 0, let 2. be i(),x minus
e-neighborhoods of all nodes and poles, so Qe C 3 for ¢ small enough. Then the restriction of w to the
fixed domain 2. depends holomorphically on (z, ¢, x).

6. THE POTENTIAL

In this section, we define a meromorphic potential & x on 3; , with poles at the following points:
e 0; and oo; in @j for 7 € J, which are to be apparent singularities,
e pji in C; for (j,k) € R, which are to be the Delaunay ends of our surface. Here pjj is a
A-dependent parameter in the functional space W=0 in a neighborhood of u, for (j, k) € R.
e gjr and o(q;) in Cjy, for (j,k) € ET, which are to be apparent singularities. Here g, is a
A-dependent parameter in WW=° in a neighborhood of 0, for (j,k) € E*.

Remark 4. All these A-dependent parameters will be used to solve the Monodromy Problem. The
cross-ratio of 1, —1, g;i and o(g;x) is
_ ikGk — 1+ 2¢Im(g;x)

1 — qjr@ir + 20 Im(q; )

(1, =15 g5k, 0(q5k))

The derivative of the cross-ration with respect to Re(g;x) at g;x = 0 is zero, so Re(gjx) serves no purpose
and we restrict ¢, to the space iWH%O. We could have fixed the singularities at 0;, and oo, and
perturbed the position of the nodes at 1 and —1, but then 3; , would depend on A. We chose to have a
constant Riemann surface and moving singularities (with respect to A), which is more conventional than
the reverse.

We define the meromorphic potential & x on ft’x as the sum of two terms:

Eix = Mex T Xt x

where the potential 7; x is a perturbation of the potential £ described in Section 4, while the potential
Xt,x Prescribes periods around the nodes and suitable singularities at the Delaunay ends. These potentials
are defined as follows, using Theorem 3:

e The potential 7 « has simple poles at 0; and oo; for j € J with residues

iA; AT1B;
ReSO]‘nt,x = _Resoo]'nt,x = Mj = < j\C’J —ZAJ > )
J J

simple poles at ¢jx and o(g;x) for (j, k) € E* with residues

_ o o ZAJk Bj
Requk.Ut,x = Resa(qjk)ntx = M;, = < Cj —iAjk

and has vanishing periods around the nodes:

/ Nex = / mx=0 for (j,k)€E.
C i) )y

Here Aj, B, Cj, Ajk, Bjk, Cji are parameters in a neighborhood of respectively 0, 1/2, 1/2, 0,
1/2,1/2 in Wg°.
o The potential x; x has the following periods around the nodes for (j,k) € E:
. —1,p.
/ Xtx = —/ Xtx = 21 mjk with mjr = ( .a]k A Zb]k )
C(pik) ) Wik Ak
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where a;i, bji, cji for (j, k) € E are parameters in WD%O to be determined. It has a double pole
at pjr in C; for (j,k) € R with principal part

0 0 ajkpjkdz z'bjkdz
10 e o)
(Z pjk) Z — Pjk

Here aji, bji, are parameters in Wﬂ%o to be determined, for (j, k) € R. It is known from [28] that
such a pole creates a Delaunay end, provided the Monodromy Problem is solved. Finally, the
potential x;x has simple poles with equal residues at 0; and co; and simples poles with equal
residues at ¢;, and o(g;i). These residues are determined by the constraints (15) and (16) which

give:
1 1 0 0
(17) ReSOth’X = Resoont,x = —5 Z Mk — 5 Z ( ibjk 0 )
kEE; kER,
1
(18) Resg, . Xtx = Reso(qjk)Xt,x = i(mjk + my;).

6.1. Symmetry. The residues and periods of the entries of 1. x and x;x have been chosen to be either
real or imaginary so that the potential has the desired symmetry:

Proposition 2. Assume that pjx € S' for (j,k) € E and pj. = €% with 6, € WZ° for (j, k) € R.
Then the potential &« has the symmetry (12):

U*ft,x = th,xD_1~
Note that the bar denotes the conjugation operator defined in Section 3.1 so this actually means

0%& x(2,X) = D& x(z, \)D~1. Both sides are holomorphic with respect to .
Proof: if w is a meromorphic 1-form on it,x then o*w is meromorphic and

Res, (p)0*w = Respw.

Hence

Resoo, 071 x = Reso, Nex = Mj = —DM;D ™" = Resso, Dy x D"

In the same way, 0*1; « and D D" have the same residues at 0;, ¢;; and o(g;x). Moreover, both have
vanishing periods around the nodes, so by uniqueness in Theorem 3,

U*nt,x = Dnt,xD_l-
For (j, k) € E, we have since o(C(p;x)) = —C(pjx)

/ 0*Xtx = 7/ Xtx = 2mimg, = QWiijkDfl
C(pjr) C(pjr)

0 0% x1.x and Dx; xD ™1 have the same periods around the nodes. For (j, k) € R, assuming that p; = e*%i*
with ;5 € W]}%O, we have o(p;x) = pjr and
o ( ajppjpdz  ibjpdz ) __ ajpirdz  ibjrdz N ibjrdz
(z—=pjx)*  z—Dpjk (z=pjx)*>  2z—Dpjr z
$0 0*xtx and Dy D ™! have the same principal part at pjx. Finally, they have the same residues at 0;,
00j, ¢k and o(g;x) by computations similar to the above. By uniqueness in Theorem 3, we have

U*Xt,x = DXt,xD_l-
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6.2. Explicit formulas at ¢t = 0. It will be convenient to denote, for (j,k) € Et, My; = Mji,, Ax; =
A, etc... so Mj;, makes sense for all (j,k) € E. Be careful however that A, and Ay; are the same
parameter, whereas a;, and ay; are distinct parameters. For complex numbers p, g, we denote w, the
meromorphic 1-form on the Riemann sphere with simple poles at ¢ and o(g) with residues 1 and —1,
and wy , the meromorphic 1-form with simple poles at p, ¢ and o(¢q) with residues 1, —1/2 and —1/2.
Explicitly:
dz qdz (1 —qq)dz dz dz qdz
— — = — and  wpq = — - — .

z—q qz—1 (2—q(1-72) z=p 2z—q) 2(@-1)

In particular if ¢ = 0:

wq:

dz dz dz

wo=— and wpo=
z

z—p 22

Proposition 3. Att =0 and for any value of the parameter x, we have in C; for j € J:

Nox = Mjwo
kEE; kER;
and in Cjy, for (j, k) € ET:
No,x = MjkWq,y,
X0,x = —MjkpW1,q;, — MkjW—1,q;-

Proof: the entries of 19 x and xox are regular meromorphic differentials on the Riemann surface with
nodes Yo . Proposition 3 follows from the fact that a meromorphic 1-form on the Riemann sphere is

uniquely defined by its poles and principal parts. O
We shall need the t-derivative of the potential & x at ¢ = 0. We have of course
8ft,x 877t,x
ot li—o= ot lt=0 +X0.x-

Proposition 4. The t-derivative of the potential n.x at t =0 is given by

1+q; xd —
Z Tk jk( Jk) Pik®= m (Cj fO’I‘j cJ

One x l—o={ keE, (1= quk) (z —pjr)?
o dz dz — . N
’I"]kM]m — Tijkm m (Cjk; fOT (j, k) c ET.

Proof: by Lemma 3 in [25], for (j, k) € E, the derivative of 1, x with respect to the parameter ¢;; at
t = 0 is a meromorphic differential on ¥ x with two double poles at pjy, p;. . and principal parts given in
term of the coordinates used to open nodes by

—dek 70,x

Res,, —— at pjx
(19) ant,x | - (ij22 Pjk Z;'k: J
Ot 70T —dzjy, 10,x ,
J Res, . at ply
CATRNCET
We have
dzji _ ipjk dz and dz;-k B ip;-k dz

)2 (2 —pjr)? )2 (2= pi)?
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Observe that these are globally defined meromorphic 1-forms on the Riemann sphere so ~ in (19) becomes

an equality in C; and Cjj, respectively. By Proposition 3:
X + p; dZ .
RespjknL = RespjkMMj— =1M;
Zjk —2i(z — pjk) z

Recalling that g, € Z'W]I%O S0 ;i = —¢;, and that p;-k =+1:

2 2
Res, Mox _ Res,, (2 +p};€) ik d+ qjk)dz = iM‘kil i qjk.
Por 2y Pir =2i(z = ply) 7" (2 = qin) (1 + gjr2) T1-45,
Hence for (j,k) € E:
2 LG e
o M=) G M
T W T in C
. L _SgkTT e
! ! (2 _P;k)Q !
0 in all other Riemann spheres.

Proposition 4 follows from ¢;, = 7.t and the chain rule.

O

6.3. Central value of the parameters. The vector of all parameters of the construction (except t)
is denoted x. Each parameter is in a neighborhood of a central value denoted with an underscore. The
central values are tabulated below. Some of them we have already seen. The others will be computed

when solving the Monodromy Problem.

Also, we have tried to define the potential in a way as general and natural as possible, but it turns
out a posteriori after solving all equations that we have too many parameters, so we can fix the value of
some of them: A;, B; for j € J will not be used. Some computations are simpler with these restrictions

so we assume them from now on.

parameter range space central value
Djk (j.k) € E ST i,
Pk (j,k)e E fixed +1
ik (j,k) e E R Tik
Aj _] eJ fixed 0
B; jed fixed 1/2
C; jeJ wg? 1/2
Uik (k)€ EX | iwg® 0
Ajk (J, k) € ET we’ 0
Bk, Cii | (. k) € E* wg? 1/2
aj (j,k) € E wz? (A —1)/2
bik, ¢ | (k) € E wg? 0
Dik (j,k) €R eXp(z'WRTO) Ujk
aji (k)€ R wz? (A —1)2/2
bk (k) € R wg? 0

7. THE REGULARITY PROBLEM

We want 0, co; and gjx, o(gjx) to be apparent singularities. In this section, the entries of the potential

will be denoted

(20) &m(“Alﬂ)

Yy —
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and the dependence on the parameters (¢,x) will not be written to ease notations.

7.1. Regularity at 0; and oo;. Fix j € J and consider the gauge

G, = ( ){q f(ll ) with  f(z) = 1\_/‘_; and g(z) =x; 1\;; +iy; 1\_;;.

Here z;, y; are parameters in Wﬂfo to be determined. At (x;,y;) = (1,0) we have G; = G*®. We denote

Ezft,x-GF(? A8 )

vy —a

The gauge has the symmetry G; o0 = DG;D™! so ghas the symmetry (12) and it suffices to ensure
that & is regular at 0; ; regularity at oo; will follow by symmetry.

Proposition 5. There exists explicit values of x;, y; and C; in Wﬂfo, depending analytically on (t,x),
such that & and 8 are holomorphic at 0;, 4 has a pole of multiplicity at most 2 and
(21) Re (Reso, (7)) = 0.
Proof: straightforward computations give
a=a+ f g8+ fdf
=178
(22) F=—2\fga = Ag*B+ [y + A(f dg — g df).
Recall that «, 3, v have simple poles at 0;. Hence B is holomorphic at 0; and & has (at most) a simple
pole with residue
~ . 1
Reso, & = Reso, o + (x5 + iy;)Reso, 3 — 3
We take
1/2 — Resp,
Reso, 8
so that @ is holomorphic at 0;. Finally, 7 has at most a double pole at 0; and since fdg — gdf has a
simple pole at 0,

Reso, (29) = —2\(z; + iyj)Reso, o0 — Az + iy;)*Reso, 3 + Reso, 7.
By definition, recalling the definition of the operator Re in Section 3.1:
Re(Reso,v) = AC;.
So we see that Equation (21) is equivalent to
Cj = Re [2(z; + iyj)Reso, o + (z; + iy;)*Reso, 3]
which using Equation (23) simplifies to

(24) C; = Re (1/4 - (Resoja)2)> .

