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Abstract We present here the main result from [7] and explain how to use
Kashiwara crystal basis theory to associate a random walk to each minuscule
irreducible representation V of a simple Lie algebra; the generalized Pitman
transform defined in [1] for similar random walks with uniform distributions
yields yet a Markov chain when the crystal attached to V is endowed with
a probability distribution compatible with its weight graduation. The main
probabilistic argument in our proof is a quotient version of a renewal the-
orem that we state in the context of general random walks in a lattice [7].
We present some explicit examples, which can be computed using insertion
schemes on tableaux described in [8].

1 Introduction

1.1 The Pitman transform for the Brownian motion

Let (B(t))t≥0 be a standard Brownian motion on R starting at 0. We denote
by m(t) the minimum process defined by m(t) := inf

0≤s≤t
B(s). The Pitman

transform of (B(t))t≥0 is given by

PB(t) := B(t)− 2m(t).

The reader will find a proof of the following statement in [11]:
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Theorem 1. The process PB(t) is a 3-dimensional Bessel process; in par-
ticular, it has the same law as the brownian motion on ]0,+∞[ conditioned
to stay positive.

There exists a multi-dimensionnal generalization of this theorem, called
the generalised Pitman transform (see [1]): it corresponds for instance to the
motion of the eigenvalues of some hermitian brownian motion in SU(2).

1.2 The Pitman transform for the simple random walk

We consider the simple random walk Sk := X1 + · · ·+Xk on the set Z with
steps ±1:

P(Xk = 1) = P(Xk = −1) =
1

2
.

The Pitman transform of this random walk is the process (Pk := Sk−2mk)k≥0
where mk = min(0, S1, · · · , Sn); it is a Markov chain on N with transition
probabilities

∀a ∈ N p(a, a+ 1) =
a+ 2

2(a+ 1)
and p(a, a− 1) =

a

2(a+ 1)
.

By a straightforward computation, one gets

∀a ∈ N p(a, a± 1) = lim
k→+∞

P(S1 = a± 1/S0 = a, S1 ≥ 0, · · · , Sk ≥ 0).
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To obtain this equality, one may notice for instance that for any a, k ≥ 0 one
gets

P(S1 = a+1/S0 = a, S1, · · · , Sk ≥ 0) =
P(mk−1 ≥ −a− 1)

P(mk−1 ≥ −a− 1) + P(mk−1 ≥ −a+ 1)

and use classical estimations of the probability P(mk−1 ≥ −a − 1) for the
simple random walk.

We may represent the process (Pk)k≥0 as a process in the plane. We fix
the standart basis {−→ı ,−→ } in R2; the vector −→ı corresponds to the step +1
and −→ to the step −1. We consider for instance the following trajectory

and its geometrical representation in the plane

C

Un chemin (en bleu) et son image par P (en rouge) pour la representation vectorielle de sl(2,C)

2 The ballot problem in Rn, n ≥ 2

We have just seen that the Pitman transform of the simple random walk on
Z can be seen a transform of some process on N2, the so-called ”Bertrand’s
ballot problem” in combinatoric. We generalize here this correspondence in
any dimension.
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2.1 Cones and paths

We fix a basis B = {−→e 1, · · · ,−→e n} of Rn and introduce the following cone

C = {x ∈ Rn | x1 ≥ · · · ≥ xn ≥ 0};

we denote by C̊ := {x ∈ Rn | x1 > · · · > xn > 0} its interior. We will

consider the collection of paths in Zn =

n⊕
i=1

Z−→e i starting at 0 and with steps

−→e 1, . . . ,
−→e n. A path of length ` in Zn is a word w = x1 · · ·x` on the alphabet

{1, . . . , n}. The weight of w is wt(w) = (µ1, . . . , µn) where µi is the number
of letters i in w. The path w remains inside C iff wt(w) ∈ C and w satisfies
the following condition: for any k ≥ 1 and i ∈ {1, · · · , n− 1} the number of
i in x1 . . . xk is greater than the number of i+ 1.
Example: The word w = 112321231 has weight (4, 3, 2) and the correspond-
ing path remains in C.
We now may ask the following questions in combinatorial theory:

• For any µ = (µ1, · · · , µn) ∈ C ∩ Nn, what’s the number cµ of paths
between 0 and µ which stay inside C ?

• For any λ = (λ1, · · · , λn) and µ = (µ1, · · · , µn) ∈ C ∩ Nn such that λ ≤ µ
(i-e λi ≤ µi for any i = 1, · · · , n), what’s the number cµ/λ of paths
between λ and µ which stay inside C ?

