Les transformations de Möbius

Stam Nicolis

Institut Denis Poisson Université de Tours, Université d'Orléans, CNRS

Tours, le 21 novembre 2018

Les transformations de Möbius

Stam Nicolis

transformations de Möbius

meroduction

Du plan à l'espace

Dynamique des transformations de Möbius

Plan

Les transformations de Möbius

Stam Nicolis

Les transformations de

Introduction

Du plan à l'espace

Dynamique des transformations de Möbius

Conclusions

Les transformations de Möbius

Introduction

Du plan à l'espace

Dynamique des transformations de Möbius

Stam Nicolis

Les transformations de

Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

Conclusions

 $z' = \frac{az + b}{cz + d}$

$$z' = \frac{az + b}{cz + d}$$

Les transformations à fonctions trigonométriques

Les transformations de Möbius

Stam Nicolis

Les transformations de Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

Les transformations de Möbius

$$z' = \frac{az + b}{cz + d}$$

- Les transformations à fonctions trigonométriques
- ▶ Les transformations à fonctions hyperboliques

Les transformations de Möbius

Stam Nicolis

Les transformations de Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

$$z' = \frac{\cos\theta z + \sin\theta}{-\sin\theta z + \cos\theta}$$

Les transformations de Möbius

Stam Nicolis

Les transformations de Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

$$z' = \frac{\cos\theta z + \sin\theta}{-\sin\theta z + \cos\theta}$$

$$z' = \frac{\cosh \phi z + \sinh \phi}{-\sinh \phi z + \cosh \phi}$$

Les transformations de Möbius

Stam Nicolis

Les transformations de Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

Théorème (Résolution)

La suite $\{z_n\}$, pour le cas des éléments trigonométriques, est donnée par l'expression

$$z_n = \frac{z_0 \cos n\theta + \sin n\theta}{-z_0 \sin n\theta + \cos n\theta}$$

Les transformations de Möbius

Stam Nicolis

Les transformations de Möbius

Du plan à l'espa

transformations de Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

Conclusions

Théorème (Résolution)

La suite $\{z_n\}$, pour le cas des éléments trigonométriques, est donnée par l'expression

$$z_n = \frac{z_0 \cos n\theta + \sin n\theta}{-z_0 \sin n\theta + \cos n\theta}$$

Corollaire

La suite $\{z_n\}$, pour le cas des éléments hyperboliques, est donnée par l'expression

$$z_n = \frac{z_0 \cosh n\phi + \sin n\phi}{z_0 \sinh n\phi + \cosh n\phi}$$

Démonstration

Démonstration.

La démonstration suit par récurrence :

▶ Montrer que c'est vrai, pour n = 0.

Les transformations de

Möbius Möbius

Stam Nicolis

Les transformations de Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

Démonstration

Les transformations de Möbius

Stam Nicolis

Les transformations de Möbius

.....

Du plan a l'espace

Dynamique des transformations de Möbius

Conclusions

Démonstration.

La démonstration suit par récurrence :

- ▶ Montrer que c'est vrai, pour n = 0.
- Montrer que; si c'est vrai, pour n = k, alors c'est vrai pour n = k + 1.

Introduction

Du plan à l'espac

Dynamique des transformations de Möbius

Conclusions

Les transformations de Möbius renvoient un nombre complexe z à un autre nombre complexe z':

$$z' = \frac{az + b}{cz + d}$$

où a, b, c, d peuvent, aussi, être des nombres complexes. Une condition qu'ils doivent satisfaire est

$$ad - bc = 1$$

ntroduction

Du plan à l'espace

transformations de Möbius

Conclusions

On peut associer à un point z = x + iy du plan complexe un point d'une surface, par exemple, celle de la sphère à rayon 1:

$$X^2 + Y^2 + Z^2 = 1$$

projeté à partir du point (0,0,1) sur le plan Z=0 :

$$(0,0,1) + t((X,Y,Z) - (0,0,1)) = (tX, tY, t(Z-1) + 1) t(Z-1) + 1 = 0 \Leftrightarrow t = \frac{1}{1-Z} \Leftrightarrow x = \frac{X}{1-Z}, y = \frac{Y}{1-Z}$$

