M. Peigné (joint work with C. Lecouvey & E. Lesigne)

Abstract We present here the main result from [7] and explain how to use Kashiwara crystal basis theory to associate a random walk to each minuscule irreducible representation V of a simple Lie algebra; the generalized Pitman transform defined in [1] for similar random walks with uniform distributions yields yet a Markov chain when the crystal attached to V is endowed with a probability distribution compatible with its weight graduation. The main probabilistic argument in our proof is a quotient version of a renewal theorem that we state in the context of general random walks in a lattice [7]. We present some explicit examples, which can be computed using insertion schemes on tableaux described in [8].

1 Introduction

1.1 The Pitman transform for the Brownian motion

Let $(B(t))_{t\geq 0}$ be a standard Brownian motion on \mathbb{R} starting at 0. We denote by m(t) the minimum process defined by $m(t) := \inf_{0\leq s\leq t} B(s)$. The *Pitman* transform of $(B(t))_{t\geq 0}$ is given by

$$\mathcal{P}B(t) := B(t) - 2m(t).$$

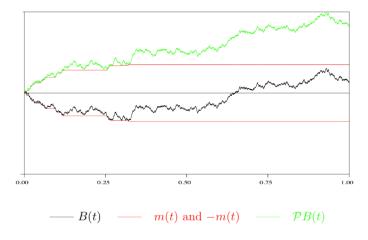
The reader will find a proof of the following statement in [11]:

Marc Peigné

Laboratoire de Mathématiques et Physique Théorique, Parc de Grandmont 37200 Tours e-mail: peigne@lmpt.univ-tours.fr

The present text has been written and the figures drawn by the 3 authors, C. Lecouvey, E. Lesigne & M.Peigné.

Theorem 1. The process $\mathcal{PB}(t)$ is a 3-dimensional Bessel process; in particular, it has the same law as the brownian motion on $]0, +\infty[$ conditioned to stay positive.



A Brownian motion trajectory B(t) and its Pitman transform $\mathcal{P}B(t)$

There exists a multi-dimensionnal generalization of this theorem, called the *generalised Pitman transform* (see [1]): it corresponds for instance to the motion of the eigenvalues of some hermitian brownian motion in SU(2).

1.2 The Pitman transform for the simple random walk

We consider the simple random walk $S_k := X_1 + \cdots + X_k$ on the set \mathbb{Z} with steps ± 1 :

$$\mathbb{P}(X_k = 1) = \mathbb{P}(X_k = -1) = \frac{1}{2}.$$

The Pitman transform of this random walk is the process $(\mathcal{P}_k := S_k - 2m_k)_{k \geq 0}$ where $m_k = \min(0, S_1, \cdots, S_n)$; it is a Markov chain on \mathbb{N} with transition probabilities

$$\forall a \in \mathbb{N}$$
 $p(a, a+1) = \frac{a+2}{2(a+1)}$ and $p(a, a-1) = \frac{a}{2(a+1)}$.

By a straightforward computation, one gets

$$\forall a \in \mathbb{N} \qquad p(a, a \pm 1) = \lim_{k \to +\infty} \mathbb{P}(S_1 = a \pm 1/S_0 = a, S_1 \ge 0, \cdots, S_k \ge 0).$$

To obtain this equality, one may notice for instance that for any $a, k \ge 0$ one gets

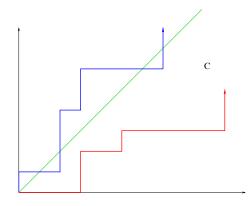
$$\mathbb{P}(S_1 = a + 1/S_0 = a, S_1, \cdots, S_k \ge 0) = \frac{\mathbb{P}(m_{k-1} \ge -a - 1)}{\mathbb{P}(m_{k-1} \ge -a - 1) + \mathbb{P}(m_{k-1} \ge -a + 1)}$$

and use classical estimations of the probability $\mathbb{P}(m_{k-1} \geq -a - 1)$ for the simple random walk.

We may represent the process $(\mathcal{P}_k)_{k\geq 0}$ as a process in the plane. We fix the standart basis $\{\overrightarrow{i}, \overrightarrow{j}\}$ in \mathbb{R}^2 ; the vector \overrightarrow{i} corresponds to the step +1 and \overrightarrow{j} to the step -1. We consider for instance the following trajectory