2.2 The simple random walk on Nn

We fix a probability vector p = (p1, · · · , pn) in Rn (that is pi ≥ 0 for any
1 ≤ i ≤ n and p1 + · · · + pn = 1) and consider a sequence (X`)`≥1 of i. i. d.
random variables defined on a probability space (Ω, T ,P) such that

∀i ∈ {1, · · · , n} P(X` = −→e i) = pi.

The random walk (S` = X1 + · · · + X`)`≥0 has the transition probability
matrix

Π(α, β) =

{
pi if β − α = −→e i ∈ B,
0 otherwise.

If β := α + `1
−→e 1 + · · · + `n

−→e n, with α ∈ Nn, `1 · · · , `n ≥ 0, all the paths
joigning α to β have length ` = `1 + · · · + `n and the same probability
p`11 × · · · × p`nn ; then

Π`(α, β) =
`!

`1! · · · `n!
p`11 × · · · × p`nn .
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2.3 The conditioned random walk in C

Let ΠC be the restriction of Π to the cone C. One gets the

Proposition 1. If m := E(X`) ∈ C̊ (or equivalently p1 > · · · > pn) then

∀λ ∈ C Pλ
(
S` ∈ C,∀` ≥ 0

)
> 0.

Moreover, the function h : λ 7→ Pλ
(
S` ∈ C,∀` ≥ 0

)
is ΠC-harmonic.

The transition matrix PC of the random walk (S`)`≥0 conditioned to stay
inside C is the h-Doob transform of ΠC given by:

∀λ, µ ∈ C PC(λ, µ) =
h(µ)

h(λ)
ΠC(λ, µ).

The aim of this work is to explain how to compute PC and the value of
h(λ), λ ∈ C, when m = (p1, · · · , pn) ∈ C̊. Following N. O’Connell [10], we will
use the theory of representation and generalize the Pitman transform in this
discrete context.

2.4 The representation theory of sln(C)

2.4.1 Weights of sln(C)

The weights lattice associated with sln(C) is P := Zn =
⊕n

i=1 Z
−→e i and

the cone of dominant weights is P+ :=

n⊕
i=1

N−→e i. The set of root is R :=

{±(−→e i − −→e j)/1 ≤ i < j ≤ n}; the set of positive roots R+ is the one of
vectors −→e i − −→e j , 1 ≤ i < j ≤ n, the simple roots are the n − 1 vectors
−→e i −−→e i+1, 1 ≤ i ≤ n− 1.

We denote by I the set of irreducible finite dimensional representations of
sln(C). It is a classical fact that the elements of I are labelled by the dominant
weights: for any λ ∈ P+, we denote by V (λ) the corresponding irreducible
finite dimensional representation and the map λ ←→ V (λ) is a one-to-one
correspondence between P+ and I. For instance, the natural representation
Cn of sln(C) is labelled V (1, 0, · · · , 0︸ ︷︷ ︸

n−1 times

), or simply V (1) (1).

For any ` ∈ N, one gets the decomposition V (1)⊗` =
⊕
µ∈P+

V (µ)⊕fµ .

1 in order to simplify the notations, we will omit the (last) coordinates 0 which appear in

λ ∈ P+
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More generally, for any λ ∈ P+, one gets V (λ) ⊗ V (1)⊗` =
⊕
µ∈P+

V (µ)⊕fµ/λ .

We have the

Proposition 2. For any λ, µ ∈ C such that λ ≤ µ, one gets

cµ = fµ and cµ/λ = fµ/λ.

Consequently, in order to compute the exact values of cµ and cµ/λ, we may
use the representation theory.

2.4.2 The notion of crystals

One may associate to each V (λ) ∈ I its Kashiwara crystal B(λ). This is
the combinatoric skeleton of the Uq(sln(C))-module with dominant weight
λ ∈ P+: it has a structure of a colored and oriented graph (see [5], [6]).

Example: The crystal of V (1) = Cn is

B(1) : 1
1→ 2

2→ 3
3→ · · · n−2→ n− 1

n−1→ n.

The crystal B(λ) ⊗ B(µ) associated with V (λ) ⊗ V (µ) may be constructed
with B(λ) and B(µ); its set of vertices is the direct product of the ones
of B(λ) and B(µ), the crystal structure (that is the choice of the arrows
between vertices) being given by some technical rules presented for instance
in [7], Theorem 5.1. One important property of the crystals theory is that
the irreducible components of V (λ)⊗V (µ) are in one-to-one correspondence
with the connected components of B(λ)⊗B(µ).