Reso, 8

Note that the residues of @ and S involved in Equations (23) and (24) are given, as functions of (¢,x), by
the definition of &; x. In particular, at ¢ = 0, we have z; =1 and y; = 0s0 G; = G*, and

1/4+ A2

(25) Cj lt=0= B;

=1/2.
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At this point, the Regularity Problem at 0, is only partially solved since 7 still has a pole. By Equation
(22), we have
(26) 50 = 271 (z 4+ 1)%"
so for 4 to be holomorphic at 0;, it is necessary that

Res, (27 '(z +1)*7%) = 0.

We define for j € J and t # 0
(27) R;(t,x) =t 'Reso, (27" (2 + 1)*77,) € C.

Proposition 6. For j € J, the function R;(t,x) extends analytically at t = 0. Moreover, at the central
value, we have R;j(0,x) = F;j/2, where F; is the force defined in Equation (1).

Proof: by Proposition 3, we have 79 x = ACjwp in @j SO 787)( = 0. Hence R; extends analytically at
t =0 and

,1 2 0ix
R;j(0,x) =Resg, [ 27 (2 +1) 8t7 le=o | -

By Proposition 4, we have

e (1+q5) pjk dz : ajkpjkdz .
5 |t=O: ’r‘k-C»k; Jr J +'LC‘k-OJ .0 + _IREgR = +Zb W 0 | -
ot k%;j (- quk) (z — pjr)? TR TPk k;j (z — pjr)? kWp,

At the central value (see the table in Section 6.3) and A = 0, this simplifies to

8725 o= Z TikUjk dz
t=0— _ 2
ot kE€E,;UR, 2z — ujr)

which is holomorphic at 0;. Hence

Ri(0,x) = Y k|

2u;
keE,UR; < Ik
g

Remark 5. Proposition 6 explains where the balancing condition comes from. We solve the equation
R; = 0 in Section 9 using the non-degeneracy hypothesis. Then after the Monodromy Problem is solved,
~ will in fact be holomorphic at 0,: see Proposition 18.

7.2. Regularity at ¢;; and o(gjx). Fix (j, k) € ET. Recall that & x has moving singularities at g;
and o(g;x), which depend on A\. We use the following Mdbius transformation as local coordinate in a
neighborhood of g;:
2=k 245k

1-Grz 1+qjrz
We have 0 o wj, = wjr © 0. We make the change of variable w = w; and denote

&= (wyl) s = ( & A7'p )

vy —a

w;i(2)

which has fixed singularities at w = 0 and w = oo and still has the symmetry (12). We consider a gauge
G of a form dual to Gj:

g . 1+w l—w . 14w
ij( 0o f with f:W and gzzjkWWLlyjkW.
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~ ~ )\—1 2
gzg.ij:( f’).
—a
The gauge G, has the symmetry G, oo = DG, D~! so it suffices to ensure that gis regular at w = 0,
regularity at w = oo will follow by symmetry.

Let

=2 Q)

Proposition 7. There exists explicit values of i, y;r and Bji in WEO, depending analytically on (t,%),
such that & and 7 are holomorphic at w =0, 8 has a pole of multiplicity at most 2 and

(28) Re (Reso(wB)) —0.

Proof: we simply dualize the proof of Proposition 5 with 5 in place of & x and obtain:
1/2+ Respa  1/2+ Resy,, a

29 . i = —
(29) Tk + Yk Resoy Resqjk')/

1/4 — (Respd)? 1/4 — (Res,,, )
(30) Bi = Re (MLAZ B0 _ g, (12— (oo, 0)

Respy Resg; v
1/4+ A%,
(31) Bji |t=0= Cijk
J

O
At this point, the Regularity Problem at g;j, is only partially solved since 3 still has a pole. Dualizing
Equation (26) we have

(32) B =w M (w+1)*8°
For B to be holomorphic, it is necessary that
Resg (wil(w + 1)250) =0.

We define for (j, k) € ET and t # 0:

R,k(t,x) =t 'Resg (w_l(w + 1)230) eC.
Proposition 8. For (j,k) € ET, the function Rji extends analytically at t =0 and
1+ (Q?k)Q 1+ (Q?k)Q %b?k Qiq?kbgj
21— q%)? 20+ ¢ 1 1+dl

J
In particular, R;i(0,x) =0 at the central value.

(33) Rjk(O,X) = ’I“jk

Proof: by Proposition 3, we have 3y = ABjrwg;, in @jk SO 587x = 0. Hence R extends analytically
at t =0 and

950
R,k (0,x) = Resg (w_l(w + 1)2% |t_0> .

By Proposition 4, remembering that we fixed B; = B, = 1/2:
0Pt x ik dz Tkj dz

ot == 20z—1)2 2(z+1)?

The first two residues are better computed using the z-coordinate

_ 1 dz _
Resu—o <w Hw+ 1)% (wy!) (Zil)z) = Res.—;, <wjk1(wjk + 1)2(

— ibjrwi,q;, — bkjW-1,q,;-

(g £1)2°

2E1)2)
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The last two residues are better computed using the w-coordinate:

@Ufw*w ::;;;iﬁgggg,g,gg
gk ELae T wir(£l) 2w

-1 2
Res (w71w+12w71*w ,.):7—1:
0 ( ) ( Jk ) 1,q5k wgk(l) qjk — 1
- - -1 —2qk
Res (wlw—i—le.l*w, .):7—1: 12
0 ( ) ( jk ) 1,q5k ’U_)]k(*l) Uik +1
Collecting all terms and setting A = 0, we obtain Equation (33). O

Remark 6. We solve the equation R (t,x) = 0 using the Implicit Function Theorem in Section 9. Then
after the Monodromy Problem is solved, § will in fact be holomorphic at w = 0: see Proposition 20.

8. THE MONODROMY PROBLEM

From now on, we assume that C; is given in function of (¢,x) by Equation (24) for j € J and By, is
given by Equation (30) for (j,k) € ET. Also, we restrict ¢ to be positive.

8.1. Definition of various paths. In this section, we define for (j, k) € EUR aloop ;i with base point
1; encircling the point pj;j, and for (j,k) € ET a path I'j; connecting 1; to 1 through the two necks
corresponding to the edge (j, k) (see Figure 2). We study carefully how these paths transform under o.

Fix j € J. We define an order < on the set E; UR; by k < { < arg(u;,) < arg(u;e), where the
arguments are chosen in (0,27). For k € E; U R;, we fix a curve aj, in the domain {z € C; : |2| > 1,0 <
arg(z) < 27} from 1; to e“uj; and define 6;; = a0 (ajr) "', The domain bounded by §;; contains the
points p;, for £ < k. We define inductively the loops v;; for k € E; U R; by

(34) S = [T e

=<k
In other words, v, = ((Sjk/)_léjk where k' is the predecessor of k for the order <. The domain bounded
by «y; contains the point p;, and no other pj,. It will be convenient to also denote

o
jk = H Vi
{<k

S0 ;) = 5} wYjk- (An empty product means the neutral element.) These paths transform as follows under
o:

(35) o (k) = 635

(36) o(vk) = ;'k’Yj_kl( ;‘k)_l'
Fix (j, k) € ET. The path I';j, is defined as follows. Fix a number ¢’ such that 0 < &’ < e, where ¢ is the

number introduced to open nodes in section 5. Recalling the definition of the coordinate z;; near p;j, we
have (@4 in)
125k
TP i)
so for real x € [—¢,¢], the point zj;, = x is on the unit circle and its argument is an increasing function
of z. First assume that 7, > 0 so ¢;; and ¢;; are positive. We define the path 3, as the concatenation
of the following 5 paths (taking care to avoid the disks that are removed when opening nodes):
(1) The circular arc from z = e*u;y to zj, = €.
(2) The circular arc from zj, = €’ to zj, = t;i/¢’. Its endpoint was identified with 27, = &’ when
opening nodes.
(3) The circular arc from zj; =&’ to z;; = —¢’ on the upper half unit circle in Cj.
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G

FIGURE 2. The paths 7, (red) and T'j; (green), for (j,k) € ET. The large circles
represent the unit circles in @j, @jk and C;. The tiny circles represent disks that are
removed when opening nodes. The bullets represent ends. The dots connect points that
are identified when opening nodes.

(4) The circular arc from 2;; = —€’ to z;; = —ty;/¢’. Its endpoint was identified with z; = —¢’
when opening nodes.
(5) The circular arc from zp; = —¢’ to z = €"“uy,;s, where j’ is the predecessor of j for the order <

on Ey U Ry (or to z = 1 in case j is the minimum of Ej U Ry).
(We could of course group paths (1) and (2) into one single arc, but it is convenient for the proof of
Proposition 13 to write it this way.) If 7,5 < 0, some signs in the definition of §;; must be changed, the
result being that path number (3) is now on the lower half unit circle. All these paths are on the unit
circle so o(Bjx) = Bjr. We define the path T'jj, on 3  from 1; to 15 as T, = ozjkﬂjka,:ﬁ (or T'jk = o,k Bk
in case j is the minimum of Ej U Ry). It transform as follows under o:

(37) o(Tjk) = 05 Ty 8-

8.2. Formulation of the Monodromy Problem. Let ¥; , be the Riemann surface iqu minus the
poles of & «, namely the ends p;i for (j, k) € R, the points 0;, 00, for j € J and the points g, o0 (g;x) for
(4,k) € ET. Fix an arbitrary jo € J and take zy = 1;, as base point.

Proposition 9. Assume that the Regularity Problem is solved and that
P(&tx> i) € ASU(2)

(38) V(j,k) € EUR, P(&txVik) Ia=1= T2
ZP (s Vik) [a=1=0

P(&x,Tjr) € ASU(2)
(39) V(j,k) € ET, P(&xLik) |a=1= £12
P& D) P &P, Tin) rm1= (Vi — V)
where V; for j € J are arbitrary matrices in su(2). Then the Monodromy Problem (8) is solved.

Proof: for j € J, let 40, be a closed loop around 0; in the unit disk of @j, with base point 1;. For
(j,k) € ET, let 74, be a closed loop with base point 1; defined as follows: Items (1) and (2) in the
definition of §; from 1; to zgk =¢in @jk, then a closed loop in the unit disk of @jk around g;, and back
to 1; by the same path. Provided the Regularity Problem at 0; and g;; are solved, the gauged potentials
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&.x - Gy and & « - G, have trivial monodromy around 0; and gy, respectively. Because the gauges have
multivaluation —I5 around these points, we have

’P(ft,xa%)j) = ,P(ft,X’quk) = —1I.
Any element of m1(X; «, 20) can be written as a product of the following paths or their inverse:

(1) vk for (j,k) € EUR,
(2) Yo, for JE Jv

(3) 7q,, for (j,k) € ET,
(4) Ty for (j,k) € ET.

Let ¢ € m1 (3¢ x, 20) and decompose it as
n—1
C = H C;
i=0
where each ¢; or c; !is a path in the above list. Then
gt x,C H P ft X5 CZ

so we immediately see that the first two items of the Monodromy Problem (7) are solved. Each path ¢;
goes from a point 1;, to a point 1;,_,, with j;;1 = j; for paths of type (1), (2) and (3) and j, = jo. Then
we always have

Jit1r

1 0
a)\ (ft xvcz) |/\ 1= Z(V]H»l - V7l)

Indeed, boths sides are zero for paths of type (1), (2), (3), and for paths of type (4) this follows from
Equation (39). Consequently (using that +I5 commutes with everything)

P(gt,xv ci)

(40) ,P(gt,xy C) gt x5 C |)\ 1= Z 7) ft X3 CZ av (ft,xv ci) |)\:1: Z(V7n - Vv]o) = 0.
O
We shall take the following choice for the matrices V/:

~_ —i( Re(v;) —ilm(vy)
(41) Vi= 2 ( iIm(v;) —Re(vj)
where v; denotes the vertices of the given graph I'. Then for (j,k) € E™, we have vy, — v; = £;,uji so

_ —iljk [ Re(ujr)  —ilm(ujr) \ _ Lk s

(42) Vi= Vs = 2 ( iIm(ujk) —Re(ujr) ) 77N ().
Remark 7. (1) There is geometry behind our choice for V;: we are in fact requiring that the image

of 1, by the immersion is v; for all j € J, up to a rigid motion: see Point (2) of Proposition 18.

