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Let V be an euclidean space of dim r, with inner product (.,.). A
root system @ is a set of non-zero vectors that satisfy the following:
@ & spans V.
@ For a € ®, we have Ra N ® = {a, —a}.
@ For a € &, let o, the orthogonal reflection with fixed point set
the hyperplane perpendicular to a. We have 0,(®) = &.
@ For any o, B € ¢ we have % YA
Let & be an “irreducible” root system. The Weyl group of & is the
group generated by {o,|a € ®}. It has a presentation of the form:

{01y 1 06,/(06,04,)™ =1, 05 =1} |

where m;; € {2,3,4,6} for i # j.
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Affine Weyl groups First definition

Let Q be the lattice generated by ®:
{n1a1 + ...+ nkak| n; € Z, a; € qD}
The Weyl group W, of ® acts on Q.

Thus we can form the semi-direct product:

W:=W,x Q )

This is the affine Weyl group associated to &.
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Affine Weyl groups A geometric realization

V: Euclidean space of dimension r.

&: Irreducible root system of V. Forany a € ® and k € Z let :
() o1 2( )
o, x
Hox = 4 - =k
k=t VI =k

The Weyl group Wy of & is generated
the orthogonal reflections with fixed

point set Hy 9. We have:

Wo = (01, 02| (0102)% = 1,0,-2 =1)
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Affine Weyl groups A geometric realization

V: Euclidean space of dimension r.

&: Irreducible root system of V. Forany a € ® and k € Z let :
02 o1 )
Hop = {xe v | 22X _
g3 <a7a)

The Weyl group Wy of & is generated

the orthogonal reflections with fixed

point set Hy 9. We have:

Wy = <0’1,0’2| (0’10'2)6 = ]_,0'.2 = ]_)

1

The affine Weyl group W of & is
generated by all the orthogonal

reflections oy, , with fixed point set
Ha k.

Here we have:

W = (01,02, 03] (0102)° = 1,(0203)% = 1, (0103)% = 1, 0',-2 =1)
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Affine Weyl groups Classification
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Kazhdan-Lusztig theory Weight functions

Let W be an affine Weyl group with generating set S.
For w € W, let £(w) be the smallest integer n € N such that
w = s1...s, with s; € S. The function £ is called the length function.

Let L be a weight function, that is a function L : W — N such that :
L(ww") = L(w) + L(w') whenever £(ww') = £(w) + £(w')
L(w) > 0 unless w =1

The case L = £ is known as the equal parameter case.
From the above relations, one can see that:
@ A weight function L is completely determined by its values on S

o Let s, t € S, if the order of (st) is odd, then we must have

L(s) = L(¢).
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Kazhdan-Lusztig theory Weight functions
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Kazhdan-Lusztig theory Hecke algebra

Let (W, S) be an affine Weyl group and L a weight function on W.
Let H be the associated Iwahori-Hecke algebra over A = Z[v, v 1].

Standard basis {T,, | w € W} with multiplication

Tow if £(sw) > £(w)
Tow + (VEO) — v EN T, if £(sw) < £(w)

Ts TW —

One can see that T, ' = T, — (vt(s) — v~ L)) T,
There is a unique ring involution A — A, a +— 2, such that v = v~ 1.
We can extend it to a ring involution H — H, h— h, such that:

S awTu= > 3,T,% (a,€A).

weW weW
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Kazhdan-Lusztig theory Hecke algebra

Theorem. KAZHDAN-LUSZTIG (~ 1979) LuszTiG (~ 1983)

For any w € W, there exists a unique C, € H such that:
o C_W — CW

e C,=Tu+ ¥ P,.T, where P,, € v Z[v}]
£y)<e(w)
Furthermore, the C,'s form a basis of H known as the

Kazhdan-Lusztig basis.

For example, we have :

Cl = Tl and Cs = Ts + ViL(s) Tl
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Kazhdan-Lusztig theory Kazhdan-Lusztig cells

Pre-order relation <, defined by :

y<iw

HC, C X AC J

Let s € S and w € W such that £(w) < £(sw), then:
CC,=Csy+... sowehavesw <; w

Corresponding equivalence relation ~; .
The equivalence classes are called left cells.

Similarly we define <g, ~g and right cells.
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Kazhdan-Lusztig theory Kazhdan-Lusztig cells

We say that y <,g w if there exists a sequence:

Y=Yy, Yn=W
such that for any 0 </ < n— 1 we have:
Yi <t Yit10rYi <R Yit1

We get the equivalence relation ~;r and the two-sided cells.
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Kazhdan-Lusztig theory the a-function

Structure constants: Write

GC = Z hy, .C, where h, , , € A.

zeWw
G. LuszTiG (1985): Define function a: W — Ny by
a(z) =min{i > 0| v 'h,,,€Zv?Vx,y e W} J

If W is finite, then this function is clearly well defined. In the affine
case, it is not clear that this minimum exists! But, it does... Let
7 = L(wp) where wy is the longest element of the Weyl group Wy

associated to W. We have :

v Ph,,€Zv ! forall x,y,z€ W.

