From dying massive stars to nascent compact objects: proto-neutron stars

Loïc Villain
Departament d’Astronomia i Astrofisica (DAA)
Universitat de Valencia
Valencia, Spain
and
Laboratoire de l’Univers et de ses Théories (LUTH)
Observatoire de Paris-Meudon, France.

Based on a collaboration with
Jose Antonio Pons, Pablo Cerdá-Durán & Eric Gourgoulhon
Seminar at LMPT, Tours
Plan

- Brief introduction to proto-neutron stars (PNS):
 - rough description: birth and main features
 - principles of the time evolution

- Modelisation:
 - hypothetical almost full modelisation
 - retained simplified modelisation
1

Brief introduction to proto-neutron stars
A: general overview
Definition and origin(s) of proto-neutron Star (PNS)

- **Definition:**
 - **PNS** ~ hot \(T \sim 50\text{ MeV} \sim 6\times10^{11}\text{ K}\) neutron stars (NS) that may become cold \(\sim \text{ degenerate since } T \sim 4\text{ MeV}\) NS
 - typical **timescale of the evolution:** 20 seconds
 - only “may”: black holes or strange stars possible too (not here);

- **Birth:**
 - **standard scenario:** gravitational collapse of the iron core of a massive star \(M \geq 10 - 15\, M_{\odot}\) → Supernova + PNS
 - **alternative scenarios:** non-explosive collapse of white dwarves, merging of binary neutron stars.
Standard scenario for birth (Source J. Lewis)

Stellar Evolution Review (All masses in units of solar masses.)
Why studying proto-neutron stars?

- link between old massive stars and compact objects → initial state of compact objects? (crucial for the emission of gravitational waves)

- emission of neutrinos during the cooling (∼ 99% of the neutrinos emitted by a SN)

- source of gravitational waves? → way of putting constraints on equation of state of nuclear matter.
Main parameters

- **after collapse**: central remnant = hot soup of neutrons, protons, electrons and **neutrinos** (2 main regions);

- $T \sim 6.10^{11}$ K: npeν matter **opaque** for neutrinos but cooling down;

- mass from 1.2 to 2 M_\odot (\sim mass of the core);

- radius from 10^2 km to 10 km: evolves during the “20 seconds” of life

 \rightarrow compacity $(M/R) = 0.1$ after 10 seconds

 (Sun: $\sim 10^{-6}$; Schw. BH: $R = 2M$)
Pictures of cold compact stars (Source F. Weber)

Possible consequence: phase transitions during contraction/cooling
1

Brief introduction to proto-neutron stars

B: evolution
Standard scenario for evolution (1)

Main stages [see review by Prakash et al. (2001)]:

• **after collapse:** central remnant = hot soup of neutrons, protons, electrons and **neutrinos** (2 main regions);

• **mantle contraction:** fast cooling of outer layers, accretion ($t < 0.5$ s);

• **deleptonization:** neutrinos diffusing out → heating of the **inner part** ($t < 10 - 15$ s);

• **cooling:** diffusion of quasi-thermal neutrinos ($t < 20 - 25$ s);

• **birth of a cold compact object.**
Standard scenario for evolution (2)

Questions

- effect of the rotation? rotation profile?
- angular momentum: conserved during core collapse? role of magnetic field?
- how does rotation influence the propagation of neutrinos, heat and angular momentum?

→ Romero et al. (1992); Goussard et al. (1997,98); Sumiyoshi et al. (1999); Strobel et al. (1999); Yuan & Heyl (2003)

but all works with simplified thermodynamics (constant profiles or even $T = 0$) and without time evolution (few stationnary states calculated only).
2

Toward an understanding of the evolution of proto-neutron stars

A: general overview
Indications for a recipe of an almost complete modelisation

- relativistic modeling of rotating contracting star (> 1 dimension due to rotation) and of spacetime
- self-consistent description of a non-perfect fluid at supra-nuclear densities (plasma of $n, p, e^-, \nu +$ possibly exotic particles and phase transitions)
- non-zero temperatures (matter opaque for neutrinos)
- transport of heat and neutrinos while the rotating star contracts and cools down (Boltzmann + hydrodynamics)
- non-trivial initial state of rotation (differential rotation)
- changing surrounding (accretion during the first seconds)

→ need to start with simplified models.
First simplified modelisation [Villain et al. (2004)]

- gravitational relaxation time \lesssim dynamical time \ll diffusion time
 \rightarrow mimicking time evolution with sequence of quasi-equilibrium states
 \rightarrow for each of them, stationary and axisymmetric spacetime;

