QUANTUM RANDOM WALKS AND PITMAN THEOREM

ICMS workshop
Edinburgh

26-28 february 2014

Philippe Biane
CNRS
INSTITUT GASPARD MONGE
UNIVERSITE PARIS EST



Harmonic oscillator
H Hilbert space, ¢,k =0,1,... orthonormal basis

at,a” creation and annihilation operators a* = (a7)*

[a=,aT] =1
a+z-:k =Vk+ leg
a egx = \/EEk_l

"Heisenberg representation”



Probabilistic interpretation

a' + a~=gaussian variable in state &

Ek = H,,(a+ + a_)Eo

H,, =Hermite polynomial



Number operator

ata e, = ke is the number operator
ata” =limn— 2,

In the state g, ata~ is the zero random variable
Aat +aT) + ata~ has Poisson(\?) distribution.

cf Poisson as limit of binomial + recurrence relation for Charlier
polynomials.



PITMAN THEOREM (1975)

B;; t > 0 Brownian motion; /; = info<s<¢ Bs

R: = By — 2l;; t > 0 is distributed as the norm of a three
dimensional

Brownian motion(=Bessel 3 process)

= eigenvalue process of a 2 x 2 hermitian brownian matrix
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R()=Y()-21(t)



CONVERSE THEOREM
There is loss of information.
R¢; t > 0 =norm of a three dimensional Brownian motion
x € [0, 1] uniform random variable independent of R.
B: = Ry — 2inf(xRT, tSi?;_ Rs); te€]0,T]

is a Brownian motion, and R; = B; — 2I;;t > 0



Xi==1, 5,=X14+Xo+...+ Xy, Ry=5,—2 min 5
0<k<n

is a Markov chain(=discrete Bessel 3 process)

k+1
PRn :k ]_Rn:k e —
(Roy1 + 1 ) ok
k—1
P(Ros1 =k —1|Ry = k) = ——
(Ra+1 \ ) ok

when n — oo
Sint]/ /N = n—s00 Brownian motion
Rint]/v/N = n—sc0 norm of 3D-Brownian motion



EXTENSIONS

Gravner, Tracy, Widom (2001); (Bi(t),. .., Bn(t))= n-dimensional
Brownian motion

n

A(t) = sup > (Bi(t) = Bi(ti-1))

1=ty >th—12...2t=0 i=1

has the same distribution as the largest eigenvalue of a GUE
matrix. Uses RSK correspondance

Generalized to a a representation of all eigenvalues by O'Connell
and Yor (2002). Use queuing theory. and to Brownian motion on

the Lie algebra of a compact Lie group by Bougerol and Jeulin
(2002). Uses Brownian motion on symmetric spaces.



PROOF OF PITMAN’S THEOREM
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Quantization of head an tails game

n—1 n—1
Xo = 1Pk@x@1® Yo=Y I eya /™
k=0 k=0
n—1
Z, :ZI®k®z®I°°
k=0
in My(C)®°.

X, Yn, Z, define three simple random walks

[Xn, Ya] = 2iZ,



Let R, = /X2 + Y2+ 22+1

Lemma [R,, R,] = 0; R, is a Markov chain with probability
transitions

k+1 k—1

AT (ki k—1)=—~—
P p(k, )

Proof: R, corresponds to the Casimir operator.
Clebsch-Gordan formula for representations of SU(2)

Kl@[2] =[k+1] & [k —1]



We have defined a random walk with values in a noncommutative

A~

space SU(2)




A = group algebra of SU(2)
x,y,z=generators of Lie(SU(2))=coordinates on the space SU(2)
[x,y] = 2iz

In each direction of space the coordinates take integer values.
One can measure the distance to origin using \/x2 +y2+2z2+1




E = aset (eg Z9)
Q a probability space

A random variable with values in E: X : Q — E
this gives an algebra morphism:
F(E) — F(Q)

f—foX

We could drop the condition that the algebras are commutative



A = group algebra of SU(2)= Hopf algebra with coproduct
A:A-SARA

Ax)=x@ 1+ 1®x

Jn : A = Mp(C)®>=n-fold tensor product of 2-dimensional
representations for n = 1,2, ... form a quantum Bernoulli random
walk

the quantum Bernoulli walk is a Markov chain with Markov

operator

P:A=A

P=1Id® Tr(./2)0A



RESTRICTIONS

We can restrict the Markov operator P to commutative
subalgebras:

One parameter subgroup: Bernoulli random walk

Center: "discrete Bessel process”

(k-1)/2k (k+1)/2k

k-1 k k+1



Maximal abelian subalgebra generated by the center and a one
parameter subgroup

AN
/\/X’

/\ / h /
™\ >\ /\
NS NS
N\ S\ 7\
\./ \ / (r=k)/2(r+1) (r+k+2)12(

\\ /N %)

‘\ (r+k)/2(r+1) (r—k+2)/2(

~




Kashiwara’s crystallization
Replace SU(2) by SU,(2) then

NS Ny
N P S\ / PON
\Q\ ;‘7/"\*\‘7”")/’2@’“ —q ) g =g /g - g

AN as

'\ (a7t =g h)/2(q =g ) (a7 =g /2(q " =g

N

Let g — 0 then one obtains Pitman's theorem.
cf Littelmann path model.




PITMAN OPERATORS
Y:[0,T] =R,  Y(0)=0

v

=

-3 T T T
0.00 0.25 0.50 0.75 1.00
J

-1
-J

( ) -2 infogsgt Y(S)
) > 0, in particular PPY = PY.

—N®D

PY (1)

= Y(t
For all t one has PY/(t




MULTIDIMENSIONAL PITMAN OPERATORS

V=real vector space, a € V, o € V* o¥(a) = 2.

