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Some negatively curved manifolds with cusps,
mixing and counting

By Frangoise Dal’bo and Marc Peigné at Rennes

Abstract. Let X be a Hadamard manifold whose sectional curvature K satisfies
—b* < K <—1. We consider a family of free isometry groups I" acting properly discon-
tinuously on X and containing parabolic transformations of divergence type. We show that
such groups are of divergent type, we describe the dynamic properties of the map 7' induced
by the action of I' on the boundary of X and we explore the spectrum of the transfer
operator associated with T. As applications, we establish a mixing property for the geodesic
flow on the unit tangent bundle of X/I' and we describe the behaviour as a goes to + oo
of the number of primitive closed geodesics on X/I" whose length is not larger than a.

Introduction
A Hadamard manifold is a complete simply connected Riemannian manifold of non
positive curvature K. Let X be such a manifold, assume that —b%2 < K< —1 and denote
by 8X its visual boundary relatively to a reference point 0. Fix two integers N, N, such

that N, + N, =2 and N, 21 and consider N, hyperbolic isometries o, ..., ay, and N,
parabolic ones ay, .y, ..., %y, +, satisfying the following conditions:

(1) For 1£i < N, there exist in 0X a compact neighbourhood C,, of the attracting
point x, of a; and a compact neighbourhood C,-. of the reppeling point X, such that

%X —C,-) = C,,.

(2) For N,+1<i< N, + N, there exists in 0X a compact neighbourhood C,, of the
unique fixed point x, of «; such that

VneZ* a}(0X—-C,)<=C,.
(3) The 2N, + N, neighbourhoods introduced in (1) and (2) are pairwise disjoint.

(4) The elementary groups {a;y for Ny+1=i < N, + N, are of divergence type.

10 Journal fiir Mathematik. Band 497



.....

142 Dal’bo and Peigneé, Negatively curved manifolds

Such families of isometries can be obtained by taking some powers of a finite number of
parabolic or hyperbolic transformations of divergence type which have no fixed points in
common. Note that if N; = 0 we only consider N, = 2 parabolic transformations satisfying
conditions (2) and (3).

Transformations o, ..., ay, .y, generate a free group I which acts properly discon-
tinuously and freely on X. If N, = 0 the group I' is a Schottky group; it acts on the convex
hull of its limit set with compact fundamental domain, in other words I is convex cocompact.
The geometry of convex cocompact groups is well known ([7], [19], [33]); many results
are proved using the thermodynamic formalism which may be applied in this case.

Throughout the present paper we assume that N, > 1 and we will say that I is an
extended Schottky group. Note that any parabolic transformation of I' is conjugated to
some power of a parabolic generator; this is the simplest example of a non convex-
cocompact group.

In the case where X = HF, there is a well known ergodic theory for geometrically
finite discret groups G even if it contains parabolic transformations: for example the
Patterson-Sullivan measure associated with G has no atomic part, G is of divergence type
[31] and the geodesic flow on the unit tangent bundle of X/I is topologically mixing [28].

In the non constant curvature case, there are not many results about groups with
parabolic transformations and several problems are still open: Are such groups of diver-
gence type? Does there exist an atomic part in the Patterson-Sullivan measure? Is the
geodesic flow mixing relatively to the geometrical Patterson-Sullivan measure?

Let us now state the main results of the present paper. Denote by d the Riemannian
distance on X and J, the exponent of convergence of the Poincaré series associated with
I'. Since the sectional curvature of X is lower bounded, §; is finite. Let g be a non elliptic
isometry, denote by J, the exponent of convergence of the series ) e ™90 If g is

neZ

1
hyperbolic then 6, = 0; if g is parabolic then 6, = 3 (cf. §I1I) We prove the

Theorem I11.1. Let G be a non elementary group of isometries of X. For any ge G
such that 'y e~ %%%9"0 = 4 o0, one has 65> 5,.

neZ

When g is hyperbolic one just obtains the well known result ;> 0. If G contains
parabolic transformations then o, > 1/2.

The following results are stated for extended Schootky groups I'; using the coding
of the limit set of these groups we prove the

Theorem IV.2. The Patterson-Sullivan measure ¢ associated with I' has no atomic
part.

As a direct consequence we obtain
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Corollary IV.3. The group I is of divergence type, that is ) e °r4®79 = 4 c.

vel

Since I' contains parabolic transformations, we code the points of its radial limit set
A° with an infinite alphabet; by geometrical arguments, we show in § V that the boundary
map 7 on A° induced by the classical shift on the associated symbolic space is expanding
and we construct a T-invariant probability measure v on A°.

Denote by A the limit set of I" and by G4 the set of pairs (£, x) where £ is a geodesic
on X with endpoints in 4 and x e . The Patterson-Sullivan measure induces a natural
measure 4 ® [ on the non wandering set GA/I" of the geodesic flow (g,),.g on the unit
tangent bundle of X which is (g,),. invariant. We show the

Theorem VL.2. The geodesic flow (&,);.g on GA/I" is mixing relatively to p ® .

The proof of this result is based on a renewal theorem for transient Markov walk
on A x R [14] and requires a precise investigation of the spectrum of the adjoint operator
P and its Fourier transforms P, associated with 7 and v (cf. § VIII); the fact that I" contains
parabolic isometries is essential to describe the top of the spectrum of P, A € R. Note that,
as far as we know, theorem VI.2 is not proved (or not yet published) in the case where
the sectional curvature of X is non constant and I' is convex cocompact, even if I" is a
Schottky group.

For any a > 0 denote by 7(a) the number of primitive closed geodesics on X/I" with
length not larger than a; since I is not purely hyperbolic the set of closed geodesics on
X/TI" is not relatively compact. In § VII we prove the following

Theorem VIL1. The function a — n(a) is equivalent to e*°|ad, as a goes to + 0.

To prove this theorem we use a probabilistic method introduced by S. Lalley [21]
and already developped in further directions ([2], [6], and [22]). First we code closed
geodesics on X/I' and establish a connection between 7n(a) and the harmonic potential of
a certain Markov walk on R. Theorem VII.1 thus appears as a direct consequence of a
harmonic renewal theorem for a transient Markov walk on R.

When M = X/I is compact, theorem VII.1 is due to Selberg [29] (K = — 1), Margulis
[23] (K variable) and has been extended to periodic orbits of Axiom A flows in [25].
When M is not compact and K = —1 this theorem is well known if M is a surface ([13],
[17], [32]); when dim M = 3 a similar result holds under the following hypotheses: the
volume of M is finite [32], or =,(M) is convex cocompact ([21], [25]) or =,(M) is a
Ping-Pong group [10]. The case where M is not compact and the curvature K is not
constant is quite open; in [6] we solve it for small perturbations of the Poincaré metric
on the modular surface.

Remark. All the results of the present paper are valid and the proofs are rigorously
the same if one replaces X by a CAT(—1)-space whose boundary has a finite visual Haus-
dorff dimension [27] and admits hyperbolic and parabolic isometries; unfortunately, we
have no interesting example of such spaces except pinched Hadamard manifolds.
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I. Geometry on X

Denote by d the Riemannian distance on X. Since the sectional curvature is not
larger than —1 the metric space (X, d) is a CAT(—1)-space [4].

Throughout this paper we fix a reference point 0 € X. Consider two geodesic rays
t - r(t) and t — s(¢) based at 0; one says that r and s are equivalent if the Hausdorff
distance between r and s is bounded. Denote by X the quotient of the set of geodesic
rays based at 0 by this equivalence relation; equipped with the quotient topology induced
by uniform convergence on compacts, X U dX is compact. Note that every pair of distinct
points in XU dX determines a unique geodesic on X [4].