Conclusions

A partir du point x(,y) du plan complexe, on peut retrouver le point (X,Y,Z) de la surface S(X,Y,Z)=0. Pour la sphère on a

$$X = x(1 - Z)$$

$$Y = y(1 - Z)$$

$$S(X, Y, Z) = 0 \Leftrightarrow x^{2}(1 - Z)^{2} + y^{2}(1 - Z)^{2} + Z^{2} = 1 \Leftrightarrow$$

$$(x^{2} + y^{2})(1 - Z)^{2} = 1 - Z^{2} \Leftrightarrow$$

$$x^{2} + y^{2} = \frac{(1 - Z^{2})}{1 - Z^{2}} = \frac{1 + Z}{1 - Z} \Leftrightarrow Z = \frac{x^{2} + y^{2} - 1}{x^{2} + y^{2} + 1}$$

et l'on retrouve, ainsi

$$X = \frac{2x}{x^2 + y^2 + 1}$$
 $Y = \frac{2y}{x^2 + y^2 + 1}$ $Z = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}$

Itérer Möbius

On peut générer une suite $\{z_n\}$ en appliquant la transformation de Möbius de façon itérée :

$$z_{n+1} = \frac{az_n + b}{cz_n + d}$$

à partir d'un point de départ, z₀.

Les transformations de Möbius

Stam Nicolis

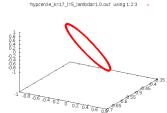
Les transformations de

Introduction

Du plan à l'espace

Dynamique des transformations de Möbius

Le chaos chez Möbius



Les transformations de Möbius

Stam Nicolis

Les

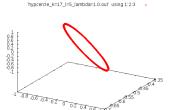
transformations de Möbius

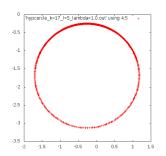
....

Du plan à l'espace

Dynamique des transformations de Möbius

Le chaos chez Möbius





Les transformations de Möbius

Stam Nicolis

Les transformations de

Introduction

Du plan à l'espace

Dynamique des transformations de Möbius

Mélanger les Möbius

On cherche à "mélanger" les transformations de Möbius, selon la valeur d'un paramètre, \boldsymbol{u} :

Les transformations de Möbius

Stam Nicolis

Les

ransformations de Möbius

Introduction

Du plan à l'espace

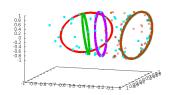
Dynamique des transformations de Möbius

Mélanger les Möbius

On cherche à "mélanger" les transformations de Möbius, selon la valeur d'un paramètre, u:

$$u_{n+1} = \lambda u_n (1 - u_n)$$

avec $1 \le \lambda \ge 4$.



Les transformations de Möbius

Stam Nicolis

Les

ransformations de Möbius

Du plan à l'espace

Dynamique des transformations de Möbius

u plan à l'espa

Dynamique des transformations de Möbius

Conclusions

▶ Les transformations de Möbius réalisent une correspndance entre un nombre complexe z_n et un autre nombre complexe z_{n+1}.

Si les coefficients de la transformation peuvent être exprimés en termes de focntions trigonométriques, la correspondance "hérite" les propriétés de périodicité de celles-ci : Si $\theta=2\pi/k$, alors, $k\theta=2\pi$ et $z_k=z_0$.

Du plan à l'espace

Dynamique des transformations de Möbius

Conclusions

 Les transformations de Möbius réalisent une correspndance entre un nombre complexe z_n et un autre nombre complexe z_{n+1}.
 Si les coefficients de la transformation peuvent être exprimés en termes de focntions trigonométriques, la

correspondance "hérite" les propriétés de périodicité de celles-ci : Si $\theta=2\pi/k$, alors, $k\theta=2\pi$ et $z_k=z_0$.

► Théorème

Les éléments de la suite $\{z_n\}$ appartiennent à un cercle.

Introduction

Du plan à l'espace

Dynamique des transformations de Möbius

Conclusions

▶ Théorème

Pour le cas des transformations

$$z_n = \frac{\cosh(n\phi)z_0 + \sinh(n\phi)}{z_0 \sinh(n\phi) + \cosh(n\phi)}$$

la suite $\{z_n\}$ appartient à une hyperbole.

Conclusions

Par l'application stéréographique

$$X = \frac{2x}{x^2 + y^2 + 1}$$
 $Y = \frac{2y}{x^2 + y^2 + 1}$ $Z = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}$

on peut faire correspondre un point du plan complexe (x,y)à un point de la sphère $X^2+Y^2+Z^2=1$. On peut, en fait, réaliser cette correspondance pour n'importe quelle surface, par exemple, l'hyperboloïde à une nappe, $X^2+Z^2-Y^2=1$. Les expressions pour X(x,y), Y(x,y), Z(x,y) sont sensibles à la surface choisie.