- non-trivial description of thermodynamics: transport of neutrinos and heat in spherical self-consistent calculations [mean free paths of ν hugely dependent on microphysics: Pons et al. (1999)]
 \rightarrow time dependent equation of state with non-constant profiles;

- profile of rotation in agreement with core collapse simulations;

- **constraints on the sequences**: conservation of angular momentum(?) and gravitational mass \equiv energy with losses due to ν luminosity.
2

Toward an understanding of the evolution of proto-neutron stars

B: some technical details: macroscopic point of view
Retained relativistic description

• spacetime is **stationary and axisymmetric** \(\rightarrow\) two Killing vectors (metric depends only on \(r\) and \(\theta\))

• **no meridional convective currents** [quite strong assumption Keil *et al.* (1996), Miralles *et al.* (2002)] **but** simplifies the metric (Carter 1969)

\[
\begin{align*}
\text{ds}^2 & = g_{\mu\nu} \, dx^\mu \, dx^\nu = - \left(N^2 - N_\phi \, N^\phi \right) \, dt^2 - 2 \, N_\phi \, dt \, d\phi \\
& + \frac{A^4}{B^2} \left(dr^2 + r^2 \, d\theta^2 + B^4 \, r^2 \, \sin^2 \theta \, d\phi^2 \right)
\end{align*}
\]

• metric with notations of **3 + 1 formalism** : splitting of spacetime in spacelike slices (maximal slicing-quasi-isotropic coordinates, Bonazzola *et al.* 1993) : \(N\) lapse, \(N^\phi\) third component of shift 3-vector, with \(N_\phi = g_{\phi i} \, N^i = A^4 \, B^2 \, N^\phi \, r^2 \, \sin^2 \theta\).
Solving of Einstein equations

- only elliptic equations for the metric \rightarrow spectral code with compactification of spacetime (exact boundary conditions)

- spectral \equiv solving of partial differential equations in reciprocal space after Fourier, Legendre and Chebyshev transformations (for spherical symmetry):

$$ (r, \theta, \phi) \rightarrow (n, l, m) $$

\rightarrow linear algebra

Dealing with the Energy-Momentum tensor (1)

- axisymmetry, stationarity and 3 + 1 foliation:
\(\nabla_\mu T^{\mu\nu} = 0 \) for perfect fluid ↔ conditions for a first integral

\[
\frac{\partial_i P}{e + P} + \partial_i \ln \left[\frac{N}{\Gamma} \right] = -F \partial_i \Omega,
\]

where:
* \(P \) pressure and \(e \) total energy density (in the comoving frame)
* \(N \) lapse function (gives gravitational potential), \(\Gamma \) Lorentz factor between the coordinate and comoving observers, \(\Omega \) angular velocity, and \(F = u_\phi u^t \) with \(u \) 4-velocity of the fluid
* the index \(i \) runs from 1 to 2 (all quantities depend only on \(r \) and \(\theta \)).
Dealing with the Energy-Momentum tensor (2)

- **relativistic equation:**

\[
\frac{\partial_i P}{e + P} + \partial_i \ln \left[\frac{N}{\Gamma} \right] = -F \partial_i \Omega,
\]

- **Newtonian limit:**

* \(\ln[N] \rightarrow U; \)
* \(e + P \rightarrow n; \)
* \(\ln[\Gamma] = \ln[(1 - v^2)^{-1/2}] \rightarrow \frac{1}{2} v^2; \)
* \(F \sim \) specific angular momentum \(\rightarrow \Omega r^2 \sin^2[\theta]; \)

\[
\rightarrow \quad \frac{\vec{\nabla} P}{n} + \vec{\nabla} U - \frac{1}{2} \vec{\nabla} v^2 = -\Omega r^2 \sin^2[\theta] \vec{\nabla} \Omega,
\]
Dealing with the Energy-Momentum tensor (3)

- right-hand side: rigid rotation ($\partial_i \Omega = 0$) or differential rotation with locally $F = F[\Omega]$ (Newtonian case $\Omega = \Omega[r \sin[\theta]]$);

- left-hand side: need to give an equation of state (EOS) with either
 * isentropic profile (can be shown using principles of thermodynamics)
 * relativistic isothermal profile (same remark)
 * effective polytrop with $e = e[P]$

$e = e[P] \rightarrow H + \ln \left[\frac{N}{T} \right] + \int F[\Omega] d\Omega = \text{const.}$

relativistic pseudo-enthalpy $H = \int \frac{dP}{e[P] + P}$ with boundary conditions

- note: $T = 0 \rightarrow H$ relativistic enthalpy $H = \ln \left[\frac{e + P}{n_b} \right]$
Toward an understanding of the evolution of proto-neutron stars