A metric d;y on 0X is called a visual t metric (with ¢ > 1) if there exists C = 1 such
1
that for every x, y€dX one has ra 40 < dyy(x,y) < Ct 4. where d(0, (xy))

denotes the distance from 0 to the geodesic (xy) joining x and y. Such a metric does exist
on the boundary of any Gromov hyperbolic space [7], hence in particular on the boundary
of a CAT(—1)-space. Let xe dX and ¢ — r(¢) be a geodesic ray joigning 0 and x; for every
2y, 2, € X the limit as 7 goes to + oo of the difference d(z,, r(£)) — d(z,, r(¢)) exists and is
denoted by B,(z,,z,). Geometrically, B, (z,, z,) represents the algebraic horospherical
distance between z, and z, relatively to x; moreover, if x,, x, € 0X and z belongs to the
B, (0,2)+ B,,(0, 2)

geodesic with extremities x; and x, then (x,|x,) = >

on the choice of z. One has the

does not depend

Theorem L1 ([4]). The mapping D :0X x X — R* defined by D (x,, x,) = e *11*?
if x,% x, and D (x,, x,) = 0 is a visual e-metric on 0X.

For every isometry y on X and every point x € X set |y’ (x)| = e5~(®77'®_Using the
equalities B, ,,(yz,7z,) = B,(zy, z,) and B,(zy, z3) = B,(z, z,) + B,(z,, z3) one obtains
the

Mean values relation. Vx,yedX D(yx,yy) =|/|7'()ly(»)ID(x,y).

Isometries on X are classified according to their fix points. An isometry is elliptic if
it has a fixed point inside X; in the present paper we only consider non elliptic isometries y.
Thus : ‘

— either y fixes a unique point x, € 0X; in this case y is said to be parabolic and
[y () =1;

— or 7 fixes exactly two distinct points x, and x,-.; in this case, y is said to be
hyperbolic, the point x, satisfies the inequality |y'(x,)| <1 and is called the attracting point
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. . 1 .
of y, the point x,-, satisfies the equality [y'(x,-)| = m >1 and is thus called the
Y
repelling point of y. Near x,,-: the hyperbolic isometry y looks like a homothety expansion

with expansion rate |y'(x,-1)|.

Definition 1.2. Let y be a hyperbolic isometry acting on X; the expansion rate of y
is the real number @ (y) = |y’ (x,-1)|.

The two following lemmas describe the dynamic on X of non elliptic isometries.

LemmaL.3. Lety be a hyperbolic isometry; for every compact set E < 0X — {x,, x,-1}
there exists A 2 1 depending on y and E such that

—Inl
(1) Vxe E,VneZ* ﬂ%— S 497,

) Vx,ye E,VneZ* [|("Y (0| =10")Y I £ 49 "D(x, »).

Proof. Assume n = 1; if n £ —1 it suffices to replace x,-: by x, in the proof.-

(1) One has D(y"x, x,-1) = W(y")’(x)] 17" (x,-)1"D(x, x,-1). Suppose first that for
every k =1 there exist x, € E and p(k) e N* such that D(y*%x,, x,-.) < 1/k; therefore
lim y*®(x,) = x,-:. On the other hand

k— + c0
D(yP¥x,, x,-1)

D(x;, x,-1) - D(E, x,-1)
D(yp(k)xk’ xy)

= o ()™ >
D%, x) — 1Dl

which implies lim y?®(x,) = x,; this contradicts the fact that x, + x,-.. Consequently,
k— + o

there exists B> 0 such that for every xe E and n = 1 one has D(y"x, x,-.) 2 B. By the
mean values relation it follows

B Y’ —n s IDll,, \* —n
<HD||oo> () "SI )] = (m) ()"

(2) Let x and y be in 0X. Set A(x, y) = ||(?") (x)| = 1(®") (»)|l; one has

D (y"x,x,-1) _ D*(y"y, x,-1)

Ax,y)=2@)™" D% (x, x,-1) D?(y, x,-1)

o(m)"

< M
= D?(x, x,-1)

| D*(y"x, x,-1) — D*(y"y, x,-1)|
1

: 1
+ i) —nDZ n , _ . .
(y) (yy xy l) Dz(xs xv“) D2(y’ xv“)‘
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If x and y belong to E one obtains

2||D
[P D(y"x,y"y)

A(x, y) S ¢(V)_"m

2| DI

20 bR E .

D(x,y)
2|| D]l
D? (E, x),—x)

2| D113,
D4(E, xy_l)

<o@()" V16 016" () D(x, »)

+o(y)™" D(x,y).

Using inequality (1) one thus obtains the existence of a constant 4 such that
0= A(x,y) S AP() "D(x,y). O
The dynamic of parabolic isometries is a little different. One has the

Lemma L4. Let y be a parabolic isometry; for every compact set E < 0X — {x,} and
every y, € E there exists A 2 1 depending on y and E

(1) Vxe E,Vne Z*

%y_o)_l SIS 416"Y ol

() ¥x,ye EVneZ* (")) =10"Y W £ 410" (99| D(x,y).

Furthermore one has lim |(y") (yo)|Y/™" = 1.

n—> =t

Proof. (1) Since |y'(x,)| =1 one has D(y"x, x,) =}/ |(y"Y (x)| D (x, x,) for any x € 0.X;

1 1
SO IDIZ DX(y"x,x,) 1Y ()| £ ml)z(ynx, x,). For every x,ye 0X — {x,} set
_ D(x,y) = . - ‘
Ale.y) = ; using the fact that A4(yx,yy)=4(x,y) one obtains
D(x’ ‘xy)D(y’ xy)
1

- - - < A(x,y) for any neZ* Now, fix y,eE; we have
D("x,x,) D"y, x,) °
|4||,, = sup 4(x, y,) < + o0 and so

xeE

D"y, x,)
14l DG"yo, X,)

Do %) o pyx,x,) < 1

VxeFE =
1+ HA ”ooD(yny07 Xy)

Since Lim D(y"y,, x,) = 0 there exists C = 1 such that

n—t

1
C D(#"yo, x,) £ D(¥"x, x,) £ CD(Y"y,, X,)
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and so

DZ , C2D2 5 X,
DU 16y 01 216701 S e (Y o).

(2) Let x and y in 80X and set A(x,y) = \l(y")’(x)l — (™Y (D)1]; one has

D*(y"x,x,) _D*(7"y, %)
D*(x, x,) D*(y, x,

Mx,y) = \

1
= m |D?(y"x, x,) — D*(¥"y, %,)|

1 1

+ DXy, X)) | s T o
Y1 D*(x, x,) D*y, x,)

If x and y belong to E one obtains

21|D .
1Dl D("x,¥"y)

< =
Alx,y) = D*(E, x,)

211Dl o
+ ]—)‘—l%f’nﬁ D2(y"y, x,) D(x, )

21| D
< Al VARG D)

20DW3 v
+ D(E, x) ) 1G"Y(WDID(x, p) -

Using inequality (1) one thus obtains the existence of a constant A =1 such that
0<A(xy) < 416" (01D )

- : 1O G0l .
Finally, since lim ———=—— = lim |y (@"yo)l=1we have
yosinee lim St T w0

lim |G"Y (oMM =1. O

in}—+

The following result will be useful in the sequel; its proof is similar to the one of
proposition 8, chap. 8 in [12].

Lemma L5. Let (7,).21 be a sequence of pairwise distinct isometries of X such that
(7,(20))nz1 converges to a point x € 0X for some zo€ X. Then for every z in X one has
lim y,(2) = x.

n— +

The action of the sequence (Ya)nz1 OD OX is a little different; for example ifyisa
hyperbolic isometry, X, - is fixed by y and lim y"(x) = X, for all x # x,-:. More generally
one has e
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Corollary L.6.  Let (7,),, be a sequence of pairwise distinct isometries of X such that
(y, (ZO)),,> | converges to a point x € 0X for some zO € X. Then, for any couple (y, y') of distinct
points in 0X one has lim inf(D(y,y, x), D (3, x)) = 0.

n—+ o

II. Extended Schottky groups

Fix two integers N, and N, such that N;+ N, =2 and N, =1 and consider N,
hyperbolic isometries o, ..., ty, and N2 parabolic ones oy, 41, ..., %y, +y, Satisfying the
conditions (1), (2), (3) and (4) given in the introduction. The group I' generated by
Ay, ..., 0y, +n, i called an extended Schottky group.

Notations. Denoteby .o/ = {a;, ..., 0y 4y} and o/ = = {0, a7, 0y, 4 ny Ays e n,)-
Forevery 1S i< NysetC,: = C,, 0 C, -1 andforevery N, +1 S i< N, + N,set G, = C,,.