In other words, a(z) < ¥ forall z€ W.
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Kazhdan-Lusztig theory The lowest two-sided cell

The pre-order <,g induces a partial order on the two-sided cells.

Let

co={weW|alw)=r}.

Then ¢ is a two-sided cell. Moreover, ¢; is the lowest two-sided cell.

Why lowest? Lusztig conjectures:

if z<,g Z' then a(Z'") < a(z). J

Let 2/ € ¢. Let z <, g Z'. We have:

v=a(Z)<a(z) <7p |

which implies a(z) = ¥ and z € .
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Kazhdan-Lusztig theory What do we know

(]

Shi (~ 1987): ¢ is a two-sided cell (equal parameter case).

©

Shi (~ 1988): ¢y contains |Wp| left cells (equal parameter).

©

Bremke and Xi (~ 1996): ¢ is a two-sided cell (unequal

parameter).

©

Bremke (~ 1996): ¢ contains at most |W;| left cells.

©

Bremke (~ 1996): ¢ contains |W;| left cells when the

parameters are coming from a graph automorphism

When we know the exact number of left cells in ¢, it involves some
deep properties of Kazhdan-Lusztig polynomials, such as positivity of

the coefficient. Problem: Not true in general!
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Another geometric realization Definition

Example: G V: Euclidean space of dimension r.

®: Irreducible root system of V.

Foranya € ® and n€ Z let :

2(a, x)

(a,a)

An alcove is a connected component of :
V — U Ha,k

Denote by X the set of alcoves.

Let Q = (oy, k€ Z,a € P)

Q acts simply transitively on X.

Hox ={x€e V] = k}

Let Ag be the fundamental alcove :

Ay ={xeV|0<Zea <1}

@)

for all a € &+,
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Another geometric realization Definition

A face is a co-dimension 1 facet of an alcove.

Examples : The faces of Ag.
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Another geometric realization Definition

A face is a co-dimension 1 facet of an alcove.

Examples : The faces of Ag.
We look at the orbits of the faces under €.

Let S be the set of orbits.

Here we have 3 orbits, namely :

51 = green
s, = red
s3 = blue
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Another geometric realization Definition

A face is a co-dimension 1 facet of an alcove.

Examples : The faces of Ag.
We look at the orbits of the faces under €.

Let S be the set of orbits.

Here we have 3 orbits, namely :

51 = green
s, = red
s3 = blue

For s € S, we define an involution A — sA of X, where sA is the unique alcove
which shares with A a face of type s. The set of such map is a group of

permutation of X which is a Coxeter group W. We have W ~ Q.
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.

s3Ao, 5253A0,
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.
s3A0, 5253A0, 51553A0,

5251525340,
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Another geometric realization Example

The action of W on X commutes with the action of Q.
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Example:
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.
s3A0, 5253A0, 51553A0,

55155340, $3551553A0,
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.
s3A0, 5253A0, 51553A0,

55155340, $3551553A0,
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.

s3A0, 5253A0, 51553A0,

55155340, $3551553A0,

@ We have ()8 = e.
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Another geometric realization Example

The action of W on X commutes with the action of Q.

We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.

s3A0, 5253A0, 51553A0,

55155340, $3551553A0,

@ We have ()8 = e.

@ We have (s:53)° = e.
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.

s3A0, 5253A0, 51553A0,

55155340, $3551553A0,

@ We have ()8 = e.

@ We have (s:53)° = e.

@ We have (5:53)%2 = e.
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Another geometric realization Example

The action of W on X commutes with the action of Q.
We identify w € W with the alcove wAy.

Example:

@ alcove 535,51 553A0.

s3A0, 5253A0, 51553A0,

55155340, $3551553A0,

@ We have ()8 = e.

@ We have (s:53)° = e.

@ We have (5:53)%2 = e.

Let s,t € S. If a hyperplane H supports a face of type s and a face of type t
then s and t are conjugate in W. Therefore we can associate to any hyperplane

H a weight cy = L(s) if H supports a face of type s.
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Interest Structure constant

Let w € W, we have £(w)= number hyperplane which separate Ay and wAy.

Let x,y € W. Consider yAy and xyAg
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Interest Structure constant

Let w € W, we have £(w)= number hyperplane which separate Ay and wAy.

Let x,y € W. Consider yAy and xyAg

First consider the hyperplanes which

separate Ag and yAo;

Jérémie Guilhot (UoA, UCBL1) Kazhdan-Lusztig cells January 2008 19/23



Interest Structure constant

Let w € W, we have £(w)= number hyperplane which separate Ay and wAy.

Let x,y € W. Consider yAy and xyAg

First consider the hyperplanes which

separate Ag and yAo;

next, the hyperplanes which separate

yAp and xyAg;
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Interest Structure constant

Let w € W, we have £(w)= number hyperplane which separate Ay and wAy.