P, Y(t)=Y(t)— inf a'(Y(s))a

0<s<t

P.P,Y = P,Y



COMPOSITION OF PITMAN OPERATORS
o,V 3, BY satisfy a¥(8) = BY(a) = —2cosf and § < T

(n terms) PoPgP, ... Y (t) =

Y(t) — tzslzl.r.].fzsnzoA(sl’ ey Sp)a— t2512.!.nzfsn7120 B(s1,---,5n-1)3
with
_sinf sm29 sm39 oV
A(st, o 50) = 20 (Y (s0))+ T 8V (Y (s2)) - oo (Y (s3))
__sinf S|n20 v S|n30
B(s1, - 501) = g B (Y(s0)+ g0 (Y(2)+ g B (Y ()



Braid relations

If & = 7/n then
PoPgPe ... = PgPoPg...  (n terms)

Corollary: Let (W,S)=Coxeter system on V and «,a"=simple

roots and coroots,
C=Weyl chamber. To each s, € S associate Ps_. For each

w € W with reduced decomposition w = s,, ...s,, there exists

P, =P

sal...

P,

So‘k

If wo=longest element then P, X takes values in C.






DOOB’S CONDITIONNED BROWNIAN MOTION

= ][ 8x)

BERy

is a positive harmonic function on C

p (6, y) = Y e(w)pe(x, w(y))
weWw
is the fundamental solution of Laplacian on W with Dirichlet
boundary conditions
(=transition probabilities for Brownian motion killed at the
boundary of C).

Gelx.y) = “’EQ oY (x,y)

are the transition probabilities of Brownian motion conditionned to
stay in C.



Fact:

when W =S, (i.e. Weyl group of type A,_1 then Brownian
motion conditionned to stay in C is the same as the motion of
eigenvalues

(A1(t)A2(t), ..., An(2))

of a Brownian traceless hermitian matrix.

(M;(t))



CONVERSE THEOREM

The conditional distribution of X(t) knowing P,,X(t) = p is the
Duistermaat-Heckmann measure on the convex polytope with
vertices w(p); w € W.




Its Fourier transform is

density is piecewise polynomial



In order to recover X from P,,X we need a positive real number Xx;
for each s; in Py, = Py ... Ps,.

Lemma Given P, X(t) the numbers (x1,...,xq) belong to a
certain convex polytope. Their distribution is the normalized
Lebesgue measure on this polytope.

Cristallographic case: Berenstein-Zelevinsky polytopes

The Duistermaat-Heckman measure is the image of this measure
by an affine map.



O<x<a

2" O<y<b
. 0<z<(@a-x)+(b-y




STURM-LIOUVILLE EQUATIONS

¢+ qp=p
Let o be a > 0 solution on [0, T]. All other solutions are:

1
© = apg + bcpo/—ds
@5(s)

consider the maps
|
T,b:<p»—>a<p—|—b<p/ ———ds
’ o ¢%(s)

Ta,b Ta’,b’ = 7_aa’,ab’—|—b/a’

i.e. (almost) representation of

o



LAPLACE METHOD

X1 1
lim Elog/ exp(—=u(s))ds = — inf u(t)
e—0 X €

o xo<t<x1

1
limelog T ,—x/- p(exp =X(t))
e—0 ’ €

-
= lim ¢ log (e_§+ix(t) 4 belx(t)/ e—iX(s)ds>
e—0 :

:X(t)—20ir;1;tX(s)/\x (b>0)

For x = +00 one gets Pitman operator.



MATRIX INTERPRETATION OF T,,
consider

: X 1 eX(t)  X(0) [T o=2X(s)gs
ORI T OO R N S

A€ GL(2,R)  MA=[MA][MA]>

Gauss decomposition ([-]<=strictly lower triangular ; [-]>= upper
triangular)
Lemma

d (A TAX(2) 1
Mz = (BT, )l

This gives an (almost)action A — T4 of GL(2) on functions X.



0 -1
Takes—<1 O>
t
nxuy;mn+bg/e4”ﬂ$
0

Laplace method — Pitman transform

D. o ToX(t) o D1 —ey0 PX(t) = X(t) — 2 inf X(s)
e 0<s<t

D X(t) =eX(t)



Higher rank
Consider root data aj, ), e, f;, h;, et t — X(t) € $) and the
solution to _ _
M(t) = (X(t) + N)M(t)

N =3, e (or more generally > ; ujej; uj > 0)
Lemma

%[MA]Z(t) = (%TAX(t) + N)[MA]>

Relies on Ad,,_(x)> = x iff x € [spanj(e;)]

Laplace method — Pitman operators to T, s; = simple reflections
Braid relations for Pitman operators follow from those of Tj,



Application : a formula for generalized Pitman operators

Recall

(n termes) PoPsPy ... Y(t) = Y(t)—

_ sinf |, sin20
21?512|.r.1.25n20 g (Y(s1)) + o BY(Y(s2))+...]a—
sind sin 20
2 inf ——B3Y(Y 8%
tzslz.f.nzs,,_lzo[sinQﬂ (Y(s)) + sinf o' (Y(2)) +..]15

Analogous formula holds for any generalized Pitman operator



X(t) € H, solution to

M(t) = (X(t) + N)M(t)

X(t) / — o (a() = —a) (a(1) > R
e e n 3 t1...dtg ) e, ... €
Z Z < t>t1..2>2t>0 ! g ! .

k>0 i1,k

Laplace method (Py X = lim D: Ty Dy /.):

PuX(t) = X(t)=> Lonf L an(X (@) 4 ag (X(8) | e
i th’l.r..ZtkgO

w;j = fondamental weights
S(wi,w) = set of (j1,...,Jjr) such that (ej ... e, wv,,, v,;) # 0
("i-trails” of Berenstein Zelevinsky)