Using conditions (1), (2) and (3) one shows by induction over n the

Property II.1 (Ping-Pong property). Let ay,...,a, e * such that a,,,* a; ' for
1<i<n. Thena, - a,(0X—C,-1)=C,.

Consequently . is a free system of generators of I'. Furthermore one has
Corollary IL2. The group I' acts properly discontinuously on X.

Proof. Assume that I' does not act properly discontinuously on X. So there exists
a sequence (3,),-, of distinct elements of I' such that (v, (0)),l> , remains bounded. Fix two

distinct points x and y in X — () C,. and choose z and z' on the geodesic (xy); since
aed

(7,(2)) 2, and (v, (& )),,>1 remain bounded, there exists a subsequence Ondizr OF Ozt
such that (,, (2))ix; and (,, (z')),z1 convergein X. Set g, =7, , 7, ; onchas lim g,(z2) =z

k— + 0

and lim g,(z')=z'so that 11m g, (%) =xand hm 2.(») = y. By the Ping-Pong property

k= +

it follows that g, = Id for k large enough Wthh contrad1cts the hypothesis. O
Recall that @ (y) = |y'(x,-1)| for every isometry 7.

Corollary IL3. Let (y,),s, be a sequence of distinct hyperbolic isometries of I such
that y, and v,, are not conjugated for every n+ m. Then lim @(y,) =+ 0.

n—+ oo

Proof. Suppose that there exist B > 0 and a subsequence (denoted also (7,),5;) such
that @(y,) < B for every n = 1. Since « is finite and ®(g7,8 1 = @(y,) for any isometry
g, one can suppose that for n large enough either y, = af for some 1 < i< N,, or
Vo= @y, “ay, With a, € LF, ,510,F ay; for1<i<k,and a, =a,a,, =p o+ p

> “nkyn

In the first case one has ®(y,) = @ («,)"*! with @(«;) > 1 and corollary IL.3 follows.
In the second case x,-.€Cy. and 3,C,. < Cpu. For every xe C,. one thus has
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. D?(C,-, Cy2)
(92— p

points in C,., which contradicts corollary 1.6. O

and therefore inf D (y,x, y,x") > 0 for every pair (x, x) of distinct
nx1

The following lemma is important in order to code some limit points of I'. For every
subset E < X denote by diamE = sup D(x, y). One has

x,yeE
xX+y

Lemma IL4. Let (a);2,€ (o %)V such that a;,, + a; ' for every i = 1. Then

lim diama,---a,( |J C)=0.

n—=+ oo aed —{an '}

Proof. Since thesequence(a, - a,( |J C,)),», is decreasing, it suffices to show
R acd —fan 1} B
the lemma for some subsequence. For every n = 1 set y, = a, *** @, and consider a subse-
quence (7,,)iz; Such that a, =a =+ af! (if such a subsequence does not exist replace the
initial sequence a,, a,, ... by ay, a,, ... with a; ai! and aj # a;'); transformations y,,
are thus hyperbolic and are not mutually conjugated. One has

diamy, ( ) CJ)= sup (7, ) Dl

acod —{a~ 1} xe Y Ca

2
é Sup D (ynkic’ xvi;(‘)
xe |J Ca ¢(ynk)D (X, 'x'}’n—kl)

a¥ a-l

1Dl

D113
Tor, )P U CuCed)

aesl —{a" 1}

By corollary I1.3 one has lim &(y,) = +co which finishes the proof. O
n—+ oo
Denote by A the limit set of I'; by definition A4 = T0 n 08X and it is the least -invariant
closed subset of dX. Let us introduce the

Notations. Foreveryaes/*set A,=A4nC,and 4,. = AN C,..

Let A° be the limit set 4 minus the I'-orbit of the fixed points of &y, ..., ay, 4, and
set A9=4°nC, and A2, = A°Nn C,..

Fix x,€dX ~ |J C,.. Let xe A° since x is a limit point there exists a sequence
acd

(Vw)nz1 Of I' such that lim y,(xo) = x. Since « is finite and x ¢ I'x, for any a« € o/ * there

n-*+w
exists a subsequence (¥, )=y Of (¥,),; such that y, = af'--- aj§” with q; € o, n;e Z* and
a;,, * a;. The unicity of the sequence (a");5; is a direct consequence of the Ping-Pong
property. We therefore have

Property IL5 (coding property). Fix xo€dX — |) C,.. For every xeA° there

aed
exists an unique sequence (x) = (al");5, with a;e o/, n,eZ* and a;,\ + q; such that
1 ny...gn —
lim aft---agxy, = x.
k— +
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III. The critical gap property

Let g be a non-elliptic isometry on X and denote by J, the exponent of convergence
of the Poincaré series ) e™5®4"%_If g is hyperbolic, replace 0 by a point z which belongs

neZ
to the axis of g; one obtains ), e™*®9") = } ¢7"F=(0-90) Since B, (0, g0) > 0, one has
neZ neZ

d,= 0 and the group generated by g is of divergence type.

If g is parabolic, the estimate of d, is much more complicated. For example, a direct
computation shows that J, = 1/2 when X is the real hyperbolic half space and J, € {1/2,1}
when X is the complex hyperbolic half space (we thank here M. Bourdon who has pointed
out this fact to us). In the general case where X is a Hadamard manifold with sectional
curvature —b* < K < —1, denote by # the horosphere through 0 and with center x, and
by A the distance in # with respect to the induced metric; for any p, g€ # one has

2sinh£1(—1;’i) < h(p,q) = % sinh g d(p, q) ([16], Thm. 4.6). Since g"(0) belongs to # for
any n € Z one has
d(0,g"0) < 2Log(h(0,g"0) +1)
< 2Log(h(0,g0) + -+ h(g"*0,2"0) + 1)

< 2Log((In]+ 1) ¢,(g))
with

2 .2 2 .2
c,(g) = sup 1 +h(gk_10, gk()) < sup 1+ E smh; d(g"”IO, g"O) S1+- smhg d(0, g0).
1<kzn

1<kz=n b

. n 1 .\ .
It readily follows that ) e™s!®¢"9 > 425 %' _—_ for some positive constant 4 which
implies 6, = 1/2. nez* nez*

If X is a symmetric space of rank one, the group generated by any parabolic isometry
g 1s of divergence type (see for example [8]); this is also the case if there exists a horoball
centered at x, isometric to a horoball of a symmetric space of rank one. Note that there
exist Hadamard manifolds of pinched curvature which possess parabolic isometries of
convergent type ([9]).

Theorem III.1. Let G be a non elementary group of isometries of X. For any ge G
such that ), e~ %" = 4+ 0, one has 55> 6.

neZ

If G is purely hyperbolic one obtains &, > 0; this fact is not new and it holds even
if X is a general Gromov hyperbolic space [7]. If G contains parabolic transformations
one obtains in particular 6 > 1/2; this inequality was already proved in constant curvature

([31, [26D).

Proof. One adapts here a Beardon’s argument [3]. Fix g e G such that the series
Y. e”*®"9 diverges at its critical exponent §,; since G is non elementary there exists an

nezZ*
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hyperbolic isometry 4 such that the group (g, h) generated by g and 4 is an extended
Schottky group. One has

Z e—sd(O,yO) > z Z e—sd(O,g"lhg"lh.,,g"khO)

velg.h k21 ng,...,mceN*
—_ n “ee n
=3 Yoo 5(d(0,710) + -+ +d(0, 4™ 0) +kd (0, h0))
kz1 ny,..., neeN*

k=1 nz1

Since lim Y e™%®4"® = + o0, one can choose s > §; such that e s40:#0) Y osd(0.670) >

5=0g n>1 nzl
>dg =

this implies that the series ), e *®?® diverges for some s>3§, so that
5G§5<g,h>>5g- o ' yelg.h>

IV. The Patterson-Sullivan measure on A

Denote by J, the exponent of convergence of the Poincaré series Y e and ¢
yell
the Patterson-Sullivan measure on 4 [19], [26]. Since the sectional curvature of X is lower

bounded, & is finite. For any isometry y € I’ one has

d(y o)
do

(%) (x) = |7 (x)°’T o(dx)-as.