time k	0	1	2	3	4	5	6	7	
X_k		-1	1	1	-1	-1	-1	1	
S_k	0	-1	0	1	0	-1	$^{-2}$	-1	
path in \mathbb{Z}^2	Ő	ĵ	$\vec{\imath} + \vec{\jmath}$	$2\vec{\imath} + \vec{\jmath}$	$2\vec{\imath}+2\vec{\jmath}$	$2\vec{\imath} + 3\vec{\jmath}$	$2\vec{\imath} + 4\vec{\jmath}$	$3\vec{\imath} + 4\vec{j}$	
m_k	0	-1	-1	-1	-1	-1	-2	$^{-2}$	
$\mathcal{P}_k = S_k - 2m_k$	0	1	2	3	2	1	2	3	
Pitman path in \mathbb{N}^2	Ō	ĩ	$2\vec{\imath}$	$3\vec{\imath}$	$3\vec{\imath} + \vec{\jmath}$	$3\vec{\imath}+2\vec{\jmath}$	$4\vec{\imath} + 2\vec{\jmath}$	$5\vec{\imath}+2\vec{\jmath}$	

and its geometrical representation in the plane



2 The ballot problem in $\mathbb{R}^n, n \geq 2$

We have just seen that the Pitman transform of the simple random walk on \mathbb{Z} can be seen a transform of some process on \mathbb{N}^2 , the so-called "Bertrand's ballot problem" in combinatoric. We generalize here this correspondence in any dimension.

2.1 Cones and paths

We fix a basis $\mathcal{B} = \{\overrightarrow{e}_1, \cdots, \overrightarrow{e}_n\}$ of \mathbb{R}^n and introduce the following cone

$$\mathcal{C} = \{ x \in \mathbb{R}^n \mid x_1 \ge \cdots \ge x_n \ge 0 \}$$

we denote by $\mathring{C} := \{x \in \mathbb{R}^n \mid x_1 > \cdots > x_n > 0\}$ its interior. We will consider the collection of paths in $\mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z} \overrightarrow{e}_i$ starting at 0 and with steps $\overrightarrow{e}_1, \ldots, \overrightarrow{e}_n$. A path of length ℓ in \mathbb{Z}^n is a word $w = x_1 \cdots x_\ell$ on the alphabet

 e_1, \ldots, e_n . A path of length ℓ in \mathbb{Z}^n is a word $w = x_1 \cdots x_\ell$ on the alphabet $\{1, \ldots, n\}$. The weight of w is $wt(w) = (\mu_1, \ldots, \mu_n)$ where μ_i is the number of letters i in w. The path w remains inside C iff $wt(w) \in C$ and w satisfies the following condition: for any $k \ge 1$ and $i \in \{1, \cdots, n-1\}$ the number of i in $x_1 \ldots x_k$ is greater than the number of i + 1.

Example: The word w = 112321231 has weight (4, 3, 2) and the corresponding path remains in C.

We now may ask the following questions in combinatorial theory:

- For any $\mu = (\mu_1, \dots, \mu_n) \in \mathcal{C} \cap \mathbb{N}^n$, what's the number c_{μ} of paths between 0 and μ which stay inside \mathcal{C} ?
- For any λ = (λ₁, ..., λ_n) and μ = (μ₁, ..., μ_n) ∈ C ∩ Nⁿ such that λ ≤ μ (i-e λ_i ≤ μ_i for any i = 1, ..., n), what's the number c_{μ/λ} of paths between λ and μ which stay inside C?

2.2 The simple random walk on \mathbb{N}^n

We fix a probability vector $p = (p_1, \dots, p_n)$ in \mathbb{R}^n (that is $p_i \ge 0$ for any $1 \le i \le n$ and $p_1 + \dots + p_n = 1$) and consider a sequence $(X_\ell)_{\ell \ge 1}$ of i. i. d. random variables defined on a probability space $(\Omega, \mathcal{T}, \mathbb{P})$ such that

$$\forall i \in \{1, \cdots, n\} \quad \mathbb{P}(X_{\ell} = \overrightarrow{e}_i) = p_i.$$

The random walk $(S_{\ell} = X_1 + \dots + X_{\ell})_{\ell \geq 0}$ has the transition probability matrix

$$\Pi(\alpha,\beta) = \begin{cases} p_i & \text{if } \beta - \alpha = \overrightarrow{e}_i \in \mathcal{B}, \\ 0 & \text{otherwise.} \end{cases}$$

If $\beta := \alpha + \ell_1 \overrightarrow{e}_1 + \dots + \ell_n \overrightarrow{e}_n$, with $\alpha \in \mathbb{N}^n, \ell_1 \dots, \ell_n \ge 0$, all the paths joigning α to β have length $\ell = \ell_1 + \dots + \ell_n$ and the same probability $p_1^{\ell_1} \times \dots \times p_n^{\ell_n}$; then

$$\Pi^{\ell}(\alpha,\beta) = \frac{\ell!}{\ell_1!\cdots\ell_n!} p_1^{\ell_1} \times \cdots \times p_n^{\ell_n}.$$