C: some technical details: microscopic point of view
Retained microphysical description (1)

- Walecka-type relativistic field theoretical model: interactions mediated by $\sigma, \omega, \text{and } \rho$ mesons + scalar non-linear self interactions $U(\sigma)$
- Lagrangian density: nucleons, leptons + mesons (no exotic particles)

\[
L_H = \sum_B \overline{B}(-i\gamma^\mu \partial_\mu - g_{\omega B} \gamma^\mu \omega_\mu - g_{\rho B} \gamma^\mu b_\mu \cdot t - M_B^*)B \\
- \frac{1}{4} W_{\mu \nu} W^{\mu \nu} + \frac{1}{2} m_\omega^2 \omega_\mu \omega^\mu - \frac{1}{4} B_{\mu \nu} B^{\mu \nu} + \frac{1}{2} m_\rho^2 \rho_\mu \rho^\mu \\
+ \frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \frac{1}{2} m_\sigma^2 \sigma^2 - U(\sigma) \\
L_\ell = \sum_l \overline{l}(-i\gamma^\mu \partial_\mu - m_l)l \rightarrow L = L_H + L_\ell + ...
Retained microphysical description (2)

- coupling constants = major uncertainty
- nucleon-meson coupling constants adjusted to reproduce properties of equilibrium nuclear matter at $T = 0$.
 * the saturation density, n_0
 * the binding energy/particle, E_A
 * the compression modulus, K
 * the symmetry energy coefficient, S_{sym}
 * the Dirac effective mass at saturation, M^*

<table>
<thead>
<tr>
<th>K_0</th>
<th>a_{sym}</th>
<th>$\frac{M^*}{M}$</th>
<th>$\frac{g_\sigma}{m_\sigma}$</th>
<th>$\frac{g_\omega}{m_\omega}$</th>
<th>$\frac{g_\rho}{m_\rho}$</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>32.5</td>
<td>0.70</td>
<td>3.434</td>
<td>2.674</td>
<td>2.100</td>
<td>0.002950</td>
<td>−0.00107</td>
</tr>
<tr>
<td>240</td>
<td>32.5</td>
<td>0.78</td>
<td>3.151</td>
<td>2.195</td>
<td>2.189</td>
<td>0.008659</td>
<td>−0.002421</td>
</tr>
<tr>
<td>240</td>
<td>27.5</td>
<td>0.78</td>
<td>3.151</td>
<td>2.195</td>
<td>1.862</td>
<td>0.008659</td>
<td>−0.002421</td>
</tr>
</tbody>
</table>

Coupling constants for the Glendenning & Moszkowski (1991) models.
Retained microphysical description (3)

• partition function + charge neutrality + chemical equilibrium \(\rightarrow \) thermodynamical quantities and general EOS \(P = P(n_B, s, Y_e, Y_\nu) \)

• \(\nu \) distribution function supposed to be nearly Fermi-Dirac and isotropic \(\rightarrow \) dynamic diffusion of \(\nu \) (and \(e^- \) number) and energy:

\[
\frac{dY_\nu}{dt} + \frac{\partial (e^{\phi}4\pi r^2 F_n)}{\partial a} = \frac{S_n e^{\phi}}{n_b}
\]

\[
\frac{dE}{dt} + P \frac{d}{dt} \left(\frac{1}{n_B} \right) + e^{-\phi} \frac{\partial (e^{2\phi}4\pi r^2 F_e)}{\partial a} = 0
\]

(fluxes obtained from generalized Fick Law consistent with previous EOS)
Time dependent Equation of state

Extract from the final time dependent barotropic EOS: temporal variation of the temperature (top), entropy (middle) and lepton fraction (bottom) as functions of the baryon density, for evolutionary times corresponding to $t = 0.1, 0.5, 1$ and 8 seconds after formation of the PNS. Results are for a $M_B = 1.6 M_\odot$ star in spherical symmetry. Note: BPS or LS EOS used at low densities.
2

Toward an understanding of the evolution of proto-neutron stars
D: initial state and profile of rotation
Known results

- Pons et al. (non-rotating PNS):
 * initial profile of T not important;
 * baryonic mass important $\rightarrow M_B = 1.6 M_\odot$
 ($\rightarrow M_g = 1.4 M_\odot$ for cold NS)

- even with iron core rigidly rotating [Heger et al. (2000)] \rightarrow differential rotation after collapse [see also Müller et al. (2003)]

 calculations done using the code for core collapses from Dimmelmeier et al. (2002) \rightarrow “constraints” on the profile of rotation

- yet many instabilities to rigidify motion [Miralles et al. (2000,2002)]]
Law for rotation