(2) If the Regularity Problem at 0; and oo; is solved, then Equations (38) for k € E; U R; are not
independent, as the fundamental group of the n-punctured sphere has n — 1 generators. We will
still solve Problems (38) for all k € E; U R; and infer in Point (3) of Proposition 18 that the
Regularity Problem at 0; and oo; is solved. A similar remark holds for the Regularity Problem
at qjk.
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8.3. The renormalized y-Monodromy. In this section, we address the Monodromy Problem (38) for
the curves v;x, (j, k) € EUR. To compensate for the lack of symmetry of ;5 (see Equation (36)), we
conjugate P (& x,vik) by P(&ex, 53%)1/2 and define

Mjk(t7x) = P(gt,xv 5;%)1/27)(&,)(; ’ij)lp(gt,xv ;k)71/2'
Note that the square root is well-defined for ¢ small enough because at ¢t = 0, £y « is holomorphic at p;
for all (j,k) € EU R so P(§o,x,073;) = I2. As in [28], we define for ¢ # 0:
M, (t,x) =t~ log M, (t, ).
Proposition 10. For (j,k) € EUR:

(1) The renormalized monodromy ]T/[\jk(t,x) extends at t = 0 to an analytic map of (t,x) in a neigh-
borhood of (0,x) with value in Asl(2,C).
(2) M,i(t,x) has the symmetry

(43) M\jk - —D]\//.TjkDfl.
(3) Problem (38) is equivalent to the following problem for (j,k) € EUR:
Mji(t,x) € Asu(2) (i)
(44) Mg (t,x) [x=1=0 (i1)
N X) (=0 (i)
(4) Att =0, we have
5 . 0 X —
(45) M;,(0,x) = 27i Res,,, [®° % le=0 (7).
Proof:

(1) By standard ODE theory, Mjk is an analytic map of all parameters. At ¢t = 0, Z\,\ij(O,X) =I5, so

M;y, extends analytically at ¢ = 0.
(2) By Proposition 2 and Equations (35), (36), we have

(46) P&t x,0jk) = DP(&x, 6j5) D71

(47) P(gt,)u ’YJk?) = Dp(é-t,x7 5;k)P(£t,x7 ’yjk)_llp(gt,)u 6.;']@)_1D_1'
Hence M. jk has the symmetry
M,i(t,x) = DM, (t,x)"' D",

Point (2) follows by taking the logarithm, remembering that ¢ € R.
(3) Assuming that P(&;x,07;) solves the Monodromy Problem (8), the Monodromy Problem for
P (& x, v k) i equivalent to
M. (t,x) € ASU(2)
ﬂjk(t; X) |a=1=I2
H Mk (t,x) [x=1=0
which, taking the logarithm, is equivalent to Problem (44). Remembering the definition of ¢},
Point (3) follows by induction on k for the order < on E; U R;.
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(4) We have, since P(£o,x; vjk) = P(€o,x, 03) = L2

—~ 0 ~ 0
M;(0,x) = = Mj(t,x) [i=0= &P(gt,xf)/jk) lt=0 -

ot
At t =0, we have A; =0 and B; = C; = 1/2 s0 &y x = £°. By Proposition 8 in [28], we obtain
9 9 _ . & -
el N . = (I)S X (DS 1_ 271i R ‘ (bS X (I)S 1'
i PG ) o= | @95 oy (09)7 = 2mi R 0% [ (89)
]

8.4. The Monodromy Problem around nodes. In this section we fix (j, k) € E and solve Problem
(44). Let Ujp, = ®5(p;i). In view of Equation (45), it is advantageous to conjugate ]\//.Tjk by the inverse
of Ujk. Since pj, € St, Uj, € ASU(2) and Uj, = DUj,D~! by Equation (13). So this conjugation does
not affect the Monodromy Problem (44) nor the symmetry (43). We define

Mx(t,x) = Up Mg (t,x)Uji
(48) ]:jk<t,X> =1 (Mjk;ll(t,x) + Mjk};ll(t7x)*)

(49) Gt %) = A (Mjnaa(t, %) + Myean (£:%)°)

so that Mjk € Asu(2) is equivalent to Fji = G, = 0. By symmetry (43), F,x(t,x) and G;(¢,x) are in
We. By definition, FJ; = —Fj so since ]:J(»)k € R, we have J’-'j(.),C = 0 and we do not need to solve F; = 0.

The o-symmetry gives us one more piece of information: if Mjk € Asu(2), then the symmetry (43) and
the definition of the conjugation and star operators give

~

Mjk§11(>\) = _M;k;ll()‘) = M;k;ll()\) = Mjk;ll(l/)\)'

This implies
9 —
ﬁMjk;ll [x=1= 0.

We define

. 37 3 9 ~
(50) E1jk = (E1jki)1<i<6 = {fﬁ,gﬁ, )\(gjgko) iMn [a=1, Mjk;21 [a=1, ank;Zl |A=1

—(,+ pt 4+ 0 0 0
X1,5k = (ajk7bjk’cjk7ajkvbjkvcjk)
so Problem (44) is equivalent to & jx(¢,x) = 0.

Proposition 11. For (j,k) € E:

(1) Eij(t,x) S (Wﬂio)‘?’ x R3.
(2) At the central value, & ;1 (0,x) = 0.
(3) The partial differential of £ ;i with respect to x1 ji at (0,x) is an automorphism of (Wg°)? x R3.
(4) The full differential of &1 ;i with respect to x at (0,x) only involves the variables X1 ji, Tjk, Ajk

and Cjy.
(5) If X € Ker(dy&1,;x(0,x)) satisfies dAji(X) =0, then dbji(X) = dcji(X) = 0.

Proof: Point (1) follows from symmetry. By Propositions 3 and 4, we have in a neighborhood of pjy:
0 dz 14 CIJQ'k pjkdz

&tx [t=0= My + Mg
ot x| e —pi T 1—q§k(z—pjk)

5 + holomorphic.
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A simple computation gives
0 _ _ _
P (©5(2) M@ (2) 1) [a=p,= Dy @ (0s1) [Mj, M) % (pj) "

(Here M; and Mj;, have their values at ¢t = 0.) Equation (45) gives

~ . 144
M;1(0,x) = 2wimgy, + 2mi rjkﬁ [M;, M) .
— ¢

Observe that the partial differential of Mjk with respect to g;i is zero since g;;, = 0 at the central value.
Point (4) follows. Assume from now on that ¢;; = 0 and A, = 0. By Equation (31), Bj, = ﬁ. We

J
obtain

. - A
~ ( aj ATlibg, . Ay — YTorm 0
51 M (0,x) =2 7 J + i ik _ .
o1 #(0,%) m< Cjk  —Ajk > B ( 0 e — A 'Cik
In particular at the central value, this simplifies to
V2 A=D1 00
(52) Mjk(ovﬁ) =2m TjkT 0 —1 € Asu(2).

which proves Point (2). To prove Point (3), assume that r;, = 7;, and C}j;, = 1/2 are fixed. Differentiating
Equation (51) at (¢,x) = (0,x) we obtain:

dF;, = =27 (dajk — da;k)
dG;x = —2(dbji, + Adc3y,)
d&i jx1 = —27 dajk
€y jr2 = —2m(db}, + Adc))
€y jr3 = —2m(dch, + Adbf))
A&y jka — dEr ik |x=1= —27 daf;

dgl,jk,{) - dgl,jk,S Ia=1= —QW(dC?k - db?k)

0
dc‘:l,jkﬁ — 5d€17jk,3 |)\:1= 27Tdb2k.

Point (3) easily follows from these formulas. Finally, to prove Point (5), relax the hypothesis r;, = 7, and
Cj, = 1/2. By Equation (51), the off-diagonal part of M, does not change, so d& i, for i € {2,3,5,6}
do not change. Since these equations determine b, and c;j, we obtain db;x(X) = decji(X) = 0. O

Remark 8. We will solve all equations at the same time by one single application of the Implicit Function
Theorem in Section 9.
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8.5. The Monodromy Problem around ends. In this section we fix (j,k) € R and solve Problem
(44). We follow closely the resolution of the same problem in [28]. We cannot take U, = ®(p;i)

because pji & S so we take Uy, = @S(ujk) and conjugate J\/ij by the inverse of Uj;. Observe that if
ajr = b = 0 then & x is holomorphic at p;; so M;; = 0. This prompts us to take

ajr =A—=1)2%a, and b= (A—1)2bj
with &jk,/l;jk € Wﬂfo. This way, Points (ii) and (iii) of Problem (44) are automatically satisfied. We define

~ A

Mjk(t,x) = U_lj/w\jk(t,X)Uj

PR

which extends at A = 1 to an analytic map of (t,x) (see details in Section 6.2 of [28]). Since (A —1)%/) is
unitary on the unit circle, Point (i) of Problem (44) is equivalent to M (t,x) € Asu(2). Define Fj; and
Gix by Equations (48) and (49) and

Ear i = (Eajki)1<i<a = []:ﬁ’ka, (gj})*,g?k} .
Problem (44) is equivalent to & ;i (t,x) = 0. Writing p; = €%* with 0;;, € Wﬂ%o, we define
Xa,jk = (@, by O O1)-

Proposition 12. For (j,k) € R:
(1) E5u(t,x) € WR2)? x R.
(2) At the central value, & ;;(0,x) = 0.
(3) The differential of & ji with respect to x at (0,x) only involves the variable xo ;i and is an
automorphism of (Wg°)? x R.

Proof: Point (1) follows from symmetry. Equation (45) gives
G b
(ps(z) < 0 0 >(I)S(Z)1 AjkPjk S+ 205k
1.0 (z = pjr) Z = Pjk
A simple computation gives

9 00 - At 1 0 -
205 (] 0 )00 e (o Oy )0

M;i(0,x) = 2miA Uy, Res,,, Ujp-

2p;
This gives
7 o srr—1x8/ aj;ﬁ/Q 0 Si N—1p7
(53) M1 (0,x) = 2mi Ujk 2 (pjir) ( Nibje  —ajn/2 )CI) (pjr)” Ujk-

At the central value, this simplifies to

~ . ik/4 0
M;(0,x) = 2mi < TJ’E)/ — > € Asu(2)

which proves Point (2). Using Equation (53), we obtain at the central value

0 ~ - 0 A71)2 ik/4d 0 i (0 =71
M), = 2miu;! ik _ M Tk .
Bpyr kT Tk K A2 00 )( 0  —7/4 dujp, \ A0

Hence by the chain rule, since dp;i/df;, = iu;, at x = x:

dajk/Q —>\_12'Tjk dek/4
A1 dbjk +)\i7’jk dejk/él —dajk/2

A M;(0,x) = 2mi <
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which gives

dgg)ij = -7 da;“k
™
d527jk,2 = ETjk d@;}c
~ ™
dgg,jk)g, = _Zﬂdbjk: — ETjk d&;rk

dgg,jk’zl = =27 d/l;?k
Point (3) easily follows. O
8.6. The I'-Monodromy Problem. In this section, we fix (j,k) € ET and we solve Problem (39). To
compensate for the lack of symmetry of T'j;, (see Equation (37)), we multiply P (&, «,I';x) by suitable (dif-

ferent) factors on the left and right. Then we conjugate by ®(u;;) € ASU(2) to simplify computations.
We define for ¢ > 0:

Pin(t,x) = ®5 (ujn) " P& 55) PP (€ Tin) P (Gt 1) 20 ().

Definition 11. Let f(¢) be a function of the real variable ¢t > 0. We say that f is a smooth function of
t and tlogt if there exists a smooth function of two variables ¢(t, s) defined in a neighborhood of (0,0)
in R? such that f(t) = g(t,tlogt) for t > 0 and £(0) = ¢(0,0).