2.3 The conditioned random walk in C

Let $\Pi_{\mathcal{C}}$ be the restriction of Π to the cone \mathcal{C} . One gets the

Proposition 1. If $m := \mathbb{E}(X_{\ell}) \in \mathring{C}$ (or equivalently $p_1 > \cdots > p_n$) then

$$\forall \lambda \in \mathcal{C} \quad \mathbb{P}_{\lambda} \Big(S_{\ell} \in \mathcal{C}, \forall \ell \ge 0 \Big) > 0.$$

Moreover, the function $h: \lambda \mapsto \mathbb{P}_{\lambda} (S_{\ell} \in \mathcal{C}, \forall \ell \geq 0)$ is $\Pi_{\mathcal{C}}$ -harmonic.

The transition matrix $P_{\mathcal{C}}$ of the random walk $(S_{\ell})_{\ell \geq 0}$ conditioned to stay inside \mathcal{C} is the *h*-Doob transform of $\Pi_{\mathcal{C}}$ given by:

$$\forall \lambda, \mu \in \mathcal{C} \quad P_{\mathcal{C}}(\lambda, \mu) = \frac{h(\mu)}{h(\lambda)} \Pi_{\mathcal{C}}(\lambda, \mu).$$

The aim of this work is to explain how to compute $P_{\mathcal{C}}$ and the value of $h(\lambda), \lambda \in \mathcal{C}$, when $m = (p_1, \dots, p_n) \in \mathring{\mathcal{C}}$. Following N. O'Connell [10], we will use the theory of representation and generalize the Pitman transform in this discrete context.

2.4 The representation theory of $\mathfrak{sl}_n(\mathbb{C})$

2.4.1 Weights of $\mathfrak{sl}_n(\mathbb{C})$

The weights lattice associated with $\mathfrak{sl}_n(\mathbb{C})$ is $P := \mathbb{Z}^n = \bigoplus_{i=1}^n \mathbb{Z} \overrightarrow{e}_i$ and the cone of dominant weights is $P_+ := \bigoplus_{i=1}^n \mathbb{N} \overrightarrow{e}_i$. The set of root is $R := \{\pm (\overrightarrow{e}_i - \overrightarrow{e}_j)/1 \le i < j \le n\}$; the set of positive roots R_+ is the one of vectors $\overrightarrow{e}_i - \overrightarrow{e}_j, 1 \le i < j \le n$, the simple roots are the n-1 vectors $\overrightarrow{e}_i - \overrightarrow{e}_{i+1}, 1 \le i \le n-1$.

We denote by \mathcal{I} the set of irreducible finite dimensional representations of $\mathfrak{sl}_n(\mathbb{C})$. It is a classical fact that the elements of \mathcal{I} are labelled by the dominant weights: for any $\lambda \in P_+$, we denote by $V(\lambda)$ the corresponding irreducible finite dimensional representation and the map $\lambda \leftrightarrow V(\lambda)$ is a one-to-one correspondence between P_+ and \mathcal{I} . For instance, the natural representation \mathbb{C}^n of $\mathfrak{sl}_n(\mathbb{C})$ is labelled $V(1, 0, \dots, 0)$, or simply $V(1)^{(1)}$.

For any $\ell \in \mathbb{N}$, one gets the decomposition $V(1)^{\otimes \ell} = \bigoplus_{\mu \in P_+} V(\mu)^{\oplus f_{\mu}}$.

 $^{^1}$ in order to simplify the notations, we will omit the (last) coordinates 0 which appear in $\lambda \in P_+$

More generally, for any $\lambda \in P_+$, one gets $V(\lambda) \otimes V(1)^{\otimes \ell} = \bigoplus_{\mu \in P_+} V(\mu)^{\oplus f_{\mu/\lambda}}$.

We have the

Proposition 2. For any $\lambda, \mu \in C$ such that $\lambda \leq \mu$, one gets

$$c_{\mu} = f_{\mu}$$
 and $c_{\mu/\lambda} = f_{\mu/\lambda}$.

Consequently, in order to compute the exact values of c_{μ} and $c_{\mu/\lambda}$, we may use the representation theory.

2.4.2 The notion of crystals

One may associate to each $V(\lambda) \in \mathcal{I}$ its Kashiwara crystal $B(\lambda)$. This is the combinatoric skeleton of the $U_q(\mathfrak{sl}_n(\mathbb{C}))$ -module with dominant weight $\lambda \in P_+$: it has a structure of a colored and oriented graph (see [5], [6]).