• “usual” law for $F[\Omega]$ (\sim specific angular momentum):

$$F[\Omega] = R_0^2 (\Omega_c - \Omega),$$

proposed by Komatsu et al. (1989)

• simple, realistic (see core collapse simulations) with Newtonian limit:

$$\Omega = \frac{R_0^2 \Omega_c}{R_0^2 + r^2 \sin^2 \theta}$$

R_0 length describing the degree of “differentiallity” ($R_0 = \infty$: rigid rotation; $r = R_0$: $\Omega = \Omega_c/2$), Ω_c is the “axial” angular velocity.
Calibration of the law for rotation

Equatorial profiles of angular velocity (top), and density (bottom) of PNSs from axisymmetric simulations of stellar core collapse (DFM). Models with different amounts of angular momentum of the iron core, namely, $|T/W| = 0.9\%$ (solid), 0.5% (dashes), 0.25% (dash-dot), and 0.05% (dash-3 dots). The dotted lines on the upper panel are fits to the simple law with $R_0^2 = 50 \text{ km}^2$.
2

Toward an understanding of the evolution of proto-neutron stars

D: influence of the rotation and trying-to-be-realistic thermodynamics
Maximal value of angular momentum (1)

Temporal evolution of the angular velocity \(\Omega/\Omega_K \) and the rotation parameter \(|T/W| \) for a sequence of rigidly rotating PNSs with constant angular momentum \((1.5 GM^2_\odot/c)\) and a fixed baryonic mass of \(M_B = 1.6 M_\odot \).

Note 1: For \(t < 1 \text{ s} \): accretion, external convection...

Note 2: \(|T/W| = 0.14\) Newtonian criterion for gravitational waves driven instability.

Note 3: \(J_\odot \sim 0.2 GM^2_\odot/c \).

Note 4: recent stellar evolution [Heger et al. (2003)] \(\rightarrow J = (0.35 - 10) \) (depends on magnetic braking).
Maximal value of angular momentum (2)

Total angular momentum as a function of the central angular velocity for PNSs with fixed baryonic mass of 1.6 M_\odot at evolutionary time of 10 s for different values of R_0: $R_0 = \infty$ (solid), 50 km (dash-dot), 20 km (thick dashed), $R_{eq}/2$ (thin dashed), 10 km (dots). Differential rotation allows more angular momentum and $|T/W|$ but...
Maximal value of angular momentum (3)

"Usual" star at Kepler angular velocity.
Maximal value of angular momentum (4)

Trying-to-be-toroidal star before Kepler angular velocity.

Consequence: maximal density off axis \rightarrow rotation profile? stability?
Maximal value of $|T/W|$

Rotation parameter, $|T/W|$, as a function of the central angular velocity for PNS with fixed baryonic mass of $1.6 \, M_\odot$ at evolutionary time of $10 \, s$ for different values of R_0: $R_0 = \infty$ (solid), $50 \, \text{km}$ (dash-dot), $20 \, \text{km}$ (thick dashed), $R_{eq}/2$ (thin dashed), $10 \, \text{km}$ (dots).

Note: with time the criterion for instability decreases due to relativistic effects.
Temporal evolution of the central angular velocity Ω_c and the rotation parameter $|T/W|$ for two sequences of differentially rotating PNSs with $R_0 = 10$ km (solid line) and $R_0 = 20$ km (dashed line).

Total angular momentum $1.5 \frac{GM^2_\odot}{c}$ and baryonic mass $M_B = 1.6 M_\odot$.

Note 1: for $R_0 = 10$ km, star always toroidal; for $R_0 = 20$ km, change of convexity;

Note 2: for same value of J, Kepler frequency reached with rigid rotation.
Time evolution of neutrino luminosity

Estimated neutrino luminosity \((-dM_G/dt)\). Order of magnitude and exponential decay similar to luminosities obtained in simulations with neutrino transport for non-rotating stars.
3
Conclusions and perspectives
Conclusions

• first step toward a realistic study of the time evolution of rotating PNS;

• results from core collapses simulations taken into account;

• several effects found in the previous studies linked to unrealistic thermodynamical or rotational profiles;

• depending on the angular momentum at birth (and then efficiency of magnetic braking in iron cores): possible gravitational waves driven instabilities

→ possible gravitational burst after neutrinos peak.
Perspectives

- transport of angular momentum, neutrinos and energy between layers → starting collaboration with Silvano Bonazzola (LUTH, Meudon) to study this with spectral method [time evolution, see Villain & Bonazzola (2002)];

- a lot of physical phenomena to add: magnetic field, convection, etc...

- situation completely different in which stationary approximation would not be valid: merging of binary NS...