Recall the shadow 6(z, r) on 0X of the ball B(z, r) with center z € X and radius r > 0 is the
set of points x € X such that the geodesic ray joining 0 and x meets B(z, r). Let us recall
the following

Lemma IV.1 (Sullivan’s shadow lemma [7]). There exist C = 1 and d, > 0 such that
for every r = dy and ye I one has

_é e—érd(o,yO) é 0.(9(.})0’ r)) é Ce—érd(o,y0)+2r&1-.

When the curvature is constant it is well known that the Patterson-Sullivan measure
on A has no atom [31]. By the Ping-Pong property and the dynamic of generators on 0X
we show that the same property holds for any extended Schottky group acting on X. The
following theorem has been obtained with J.P. Otal.

TheoremIV.2. The Patterson-Sullivan measure o associated with I has no atomic part.

Proof. Since I' is geometrically finite ([5]), 4 is the disjoint union of the radial limit
set and the fixed points of parabolic transformations of I'. Radial limit points cannot be
atoms of ¢ (see for example [33]), thus one just has to check that ¢{x,} =0 for any
parabolic generator « € <.
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For s> 6, and ye X set g(y) = Y e *®h(d(y,yy)) where h is an increasing

el
function of arbitrary small exponentialygrowth which makes the series g (y) diverge at
s = 0p; more precisely for any & > 0 there exists d, > 0 such that ~A(d + ¢) < e” h(d) for any
t 20 and d = d,. By theorem III.1 one can fix ¢ such that J,+ ¢ < é,; consequently, the
series ) el7or*ad0.2%0) converges.

neZ

Set I'"'={y=a, - a,el'|a;+ a;,}; and a, # «}; since the limit points of I"'y belong
to 4 — A, there exists a closed cone C, of vertex ze X such that I'y < C, but x,¢ C,.
Without loss of generality one may suppose that the distance between the origin 0 and
the cone C, is greater than d, and that the horosphere centered at x, containing 0 is included
in a cone of vertex 0 which does not intersect C,; for every k = 1 there thus exists a cone
C, of vertex 0 and axis [0, x,) such that C, na"(C,) = @ when |n| < k.

Recall that a Patterson-Sullivan measure o is a weak limit as s — J; (along a sub-

sequence if necessary) of the family of measures o, = o) e 1O p(d(0,7))é,, where
gs\y vel

d,, is the Dirax mass at yy. By the choice of the cones C, one has

1 ,
z Z o~ s4(0,amy y)h(d((),!x"?’y))'

a,(C) =
¢ gs(y) \n|>k y' eI’

By hyperbolic geometrical arguments (see for example [8], lemma 3.1) there exists a
constant K > 0 such that d(0,0"0) + d(0,yy) — K< d(0,4"y'y) < d(0,0"0) + d(0,y’y) for
any n e Z* and y' € I'’; consequently, for s > §, one has, up to multiplicative constants

1
e(—s+s)d(0,a"0) e =540V (4 0, ,
20,2 P (d(0,7'y)

< ( Z e(—6r+s)d(0,a"0))o.s(cz)'

|n|>k

Oy (Ck) é

Letting s — 6, one obtains o{x,} < a(C,ndX) §( Y e‘_"””‘)d(o'“"o))a(Czn6X) for
|n| >k

any integer k = 1. Letting k — + oo one obtains o{x,} =0. O

Corollary IV.3.  The group I is of divergence type, i.e. Y, e °r%%70 = 4 0.

vel

Proof. The following argument is classical (see for example [31] or [33]). Set
I'={g,nz1} and assume Y e r4m < 4 oo; the lemma III.1 thus implies
nx1
Y (0(g,0, 4)) <+o0 for A large enough. By the Borel-Cantelli lemma one obtains
n=1
o (limsup 6(g,0, 4)) = 0. Theinclusion 4° = () () | 60(g,0, 4)leads to o(4°) = 0 and
n— + o

AeN N=1 nzN
A=do

s0 (A4 — A°) = 1; since 4 — A° is countable, this last equality contradicts the fact that o
has no atomic part. 0O
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When X is the real hyperbolic half space, this divergence property is satisfied for any
non elementary geometrically finite discret group [31]; recently this result has been extended
by K. Corlette and A. Iozzi [8] to the case where X is a symmetric space of rank one.

V. The geodesic flow and the boundary map

Let G4 be the set of pairs (&, x) where & is an oriented geodesic on X whose endpoints
&~ =¢(—o0) and £ = £(4 o) belong to 4 and x e £. Denote by 0, the intersection of ¢
with the horosphere based at ¢ * passing through the origin 0 and 8?4 the set A4 x A-diagonal.
The map 7 : GA — %4 X R defined by n(&, x) = (¢7, &7, B,.(0,, x)) is bijective. The group
I acts on 9*4 x R in the following way:

')’(X__, X, S) = (Y(X_), 'Y(x)a §— Bx(o’ y_lo))

for any ye I" and (x_, x, 5) € 04 x R. Denote (g,),. the geodesic flow on %4 x R defined
by g,(x_,x,8) = (x_, x,s +1).

Set 024°= () A42.xAJ.. For any (x_, x) € 3°4° such that 4" is the first term of
a,fed .
akf _
the sequence w(x), set f(x) = B,(0,a"0) and T'(x_, x) = (¢™"x_, a”"x); the action of I'
on 8’4 x R induces a map T, on 0’4 x R defined by

T}(x—’x’ S) = (T()C_, X), s —f(S))

Remark that 7 is invertible with inverse 7;7'(y_,y,1) = (x_,x,t+/(x)) where
(y-,y) = T(x_, x). Denote GA° the set of pairs (£, x) € G4 such that endpoints of ¢ belong
to A°. The quotient GA°/I is identified with 0%4° x R/{T;>.

o(dx_)a(dx)

D(x_, x)*r
Lebesgue measure on R; since D (A2, Agi) >0 for every a, f €27, o < [, the restriction
Uo of u to the set §°4° is finite. Furthermore, the measure ¢ ® / is invariant under the
action of I' and of the geodesic flow (g,),.g- In paragraph VIII we will prove that
0 < v(f) < +oo which readily implies that uy ® / induces on GAYI a finite measure py, ® /
invariant under the geodesic flow (g,),.g induced by (g,),cr-

Let u be the measure on 0*4 defined by p(dx_dx) = and let / be the

There are close connections between the geodesic flow (g,), . and the action of I' on
A; in particular, if G is a geometrically finite discret group of divergent type, the geodesic
flow on the unit tangent bundle of X/I'" is ergodic relatively to u ® / ([18], [31]). In
paragraph VI we prove that if I' is an extended Schottky group then (g,), . is mixing
relatively to u ® /; to show this we first have to control the action of I" on 4°.

Let T be the boundary map on A° induced by T and defined by T(x) = a™"x where
a" is the first term of w(x); this mapping is the geometrical interpretation of the shift
operator on the symbolic space {w(x), x € 4%} and its properties will play an important
rule in the sequel.
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Proposition V.1. There exists N € N* such that inf [(TYY (x)| > 1.
xeA°
Set B, = inf |(T") (x)| > 1; using the mean values relation one obtains the
xeA°

Corollary V.2. Let x, y € A° such that the sequences o (x) and »(y) have the same N
first terms. Then D(T"x, T"y) =2 B,D(x, y).

Proof of proposition V.1. Fix B>0 and suppose that for any n = 0 there exists
x, € A° such that | (T") (x,)| < B. Set w(x,) = (af*);»; without loss of generality one can
SUppOse a,; = 0, d,, = B, and a,,+;, = B, for any integer n 2 1. If o = fy, letae o/ — {B.}
and set X, = ax,_, for any n = 1; one has |(T"y (X,)| = [(@™ 'Y (X)||(T""*)'(x,,)| and so
(T"Y(X)|< B su/;1)0|(a_1)’(x)| which proves that (x,),»; and (X,),», satisfy a similar con-

dition. Hence, without loss of generality, one may suppose o = f{'.

Sety, = a’pt--- akmand y, = y, 'x,. Since B, % B, we have D(y,, x, ) Z D(Cps, Cp:) >0

so that
(0]
D (%, x5) = V107G ) D (s X,) Z \/_?