Remark 9. The function tlogt extends continuously at 0 but the extension is not differentiable at 0 and
is only of Hélder class C% for all a € (0,1). Therefore, a smooth function of ¢ and tlogt is only of class
C%* and is not differentiable at t = 0.

Proposition 13. (1) Pji(t,x) has the symmetry
Pjy = DP;.D™ L.
(2) Pji(t,x) extends att =0 to a smooth function of t, tlogt and x. Moreover, we have at t = 0:

1
P03 = ()0 exp (M5 [ ) 05(015) 10 )
1

(3) At the central value

Pji(0,x) —i< 3 )\01 ) € ASU(2).

4) Provided Problem (38) is solved, Problem (39) is equivalent to
(4)
Pji(t,x) € ASU(2) (i)
(54) Pk(t,x) [x=1= 12 (i4)
_Ge (1 0
Py (t,x)~" 5)\ Pj(t,x) x=1= > o 21 (4i1)
Proof:

(1) Equation (37) and Proposition 2 give
’P(gt,xa ij) = D,P(ﬁt,)u 6jk)7lp(§t,)c7 ij)P(gt,x7 5;@‘)D71'

Using the symmetry (46) and ®°(u;;) = D®°(u;;)D 1, we obtain Point (1).

(2) The function P(& x,a;x) is an analytic function of all parameters by Theorem 3 because the
path o stays away from the nodes. The same holds for the paths number (1), (3), (5) in the
definition of the path f;; and the path «y;. By Theorem 5 in Appendix B (see also Remark
14), the principal solution of &, , on path number (2) extends at ¢ = 0 to a smooth function of ¢,
tlogt and x, with the following value at ¢t = 0:

P(Mjwo, zji, = €', zjx, = O)P(Mjkwqjk,z;k 0,2 k=€ .
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In the same way, the principal solution on path number (4) extends to a smooth function of ¢,
tlogt and x with the following value at ¢t = 0:

/ / / /
P(Mjkwe,s 2 = —€5 235 = 0)P(Mywo, 215 = 0, 21, = —€').

Collecting all terms, the function P(&; «, i) extends to a smooth function of ¢ and tlogt with
the following value at ¢t = 0:

P(Mjwo, 1, eujp)P(Mjwo, € u i, zjx, = €' )P(Mjwo, zjr = €', 2j5 = 0)

X P(Mjrwa,,s 251, = 0, 2y, = € )P(Mjrwq,,., 2 = €', 245 = —€")P(Mjnwq,,, 21 = =€, 235 = 0)

x P(Mywo, 2; = 0, 2 = —&')P(Mywo, 2 = —¢', € upjr)P(Mywo, € upjr, 1)

P(Mjwo, 15, pjr)P(Mjrwg,, , 1, =1)P(Mypwo, Prj, 1x)
In the above computation, M; and Mj; have their value at ¢t = 0, so Mjwg = fs. Point (2)

follows.
At (t,x) = (0,x), we have Mjrw,,, = £ and pjr, = —prj = uji 0

Pii(0,x) = @“(-1)®5(-1)"" = £ < 3 )\91 > .

Remark 10. Note that ®° and ¢ are both multivalued with multivaluation +75. This is why
we put a =+ sign in Point (3). We do not need to resolve this multivaluation.

Assuming that Problem (38) is solved, Items (i) and (ii) of Problems (39) and (54) are clearly
equivalent. Assuming Item (ii) is true, we have:

0 4 0
7 Pk Ir1= @ () 5P (€ D)@ () a

On the other hand, by Equations (5) and (42):

2 0
So Items (iii) of Problems (39) and (54) are equivalent. O

45 1 0 _ —il; .
2w (g O ) 050 horm TRENS ) = i - V)

We define for (¢,x) in a neighborhoof of (0, x):

Pji(t,x) = log(Pjk(t,x) Pj(0,x) 7).

By Point (1) of Proposition 13, Igjk has the symmetry

(55)

~

Pjx = DP; D'

Proposition 14. Problem (54) is equivalent to

Pjr(t,x) € Asu(2) (i)
(56) Piraa(t,x) [x=1= 0£ , (i)
> ik — 1 0
AP ha= 272 (0 )
Proof:

Items (i) of Problems (54) and (56) are equivalent by Point (3) of Proposition 13.

Item (ii) of Problem (54) is equivalent to Pji |x=1= 0. Assuming that Item (i) of Problem (56)
holds, we have by symmetry

Pjrn(1) = —Pjiai (1) = =Pirar(1) = =P (1)
S0 ]Sjk;u(l) = 0. Hence Items (ii) of Problems (54) and (56) are equivalent.
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e Assuming Item (ii) of Problem (54) is satisfied, we have

ij(t,X) = ij(O,g) = i[g

S0
0 ~ 4, 0 4, 0
5ij(taX) [a=1= Pjr(t,x) 5ij(t,X) [x=1 —Pjx(0,x) ﬁpjk(oé) Ia=1
and by Point (3) of Proposition 13,
. 0 1 0
P09 P09 = (g )
So Items (iii) of Problem (54) and (56) are equivalent. O

We define
Fin (%) = P (8, x) + Pigan(t,%)°
Gik(t,x) =i (ﬁjk;lz(t’X) + ~jk;m(t,X)*) :
By symmetry (55), Fjx(t,x) and G;i(t,x) are in Wg. We define

_ ‘~ OPjj10
&k = (E3,5k,3) h1<i<r= [J‘Eﬁagﬁa (Gir)"s Firs Gjper i Piraz |r=1,i 8J)\1 Ix=1

OPjr1 (¢, x) | e —2)

BN A=t 2
Problem (56) is equivalent to &3 ;i (t,x) = 0 and L, (t,x) = 0. We leave aside the equation L;x(¢,x) =0
for the moment and will solve it in Section 9 using the non-degeneracy hypothesis. Regarding the equation
Es ji = 0, recall that g;i, € iWH%O and pji = eir with 01 € R and define

X3,jk = (A;_k,C;;C,Im(qj;c),Agk,C]Ok,ejk,ek]> .

Proposition 15. For (j,k) € ET:
(1) 53’3‘]@(25,)() S (W]§O)3 x R4,
(2) At the central value, & ;,(0,x) = 0.
3) The partial differential of s i1, at (0,x) with respect to x3 i, is an automorphism of Wz %)% x R2.
J J R
4) The full differential of Es 1, at (0,x) only involves the variables x3 ;1 and Im(q?,).
5J 5] Ik
(5) [fX € Ker(dc‘,’g,jk(O,g)), then dAJk(X) = dek(X) =0.

Proof:

e Point (1) comes from symmetry.
e Point (2) is clear since P;(0,x) = 0 by definition.
e We have at t =0

Pjx(0,%) = log l:q)s(ujk)l@s(pjk)exp (Mj /1_ wqjk> 5 (prj) 710 (up ) C (1)

(57) ﬁjk(t,x) =

Point (4) follows by inspection.
e We set g, = 0 to compute the partial derivatives with respect to all parameters but ¢;. By
Equation (31), at ¢t = 0 we have Mij =11, s0

~1
exp (Mj /1 w0> = exp(miM;x) = 2iMjy.
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By Equation (31) we have 0Bj1,/0Ajr = 0 and 0B, /0Cj, = —1 at x = x. This gives by the
chain rule

dPj, 0 Mk go 1 _gi (0 0 —i\ _( 0 2i
9d 0¥ =25 T =2 ) 0 )T 2 o
dDj, (0.5) = 2i 8M]k

; 0 —1 0 —i -2 0
= dC(—-1)"t =2i . =
s @0 =2ge e o= (13 ) (5 0) = (5 8)

S0 =P~ (0, 47

90,1, 90 Ai/2 0

ob; i o 0 —\i/2
s (0.5) = 0 (D) Joiac (-t = (6, )

00y

e Next we compute the partial derivative with respect to g;ji at (0,x):

0 -1 0 -1 dz gk dz 1 dz
Wajn = - — dz=4
gk J1 O 1 z—aqj 1+qrz )y 2

ij: o120 (0, 07 et =5 3

o Write g, = v, with vy, € Wﬂfo. Remembering that 6, 0r; € R we obtain at (0, z):

dFjr = —2dCjx — 2dC7,
dGjr = —2(dAj, + dA},) — 2(dvj, — dv}y)
dEs j1 = —2dCH,
&3 ko = —2d AT, — 2dv},
&3 jr3 = —2d AT, + 2dv;
A3 jrka = _4dC;'Jk

d&s 5 = —4dAY,..

If X € Ker(d€s,;1(0,x)), we obtain from these formulas dA ;i (X) = dCjr(X) = dz/;;(X) =0, so
Point (5) is proved. Regarding Point (3), the partial differential of (€5 jk ;)1<i<s With respect to
(A;'k,C’;C, jk,Ajk,C ) is clearly an automorphism of (Wg°)% x R%. Observe that d&s ji.; for
1 <7 <5 do not involve the real variables 8;, and 0; so d€s_ ;i has block-triangular form and is
suffices to compute the differential of the remaining two equations with respect to these variables:

d9jk,9kjg3,jk,6 = %(7d9jk + d@kj)

d@].k’gkjgg’jkj = %(d@jk + d@kj).
Points (3) follows.
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9. SOLVING ALL EQUATIONS WITH THE IMPLICIT FUNCTION THEOREM

There remains a few parameters that we have not used yet and that we can fix, namely: r;, = 7, for

(k) €

ET, a]Qk = Tjx/2 and H?k = arg(u,) for (j, k) € R. Remembering that ¢;; = iv;j, we define
x1 = (x16)Gmer €1 = (E14k)GreE
X2 = (Xz,jk)(j,k)eR & = (gz,jk)(j,k)eR
x3 = (Xajk)(Ghyert €3 = (E3,4k) (G h)eE+

x4 = (rrjs V) G er+s €0 = (Rjk)(jryep+

X = (X17X27X37X4) &= (51352a53754)~

Recall that the central value x depends smoothly on the graph I' (which has not yet been assumed to be
balanced).

Proposition 16. The partial differential of E(t,x) with respect to x at (0,x) is an automorphism. By
the Implicit Function Theorem, for t > 0 in a neighhorhood of 0, there exists x(t,T"), depending smoothly
on t, tlogt and the graph T', such that £(t,x(t,T)) =0 and x(0,T") = x(T").

Proof:

(1)
(2)

By Propositions 11, 12 and 15, the partial differential of (€1, €2, £3) with respect to (x1,x2,x3) has
upper-triangular 3 x 3 block-form, with automorphisms on the diagonal, so is an automorphism.
Let us prove that L = dyx£(0,x) is injective. Let X € Ker(L). By Point (5) of Proposition 15,
dA;,(X) = dC;,(X) = 0. By Point (5) of Proposition 11, db;,(X) = 0. Differentiating Equation
(33) and remembering that we fixed 7 so drj; = 0, we obtain

1
d Rji(0,x) = —5dry; + 2i db%y, + 2iTpdvy.

Hence dry;(X) = dl/?k(X) =0, so X4 = 0. Hence, by Point (1), X =0.