Example: The crystal of $V(1) = \mathbb{C}^n$ is

$$B(1): 1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-2} n - 1 \xrightarrow{n-1} n.$$

The crystal $B(\lambda) \otimes B(\mu)$ associated with $V(\lambda) \otimes V(\mu)$ may be constructed with $B(\lambda)$ and $B(\mu)$; its set of vertices is the direct product of the ones of $B(\lambda)$ and $B(\mu)$, the crystal structure (that is the choice of the arrows between vertices) being given by some technical rules presented for instance in [7], Theorem 5.1. One important property of the crystals theory is that the irreducible components of $V(\lambda) \otimes V(\mu)$ are in one-to-one correspondence with the connected components of $B(\lambda) \otimes B(\mu)$.

Example: The crystals B(1) and $B(1)^{\otimes 2}$ for $\mathfrak{sl}_3(\mathbb{C})$ The crystal B(1) of $V(1) = \mathbb{C}^3$ is $B(1) : 1 \xrightarrow{1} 2 \xrightarrow{2} 3$. The crystal $B(1)^{\otimes 2}$ associated with $V(1)^{\otimes 2}$ is

	1	$\xrightarrow{1}$	2	$\xrightarrow{2}$	3
1	$1 \otimes 1$	$\xrightarrow{1}$	$2 \otimes 1$	$\xrightarrow{2}$	$3 \otimes 1$
1↓			$1\downarrow$		1↓
2	$1{\otimes}2$		$2{\otimes}2$	$\xrightarrow{2}$	$3 \otimes 2$
$2\downarrow$	2↓				$2\downarrow$
3	$1 \otimes 3$	$\xrightarrow{1}$	$2 \otimes 3$		$3 \otimes 3$

The two connected components are labelled by their root vertex, namely $1 \otimes 1$ and $1 \otimes 2$.

6

The letters which appear in the vertex $1 \otimes 1$ are both equal to 1, this vertex thus corresponds to the irreducible component $V(2,0,0) \simeq V(2)$; in the same way, the vertex $1 \otimes 2$ corresponds to $V(1,1,0) \simeq V(1,1)$; so

$$V(1)^{\otimes 2} \simeq V(2) \oplus V(1,1).$$

This means that the only ones "allowed" paths of lenght 2 in $C := \{(x, y, z) \in \mathbb{N}^3 | x \ge y \ge z\}$ are $2\overrightarrow{e_1}$ and $\overrightarrow{e_1} + \overrightarrow{e_2}$.

2.4.3 Relation between the crystal and the set of words

The word $w = x_1 \cdots x_\ell$ on the alphabet $\{1, \ldots, n\}$ may be identified with the vertex

$$b = x_1 \otimes \cdots \otimes x_\ell \in B(1)^{\otimes \ell}$$

We denote by B(b) the connected component of $B(1)^{\otimes \ell}$ which contains b. The *Pitman transform* will be the map \mathcal{P} defined by

$$\mathcal{P} \ : \ B(1)^{\otimes \ell} \to \mathcal{C}$$

$$b \mapsto \text{ highest weight of } B(b).$$

2.4.4 The probability distribution on the crystal

The probability of the letter *i* is p_i ; it will be the probability of the vertex $i \in B(1)$. The word $x_1 \cdots x_\ell$ has probability $p^{\mu_1} \cdots p^{\mu_n}$ where (μ_1, \cdots, μ_n) is the weight of this word; this is also the probability of the vertex $b = x_1 \otimes \cdots \otimes x_\ell \in B(1)^{\otimes \ell}$. Finally, we have fixed a probability *p* on B(1), endowed $B(1)^{\otimes \mathbb{N}}$ with $p^{\otimes \mathbb{N}}$ and set

 $(S_{\ell}) :=$ the sequence of weights of the corresponding process on $B(1)^{\otimes \mathbb{N}}$.

The *Pitman process* $(\mathcal{H}_{\ell})_{\ell}$ is the sequence of weights defined as the images by \mathcal{P} of the k-vectors $(S_{\ell})_{1 \leq \ell \leq k}, k \geq 1$.

2.4.5 The character and the Schur functions

We consider the triangular decomposition $\mathfrak{g} := \mathfrak{g}_+ \oplus \mathfrak{h} \oplus \mathfrak{g}_-$ of the Lie algebra \mathfrak{g} ; any representation M of \mathfrak{g} = may be decomposed in *weight spaces*

$$M := \bigoplus_{\mu \in P} M_{\mu}$$

with $M_{\mu} := \{v \in M/h(v) = \mu(v)v \text{ for any } h \in \mathfrak{h}\}$. The character function of M is the Laurent polynomial s_M defined by

M. Peigné (joint work with C. Lecouvey & E. Lesigne)

$$\forall x \in \mathbb{C}^n \ s_M(x) := \sum_{\mu \in P} \dim M_\mu \ x^\mu$$

When M is an irreducible representation $V(\lambda)$, the character function is called the *Schur function* and denoted s_{λ} .