Condition « + f, implies that the transformations y, are not pairwise conjugated; by
corollary II.3 one obtains lim @(y,) = 4+ oo so that lim D(x,, x, )=+ which con-

n—+ n—+ o

tradicts the compactness of (0X, D). O

D(Cys, Cpz).-

Now we construct a T-invariant probability measure on A°. By equality () of
o(dx_)o(dx)
D(x_,x)*r

on 8*4° is T-invariant. Set p,(024°) = 1/C and let p: 9°4° — A° be the projection on the
second coordinate; one has

paragraph IV and by the mean values relation, the measure po(dx_ dx) =

Proposition V.3. The measure v = Cp(u,) is a T-invariant probability measure on A°,
absolutely continuous with respect to ¢ with density h given by

a(dy)
Yaesl, Vxed?. h(x)=C —_—
( A° —jA?,* D(x, y)26r

Let us now introduce the transfer operator P associated with (T,v). Denote by
L*(A°, v) (resp. L°(4° v)) the standard completion of the space of Borel functions from A°
into R which are integrable (resp. bounded) with respect to v. Since v is T-invariant, the
transformation T induces an isometry on [}(4°%v) defined by T(y) =y T for any
we L1(4° v). For any ¢ € 1°(4% v), let Pg be the function in 1°(4° v) such that

Vypel'(4°%v) fOQD(X)(Tw)(X)V(dX) = fo Po(x)y (x)v(dx).
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h(y) o= rfO) _ h(o"x)
One has Po(x)= yeA;Ty ok w(y)—anﬂle-Agﬁ(X) e

neZ*

for v-almost all x in 4°. A priori, P acts on [®(4° v); nevertheless it is possible to define
Po(x) in R for any positive Borel function ¢ on A in the following way:

| @) ()17 (")

Definition V.4. For every Borel function ¢ from 4 into R™ and every point x € 4, set

Po(x) = ), pr(x)@(«"x)

ae%
h n
With P () = 14000 S 1Y GO

Note that for every x € A° and every n 2 1 one has

Plo(x)= Y 1) g-arsnsong ().

ye A9 Tny=x h(x)

In the same way the mapping T, induces a transformation 7; on A°x R defined by
T,(x,5) = (Tx,s — f(x)) for every (x s)e A° x R. In some sense, the set *4° is a section
for the geodesic flow on 824 x R/I' and T} is the first return map for this flow on this
section; the transformation 7, memorizes the “travel time” between two consecutive pas-
sages through 9%4°. Let us mtroduce the operator P associated with T

Definition V.5. For every Borel function p from A xR into R™ and every
(x,0)eA xR set

Py(x,1) = ZM Pan ()W (2" x, 1 + f(2" X)) -
nel*

Note that for every (x, £) € 4° X R one has

h
y W

Py(x,1) =
yeA9Ty=x h( )

e Iy (y, t+ (1)

and

Vnzl Pyx,H= % RO -arsuror (3, 1 + 8, £(1)

ye A0/ Tny= ’ch( )

VI. A renewal theorem to prove that the geodesic flow is mixing

Notation. From this section on, I' is an extended Schottky group and 6 is the

exponent of convergence of the Poincaré series ), e™ %79,
yel

We state here a classical renewal theorem which describes the behaviour as a goes

+ o0
to + oo of the potential ) P"((x, a), dy dt) and we show how one may deduce the mixing
n=0
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property of the geodesic flow (g,), .- First let us introduce a functional space L on which
P acts.

Notation. Let L be the space of functions ¢ from A into C such that

loll = l@l,+m(p)<+x

where |- |, is the norm of uniform convergence on 4 and

lo(x) — ()]
m = Su —_—
((P) ae.g x,flel/llju* D(X, y)éo
XFy

with &, = inf{1, 8} .

For every A€ R let P, be the operator defined by P,¢ = P(e'*/¢). In paragraph VIII
we will prove the following facts.

Properties V1.1 (properties R).

(R1) The operator P acts on (L, || .||).

(R2) One has 0 <v(f) <+ o0 and ilelng"(x) <400 for any n z 1.

(R3) For any real number A the operator P, acts on L; moreover, the mapping A P

is analytic from (R, |.|) into the Banach space (L@, Il g(L)) of continuous linear appli-
cations on (L, ||.||) with the usual norm.

(R4) One has P1 = 1, the eigenvalue 1 is simple and isolated in the spectrum of P and
v is the projection on the associated eigenspace C1,.

(R5) For every A # 0 the spectral radius of P, on (L, || .||) is strictly less than 1.

Note that property (R5) is closely related to the fact that I' contains parabolic
transformations; if I is a Schottky group this property is not proved.

Using arguments developped in [1], [14] one proves the following theorem:

A renewal theorem. Assume that (P, f) satisfies properties R. Then for any compact
set K = A x R, for any bounded Borel function ¢ : A — R whose discontinuity points are a
v-negligeable set and for any continuous function u: R — R with compact support one has

to v(p) f u(t)dt
Y P ® u)(x,s —a) —

o |70

lim sup

a=>+ o (x,8)ekK

and

Jioﬁ"((p®u)(x,s+a) =0.

n=0

lim sup

a—+ oo (x,s)eK
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Throughout this paragraph we will assume that properties R hold. Recall that
the inequality 0<v(f)<+oco implies that p®/ is finite on GA/I and that
1 ® 1(GAT) = v(f).

Theorem VI.2. Let I' be an extended Schottky group. Then the geodesic flow (&)
on GAJT is mixing relatively to p & 1.

Proof. We adapt here Y. Guivarc’h and J. Hardy’s proof of the mixing property for
a special flow constructed with a Hélder continuous function over a subshift of finite type
[14]. One has to show that for every functions @ and ¥ in 2(GAIL,u® 1)

lim [,(2,7) = %f) TI@E 1Y)

with L(®, %)= [ ®(x_,x,8) Peg(x_,x, 5)pu® [(dx_dxds). By proposition 1.2
02AXR/T

the measure ¢ has n/o atomic part; the same holds for p ® / and so, without loss of
generality, one may suppose that ¢ and ¥ are defined on GA°%; one identifies GA®/T" with
a suitable fundamental domain S = §*4° x R for the action of the group <(7;) and we also
denote by (g,),.q the corresponding flow on S. Using a density argument consider
¢ = ¢ ® u where ¢ is Holder continuous on 924° u is continuous on R and the support
of @ is included in S. In the same way, it suffices to consider a Holder continuous function
w on 0*4° and a continuous function on R whose supports are compact and such that

Vix_,x,9eS P_,xs)=Y w@uv(T(x_,x,5).

neZ

One thus obtains I,(®,¥) = LY(9,¥) + 1, (P, ¥) with

@)=Y | oG, 0u@p®v(Ta_,xs+0)pdx_dxds
nz0 A°xR
and

[7/(,%)=>) | o(x_, x)u()p @ (T "(x-, x, s+ 1)) u(dx_dx)ds.

nz1l A°xR

Let us first deal with the term I, (@, ¥). Identify (x_, x) with a bilateral sequence (af*);z
with @(x) = (aF);»; and o(x_) = (a; ")izo- Using again a density argument, one may
suppose that ¢ and y do only depend on the unilateral sequence (a?);. _, with /= 0;
moreover, one may suppose / = 0 because the measure u is T-invariant. Then, for a suitable
choice of ® = ¢ ® u and ¥ =y ® v one has

[@w)=Y | 71%u(s)w(fr"‘(x))u(s+z—s,, £(0) v(dx)ds

n=0 A°xR (

1y @ (x)
)
=§o f ﬁ”(%®u)(x,s~t)tp(x)v(s)v(dx)ds.
n=0 A°xR

On the other hand, since u ® [/ is T}-invariant, one has

11 Journal fiir Mathematik. Band 497
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+ _
@)=Y | ¢®u(Trx_,x9)pa_,x)o(s+1udxdx)ds
n=1 ACXR
and for a suitable choice of functions ¢ and ¥ one has
+ o
_ _ ~ [y
I7(@,P)=Y [ o®u@E)P <Z ® v> (x, s+ 1)v(dx)ds.
n=1 AOxR

By the renewal theorem one obtains

lim sup
t— +w (x,s)eSupp(¥)

o (o v(e) fu(y)dy
nZOP <z®u>(x,s—t)———v—(;f—)—‘=

+ o

lim Y P"(y @ v)(x,s+1)=0.