Since x4,&4 are in spaces of the same finite dimension, Points (1) and (2) imply that L is an
automorphism by elementary linear algebra. By Point (2) of Proposition 13, £(¢,x) is a smooth
function of ¢, tlogt and x, which (Definition 11) means that there exists a smooth function
g(t,s,x) such that £(t,x) = g(t,tlog t,x). We apply the Implicit Function Theorem to £ at
(t,s,x) = (0,0,x(I")) and obtain a smooth function x(t,s,T') such that &(,s,x(t,s,T)) = 0.
Specializing to s = tlogt, we obtain Proposition 16. g

We are not done yet ; we still have to solve the equations R; = 0 and £, = 0, where R; is defined by
Equation (27) and L, is defined by Equation (57). Define

FE) = (Rt x(ET)), o (EnltxET)) gy e )

By Proposition 6 and since ]Sjk(O,g) = 0, we have:

FO.0) = (T, (- 20 e )

By the Implicit Function Theorem, we obtain:

Proposition 17. Assume that the central graph T has length-2 edges, is balanced and non-degenerate.
Then for t > 0 small enough, there exists a deformation T'(t) of T, depending smoothly on t and tlogt,
such that T'(0) =T and F(t,T'(t)) = 0.
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10. GEOMETRY OF THE IMMERSION

From now on, we assume that the parameter vector x is given by Proposition 16 and I'(¢) is given by
Proposition 17. We write x; = x(¢,I'(¢)) which is a smooth function of ¢ and ¢logt. To ease notation,
we write ¥; = it,xt and & = & x,. In the same way, we write ajr ¢, Djr, etc... for the value of the
parameters a;, pjxr at time t. We also write 7, ¢, wjr+, etc... for the quantities associated to I'(t), and
Tjk = Tjk,0, Ujk = Ujk,0 for the quantities associated to the given graph I(0).

We denote ¥; the Riemann surface ¥; minus the poles of &. Let p : it — Y; be a universal cover.
Recall that we have fixed an arbitrary jo € J and taken zp = 1, as base point. Choose an arbitrary
Zp in the fiber p~1(z0). Let ®; be the solution of d®; = ®;& on ¥, with initial condition D4 (Zp) = I,
ft = Sym(Uni(®;)) the immersion given by the DPW method and j?; = Wo f; where ¥ is the rigid motion
given by Equation (10). Recall that ¥; does not depend on A, but ¥; does, which is a problem as the
DPW method requires a fixed Riemann surface. We address this issue in Section 10.2 using the results
from [28] where the same problem already occured. At this point, all we know for sure is that f; is a well
defined immersion on X; minus e-neighborhoods of 0, ooji for (j,k) € ET and wjy, for (j,k) € R.

Fix a small e; such that 0 < e; < &/2 and for ¢ > 0 small enough, consider the following fixed compact
subdomains of ¥;:

Qe =Cj\ U D(ujx,e1) for j € J (spherical parts)
kE€E;UR,

Qjker = Cji \ D(£1,e1)  for (j, k) € ET (catenoidal parts).

10.1. Spherical parts. Without loss of generality, we may assume by translating the graph that v;, =0
so Vj, = 0. Recall the definition of the gauge G; in Section 7.1 which we now denote G ; as it depends
on t.

Proposition 18. Forj € J andt > 0:
(1) The potential & restricted to 2., \ {0;,00;} depends C* on t.
(2) fe(1)) = vje + e
¢ Gj ¢ is regular at 0; and 0o, so fi extends analytically to 0; and oo;.
3 Gt i lar at 0; and oo; tend lytically to 0; and oo,
st—0, fi —v;, converges on Q;., to the inverse stereographic projection 7= : C — S?. More
4) Ast—0 j, Qe to the i ¢ hi ecti 1:.C—$% M
precisely, we have

1fe —vje =7 Hera,.,) <ct

for some uniform constant ¢ (depending on €1) and the norm is computed for the spherical metric
on the Riemann sphere.

Proof:

(1) Recall that x(¢) is a smooth function of ¢ and ¢logt so is not even differentiable at t = 0. However,
assuming that Equation (24) holds, we have, for all values of the parameter x, &, = £ in Q; .,
so &x does not depend on x. By Proposition 24 in Appendix C, & = & x(), restricted to
Q). \ {0;,00,}, extends to a C! function of ¢ in a neighborhood of 0.

(2) Choose a path ¢ from zy to 1; on ¥; and let ¢ be the lift of ¢ to ), such that ¢(0) = zp. Let
1; = &1) € p1(1;). Let €., be the component of p~ (€, \ {0;,00;}) containing 1;. Since
& =¢%1n @j we have

~

(58) Dy = Bo(1;)®°  in Q..
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By Equation (39), we have

®,(1;) € ASU(2)
(59) ‘I’t@) \A 1— +1,
(I)t(la) ( ]) |>\:1: ZVJt

By the Sym-Bobenko formula (4) and Equation (41),
fi(13) = 2V ~ (0, =Tm(vj 1), —Re(v;,1)).
Fi(15) = W(fi(15)) = (1 + Re(vy,q), Im(v;,1, 0).

(3) To prove Point (3), we apply Theorem 4 in Appendix A to the potential a =& - Gjq.

31

Let ¢

be the maximum of E; U R; for the order <. The path J;, bounds a disk-type domain in ; .,

containing 0; and oco; and not containing —1. The potential é satisfies Hypothesis (1) to
Theorem 4 in Q thanks to Propositions 5, 6 and 17. By Equation (34), ®; solves the Monodromy
Problem on §;,. At t =0 we have by Equation (23) z; = 1 and y; = 0 so G0 = G°. Hence

s s (0 AT dz
R (0 0 >2@+UT

Let &)t = ®O(Tj)*1<1>th’t. Since & (T]) € ASU(2), &% solves the Monodromy Problem on d;, and

=N 2 z—1
o, = (bS S — 2)\(z+1) .
0 ¢ (0 1/2

(3) of

Theorem 4 tells us that & is holomorphic at 0;. Finally 30(0]-) =dz/2 so B?(Oj) # 0 for ¢ small

enough so f; is regular at 0;. Regularity at oo; follows by o-symmetry.

(4) Let &, be the solution of d®, = ®,& with initial condition ®(1,) = I and f; = Sym(Uni(®)).
By Point (1) and standard ODE theory, d; is a C! function of ¢ in a neighborhood of 0 and
z € Q. \ {0j,00;}. Since Iwasawa decomposition is a diffeomorphism (Theorem 2), Uni(®,)
and Pos(®,) are C, so by Equation (6), df; is C'. Let K be a compact subset of Q; ., \{0j,00;}.

By the mean value inequality,
1fe(2) = Je(15) = fo(z) + fo(1,)l < C(K)t  for z € K.
Since <I>f( i) Ia=1=I2, f; and ff differ by a translation. Also & = £° so fo f5. Hence
1:(2) = ful1;) = F5(2) + S Q)] < K
By Point (2) and Equation (11) we obtain
I1fe(z) — vy — 7 N2)|]| <C(K)t forz € K.

This estimate is extended to neighborhoods of 0; and oo; using the gauge G ;.

10.2. Delaunay ends. For p € C, D*(p,r) denotes the punctured disk 0 < |z — p| < 7.

Proposition 19. There exists €5 > 0 such that for (j,k) € R and t > 0 small enough:
(1) fi extends analytically to D*(p?k)t,eg),
2) ft has a Delaunay end of weight ~ 2rtT;), at p?k’t.

(2)
(3) The azis of the Delaunay end ofﬁ at pgk,t converges to the half-line v; + Rt u;, as t — 0.
(4)

4) If 7jr. > 0, then ft(D*(p?k’t,Efz)) is embedded.
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Proof: These facts are proved in [28] in a similar situation, using general results about Delaunay ends
from [16] and [20]. The potential in [28] has the form

0 A ldz
t(}\ - I)th 0

where w; has double poles. We gauge our potential to a similar form so we can apply the results of [28].
Fix (j, k) € R. Recall that a4, §; are holomorphic at p;; and v has a double pole with principal part

a‘k7tp‘k7td2’ ng7td2
e =1t(A = 1)? | 2R 4 2 4 O(1)dz
(Z pjk,t) z ng:,t

where O(1) means a holomorphic function in a neighborhood of pjx ;. Define v, € W=° by x; =
PiktBi(Djke)/dz. At t =0, we have By = g—ﬁ so kg = 1/2. Counsider the gauge

=0
Gt:< )\Z z)'
2\/"%7 Kt

~ o + Be _ dz 2Bt
§e =& Gt = A . X % Mg .
_ Aoy t + tz"Yt —oy — t + ﬁ

A computation gives

z Akt z

2Kt

Thanks to our choice of k; and given the principal part of 4, fAt has the form
s 0 Aldz O(1) O(z—pjks)
(60) &= ( HA— D2 0 ) + ( o) o)

with
jped ke — jpe)d
wr = ey [ ahdE (@bt — Qjre)dz |
(2 =pjka)®  Pika(z = Djkt)

The gauged potential Et now has the same form as in [28] up to a holomorphic term which is of no
consequence (see Remark 11 below). By Proposition 4 in [28], f; extends analytically to D*(p?ht,eg),

KiQjg,¢ is a real constant and f; has a Delaunay end of weight 87tk.a ;5 . at p?ht. Since koGjk,0 = Tjx/4,
Point (2) follows. Let o, = ®o(1;)"'®;G;. At t =0 we have by Equation (58)

Bo(z) = B9(2)Go(2) = % ( ! ”i(izl) ) :H( : ”112 ) H= %( ! *Alfl )

Let EISt = H_la)t and ft be the corresponding immersion. Then EISO has the same value as @ in [28].
By Proposition 5 in [28], the axis of the Delaunay end of f; at pgk,t converges to the half-line through
(0,0,1) spanned by —u,. (The signs in Proposition 5 are actually opposite, but this is because we have

the opposite Sym-Bobenko formula in [28].) Applying the isometries represented by H, ®¢(1;) and the
rigid motion ¥, we obtain Point (3). Point (4) is proved in Proposition 6 in [28].

Remark 11. The proof of Proposition 4 in [28] uses a gauge of the form

Yw 0
G= N s with w = z — pjx; and k € W=0.
2kvw  Jw

Then

~ 5, _ Be o dw KB,

gt'G: at,\2w+2w Aw
~ N ~ R .
Ady Bt + L%y Adw —&y 2%; dw

2 4k2w k 2k2w
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What only matters is the residue of fAt -G at w = 0. So the second term in the right-hand side of (60)
can be neglected because its (1,2) entry has a zero at w = 0 and the other entries are holomorphic.

10.3. Catenoidal parts. Recall from Section 7.2 the definition of the complex coordinate w;; on @jk
and the gauge G, which we write respectively wj; + and G+ as they now depend on ¢t. We denote
é\jk,t = (wj_kl’t)*gt -Gj,t. We cannot use z = 1 as base point in @jk so we use instead the point i;;, defined
as z =1 if 75, > 0 and z = —¢ if 7;;, < 0. This point lies on the path I'j;.

Proposition 20. For (j,k) € E* and t > 0 small enough:

(1) The potential gj“ s reqular at w = 0. Consequently, the immersion f; extends analytically to a
neighborhood of 0;, and cojy,.

(2) The potential &; is reqular on Xy, so f; is a regular immersion.

(3) The blow-up t=1(f; — ft(zjk))) converges on Qi e, ast — 0 to a minimal catenoidal immersion
from C\{=£1} to R3. The limit catenoid has waist radius |7j5| and its azis, oriented from the end
at z =1 to the end at z = —1, is a line parallel to u;, and oriented by Tjiu;r. The convergence
is for the C' norm.

Proof: fix (j, k) € E*.

(1) We start by computing ‘1)0 in ijﬁgl. Split the path ij as ij = ijll_‘jkg with ijl(l) =
I'jk2(0) = ;5. Consider the lift of I'jz; to it starting at Ij and let 7 be its endpoint. Consider
the lift of I'jio starting at 7;, and let Tk be its endpoint. Let ﬁjkm be the component of
p (ke N E¢) which contains 7;,. By Theorem 5, ®;(7;) extends to a smooth function of ¢
and tlogt. Moreover, since & = £¢ in Qjk,e,, we have @y = M®C for some matrix M which
is determined by the fact that ®( is continuous at the nodes (see Remark 14). This gives by
Equation (58)

(61) Do (2) = Do (1) D% (ujn) @€ (2) = Po(T1) D (upy)2C (1) '8 () in Q.

