WHY CHOOSE THIS PROGRAM?

The Master of Fundamental Physics is a prestigious degree that is specifically intended for students interested in the methods and concepts of fundamental physics in the wide range of topics concerned by non-linear phenomena, including particle physics, quantum field theory, general relativity, cosmology, propagation of waves in complex media, disordered/chaotic systems.

By choosing this master’s degree, you can be assured that you will be taught by a unique blend of leading researchers from different nationalities from two laboratories (LMPT and GREMAN). You will benefit from individual tutorials, advice and support from the faculty regarding your choices of courses, research internships and your overall academic future.

Located in the Loire Valley, classified as World Heritage by UNESCO, one hour away by train from Paris, Tours offers, since the Renaissance, a privileged environment for studies at the highest level in an exquisite place for cultural and sports activities.

For any information see the contacts below or ask your local contact

A PREDOCTORAL EDUCATION IN FUNDAMENTAL PHYSICS

The whole two years may interest graduate students but starting from the second year is also possible for suitably qualified students (the courses in the second year are taught in English). This training provides a thorough theoretical background ideally positioning the graduate for a PhD in theoretical or experimental physics (generally supported by grants in distinguished French laboratories that are accessible to almost all students of this master) or for pursuing a career outside of academia.

The first year offers general lectures (continuous media, quantum physics, statistical physics, atomic and subatomic physics, classical fields, condensed matter, numerical methods) while the second year is aimed to deepen the fundamental notions of theoretical physics not only through a wide choice of advanced elective courses but, even more importantly, through the opportunity to actively participate in research projects through the senior thesis.

Registration fees: less than 500€/year including health insurance (there are no additional tuition fees).

THE SECOND YEAR (s3 & s4): NON LINEAR PHYSICS

Examples of lectures provided during the second year are

- Introduction to the theory and to the applications of solitons
- Gravitation and relativistic astrophysics
- Collective quantum effects (vacuum, particles and fields)
- Numerical simulations
- Solitons in field theory
- Disordered systems
- Dynamical systems

In s4, in addition to the academic lectures, students are expected to complete a three month full time internship relevant to their course of study

Examples of internship subjects

- Constraints on gravitation theories from data on galaxy clusters (M68 Perreux Observatory)
- Modeling of spatial dispersion of magnetisation (CEA)
- Vortex chaotic dynamics in superconductors (GREMAN)
- Deformation of Dugger diagrams and integrable systems (LMPT)
- Hawking radiation and hydrodynamical black holes (J.-A. Dieudonné laboratory, Nice)

Examples of PhD following the master training

- Strong interactions between cold Ytterbium atoms in Rydberg states (Aime Cotton laboratory, Paris)
- Cosmological study of 6-superpower in the INF factory experiment (LPMHE, Paris)
- Numerical studies of dynamical depinning in disordered systems (GREMAN)
- Resonant tunnelling (LMPT)
- Theory of massive gravity (LMPT)

Laboratory of Mathematics and Theoretical Physics
CNRS - UMR7350
http://www.lmpt.univ-tours.fr/
m2-physique@phys.univ-tours.fr

Research Group in Microelectronics, Acoustics and Nanotech
CNRS-CEA-ENILV - UMR7347
http://www.greman.univ-tours.fr/