t>t+tow =1

and

The Lebesgue dominated convergence theorem allows us to conclude

lim ,(,7) = %f) TRI@EDI(¥)

which finishes the proof. O

VIL. An harmonic renewal theorem to count closed geodesics on X/I"

Consider the equivalence relation ~ on I’ defined by y; ~ 7, if and only if y, and y,
are conjugated in I'. For any class ce I'/ ~ choose y, = af' - ag* in ¢ such that ag;€ </,
a;,, % a; for 1 £i<k and a, # a,. Denote by %, the set of y, which are primitive (i.e.
y. + y" for all y e I') and hyperbolic. Let y, = aj' - a;*€ %,; the expansion w(x,,) of the
attractive fixed point x, of y, is periodic with period af’, ..., agx. Set I(y,) = d(z,70(2))
where z belongs to the axis of 7,; one has [(y) = B, (0,7,(0)). Recall that T:4° - A°
and f:4° — R are defined by T(x) = a”"(x) and f(x) = B, (0, a"0) where a" is the first
term of w(x). For any k=1 set S, f(x) =f(x)+ + f(T* 'x). Using the fact that
B, (yz;,7z,) = B.(z,, z,) for every isometry 7 and that B,(z,, z,) = B,(zy,2) + B.(2, z,)
one obtains /(y,) = S, f(x;) for any y, = aj* - ag*€ 6.

Conversely, consider a T-periodic point x € 0X and let k be its least period; one has

o(x)=am,...,a%a}l, ..., ap ... Sety = ai' @ since @, #+ a, we have lim y?0 =x
p—>+©

which shows that y is hyperbolic and x is its attractive fixed point. Moreover y € %, since
k is the least period of x.

Finally, the number 7 (a) of y in €, — {&;, ..., ay,} such that I(y) = a is given by

+ o

1
n(a) = Y, % # {x e A°|x is T periodic, k is the least period of x and S, f(x) £ a}.
k=1
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By corollary I1.3 the number 7 (a) is finite for every a > 0. In this paragraph we prove the

Theorem VIL.1. Let I' be an extended Schottky group and & be the exponent of

convergence of the Poincaré series associated with I'. Then, the function a — n(a) is equivalent
eaé

to - when a goes to + 0.
a

. . . . 1~ .
To prove this theorem, one approximates n(a) by harmonic potentials ), — P"; in
nz1

paragraph VIII we prove that (P, f) satisfies Properties R given in the previous section
which allows us to state the following result.

A harmonic renewal theorem. For any bounded Borel function ¢ : 4 — R whose
discontinuity points form a v-negligeable set in A and for any continuous function u: R — R
with compact support one has

lim sup

a—>+w xeAd

a f % P ® u)(x, —a)—v(<p)£u(r)dr =

n=1

In particular, if v(¢) >0, and if u is a non decreasing continuous function from R to R*
one has

Z Pn((P ® “1[0 a])('x 0)
=1 " -—1’ =0.

lim sup|@

a—+ow xed

1
Notation. Let a>0 and 4 be a Borel set included in A. Set g, = 7’4 and

E,(1) = €1y (). For any (x, 1) e A X R set Ny, ,,(4) = Z P"(gA ® &) (x,0).

Applying the above harmonic renewal theorem with ¢ = g, and ul, , = ¢, one thus
obtains the following

Corollary VIL.2. For every Borel set A = A such that 6 (A) > 0 and with v-negligeable

ad

boundary, N, ,(4) is equivalent to h(x) %—5 o (A) as a goes to + oo, uniformly in x e A.

Proof of theorem VIL.1. Set
+ o 1
N(@= Y ~#{xed’|T"x=xand S, f(x) < a}.
n=1 "1

One has N(a) — N(a/2) £ n(a) £ N(a); to prove theorem VII.1 it suffices to show that
. N
lim ———

a5 = 1. The following proposition is proved at the end of the current paragraph.
a—++e0 € /A
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Proposition VIL3 (perturbation of T-periodic points). There exists ky,€ N* such
that for any k 2 k, there exist a countable partition (Ay;);», of open sets in A, a sequence
of positive constants (Cy)iz, with ), Ci;< + 0 and 0, € R** with lim 6, = 0 such that

izl k= + o

@i lim o(4?) =0,

k— + o0

(i) for any x,; in (A2, one has

+ o0

+
Z h(xkt)N(xkl a— 9k)(/1 ) = N(a) = Z h(xkz)N(xk, a+0k)(A D s

i=1

ad

(1) Ny (45) < Cos = for any a>0.
Applying Fatou’s lemma in the left inequality (ii) of this proposition one has by
corollary VII.2
Py ad
e™2% ¥ h(xy) o (A7) < liminf 755 N(@).
a->+ o

i=1

In the same way, Lebesgue dominated convergence theorem and inequality (iii) give

lim sup - —5 = N(a) < &% 2 h(x) o (AR )

a—>+ o i=1

so that

+ o0
e %Y h(xy)odl) = hmlnf—(s N(a) £ hm sup - —(E = N(a) < ™ z h(x,;)o(A43).

i=1 i=1
+ w
Sincea(A — A°) = 0and lim o (A} )— Oonehas lim Y h(x,)o(4p) = jh(x)a(dx) =1.
k- +wo —>+w ;=1
Letting k — + oo one obtains lim o N (@=1. 0O
a—>+ o

Proof of proposition VI1.3. Let ke N* and consider the equivalence relation %, on
A° defined by x4, y if and only if w(x) and w(y) have the same k first terms. This relation
induces a partition (4p;);5;, on 4°.

(i) Let us first prove that lim o(A4);) =0. Fix i =1 and for any xe Ay set

k= +
w(x) = (af¥);5, and y,; = afi* -+~ afi*; one has o (4y) = j | (1) (D 12% 6 (dy). Without
0= A
loss of generality one may suppose a,; + a;;' for any k > 1 (if this condition does not
hold it suffices to replace y,, with a,y,, where a, # ai;'). Then y,, is hyperbolic and
lim &(y,,) = + oo by corollary II.3. Consequently
k— +
DZ(YkkJ’a xy_kk) > ||D“c2>o
(p()’kk)Dz s X)) (D(Ykk)Dz (Ag> A

7] =

so that lim o (A4) = 0.

k- +
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(ii) Foreveryi =1 fix x,;€ A2 Let x € A2, such that T"x = x for some n = 1, denote
by % the unique point of 42 such that T"% = x; and w(x), w(%) have the same n first
terms. There is a bijection between the sets {x € Aoi T'x = x} n A% and T7"({x,;}) n42;
the following lemma whose proof is given further allows us to control the difference

Snf(x) - Snf(x~)

Lemma VIL4. There exist kye N* A, Be R** and 0 < r <1 such that for any | Z k,

and any x, y € A° whose associated sequences w(x) and w(y) have the same [ first terms,
one has | f(x) —f(y)| £ AD(Tx, Ty) < Br'.

Now fix k = kg; if T"x = x then cu(x) and w(X) have the same n + k first terms so
that | S, f(x) — S, f(X)| < 6, with 6, = B Z r!; inequalities (ii) of proposition VII.3 follow
immediately. 1=k

(iii) For any Borel set 4 < A° set N, ,,(4) = N, o(4) + N, o, (A) with

(xki,a)

k

(xkz a)(A) Z Z 1 (y)l[O,a](Snf(y))

n=1 My Try=x
and
+ o 1

N(l;ck. a)(A)= Z - Z 1A(y)1[0,a](Snf(y))'

n=k+1 y/Try =X

By lemmas 1.3 and 1.4 there exist C >1 and sequences (K,.),.z+ & € & such that for any
y€ A° — A2 one has |(«")'(»)| £ CK,.. Fix i 2 1 and let al, ..., af* be the k first terms of
w(x,;); for any 1< n <k there is a unique ye 49 such that T"y = x,; and one has
S,f(») Z |LogK,p."* Kpul —nLogC. So

k
1
(xkl a)(A ) - Z n 1[0,a+nLogC](|LogKafl° o Kagnl)'