Example: The Schur function of the natural representation of $\mathfrak{sl}(n, \mathbb{C})$.

For any $\lambda = (\lambda_1, \dots, \lambda_n) \in P_+$ and $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, we denote by $a_{\lambda}(x)$ the Vandermonde function

$$a_{\lambda}(x) := \det(x_{i}^{\lambda_{j}}) = \begin{vmatrix} x_{1}^{\lambda_{1}} & x_{1}^{\lambda_{2}} & \cdots & x_{1}^{\lambda_{n}} \\ x_{2}^{\lambda_{1}} & x_{2}^{\lambda_{2}} & \cdots & x_{2}^{\lambda_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n}^{\lambda_{1}} & x_{n}^{\lambda_{2}} & \cdots & x_{n}^{\lambda_{n}} \end{vmatrix}.$$

For $\delta = (n - 1, n - 2, \cdots, 0)$, one gets

$$a_{\delta}(x) := \begin{vmatrix} x_1^{n-1} & x_1^{n-2} & \cdots & 1 \\ x_2^{n-1} & x_2^{n-2} & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_n^{n-1} & x_n^{n-2} & \cdots & 1 \end{vmatrix} = \prod_{1 \le i < j \le n} (x_i - x_j).$$

For any $\lambda \in P_+$, the Schur function s_{λ} of $V(\lambda)$ is given by

$$s_{\lambda}(x) := \frac{a_{\lambda+\delta}(x)}{a_{\delta}(x)}; \tag{1}$$

in particular, the Schur function of $V(1) = V(1, 0, \dots, 0) = \mathbb{C}^n$ is

$$s_1(x) := \frac{a_{(1,0,\cdots,0)+\delta}(x)}{a_{\delta}(x)} = \frac{1}{a_{\delta}(x)} \times \begin{vmatrix} x_1^n & x_1^{n-2} & \cdots & 1 \\ x_2^n & x_2^{n-2} & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_n^n & x_n^{n-2} & \cdots & 1 \end{vmatrix} = x_1 + \dots + x_n.$$
(2)

One may now state the following

Theorem 2. ([10])

• The process $(\mathcal{H}_{\ell})_{\ell \geq 0}$ is a Markov chain on \mathcal{C} with transition probability

$$P_{\mathcal{H}}(\lambda,\mu) = \frac{s_{\lambda}(p_1,\cdots,p_n)}{s_{\mu}(p_1,\cdots,p_n)} \mathbf{1}_B(\mu-\lambda).$$

- The transition matrix P_C of the r.w. (S_ℓ)_{ℓ≥0} conditionned to stay inside C is equal to P_H.
- In particular, one gets $\mathbb{P}_0(S_\ell \in \mathcal{C}, \forall \ell \ge 0) = \prod_{\alpha \in R_+} (1 p^{-\alpha}).$

3 The probabilistic argument

3.1 The Markov chain $(\mathcal{H}_{\ell})_{\ell \geq 0}$

Using the crystal basis theory, one may check that $(\mathcal{H}_{\ell})_{\ell \geq 0}$ is a Markov chain with transition matrix

$$P_{\mathcal{H}}(\lambda,\mu) = f_{\mu/\lambda} \frac{s_{\mu}(p)}{s_{\lambda}(p)s_{1}(p)}$$

with $f_{\mu/\lambda} \in \{0,1\}$; in the present case, we have $P_{\mathcal{H}}(\lambda,\mu) = f_{\mu/\lambda}s_{\mu}(p)/s_{\lambda}(p)$ since $s_1(p) = p_1 + \cdots + p_n = 1$. We denote by $\Pi_{\mathcal{C}}$ the restriction of Π to the cone \mathcal{C} ; the matrix $P_{\mathcal{H}}$ is the ψ -Doob transform of the substochastic matrix $\Pi_{\mathcal{C}}$ with $\psi(\lambda) := \frac{s_{\lambda}(p)}{p^{\lambda}}$. The question is thus to prove that ψ coincides up to a multiplicative constant with the function h given in Proposition 1.