(2) The proof of Point (1) is essentially the same as the proof of Point (3) of Proposition 18. We
apply the dual version of Theorem 4, Corollary 1 in Appendix A. Observe that

(62) T viklire € m1(Se, k)
is homotopic to a loop d; contained in 2, ., going around 1 in the clockwise direction, and
(63) ko Diny € m1(St, 1)

is homotopic to a loop d2 contained in €2 ., going around —1 in the clockwise direction. The
product of the loops (62) and (63) is a reparametrization (changing the base point) of

(64) ikl ke -

The Monodromy Problem for ®; on the loop (64) is solved so it is also solved on §;d;. We now
make the change of variable w = wjx+(2). The path wjj (6162) bounds a disk-type domain in

C \ {£1} containing 0 and co. The potential & satisfies Hypothesis (1) to (3) of Corollary 1
thanks to Propositions 7, 8 and 16. Let &, = (w;kl,t)*(I)thk-,t' At t =0, we have wjro(2) = 2
and by Equation (29) z;, =1, y;5 = 0 so

ﬁ 1—2
Gio=| ' Y2
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Using Equation (61), we have
~ ~ ~ 1/2 0
®o = @o(1;) @ (ujn) 2 G0 = Po(1;) 2% (ujn) ( 7211 2 )
2(z+1)
where ®(1;)®% (u;;,) € ASU(2). By Corollary 1, &, is holomorphic at 0.

Remark 12. To deal with the fact that Et is not C'! with respect to t, we write t = exp(—1/s?),
50 &4(s) extends to a smooth function of s in a neighborhood of 0, and use s as the time parameter
when applying Corollary 1.

By Equation (32), since Bt is holomorphic at w = 0, 5? has a zero of multiplicity at least one at
w = 0. So () has a zero of multiplicity at least one at 2 = ¢}, , and at 2 = o(g}, ,) by symmetry,
for a total of 2card(E™) zeros. It has simple poles at 0; and oo; for j € J. By elementary
topology, the genus of ¥, is g = card(E™) — card(J) + 1. Hence the number of zeros of 37,
counting multiplicities, is equal to
#poles + 2g — 2 = 2card(J) + 2g — 2 = 2card(E™).

So the zeros at q?k’t and o(q?m) are simple and Y has no other zero. This proves Point (2), and
yields that 30 does not vanish at w = 0, so completes the proof of Point (1).

To prove Point (3), we use Theorem 4 in [29]. One technical issue is that this theorem requires a
C! family of potentials & and we do not have that regularity. This problem is solved as follows.
Forget for a moment that the parameter x has been determined as a smooth function of ¢ and

logt and consider the potential & «, only assuming that the parameter B;; is given by Equation
(30). Consider the gauged potential

X e . >, 1 1 2iAj
x =& x - Gx th Gx=—= J .
§t7 €t7 s QCjk < 0 2Cjk: )
Then at ¢t = 0 we have in Qj ., , using Proposition 3 and Equation (30):

y - 0 2(Bjkcjka§k) dz 0 1/2\dz ¢
o = Gx‘<1/2 0 ERRG% F

Since this does not depend on x, Proposition 24 in Appendix C ensures that Et = gt’x(t) extends
to a C'! function in a neighborhood of t = 0. Moreover

dy 0% 0
%ft = aft,x |(t,x):(0,x(0)): aft,; |t:0 .

Define in ﬁjk@
;I/)t = }\/Ijk,t(btéx(t) with ﬁ]’k7t = @C(Tjk)Uni(th(Tjk))_l.
At t =0, we have éx(o) = I and by Equation (61)

~

Hiro = (1) @0 (1) " = (%(Tj)‘PS(Ujk)y

Hence &y = ¢ in ijm. Let f; = Sym(Uni(®;)). By Theorem 4 in [29], t=1f; converges to a
minimal immersion with Weierstrass data

g ~Ponn 21
Do 11—z
~ 0 > (z —1)2 1 dz dz 27 dz
= 4(D,. 2Y A0 P S J _ — J
w ( 0,21) atﬂt |t—0 2 (z _ 1)2 (Z + 1)2 (Z + 1)2
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using Proposition 4. With the change of variable w = (2 + 1)/(1 — z) we obtain ¢ = w and
w = Tjrdw/w?. This is the Weierstrass data of a catenoid with neck-size |7;| and vertical axis
(from the end at w = oo to w = 0) oriented by —7;ies. Let hji ¢ be the rigid motion represented
by ﬁjk,t and ﬁjk,t its linear part, where the action is given by (9). We have ft = hjreo fr. At
t = 0, we have by Equation (65) fljk,o Ix=1= ®°(u;r) ! [a=1. So by Equation (5), ﬁjk70 maps
N9 (uji) to es. This means that t~1(f; — fi(i;x)) converges to a catenoid with axis (from the end
at z =1 to z = —1) oriented by —7;5N°(u;;). We have

(N (ujr)) = (—Re(uzp), —Im(ujp), 0) ~ —ujp

so t71( fi — ft(z]k)) converges to a catenoid with axis oriented by 7;xu,x. The convergence is on
compact subsets of Q5 -, \ {0;x, 00 }. It is extended to neighborhoods of 0, and oo using the
gauge G ¢ 0

10.4. Edge-length estimate. Recall that £;; ; = ||vp,+ — v; | is the length of the edge (j,k) on I';.

Proposition 21. Ast — 0, we have for (j,k) € ET

(66) fjk}t :2—27jktlogt+0(t).
(67) Filije) = $(vs0 + vks) + O(1)
Remark 13. (1) Equation (66) estimates how much the spheres centered at v; and v; move away

from each other if 7j;, > 0 (or toward each other if 7, < 0) to fit in a catenoidal neck of size
~ T;pt. It is in agreement with the half-period of a Delaunay surface of necksize 7;;t which is
known to have the asymptotic (66) as ¢ — 0 (see for example Proposition 7 in [18] — a scaling
of 1/2 must be applied because the mean curvature is the trace of the fundamental form in that
paper).

(2) Equation (67) tells us that the waist of the catenoidal neck is centered at the middle of v; ¢, vy ¢,
up to an O(t) term.

Proof: forget for a moment that x is determined as a function of ¢. We first compute the term of order
tlogt in P(& x,I'jx). Recall that the only terms where a tlogt appears are those corresponding to path
numbers (2) and (4) in the definition of §;;. To estimate the term corresponding to path number (2), we
use Point (3) of Theorem 5 where v denotes the circle |z;| = e. We have

P& v) = P&t Ljs 2 = &) 7 P (Ens Vi) P (s L 2k =€)
Using Equation (52)

0 40 /
&P(ft,xﬁ) lt=0= @S(ij = 5/) 1&73(515,)(77]'16) lt=0 ‘I)S(ij =¢£)
= %z = 5’)71@S(ij)ﬂ\/f/jk(07X)‘I’S(ij)flq’s(zjk =¢')

o A=1)? N—1aS 10 s 148 /
27rz7'jkT‘I> (zjr =€) 7 D7 (ujk) 0 —1 D7 (ujr) @7 (25 =€) + O(x — x).

By Theorem 5, the principal solution of & x on path number (2) is equal to

A-1)s N—1gS L0 s ~1gS /
Ig—i—TjktlogtT(I) (zjr = €")7 @7 (ujr) 0 _1 D7 (ujp) P (zjk =€)

X Pl zjk = €, zjk = tjr /') + O(t) + tlogt O(x — x).
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By the same argument, the principal solution of {; x on path number (4) is equal to

(A ;\1) Q)C(Z]/gj =)oY (1) ( (1) Pl ) <I>C(—1)‘1<I>C(z;€j — ¢

X Pllox:zk; = =€ 2 = —trs/') + O(t) + tlogt O(x — x).

The computation in the proof of Point (2) of Proposition 13 gives after simplification

12
AMU B (uy) K - ),@C(n} &S (uyy) ' +O(t) + log t O(x—x).

Iy — mjitlogt

P(gt#? ij’) = 73(50,)(’ ij)+7jkt logt(

Recalling the definition of Pj; and ﬁjk from Section 8.6, we obtain

4N 0

~ ~ A—=1)* (2
Pj(t,x) = Pjr(0,x) —l—Tjktlogt% < 0 32 ) +O(t) + tlogt O(x — x) + O((x — x)?).

We substitute the value x(t) = x(¢,I') given by Proposition 16. (At this point, the graph I" is fixed.)
Recalling that x(t) = x + O(tlogt) and P;,(0,x) = 0, we obtain

Pir(t ) = Pye(0, )4t togt A =2 [( - ) @C(—l)} &5 (ug)~ 0 1)+ O(t) +tlog t O(x—x).

2\ 0 -1
Write dx(t) = x(t) —x and extend this notation to all parameters. Recalling from the proof of Proposition
15 the formula for dyP;(0,x) and the definition of Fjj, we obtain

Fi(t,x(t)) = =26C5,.(t) + Arjtlogt + O(t) = 0

J-‘fk(t,x(t)) =4 5C§k(t) — 27jtlogt + O(t) = 0

(68) Bt x(t)) = duPn (0, %) (x(t) — x) + Tyt log t 2 =1 < 1o ) o).

which gives

(69) 5C;(t) = %tlogto\— 1)+ O(t).
The definition of £;; and Equation (68) give (recalling that 7,5 and ¢;; depend on the graph I')
k() —2 k() —2
Ejk(tx(t,l—‘)) = %(—260]k(t,F)) |,\:1 —% = —Tjk(l")tlogt + O(t) — %

By Proposition 17, the graph I'; satisfies £, (¢,x(¢,I';)) = 0, and this gives Point (1) of Proposition 21.
Since the tlogt factor in Equation (68) is diagonal, the resolutionN of the remaining equations of the
system &3 ;x(t,x(t)) = 0, which only involve the off-diagonal part of Pjx(t,x(t)), gives
JA;,(t) = O(t), 5qﬂ(t) =0(t), 00;x(t) =0() and &0y,(t) = O(1).
By Point (5) of Proposition 11, we obtain db;x(t) = O(¢). Finally, the resolution of R;x(t,x(t)) = 0 gives
dri;(t) = O(t) and 6q?k(t) = O(t) so dg;x(t) = O(t).
Recall that I'j;; denotes the first half of the path I'j;, from 1; to 7;,. By a computation similar to the

above we have

A—1)2 1 0 .
P& Djk1) = P(&oxs jr1) +Tjkt10gt( 5y ) % (ui) ( 0 —1 ) (i) + O(t) + tlog t O(x — x)

ijk
P(€ox, Djr1) = % (pjr) exp (Mj / qu>
1

)
9C;

7] . . 0 -1
P (&0 Tikr) = @S(Ujk)ﬁ exp (M iji/2) = V21559 (ur.) ( 1 0 > ~
J
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We substitute x = x(¢). Using Equation (69) and that dg;x, 0 Ak, 601 are O(t), we obtain
P&ty Dinr) = O ()@ (igx) (I + 7yt log t Q1 + O(t))
with

_ _1)2
e = Fuo-neten (1)) A e (0 ) e

R N T A (A—1)2 0 i \_[ (-1 ULIONLDY
2 i —1 4 —ijk 0 EON =T 1(1-X)
The differential of Iwasawa decomposition at the identity is the projection on the factors of the decom-
position of the Lie algebra Asl(2,C) as Asu(2) @ Asl} (2,C). The matrix Q) decomposes as

ik 0 A= 1/ Aa-1 0 T
Qi = T ( U 0 ) +5 0 1-1 )€ Asu(2) @ Asl (2,C).
Hence

. . ikl A=A
Uni(P(6 e D)) = )8 i) [ 12+ 252010t (0 272 ) o).

Finally the Sym Bobenko formula (4) gives

Sym(Uni(P(ft,x(t), ijl)))

Tjk U , 0 -2 .\ -
= fs(ujk)—QZTﬂogtq’s(uy‘k)q’c(w)( 9 0 )‘I’C(@jk) 10 (uj) 7! [x=1 +O(1)

. -1 0 _
= f5(ujr) — iTjetlogt ®° (ujy,) ( 0 1 )‘I’S(Ujk) ' x=1 +O(t)

= fS(ujk) + TjktlogtNS(ujk) + O(t)
and Point (2) follows. O
10.5. Transition annuli. For (j,k) € E and ¢ > 0, let A, be the annulus |t;x|/e < |2jx,| < € which
is identified with the annulus [t;;|/e < [2}; ;| < & when opening nodes. We have for |z;;| <1
(70) 1 < M < §
27 [z —pjkel T 2

So provided [pj,+ — uji| < §, which is true for ¢ small enough, the outer boundary component of Aj ;

(namely the circle |zj+| = €) is included in ;.. Likewise, the inner boundary component of Ajj ¢
(namely the circle |z}, ;| = ¢) is included in Q. ¢, .