Example: The crystals B(1) and B(1)⊗2 for sl3(C)

The crystal B(1) of V (1) = C3 is B(1) : 1
1→ 2

2→ 3.
The crystal B(1)⊗2 associated with V (1)⊗2 is

The two connected components are labelled by their root vertex, namely 1⊗ 1
and 1⊗ 2.
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The letters which appear in the vertex 1 ⊗ 1 are both equal to 1, this vertex
thus corresponds to the irreducible component V (2, 0, 0) ' V (2); in the same
way, the vertex 1⊗ 2 corresponds to V (1, 1, 0) ' V (1, 1); so

V (1)⊗2 ' V (2)⊕ V (1, 1).

This means that the only ones “allowed” paths of lenght 2 in C := {(x, y, z) ∈
N3/x ≥ y ≥ z} are 2−→e1 and −→e1 +−→e2 .

2.4.3 Relation between the crystal and the set of words

The word w = x1 · · ·x` on the alphabet {1, . . . , n} may be identified with the
vertex

b = x1 ⊗ · · · ⊗ x` ∈ B(1)⊗`

We denote by B(b) the connected component of B(1)⊗` which contains b.
The Pitman transform will be the map P defined by

P : B(1)⊗` → C
b 7→ highest weight of B(b).

2.4.4 The probability distribution on the crystal

The probability of the letter i is pi; it will be the probability of the vertex
i ∈ B(1). The word x1 · · ·x` has probability pµ1 · · · pµn where (µ1, · · · , µn)
is the weight of this word; this is also the probability of the vertex b =
x1 ⊗ · · · ⊗ x` ∈ B(1)⊗`. Finally, we have fixed a probability p on B(1),
endowed B(1)⊗N with p⊗N and set

(S`) := the sequence of weights of the corresponding process on B(1)⊗N.

The Pitman process (H`)` is the sequence of weights defined as the images
by P of the k-vectors (S`)1≤`≤k, k ≥ 1.

2.4.5 The character and the Schur functions

We consider the triangular decomposition g := g+⊕h⊕g− of the Lie algebra
g; any representation M of g = may be decomposed in weight spaces

M :=
⊕
µ∈P

Mµ

with Mµ := {v ∈M/h(v) = µ(v)v for any h ∈ h}. The character function of
M is the Laurent polynomial sM defined by
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∀x ∈ Cn sM (x) :=
∑
µ∈P

dimMµ x
µ

When M is an irreducible representation V (λ), the character function is
called the Schur function and denoted sλ.
Example: The Schur function of the natural representation of sl(n,C).

For any λ = (λ1, · · · , λn) ∈ P+ and x = (x1, · · · , xn) ∈ Rn, we denote by
aλ(x) the Vandermonde function

aλ(x) := det(x
λj
i ) =

xλ1
1 xλ2

1 · · · x
λn
1

xλ1
2 xλ2

2 · · · x
λn
2

...
...

...
...

xλ1
n xλ2

n · · · xλnn

.

For δ = (n− 1, n− 2, · · · , 0), one gets

aδ(x) :=

xn−11 xn−21 · · · 1
xn−12 xn−22 · · · 1

...
...

...
...

xn−1n xn−2n · · · 1

=
∏

1≤i<j≤n

(xi − xj).

For any λ ∈ P+, the Schur function sλ of V (λ) is given by

sλ(x) :=
aλ+δ(x)

aδ(x)
; (1)

in particular, the Schur function of V (1) = V (1, 0, · · · , 0) = Cn is

s1(x) :=
a(1,0,··· ,0)+δ(x)

aδ(x)
=

1

aδ(x)
×

xn1 x
n−2
1 · · · 1

xn2 x
n−2
2 · · · 1

...
...

...
...

xnn x
n−2
n · · · 1

= x1 + · · ·+ xn. (2)

One may now state the following

Theorem 2. ([10])

• The process (H`)`≥0 is a Markov chain on C with transition probability

PH(λ, µ) =
sλ(p1, · · · , pn)

sµ(p1, · · · , pn)
1B(µ− λ).

• The transition matrix PC of the r.w. (S`)`≥0 conditionned to stay inside C
is equal to PH.