Let x,y € W. Consider yAy and xyAg
First consider the hyperplanes which

separate Ag and yAo;

next, the hyperplanes which separate

yAp and xyAg;

finally, let Hy,, be the intersection.
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Interest Structure constant

Let w € W, we have £(w)= number hyperplane which separate Ay and wAy.

Let x,y € W. Consider yAy and xyAg

First consider the hyperplanes which

separate Ag and yAo;

next, the hyperplanes which separate

yAp and xyAg;

finally, let Hy,, be the intersection.

Let ¢, be...
On this example, we have
Gy = L(s2) + L(s1).
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Interest Structure constant

Let w € W, we have £(w)= number hyperplane which separate Ay and wAy.

Let x,y € W. Consider yAy and xyAg

First consider the hyperplanes which

separate Ag and yAo;

next, the hyperplanes which separate

yAp and xyAg;

finally, let Hy,, be the intersection.

Let ¢, be...
On this example, we have
Gy = L(s2) + L(s1).

Proposition. G. (~ 2006)

We have:

TXTy = Z ﬁ(,y,z Tz where deg(fx,y,Z) S Cxy-
zeW
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Interest Induction

Theorem. GECK (~ 2003)

Let W' C W be a standard parabolic subgroup, and let X’ be the set of all

w € W such that w has minimal length in the coset wW'’. Let C be a left cell of
W'. Then X".C is a union of left cells.
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Interest Induction

Theorem. GECK (~ 2003)

Let W' C W be a standard parabolic subgroup, and let X’ be the set of all

w € W such that w has minimal length in the coset wW'’. Let C be a left cell of
W'. Then X'.C is a union of left cells.

Let's take the example of G, with

W' = (s1,s) and parameters :

a > b b
e—=o 0
S1 S> S3
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Interest Induction

Theorem. GECK (~ 2003)

Let W' C W be a standard parabolic subgroup, and let X’ be the set of all

w € W such that w has minimal length in the coset wW'’. Let C be a left cell of
W'. Then X".C is a union of left cells.

Let's take the example of G, with

W' = (s1,s) and parameters :

a > b b
e—=o 0
51 S> S3

Now, X'Ag has the following shape.
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Theorem. GECK (~ 2003)

Let W' C W be a standard parabolic subgroup, and let X’ be the set of all
w € W such that w has minimal length in the coset wW'’. Let C be a left cell of
W'. Then X'.C is a union of left cells.

Let's take the example of G, with

W' = (s1,s) and parameters :

a > b b
e—=o 0
S1 S> S3

Now, X'Ag has the following shape.

The decomposition into left cells is as

follows.
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Theorem. GECK (~ 2003)

Let W' C W be a standard parabolic subgroup, and let X’ be the set of all
w € W such that w has minimal length in the coset wW'’. Let C be a left cell of
W'. Then X'.C is a union of left cells.

Let's take the example of G, with

W' = (s1,s) and parameters :

a > b b
e—=o 0
51 S> S3

Now, X'Ag has the following shape.

The decomposition into left cells is as

follows.

Thus the theorem gives:
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Geometric presentation of cg

The lowest two-sided cell
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The lowest two-sided cell Geometric presentation of cg

S S S3 ' S1 S

ARA

VA

v

For J C S, we denote by W, the group

A

OTINALERALT N

g

NA

/

A
<7

AL
0

7
NALKT
A
TN
NALT

\7

VA
NALT
N

N
7

generated by J and by w; the longest
element of W;. We look at the subsets

NALY

/N
<7/
X/

/X
N

CIRA
}YKVA

7
A

/X
N/

J of S such that the group generated by

NA
NAY

7
A

7NN
<7

A

NS
A

LN

/X
LN
7 NV

J is isomorphic to Wy. Here, we find

NALY
7
A/

7
A

A\
A

7

/X
a\

AV

A

AN
/X

just J = {s1,5} and w; = 515515515
Then:
o={weWw=zw,7Z, z,22 € W}

X7
A
LN

NAY
L7

NA

Ny
v

N~

AN
NN

U
AN

N
NAY

N
EUNAAS I AVAUNN

I
A
<]
A

\
S

£X
a\

S
URRA

Moreover, let My = {z € W|sw,z ¢ ¢, for all s € J}. We have:

7

v
N~

= U {w e Wlw = x.w,.z, x € W}
zeEM,
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The lowest two-sided cell Main result

We have:
Theorem. G. (~ 2007)

Let z € M,. The set {w € W|w = x.w,.z, x € W} is a union of
left cells.

This implies that:
@ ¢ contains exactly |Wo| left cells.

o For z € My, the set {w € W|w = x.w,.z, x € W} is a left cell.
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ég Decomposition in left cells

a b b
e——e @ ,foralla>3b
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