Proposition 22. Fort > 0 small enough and (j,k) € E™:

(1) The images of Ajks and Agj: by ﬁ are graphs over annuli in the plane orthogonal to w;y,.
(2) If Tjr, > 0, the image of the annulus Aji U Qjg o, U Akj¢ is embedded.

Proof:

(1) We may think of the universal covering Aj; ; of Ajx;+ as the Riemann surface on which log zjy ;
is well defined. Let ¢ > 0 such that for u € S' and z € D(u, %)

125(2) = 2(u)l| < ¢z —u| and [|2(2) — @ ()] < clz — ul.
Then for ¢ small enough we have, by Equations (58), (61) and (70)
(71) @ — @o(1;)®% (wyr)|| < 4ce on DA



38 MARTIN TRAIZET

We would like to apply the maximum principle to conclude that the same estimate holds inside
A This is of course not possible because ®; is not well defined on Aj ¢, but this problem is
easily solved as follows. Define on Ay,

log zjk¢

G¢ = exp ( IOgM(‘?t,ij)) :

Then G;®; descends to a well defined holomorphic function on A; ;. Also, we have G; = I,+0(t),
so by Equation (71), for ¢ small enough

|G @y — Bo(1,)®° (u;1.)|| < 5ee  on Ak
By the maximum principle

|G @y — Oo(1;)@° (ujp,)|| < e in Ajpy.

(The maximum principle for Banach valued holomorphic functions states that if || f|| has an
interior maximum then ||f|| is constant, and is an easy consequence of the Gauss mean value
formula.) Hence for ¢ small enough

[®¢ — @(T;)®5 ()| < 6ee  in Ajps.
Fix a positive o < 1/4. Using that Iwasawa decomposition is differentiable, we have, provided ¢
is chosen small enough (observe that ¢ is a universal constant)
[Uni(®;) — @o(1;)@% (wn)| < a  in Ajis.
Let N; be the Gauss map of f;. By Equation (5), we obtain since @o(ij) [x=1= 12
INe = N¥(uji) | <200 in Aji

Recall that ¥ o Ns(ujk) = —uji and let Wltk be the projection on the plane orthogonal to .
Then ﬂ'ijk o ft is a local diffeomorphism on A;;:. By Proposition 18, the image by Wjjk ) ft

jjk(vj) and radius of

of the outer boundary component |z;,.| = € is close to a circle of center 7
order €. By Proposition 20, the image by ﬁqtk o f; of the inner boundary component |25k el = €

is close to a circle of center 7751_ . (v;) and radius of order ¢. Hence the projection of the inner

1
ujk
diffeomorphism onto its image by a standard covering argument. This proves Point (1).

boundary component is inside the projection of the outer boundary component, so w; o ff is a
(2) Introduce a coordinate system (z, y, z) with origin ft(ijk) and z-axis parallel to the line (vj ¢, vp¢).
In the following, left and right refer to the z-axis (so v, is on the left of vy ;). Let S; be the
hemisphere —1 < z < 0 of the unit sphere centered at (—1,0,0). Assume 7,5 > 0. By Proposition
20, the right boundary of ft(.AjM) is on the left of S;. By Proposition 18, the left boundary of
E(Ajk7t) is at distance O(t) from the radius 1-sphere centered at v, so is on the left of S; by
Point (2) of Proposition 21. Moreover, the mean curvature vector on ft(Ajkyt) points to the left

(because it does so on the left boundary). By the maximum principle, ﬁ(AJ—k,t) is on the left
of S; so in particular lies in the half-space x < 0. By the same argument, E(Akj_,t) lies in the
half-space x > 0. Hence they are disjoint and it is now clear, from Proposition 20 and Point (1),
that the image of Aji+ UQjk o, U Agj¢ is embedded. O

10.6. Embeddedness. Let M; be the image of ff

Proposition 23. If all weights 7;;, are positive, then fort > 0 small enough, M, is Alezandrov-embedded.
If moreover the graph I is pre-embedded, then for t > 0 small enough, My is embedded.
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Proof: we follow closely the proof of Proposition 7 in [29]. Assume that all 7;; are positive. By
Proposition 18 and taking e; > 0 small enough, we may find, for (j,k) € EU R, a Jordan curve fy;k’t,
freely homotopic to v;z, whose image is in a plane II;; ¢ orthogonal to (vj ¢, vk,:), and moreover:

o If (j,k) € E, vy, lies in Q0 N Ajg s,
o If (k) € R, 'y}m lies in ©; ., N D*(p?m,gg).

Let Aj ¢ C I ¢ be the flat disk bounded by f:(’%’k,t)'

e For j € J, let Q) C Q;., be the domain bounded by the curves *y;k’t for k € E; UR;. By
Proposition 18, ft(Q;t) is embedded and does not intersect the disks Aji, for k € E; U R;.

Hence the union of ﬁ(ﬂ;t) and A for k € Ej U R; is the image of a continuous injection of
the 2-sphere. By the Jordan Brouwer Theorem, it is the boundary of a bounded domain Wj ;.

e Tor (j,k) € R, let Djj; be the disk bounded by 7}, , and D7 , = Djk¢ \ {p?m}. By Proposition
19, ft(D;kt) is embedded. By the proof of Claim 3 in [29], its reunion with A bounds a
cylindrically bounded domain Wjy, ;.

e For (j,k) € ET, let Al © Ajt U Qi e, U Agjp be the annulus bounded by v}, , and v ;.

By Proposition 22, ft(A;kt) is embedded. By Claim 1 below and the Jordan Brouwer Theorem,
ﬁ(A}k,t) UAjkt UAygj is the boundary of a bounded domain Wy ;.

Let W, be the closed manifold with boundary obtained as the disjoint union of all W, for j € J and
ij,t for (j,k) € FE U R, identifying Wj,t and Wﬂmt for k € E; U R; along their common boundary
Ajiy. Let Fy: Wy — R3 be the canonical injection on each Wj’t and ij,t. Note that F; is a priori
not injective, since the domains may overlap (its image F;(W;) is what is called an immersed domain.)
But F; is a proper local diffeomorphism whose boundary restriction parametrizes M;. Moreover, we may
compactify W by adding one point per domain Wi, for (j,k) € R. This proves that M; is Alexandrov
embedded.

Assume now that I' is pre-embedded. Then the domains W;, for j € J and Wy, for (j,k) € EUR
are disjoint, and their closures intersect only along the disks Ajj ;. Hence the map F} is an embedding
so M; is embedded. O

Claim 1. We may choose the curves v}, , and 7y, so that ﬁ(A‘

]m) does not intersect the disks Ajy
and Ayj .

Proof: we continue with the coordinate system (z,y, z) introduced in the proof of Point (2) of Propo-
sition 22. By Proposition 18, we may find a Jordan curve v} , in €; ., N.Aj; + whose image is at constant

distance from the z-axis. Let A7, ; be the annulus bounded by 77, , U, , and A} = fil ".t). Consider
half a period of a Delaunay surface D; with axis Ox and necksize 7;;t/2, bounded on the left by a circle
of maximum radius and on the right by a circle of radius 7;;t/2. Translate the Delaunay surface D, from
the left until a first contact point p; with A} occurs. By Propositions 20 and 22, p cannot be on the
right boundary of D; (which is too small) nor on the left boundary of D; (which is too big). By the
maximum principle, p/ must be on the left boundary of A} and has minimum z-coordinate. Choose the
curve 7} , so that Il;x , is the plane orthogonal to the z-axis and containing py’. Then Ay, being on the
right of Il ;, does not intersect Aj; ;. The annulus bounded by 7;,“ and 7;‘/k,t is inside € ., so its image

~

does not intersect Aji ¢ by Proposition 18. Hence f(A;.k’t) does not intersect Aj ¢, and in the same way,
it does not intersect Ay +. O

This concludes the proof of Theorem 1.
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APPENDIX A. A REGULARITY RESULT

In this section we prove a regularity result in the spirit of Theorem 5 in [30] or Theorem 6 in [12].
The philosophy of these results is to idenfity which part of the Regularity Problem is solved when the
Monodromy Problem around a singularity is solved. For use in other papers, we consider the Monodromy
Problem associated to the general Sym-Bobenko formula in space forms with Sym-points at A1, Ay, with
either

(1) A1 = Xa =1 (R? case)
(2) A1 = e Ny =e " with 0 < § < 7 (S? case)

(3) A1 =€, Ay = e~ with ¢ > 0 (H? case).
The Monodromy Problem in cases (2) and (3) is
(72) { M(P,~) € ASU(2)

M((I),’y) |/\1: M((I)77) |/\2: +1

Theorem 4. Let Q C C be a o-symmetric domain containing the points 0, co and not containing —1.
Let & = (O‘f A_lﬁt) be a C! family of o-symmetric DPW potentials with the following properties:

Yt Ot
(1) ¢, B¢ are holomorphic in Q and v has at most a double pole at 0 and oo,
(2) Re(Resp(z1t)) =0,
(3) Reso(r?) = 0.
Assume that there exists a continuous family of o-symmetric solutions ®; of d®; = D& in the universal
covering of Q\ {0,000} and a o-symmetric curve 6 C Q bounding a disk-type domain containing 0 and oo,
such that the Monodromy Problem (7) or (72) for M(®y,0) is solved. Further assume that at t =0

0 At kdz
& = S
0 0 (z+1)
with k € R* and ®y(1) is diagonal. Then for t in a neighborhood of 0, & is holomorphic at 0 and co.

Proof: Let (F, B) be the Iwasawa decomposition of ®¢(1) (both factors are diagonal). Replacing &,
by F~1®,, we may assume that ®(1) is a diagonal matrix in Af SL(2,C) so

_(r 0 1 Qk/\(zjrll)

with p € WH%O. By Hypothesis (2) and (3), we may write

Reso(zy:) =ia; and  Reso(y:) = A(bt + ict)
with as, by, ¢ € WEO. For x = (a,b,¢c) € (WH%O)?’, define

d 1—2.d
wx:ia(lfzz)—j+)\(b+icl Z)—Z
z

+z 2z
Then
o*wy = —wyx, Resp(zwy) =ia and Resow, = A(b+ ic).
is holomorphic at 0 and oo by symmetry. Define

Writing x¢ = (a¢, by, ¢;), we see that v — wy,

o (673 A_lﬁt 0 0
o=, (0 0)

(The first term is holomorphic in €2). Let ®, « be the solution of d®, x = ®; & x with initial condition
@y «(20) = Pi(20), where 2z is an arbitrary base point. Then & x, = & and ®;x, = ®;. Since & is
holomorphic at 0, we have xg = 0. Theorem 4 follows from the following
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Lemma 1. For (t,x) in a neighborhood of (0,0), the only solution to the Monodromy Problem (7) or
(72) for M(®;x,9) isx = 0.

Proof: let
M2

M(t,x) = Hlog M(®; ,0)H™'  with H = ( 0 -1/

) € ASU(2).