=1

. e .. . N e 1+x6
Since x — T is mec;easmg on R ; forn?ny b >0 we have 14 ,,(x) < 1485 o9 and
$0 Niy,.0(4m) £ Ci 5 with C; = ) - (1 +6|LogKyp - Kopal ) (Kypi o+ K2,

n=1
On the other hand
+ oo 1
Nira) (4% = Z - Z Z 1Agi N 1o,a (Sn—kf(z) + Skf()’))-

n=k+1 M zjTn-Tz=xp; y/Thp=2

If ye A% the k first terms of w(y) are the ones of w(x,) and so S, f(y) = 4,; with
4;; = LogK,p.* - K p.. We thus have N\, o(A%) £ Nigoam 4y (4°); s0 Nioia-an( %) =0

1" " e‘s(a_Aki) :
it as Ay and, by corollary VIL2, Ny (43) £ € 1550 — 75 if @> Ay Finally
N(,-’Ick a)(Akz) < C” with C" = C”e_éAki.

ad

By the following lemma, the sums
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Z Z (Ka{n Tt Kag,.)a and z z iLOgKa{n ce Kasni (Ka{n te Kagn d
ag,...s axed Py prez* ay,enns axed Pi1s.ees preZ*
ai +1%a; ai+1¥a;

are finite so that ) C/ and ) C; converge. O

i1 i>1

Lemma VILS. There exists ¢ >0 such that Y, K. °< + o0 for every o€ <.

neZ*

Proof of lemma VI1.4. Fix x, y in 4° such that the sequences w(x) and w(y) have
the same / first terms. By proposition V.1, there exist N =1 and B,>1 such that
D(T¥x, T"y) = B,D(x, y); consequently D(x,y) < K,r' for some 0 <r<1 and K,>0.

Now let a € o7 and n e Z* such that o" is the first term of the sequences w(x) and
w(y); T(x) and T(y) do not belong to 4, and by lemmas 1.3 and 1.4 (applied with y = «
and E = A4 — A,.) there exists K, > 0 such that

| (@") (Tx)| = | (@") (V)|
|@™) (Ty)|

One concludes using the local expansion |Log(1 + u)| < 2|u/| for |u| small enough. O

< K,D(Tx,Ty).

Proof of lemma VILS. Fix o€ o/; by lemmas 1.3 and 1.4, there exist 4,21 and
(K,n)ncz+ Such that

Kn
Vxed—Apn —F S|V S AKn

a

. 4 :
Let B be in &/ — {«}; one has ), f—(A—alﬁ K < a( | a"(4,)) < +oco so that the series
neZ* o neZ*
Y KZ.converges. The same argument holds if one replaces I with a subgroup I, containing
neZ*

«* and B* for some k =1 and whose exponent of convergence is strictly less than J (this
is possible by the critical gap property). This readily ensures that the sum Y. K2 is finite
for some ¢ > 0 small enough. O nez*

VIII. Spectrum of Fourier operators P;, Ae R

Recall that P is the transfer operator associated with (7 v); for every Borel function
¢ from A into R* one has

Vxed Po(x)= z z Pan(X) q’(“" (x))

aed neZ*

hEx) _ o(dy)
b @VOP and k= [ 5E

Furthermore, for every A € R one has P,(¢) = P(ep).

with p.(x) =1,_ 4. .(x) for every xeA4,..

We consider the space L of functions ¢ from 4 into C such that
loll =|,+ m(@)< +c where |.|, is the norm of uniform convergence on 4 and

190) =0 iy 5. — inf{1, 5} We have Le L Yoe L |ol, <ol

m(¢p) = sup sup D(x, y)éo

aed x,yeAy
xFy



Dal’bo and Peigné, Negatively curved manifolds 163

and L is dense in the space of continuous functions on A normed with |.|,. Moreover,
(L,||.]) is a Banach space and, by Ascoli’s theorem, the canonical one-to-one map from
(L, .1 into (L, ].],) is compact.

In the present paragraph we will use intensively the following result which is a
consequence of lemmas 1.3, 1.4 and VILS.

Lemma VIIL1 (dynamic of generators). For every a€ s/ there exists A, 21 and a
sequence (K,n),ez+ Such that

Kﬂ
(1) Vxed —d,.,VneZ* = <|@Y ()] < 4Ky,

@) Vx, yed— A, YneZ* ||@) ()| =@ = 4K D(x, 7).

Moreover if o is hyperbolic one has K,.=1/®(@)!"! with ® () > 1 and if o is parabolic one
has lim KY"=1and Y K& *<+ oo for some e>0.

n—+ow nezs
Let us now show that properties VI.1 (properties R) hold.
Property (R1).
Proposition VIIL2. The operator P acts on L.

Proof. Since D(4,=, Ag:) >0 for o, fe o o+ B, the function 4 belongs to L and
is non negative. Proposition VIIL.2 is thus a direct consequence of the following result:

Lemma VIIL3. For every ac€ o/ and every neZ* the function p,. belongs to L;

furthermore, the sequence ( “2,“;“ > is bounded.
neZ*

an

Proof. By lemma VIIL1, there exists 4>0 such that for every neZ* and
every ae.o/ one has |(«")(x)| £ 4K,. and “(oc")’(x)l——l(a”)’(y)l'§AKa..D(x, y) for
every x,yed— A,.; this readily implies D(a"x, a"y) £ AK,.D(x,y). Consequently

1
< -
llpanllm=Alhlw’h

K?, and for any x,ye A — 4,. we have

[eo]

|h(o"x) — h(a"y)| . 1 1 . .
[Pan () = Pen (V)| = e |y (x)1° + I#h(x) - _h(y)‘ R | (@Y (x)1°
h("Y) 1 nv v
+ "0) ||(oc)(X)I"—I(O¢)(y)I"‘

gmm‘%

1
APTOKSOD (x, y)°+m (E) |h|,, A°K2.D(x, y)*

1
I §) A°K2.D (x, y)®.

+1hle
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| arll
K2,

The sequence < > is thus bounded. O
neZ*

Property (R2). Recall that the function f from A° into R is defined by
f(x) = B,(0, a"0) where a" is the first term of w(x); we extend the definition of f in the
following way

Vaes/,VneZ* Vxed —A,. f(o"x)= B,..(0,0"0).
Proposition VIIL.4. One has
(i) 0<v(f) <+,

() V=1 supP(f")(x)< +o0.

To prove this proposition we have to estimate functions fo a", ne Z* on each set
A—A,., oe .o The following lemma is a direct corollary of lemma VIIL1:

Lemma VIIL5. There exists K> 0 such that for any o.€ o/ and ne Z* one has

sup |f(@"x)| < K|Log(K,»)!,

xeAd—Ag=*
@) — @] _
sup D(X )50 = .
x,yeA—Ag* sy
xX+y

Proof of proposition VII1.4. (i) One has

v(f) £ |h|oo Z O-(f1a”(A—Aa*))

ae A

nezZ*
<lhl, Y, | fO)|@") )| (dx)
aedd A—Ag*
neZ*
<K Y |LogK,|Kio(A—A4,.) bylemmas VIIL1 and VIILS
acsd

neZ*

< +o00 by lemma VIIL1.

The fact that v(f) > 0 is a consequence of the expanding property of T since there exists
Ne N* such that [(TV)(x)| = B, > 1 for every xe 4° one has Sy f(x) Z Log B, > 0 for
every x € A° so that v(Syf) = Nv(f) > 0.

(ii) By lemmas VIIL.1 and VIIL5, there exists C > 0 such that for any ne z*
1 Pan (fo ) | S 1 panll /o 0| < C'KG | LOg Kol
By lemma VIIL.1 there exists ¢ > 0 such that ) K27°< + oo for a € o/ which ensures that

Kk nel

Yoy — |Log(K,.)|'K2. < + 00 as soon as |t| <& O
120 n=1 l
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Property (R3). Recall that for any real number A€ R the operator P, is defined by
P, = P(¢'*/¢) for every bounded Borel function ¢ from 4 into R. We show here that P,
acts on L and we describe the regularity of the map 4 — P,.

Proposition VIIL.6. For any A€ R the operator P, acts on L; moreover the mapping
A+ P, is analytic from R into the space (£ @)1l Y(L)) of continuous linear applications
on (L, || .||) with the usual norm.