• In particular, one gets P0(S` ∈ C,∀` ≥ 0) =
∏
α∈R+

(1− p−α).
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3 The probabilistic argument

3.1 The Markov chain (H`)`≥0

Using the crystal basis theory, one may check that (H`)`≥0 is a Markov chain
with transition matrix

PH(λ, µ) = fµ/λ
sµ(p)

sλ(p)s1(p)

with fµ/λ ∈ {0, 1}; in the present case, we have PH(λ, µ) = fµ/λsµ(p)/sλ(p)
since s1(p) = p1 + · · ·+ pn = 1. We denote by ΠC the restriction of Π to the
cone C; the matrix PH is the ψ-Doob transform of the substochastic matrix

ΠC with ψ(λ) := sλ(p)
pλ

. The question is thus to prove that ψ coincides up to
a multiplicative constant with the function h given in Proposition 1.

3.2 The Doob theorem

Let E be a countable set and Q sub-stochastic matrix transition on E. Let
G be the the Green kernel associated with Q. Fix an origin x∗ ∈ E such that
0 < G(x∗, y) < +∞ for any y ∈ E and let K be the Martin kernel defined by

∀x, y ∈ E K(x, y) =
G(x, y)

G(x∗, y)
.

Let h be an strictly positive and Q-harmonic function on E, let Qh be the
h-Doob transform of Q and consider a Markov chain (Y h

` )`≥0 on E with
transition matrix Qh. One gets the classical following result :

Theorem 3. (Doob, [3] )Let f : E → R such that

∀x ∈ E lim
`→+∞

K(x, Y h
` (ω)) = f(x) P(dω)− a.s.

Then there exits c > 0 such that f = ch.

In our case, we take E = C with origin x∗ = 0, the sub-stochastic matrix Q
is ΠC and h(λ) = h(λ) = Pλ(S` ∈ C,∀` ≥ 0). By the Strong Law of Large
Numbers, one gets

S` ∼ `m+ o(`) P− a.s.

N. O’ Connell directly checks, using the explicit expression of the Schur
function sλ given in (1), that for m inside the cone C and any sequence
µ` = `m+ o(`)
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K(λ, µ`) = p−λ
fµ`/λ

fµ`
→ sλ(p)

pλ
as `→ +∞.

Unfortunately, such an explicit formula for the Schur function does not exists
in the more general situation we want to consider and we avoid his approach
as follows: using the theory of crystalin bases, we may decompose the Martin
kernel and write

K(λ, µ`) =
1

pλ

∑
γ weight of V (λ)

fγ/λ × pγ ×
G(0, µ` − γ)

G(0, µ`)

for any λ and µ` = `m + o(`) ∈ C with ` large enough. It remains to prove
that, for any γ ∈ C

G(0, µ` − γ)

G(0, µ`)
→ 1 when `→ +∞.

3.3 A quotient renewal theorem in the cone

The central argument of our approach is the following

Theorem 4. (Lecouvey C., Lesigne E. & P.M. (2011), [7], [8]) Assume the
random variables X` are almost surely bounded and that the mean vector
m := E(X`] lies inside the cone C. Let α < 2/3 and (µ`)`, (h`)` be two
sequences in Zn such that lim `−α‖µ` − `m‖ = 0 and lim `−1/2‖h`‖ = 0.
Then, when ` tends to infinity, we have∑
k≥1

P (S1 ∈ C, . . . , Sk ∈ C, Sk = µ` + h`) ∼
∑
k≥1

P (S1 ∈ C, . . . , Sk ∈ C, Sk = µ`) .

The first ingredient of the proof is the following

Lemma 1. (R. Garbit (2008) [4]) Assume the random variables X` are
square integrable and centered. Then, for any α > 1

2 , there exists c = cα > 0
such that, for all ` large enough and µ ∈ C

P (S1 ∈ C, . . . , S` ∈ C, S` = µ) ≥ exp (−c`α) .

The second ingredient is a version of the renewal limit theorem due to H.
Carlson and S. Wainger [2]. We assume that m := E(X`) is nonzero. Let
(−→ε1 , . . . ,−−→εn−1) be an orthonormal basis of the hyperplan m⊥. If x ∈ Rn,
denote by x′ its orthogonal projection on m⊥ expressed in this basis and
let B be the covariance matrix of the random vector X ′`. Let NB be the
(n−1)-dimensional Gaussian density with covariance matrix B and V be the
n-dimensional volume of the fundamental domain of the group generated by
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the support of the law of X`. The following result may be deduced from [2],
the proof of the present statement is detailed in [9]:

Theorem 5. We assume the random variables X` have an exponential mo-
ment. Fix α < 2/3 and let (µ`) be a sequence of real numbers such that
µ` = m`+ o(`α). Then, when ` goes to infinity, we have∑

k≥0

P(Sk = µ`) ∼
V

‖m‖
`−(n−1)/2NB

(
1√
`
µ′
)
.