3.2 The Doob theorem

Let *E* be a countable set and *Q* sub-stochastic matrix transition on *E*. Let *G* be the Green kernel associated with *Q*. Fix an origin $x^* \in E$ such that $0 < G(x^*, y) < +\infty$ for any $y \in E$ and let *K* be the Martin kernel defined by

$$\forall x, y \in E \quad K(x, y) = \frac{G(x, y)}{G(x^*, y)}.$$

Let **h** be an strictly positive and *Q*-harmonic function on *E*, let $Q_{\mathbf{h}}$ be the **h**-Doob transform of *Q* and consider a Markov chain $(Y_{\ell}^{\mathbf{h}})_{\ell \geq 0}$ on *E* with transition matrix $Q_{\mathbf{h}}$. One gets the classical following result :

Theorem 3. (Doob, [3])Let $\mathbf{f} : E \to \mathbb{R}$ such that

$$\forall x \in E \quad \lim_{\ell \to +\infty} K(x, Y_{\ell}^{\mathbf{h}}(\omega)) = \mathbf{f}(x) \quad \mathbb{P}(d\omega) - \text{a.s.}$$

Then there exits c > 0 such that $\mathbf{f} = c\mathbf{h}$.

In our case, we take E = C with origin $x^* = 0$, the sub-stochastic matrix Q is $\Pi_{\mathcal{C}}$ and $\mathbf{h}(\lambda) = h(\lambda) = \mathbb{P}_{\lambda}(S_{\ell} \in \mathcal{C}, \forall \ell \geq 0)$. By the Strong Law of Large Numbers, one gets

$$S_{\ell} \sim \ell m + o(\ell) \quad \mathbb{P} - \text{a.s.}$$

N. O' Connell directly checks, using the explicit expression of the Schur function s_{λ} given in (1), that for *m* inside the cone C and any sequence $\mu_{\ell} = \ell m + o(\ell)$ M. Peigné (joint work with C. Lecouvey & E. Lesigne)

$$K(\lambda, \mu_{\ell}) = p^{-\lambda} \frac{f_{\mu_{\ell}/\lambda}}{f_{\mu_{\ell}}} \to \frac{s_{\lambda}(p)}{p^{\lambda}} \quad \text{as} \quad \ell \to +\infty.$$

Unfortunately, such an explicit formula for the Schur function does not exists in the more general situation we want to consider and we avoid his approach as follows: using the theory of crystalin bases, we may decompose the Martin kernel and write

$$K(\lambda,\mu_{\ell}) = \frac{1}{p^{\lambda}} \sum_{\gamma \text{ weight of } V(\lambda)} f_{\gamma/\lambda} \times p^{\gamma} \times \frac{G(0,\mu_{\ell}-\gamma)}{G(0,\mu_{\ell})}$$

for any λ and $\mu_{\ell} = \ell m + o(\ell) \in C$ with ℓ large enough. It remains to prove that, for any $\gamma \in C$

$$\frac{G(0,\mu_\ell-\gamma)}{G(0,\mu_\ell)}\to 1 \quad \text{when} \quad \ell\to+\infty.$$

3.3 A quotient renewal theorem in the cone

The central argument of our approach is the following

Theorem 4. (Lecouvey C., Lesigne E. & P.M. (2011), [7], [8]) Assume the random variables X_{ℓ} are almost surely bounded and that the mean vector $m := \mathbb{E}(X_{\ell}]$ lies inside the cone C. Let $\alpha < 2/3$ and $(\mu_{\ell})_{\ell}, (h_{\ell})_{\ell}$ be two sequences in \mathbb{Z}^n such that $\lim \ell^{-\alpha} \|\mu_{\ell} - \ell m\| = 0$ and $\lim \ell^{-1/2} \|h_{\ell}\| = 0$. Then, when ℓ tends to infinity, we have

$$\sum_{k\geq 1} \mathbb{P}\left(S_1 \in \mathcal{C}, \dots, S_k \in \mathcal{C}, S_k = \mu_\ell + h_\ell\right) \sim \sum_{k\geq 1} \mathbb{P}\left(S_1 \in \mathcal{C}, \dots, S_k \in \mathcal{C}, S_k = \mu_\ell\right).$$

The first ingredient of the proof is the following

Lemma 1. (*R. Garbit (2008) [4])* Assume the random variables X_{ℓ} are square integrable and centered. Then, for any $\alpha > \frac{1}{2}$, there exists $c = c_{\alpha} > 0$ such that, for all ℓ large enough and $\mu \in C$

$$\mathbb{P}\left(S_1 \in \mathcal{C}, \dots, S_\ell \in \mathcal{C}, S_\ell = \mu\right) \ge \exp\left(-c\ell^{\alpha}\right).$$

The second ingredient is a version of the renewal limit theorem due to H. Carlson and S. Wainger [2]. We assume that $m := \mathbb{E}(X_{\ell})$ is nonzero. Let $(\overrightarrow{\epsilon_1}, \ldots, \overrightarrow{\epsilon_{n-1}})$ be an orthonormal basis of the hyperplan m^{\perp} . If $x \in \mathbb{R}^n$, denote by x' its orthogonal projection on m^{\perp} expressed in this basis and let B be the covariance matrix of the random vector X'_{ℓ} . Let \mathcal{N}_B be the (n-1)-dimensional Gaussian density with covariance matrix B and V be the n-dimensional volume of the fundamental domain of the group generated by the support of the law of X_{ℓ} . The following result may be deduced from [2], the proof of the present statement is detailed in [9]:

Theorem 5. We assume the random variables X_{ℓ} have an exponential moment. Fix $\alpha < 2/3$ and let (μ_{ℓ}) be a sequence of real numbers such that $\mu_{\ell} = m\ell + o(\ell^{\alpha})$. Then, when ℓ goes to infinity, we have

$$\sum_{k>0} \mathbb{P}(S_k = \mu_\ell) \sim \frac{V}{\|m\|} \ell^{-(n-1)/2} \mathcal{N}_B\left(\frac{1}{\sqrt{\ell}}\mu'\right).$$

We will apply this result along the sequences $(\mu_{\ell})_{\ell} = (S_{\ell}(\omega))_{\ell}$ for almost all $\omega \in \Omega$, which is possible since, for any $\epsilon > 0$, one gets $S_{\ell} \sim \ell m + o(\ell^{\frac{1}{2}+\epsilon})$ a.s.

4 Generalization: The Pitman transform for minuscule representations

We consider in [7] a representation $V(\delta)$ of a simple Lie algebra \mathfrak{g} over \mathbb{C} and endow the associated crystal $B(\delta)$ with a probability distribution $p = (p_b)_{b \in B(\delta)}$ which is compatible with the weight graduation of $B(\delta)$. As above, we may consider a random walk $(S_\ell)_\ell$ in the weight lattice $P = \mathbb{Z}^n$ with independent increments of law p and transition matrix Π ; as in the previous section, we also construct a Markov chain $(\mathcal{H}_\ell)_\ell$ in the Weyl chamber $\mathcal{C} \subset \mathbb{Z}^n$, with transition matrix $P_{\mathcal{H}}$, which will play the role of the Pitman process.

We prove that $(\mathcal{H}_{\ell})_{\ell}$ coincides with the ψ -Doob transform of the restriction to \mathcal{C} of the transition matrix of $(S_{\ell})_{\ell}$ (for some explicit function ψ expressed in terms of Schur functions) if and only if $V(\delta)$ is *minuscule*⁽²⁾. When $V(\delta)$ is minuscule, we also prove that for any m in the interior \mathcal{C} of \mathcal{C} , one may choose the probability $p = (p_b)_{b \in B(\delta)}$ on the crystal $B(\delta)$ (and so the random walk $(S_{\ell})_{\ell \geq 0}$ on \mathbb{Z}^n) in such a way its drift is m.

The main result of [7] may thus be stated as follows

Theorem 6. (Lecouvey C., Lesigne E. & P.M. [7]) If the representation $V(\delta)$ is minuscule and $m = \mathbb{E}(X) \in \mathcal{C}$, then the transition matrix of the r.w.

type	minuscule weights	N	decomposition on the basis B
A_n	$\omega_i, i = 1, \dots, n$	n+1	$\omega_i = \varepsilon_1 + \dots + \varepsilon_i$
B_n	ω_n	n	$\omega_n = \frac{1}{2}(\varepsilon_1 + \dots + \varepsilon_n)$
C_n	ω_1	n	$\omega_1 = \varepsilon_1$
D_n	$\omega_1, \omega_{n-1}, \omega_n$	n	$\omega_1 = \varepsilon_1, \omega_{n+t} = \frac{1}{2}(\varepsilon_1 + \dots + \varepsilon_n) + t\varepsilon_n, \ t \in \{-1, 0\}$
E_6	ω_1, ω_6	8	$\omega_1 = \frac{2}{3}(\varepsilon_8 - \varepsilon_7 - \varepsilon_6), \omega_6 = \frac{1}{3}(\varepsilon_8 - \varepsilon_7 - \varepsilon_6) + \varepsilon_5$
E_7	ω_7	8	$\omega_7 = \varepsilon_6 + \frac{1}{2}(\varepsilon_8 - \varepsilon_7).$

 $^{2}V(\delta)$ is minuscule when the orbit of δ under the action of the Weyl group of \mathfrak{g} contains all the weights of $V(\delta)$. The minuscule representations are given in the following table

 $(S_{\ell})_{\ell \geq 0}$ conditioned to stay inside C is equal to $P_{\mathcal{H}}$. In particular, for any $\lambda \in P_+$, one gets

$$\mathbb{P}_{\lambda}(S_{\ell} \in C, \forall \ell \ge 0) = p^{-\lambda} s_{\lambda}(p) \prod_{\alpha \in R_{+}} (1 - p^{-\alpha}).$$

Furthermore, when $\mu^{(\ell)} = \ell m + o(\ell^{\alpha})$ with $\alpha < 2/3$, one gets

$$\lim_{\ell \to \infty} \frac{f_{\mu^{(\ell)}/\lambda}^{\ell}}{f_{\mu^{(\ell)},\lambda}^{\ell}} = s_{\lambda}(p)$$

The same result holds for direct sums of distinct minuscule representations and also for some super Lie algebras, for instance $\mathfrak{g}(m,n)$ (see [9]).