Proof. Using lemmas VIIL.3 and VIIL.5 one obtains
le*="|| £ [Am(fea™) +1 2 KJA|+1<+00

so that €4**" e L; it readily follows that P, acts on L. Now, fix 4, € R; using lemmas VIIL.3
and VIILS5 one can see that for ¢ small enough the series :

‘tll i o n i S qn an
> LS Nl e ol = T llpal e 17

120 * aed aed
neZ* neZ*

converges; consequently one has

N (itl + o |t|l . .
PunO=L G Pﬂo(fl')l’é Y X lpalllle® N foar]f >0 as N+
1=0 *:

I=N+1 aed !
neZ*

so that the map A +— P, is analyticon R. O
Property (R4).

Proposition VIIL7. One has P1,=1,, the eigenvalue 1 simple and isolated in the
spectrum of P and the corresponding eigenspace is C1,.

Proof. Since the probability v is T-invariant one has P1, (x) = 1,(x) for v-almost
all x in A. This property holds in fact for every point in 4 because P acts on L.

The description of the spectrum of P on L is based on the following theorem, due
to Tonescu-Tulcea and Marinescu and whose modern formulation can be found in [18].

Theorem (lonescu-Tulcea and Marinescu). Let (E, ||.]|g) be a C-Banach space and
O a linear continuous operator on (E, .1l ) whose spectral radius is <1. Assume that there
exists on E a norm |.| such that

(i) the operator Q is compact from (E, ||.||g) into (E, 1.,
(ii) thereexist0<r<1,R>0and NeN* such that Q satisfies the following inequality:

VoeE ||QYllz<rlloll:+ Rlel.
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Then Q admits at most a finite number of modulus one eigenvalues, the associated eigenspaces
are finite dimensional and the rest of the spectrum of Q on (E, ||.||g) is included in a disc of
radius strictly less than 1.

In order to control the spectrum of P on L we need the following
Lemma VIILS8. There exist 0<r<1, R>0 et Ne N* such that
VoeL [PVl <rlloll+Rlol,.

Iterating this inequality, one proves that (||P"|),5; is bounded so that
lim || P"||*’" £ 1; consequently, by Ionescu-Tulcea and Marinescu’s theorem, the operator

n=+ oo

P on L has at most a finite number of modulus one eigenvalues, the corresponding
eigenspaces are finite dimensional and the rest of the spectrum is included in a disc of
radius strictly less than 1. Proposition VIIIL.7 follows, thanks to the

Lemma VIILY. Let ¢ € L such that Pp = ¢°¢. If %5/ = 3 one thus has ¢ =1 and .
@ = Cl,, CeC; otherwise, 4% o/ = 2 and there are two cases:

—e=1and peCl,,
—e’=—1and peC (1. — 1)
It remains to establish lemmas VIII.8 and 9.

Proof of lemma VIIL.8. By proposition V.1 there exists N=1 such that
inf |(TVY(x)| = B, > 1. For a € o set
xeA°

dy(@) ={a=(ay,...,ay)e A" |a;,, +a;for 1 £j< N and ay * a};

for x,ye A, a=(ay,...,ay) € Ay(@) and k = (ky, ..., ky) € (Z*)" we thus have
k k k k 1
D(ay* - ayx,a;* - ay'y) = B D(x,y).
(4]

Set pa (%) = para (@8 -+ A" x) pasa(@l® - Y X) -+~ pyn(x); for p € L and x, y € 4, we have

IPYo(x) —PYo(DIS Y pa®)|o@ - aivx) — o(aft - agy)l
aeAn(a)
ks(Z*)N

+lole X 1Pi(x)— 2|

ae on(a)

ke @*N
<m(p) Y, Pa()D@f - ayx, af'- agy)®
ae dn(a)
ke @*N

+lole Y 12i(x) — ()|
de n(a)
ke (Z*N

1 | P (%) — (V)|
< m(e) + ol
<Béo ’ e ‘%‘*’)‘5‘6) D(x, y)*

> D(x, y)®.
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Note that Y 1p(®) =PI S L X Mgls, x, y) with

de An(a) de dn(a) s=1
ke@*N ke(z*N

Mi(s, X, V) = P, gtery (ag®- -+ ay'x)
X | e (a1 -+ A7) — pa (@i AN | Patyy iy ()

S P e (b alpX) m(pye) CV D (6, 9) 0 Paty iy ()

s+1

where C e[1, +oo[ is such that D(a"x, a"y)’ < CD(x, y)* foreveryae &, X,y € A—A,.:
and n € Z*; one thus obtains

N 1 CN+1
P < — n
m(PYo) < Bgom(¢)+ o HZM ”EZZ*IIP‘, Iels
1 CN+1
and lemma VIIL8 follows with r = —-and R=1+ Y Y llpenll. O
BOO c-1 aed nel*

Proof of lemma VIIL9. Let geL and 6€R such that Po = e'?¢. Equalities
Po = e ¢ and vP = v imply Plo|(x) = |¢(x)| v(dx) p.s; since ¢ and P belong to L and
the support of v is 4, this last equality holds for any x in 4.

Suppose that #.2/ = 3. Let y,y" in A4 such that|e(y)| = sup|le(X)], 1) = inf | @ (x)|
xeA xed

and consider a € &7 such that y and y’ do not belong to A,. (such an « does exist since
4.4/ = 3); by a convexity argument we have |¢(y)| = [¢(«"y)| and le ()] = le@"y)]
for every ne Z* Letting n — +c0, one obtains |¢ ()| = |0 ()| = | ¢ (x,)| which ensures
that || is constant on A. Assume lp| % 0; for every aesf/ and xeA,. one has

: @(B"x)
e?=3 Y ppmx)

Bed nel* @(x) )

n — + 00 one obtains ¢ (x) = e~ ¢ (x;) which proves that ¢ is constant on 4 and that

el =1.

and 50 ¢ (x) = e ¢ (B"x) for every f + o« and ne Z*; letting

Suppose now & = {a;; o,}. We have P(:lAuf) =1, and P(lA“;) =14, Moreover

Vxed,: Plo(x)= Y Par(%) Py (03 %) @ (o7 03 %) = €2 ().

n,meZ*

Let y, and y{ in A, such that |@(y))| = sup le(»)| and le (¥l = ir}‘f lo(»)]; by a
y€daf yeda}

convexity argument we have |¢(y,)| = |@(@f'o, )] and [e ()] = | @ (afa, i)l for every
meZ*. Letting m — + oo, one obtains that |@| is constant on 4,:. If || +0 on 4,:,
one has ¢ (x) = e~ 2 (x,,) which proves that ¢ is constant on A,+ and ¢?® = 1. The same
conclusion holds on 4, which finishes the proof. O

Property (R5). We describe here the top of the spectrum on L of the operators
P,A*0. '

Proposition VIIL.10. For any A€ R* the spectral radius of P, on (L, ||.1|) is strictly
less than 1.
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Proof. Let peL; wehave Vxed Po(x)= ) Y. pm(x)e®p(a"x). To con-

aced nel*
trol the spectrum of P, we prove that P, satisfies hypotheses of Ionescu-Tulcea and
Marinescu’s theorem; if one replaces p,. with p,.e"*/**" in the proof of lemma VIII.8 one

shows that there exist r€]0,1[ and A4, B > 0 such that
VoeL ||Roll=rllell+ A4+ B)lel,.

Iterating this inequality, one obtains that (P/'),, is bounded in (L, ||. ||); the spectral radius
of P, is thus <1 and proposition VIIL.10 is a consequence of the following

Lemma VIIL11. For A = 0 the operator P, does not admit eigenvalues of modulus one.

Proof. The equality P,p = e'®¢p gives P|¢| = || and so, by lemma VIIL9, || is
constant on A. By a convexity argument ¢ (x) = ¢~ @ p(a"x) so that lim e*/@™
n—>+ o
does exist for every ae.o/ and xed— A,.. Suppose that o is parabolic; one has
lim f(a"x) =+o0 and lim f(a"*'x)— f(¢"x) = 0. Consequently, for any a >0 there
n—+ o n—+ o

exists a sequence (1), of integers such that lim f(«"™*'x)— f(a" x) = a; it follows
- k—+ o0

e'* =1; and so 4 = 0. (Note that the existence of parabolic transformations in I' is essential
in the present proof.) 0O
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