We will apply this result along the sequences (µ`)` = (S`(ω))` for almost all

ω ∈ Ω, which is possible since, for any ε > 0, one gets S` ∼ `m+ o(`
1
2+ε) a.s.

4 Generalization: The Pitman transform for minuscule
representations

We consider in [7] a representation V (δ) of a simple Lie algebra g over C
and endow the associated crystal B(δ) with a probability distribution p =
(pb)b∈B(δ) which is compatible with the weight graduation of B(δ). As above,
we may consider a random walk (S`)` in the weight lattice P = Zn with
independent increments of law p and transition matrix Π; as in the previous
section, we also construct a Markov chain (H`)` in the Weyl chamber C ⊂ Zn,
with transition matrix PH, which will play the role of the Pitman process.

We prove that (H`)` coincides with the ψ-Doob transform of the restriction
to C of the transition matrix of (S`)` (for some explicit function ψ expressed
in terms of Schur functions) if and only if V (δ) is minuscule (2). When V (δ)
is minuscule, we also prove that for any m in the interior C̊ of C, one may
choose the probability p = (pb)b∈B(δ) on the crystal B(δ) (and so the random
walk (S`)l≥0 on Zn) in such a way its drift is m.

The main result of [7] may thus be stated as follows

Theorem 6. (Lecouvey C., Lesigne E. & P.M. [7]) If the representation V (δ)
is minuscule and m = E(X) ∈ C̊, then the transition matrix of the r.w.

2 V (δ) is minuscule when the orbit of δ under the action of the Weyl group of g contains

all the weights of V (δ). The minuscule representations are given in the following table

type minuscule weights N decomposition on the basis B

An ωi, i = 1, . . . , n n+ 1 ωi = ε1 + · · ·+ εi
Bn ωn n ωn = 1

2
(ε1 + · · ·+ εn)

Cn ω1 n ω1 = ε1
Dn ω1, ωn−1, ωn n ω1 = ε1, ωn+t = 1

2
(ε1 + · · ·+ εn) + tεn, t ∈ {−1, 0}

E6 ω1, ω6 8 ω1 = 2
3

(ε8 − ε7 − ε6), ω6 = 1
3

(ε8 − ε7 − ε6) + ε5
E7 ω7 8 ω7 = ε6 + 1

2
(ε8 − ε7).
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(S`)`≥0 conditioned to stay inside C is equal to PH. In particular, for any
λ ∈ P+, one gets

Pλ(S` ∈ C,∀` ≥ 0) = p−λsλ(p)
∏
α∈R+

(1− p−α).

Furthermore, when µ(`) = `m+ o(`α) with α < 2/3, one gets

lim
`→∞

f `
µ(`)/λ

f `
µ(`),λ

= sλ(p).

The same result holds for direct sums of distinct minuscule representations
and also for some super Lie algebras, for instance g(m,n) (see [9]).
Example: Case of a C2 representation: sp(4,C).

We consider the representation V = V (ω1). The corresponding crystal is

B(ω1) : 1
1→ 2

1→ 2
1→ 1.

The probability p = (p−→e 1
, p−−→e 1

, p−→e 2
, p−−→e 2

) is such that

p−→e 1
× p−−→e 1

= p−→e 2
× p−−→e 2

.

In this case, one fixes 0 < p2 < p1 < 1 with p1 + p2 < 1 and sets

p−→e 1
= p1, p−−→e 1

=
c

p1
, p−→e 2

= p2 and p−−→e 2
=

c

p2

with c = p1p2( 1
p1+p2

− 1) (so that p1 + p2 + c
p1

+ c
p2

= 1).

A random path in the plane and its Pitman transform, for the vectorial representation of
sp(4,C)

P0

(
S` ∈ C, ∀` ≥ 1

)
= (1−

p2

p1
)(1−

c

p1p2
)(1−

c

p1
)(1−

c

p2
).
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8. Lecouvey C., Lesigne E., Peigné M.: Conditionned ballot problems and combinatorial

representation theory, http://arxiv.org/abs/1202.3604 (2012)
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