Example: Case of a C_2 representation: $\mathfrak{s}p(4,\mathbb{C})$.

We consider the representation $V = V(\omega_1)$. The corresponding crystal is

$$B(\omega_1): 1 \xrightarrow{1} 2 \xrightarrow{1} \overline{2} \xrightarrow{1} \overline{1}.$$

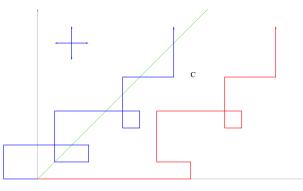
The probability $p = (p_{\overrightarrow{e}_1}, p_{-\overrightarrow{e}_1}, p_{\overrightarrow{e}_2}, p_{-\overrightarrow{e}_2})$ is such that

 $p_{\overrightarrow{e}_1} \times p_{-\overrightarrow{e}_1} = p_{\overrightarrow{e}_2} \times p_{-\overrightarrow{e}_2}.$

In this case, one fixes $0 < p_2 < p_1 < 1$ with $p_1 + p_2 < 1$ and sets

$$p_{\overrightarrow{e}_1} = p_1, p_{-\overrightarrow{e}_1} = \frac{c}{p_1}, p_{\overrightarrow{e}_2} = p_2 \text{ and } p_{-\overrightarrow{e}_2} = \frac{c}{p_2}$$

with $c = p_1 p_2 (\frac{1}{p_1 + p_2} - 1)$ (so that $p_1 + p_2 + \frac{c}{p_1} + \frac{c}{p_2} = 1$).



A random path in the plane and its Pitman transform, for the vectorial representation of $\mathfrak{s}p(4,\mathbb{C})$

$$\mathbb{P}_0\left(S_\ell \in \mathcal{C}, \forall \ell \ge 1\right) = (1 - \frac{p_2}{p_1})(1 - \frac{c}{p_1 p_2})(1 - \frac{c}{p_1})(1 - \frac{c}{p_2}).$$

12

Acknowledgements The author acknowledges G. Alsmeyer and M. Löwe for their warm hospitality during the conference *Random matrices and iterated random functions* they organized in Münster, October 4-7, 2011. He also thanks the referee for his very careful reading and many helpful remarks and comments on a preliminary version of this text.

References

- Biane P., Bougerol P., O'Connell N.: Littelmann paths and Brownian paths, Duke Math. J., 130 (1), 127–167 (2005)
- Carlsson H., Wainger S.: On the Multi-Dimensional Renewal Theorem, J. Math. Anal. Appl. 100 (1), 316–322 (1984)
- 3. Doob J.L.: Classical Potential Theory and its Probabilistic Counterpart, Springer, (1984)
- Garbit G.: Temps de sortie d'un cône pour une marche aléatoire centrée, [Exit time of a centered random walk from a cone] C. R. A.S. Paris 345 (10), 587–591 (2007)
- Kashiwara M.: On crystal bases, Canadian Mathematical Society, Conference Proceedings 16, 155–197 (1995)
- 6. Lecouvey C.: Combinatorics of crystal graphs for the root systems of types A_n, B_n, C_n, D_n and G_2 , Combinatorial aspect of integrable systems, MSJ Mem., Math. Soc. Japan, Tokyo **17**, 11–41 (2007)
- Lecouvey C., Lesigne E., Peigné M.: Random walks in Weyl chambers and crystals, Proc. London Math. Soc. (3) 104 no. 2, 323–358 (2012)
- 8. Lecouvey C., Lesigne E., Peigné M.: Conditionned ballot problems and combinatorial representation theory, http://arxiv.org/abs/1202.3604 (2012)
- Lecouvey C., Lesigne E., Peigné M.: Le théorème de renouvellement multidimensionnel dans le "cas lattice", http://hal.archives-ouvertes.fr, hal-00522875.2010 (2010)
- O' Connell N.: A path-transformation for ramdom walks and the Robison-Schensted correspondence, Trans. Amer. Math. Soc., 355, 669–3697 (2003)
- Revuz D., Yor M.: Continuous Martingales and Brownian Motion, Springer, Corrected 3rd printing (2005)