(The reason to conjugate by H will be clear in a moment.) By Proposition 8 in [28], the partial differential
of M with respect to x at (0,0), applied to the vector x = (a, b, ¢), is given by

dy M (0,0) - x = /wa
é

where

0 0 k(z—1) —k%p2(2—1)2
— — 2
o Yo (50 )
Ap? 2 (z+1)
Since Nw, has only poles at 0, —1 and oo, we have by the Residue Theorem

dxM(0,0) - x = 2mi(Reso(Nwy) + Resoo (Nwy)) = —2mi Res_1 (Nwy).
Computing the residue at z = —1, we obtain

—kdb  Alik?p?(2da — Adc/2) >

d M (0,0) = 2m< %1 dep? b

Define R
= —kb, b=kp*2a—\c/2) and C=2c/p’

It is clear that (a,b,c) — (E,Z,E) is an automorphism of (V\iﬂgo)3 . The point of this change of variables
) is

(and the conjugation by H) is that we now have

~ —1: 17
dxM(0,0):Qm'( da A “”’).

idc  —da

This is precisely Equation (51) with aj, bjk, ¢;i replaced by @, 5, ¢ and r;j; = 0. So in the R? case, the
proof of Point (3) of Proposition 11 yields that for ¢ in a neighborhood of 0, the Monodromy Problem
(7) uniquely determines (&,5,8), hence x, as a function of ¢. Now x = 0 is a trivial solution (since &
is holomorphic in ) so x = 0 is the unique solution. In the S* case (respectively the H® case), the
Monodromy Problem is equivalent, using the p-symmetry, to

M € Asu(2) M € Asu(2)
N . Im(M11 |)\:eq) =0
Im(Mi1 |ymei0) =0 respectively
o RG(M12 |)\:eq) =0
M1 |zzei0e=0

Re(M21 |>\:6q) =0
In the S? case, define F, G by Equations (48) and (49) with M in place of Mjk and
E=(Ei<ics = (FF, G, MG7)"  Im( My |y—eio), Moy |y—eio ).

Then
d& = —2ndat

d&y = —2m(db™ + \d°)
d€s = —2m(det + Adb°)
dEs + Re(d&y |y—eio) = 2mda’
dEs — dEs |y_pio=2m(e?db® — dc°).
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It easily follows (since €’ ¢ R) that d€(0,0) is an isomorphism from Wg? x R to Wg? x R x C. Again,
we conclude with the Implicit Function Theorem that the only solution of the Monodromy Problem is
x = 0. We omit the proof in the H? case which is similar. O

By duality, we obtain the following result (with the same hypothesis on £ and §):

Corollary 1. Let & be a C! family of o-symmetric DPW potentials on Q with the following properties:

(1) a¢, v are holomorphic in Q and B; has at most a double pole at 0 and oo,

(2) Re(Resop(25:)) =0,

(3) Reso(By) = 0.
Assume that there exists a continuous family of o-symmetric solutions ®; of d®y = P& such that the
Monodromy Problem (7) or (72) for M(®y,0) is solved. Further assume that at t =0

€0 = 0 0 kdz
71 0 ) (z+1)2
and ®o(1) is diagonal. Then for t in a neighborhood of 0, & is holomorphic at 0 and oo.

APPENDIX B. PRINCIPAL SOLUTION THROUGH A NECK

Fix some numbers 0 < ¢ < e. For t € C such that 0 < [t| < &2, let A, C C be the annulus
[t|/e < |z| < € and ¢ : Ay — A; be the involution defined by :(z) = t/z. We see an element of the

universal cover C* of C* as a complex number ¢ € C* with a determination of its argument (which we do
not write), so the function logt is well defined on C*. We denote ¢ — 2™t the Deck transformation of
C* which increases the argument of ¢ by 2w. For ¢t € @*, let 8; be the curve from ¢’ to t/e’ parametrized
for s € [0,1] by

ﬂt(s) _ (61)1725255 _ (51)172365 logt.
Our goal is to understand the limit behavior of P(&, ;) as t — 0, under suitable hypothesis on the
potential &. Let v be the circle parametrized by ~(s) = &7,

Theorem 5. Let &, be a family of Asl(n, C) valued holomorphic 1-forms on Az, depending holomorphically
ont € D*(0,e%), and let & = ;€. Assume that

im& =& and lm& =&

where & and on are holomorphic in D(0,¢) and the limit is uniform on compact subsets of D*(0,¢).
Define for t € C* small enough

1

F(t) = P(&, 7)™ 3 P&, Br).-

Then

(1) The function F satisfies F(e2™t) = F(t) so descends to a well defined holomorphic function F(t)
defined in a punctured neighborhood of 0.
(2) The function F extends holomorphically at t = 0 with

F(0) = P (€9, €', 0)P (€0, 0,").

(3) If t > 0, the function P(&, B:) extends to a smooth function of t and tlogt with value F(0) at
t = 0. Moreover we have ast — 0

tlogtg

P&, B) = ([2 + ——

omi ot &) t—0> F(0) 4 O(t).
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Remark 14. We apply Theorem 5 in the proof of Proposition 13 with & = (Zj_kl)*&,x and ¢ = ;. Then
Zi = 1 0 zj) SO & = ((2j3,)~")&t.x- By Proposition 3, & and & are both holomorphic in D(0,¢), with
& = (zj_kl)*(Mjwo) and & = ((z}k)*l)*(Mjkwqjk). Theorem 5 says that P((zj_kl)*ftyx,s’,tjk/s’) extends
at t = 0 to a smooth function of ¢;, and ¢;; logt;;, with value at ¢, =0

P((z)" (Mjwo), €', 0) P(((z) ™) (Mjrtwq,, ), 0,€").

To justify that the extension is a smooth function of ¢,¢logt¢ and x we use Hartog Theorem on separate
holomorphy to ensure that the function F' depends holomorphically on (¢,x). In other words, P(&; «, zjr =
e, z;-k = ¢’) extends to a smooth function of ¢, tlogt and x with value at t =0

P(Mjwo, zjx = €', zjr = 0) P(Mjrwq,,., 2 = 0,25 = €') = P(Eox, 2jk = €', 25, = €')

where in the last expression, it is understood that the principal solution is continuous at the node. This
gives some theoretical ground for the heuristic explained in Section 4.

Proof: first of all, by the change of variables 2’ = z/¢’ and ' = t/(¢')?, we may assume without loss
of generality that ¢ = 1 (so € > 1). The expression of S; simplifies to S:(s) = t*. The restriction of &
to the unit circle v extends holomorphically at ¢ = 0, with value &. Since & is holomorphic in D(0,€),
P(&o,7) = I». Hence log P(&;, ) and F(t) are well defined for ¢ small enough. Point (1) follows from the
fact that the path B.2xi; is homotopic to v8;. To prove Point (2), we split the path §; into 8; = aza; "
where

() = Bi(s/2) =t°/2  and  Gy(s) = Bi(1 — 5/2) = Py (au(s)).
Since F(t) is well-defined, we may assume that |arg¢| < w. Provided |t| < e~ ™
o

(73) i (s)] = 31¢]*/%|log | < [¢|*/* log |¢] .

, we have |logt| < 2|log |t] |

Integrating the estimate (73), we see that the length of the spiral a; is bounded by 2.

Lemma 2. There exists a uniform constant C' such that for t small enough enough:

(74) /0 1€ (eue(s)) — Eoleue(s))] @i (s)l| ds < Clt]*/2.

Proof: we use the letter C' to denote various uniform constants. Fix some 3 € (1,¢). On the circle
C(0,e3), & depends holomorphically on ¢ in a neighborhood of 0 so

(75) /C o e el =cil

By the change of variable formula, the convergence of Et to EAO and the holomorphicity of &, and {?0 in
D(0,¢):

(76) / 6 — &l < / &l + / 16 < C.
C(0,[t|/e2) C(0,e2) C(0,[t]/e2)

3

We expand &; — & in Laurent series in the annulus |t|/e3 < 2] < &9 as
6(2) — 0(2) = 3 Ay(t)2bds
kEZ
where the matrices Ay(t) are given by

_ 1 &(z) —&o(z) 1 &(2) — &o(2)
Ak(t) - omi /0(0752) Sk+1 - 21 (0,1t /e2) k1 .
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Estimates (75) and (76) give us respectively:

i 5’5“
(77) 1A < C o and A < C [
2

Then we have the following estimates:

/ngt a(s)) = olou(Nai(s)] ds < 3 / | Ak(0)] 1o () ¥ |ty (5)] ds

kEZ

= / | AR(®)]| [E[5+D2/2 log |#]| s using (73)
kEZ

=A@ ol |+ Y g 4w @] (1 f+072)

k-1
k41

<A@ log [t +2 Y [ Ax@)ll +2 > A 1t] 2

k>0 k<—2

|t| k+1
< C|tlog|t\|+Cz s +C Z (|t|1/2) using (77)

k>0 2 k<—2

< Cltloglt| |+ Clt| + C|t|>.

U
Returning to the proof of Theorem 5, let ®g be the solution of d®y = P&y in D(0,e) with initial
condition ®y(1) = I,,. Let Y;(s) be the solution on [0, 1] of the Cauchy Problem

{ Y/ (s) = Yi(s)&e(ue(s))ai(s)
Y3(0) = L.

By definition, P (&, a¢) = Y;(1). Define
Z4(5) = Yils) — Folou(s)).
Then
Zi(s) = Yi(s)€(n(s))ai(s) — Poar(s))So(ex(s))ai(s)
= Zi(s)&(au(s))ai(s) + Dol (s))[€e(ae(s)) — oo (s))] v (s)-

126 = [ o

/OS 1@ (e (@) [ (e () = Lol ()] e () || dae

Hence

S/O 1Ze() [ 1§ (0 (@) et () || dx

By Gronwall inequality:

1Z:(D] < /01 1o (e ()] [l [€e(ve(s)) — Golau(s))] a(s)llds x exp (/01 ||€t(0¢t(8))04(8)|d8> :
Using Lemma 2, uniform bounds for & and &, in D(0,1) and the length of oy, we obtain
1P (&, ar) = ®o(ar(1))]| = [ Ze(1)]| < CJt|M2.
Since ®q is holomorphic in D(0,1),
[®o(ae(1)) = Po(0)]| < Cla(1)| = CJt['/?
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Hence
(78) IP (&, ) = Do(0)]] < Cle|'2.
Let </ISO be the solution of dffo = @050 with initial condition @0(1) = I,,. By the same argument, we have
(79) IP(&. @) — 2o(0)]| < Clt["/2.
By Equations (78) and (79):
IP(&, Br) — Do (0)o(0) ™| = [[P(€rs )P (&, @) " — Do(0) o (0) || < Clt]'/>.
Since P(&,vy) = I + O(t), we finally obtain
|P®) = 20(0)0(0) || < 2.

By Riemann Extension Theorem, F' extends holomorphically at ¢ = 0, and

F(0) = ®o(0)20(0) ! = P(&, 1,0)P(£0.0,1).
Finally, to prove Point (3), assume that ¢ > 0 and write

P(gtaﬁt) = exXp (tioﬂitt_l IOgP(ED’Y)) F(t)

Since P(£o,7y) = Iz, t~log P(&;,7) extends holomorphically at ¢ = 0 with value %P(Et, v) |t=0 and Point
(3) follows. O

APPENDIX C. DIFFERENTIABILITY OF SMOOTH FUNCTIONS OF t AND tlogt

Proposition 24. Let E be a finite dimensional space and g(t,s,z) be a smooth function from a neigh-
borhood of (0,0,z) in R x E to a normed space F. Define

_ [ g(ttloglt],z) ift#0
ft,2) = { 9(0,0,2) ift =0.

Assume that g(0, s, z) only depends on z. Then f is of class C* and

_9%
ot

Proof: f is clearly continuous. For t # 0, we have by the chain rule:

df (0, 2) (0,0, 2)dt + d,g(0,0, z).

0 0
df(t,z) = a—g(t,tlog |t], z)dt + 6—g(t,tlog [t], 2)(1 + log |t))dt + d.g(t, tlog |t], z).

From the hypothesis, %(O, $,2) =0 so
dg dg dg
—_— t = e t —_ - t .
122 (1,5, 201 = 122 (t,5,2) ~ 2(0,5,2)] = O1)

Hence

dg
o If (t,2) 8t(’ ,z0)dt + d.g(0,0, zo)

It follows (using the Mean Value Inequality) that f is differentiable at (0,zg) and that it is of class C1.
O
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