Kazhdan-Lusztig cells in affine Weyl groups (with unequal parameters)

Jérémie Guilhot

University of Aberdeen, University of Lyon1

January 2008

Let V be an euclidean space of dim r, with inner product $\langle ., . \rangle$. A root system Φ is a set of non-zero vectors that satisfy the following:

• Φ spans V.

- For $\alpha \in \Phi$, we have $\mathbb{R} \alpha \cap \Phi = \{ \alpha, -\alpha \}$.
- For α ∈ Φ, let σ_α the orthogonal reflection with fixed point set the hyperplane perpendicular to α. We have σ_α(Φ) = Φ.
- For any $\alpha, \beta \in \phi$ we have $\frac{2\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

Let Φ be an "irreducible" root system. The Weyl group of Φ is the group generated by $\{\sigma_{\alpha} | \alpha \in \Phi\}$. It has a presentation of the form:

$$\{\sigma_{lpha_1},...,\sigma_{lpha_r}|(\sigma_{lpha_i}\sigma_{lpha_j})^{m_{i,j}}=1,\;\sigma_{lpha_i}^2=1\}$$

where $m_{i,j} \in \{2, 3, 4, 6\}$ for $i \neq j$.

Let Q be the lattice generated by Φ :

$$\{n_1\alpha_1+...+n_k\alpha_k \mid n_i\in\mathbb{Z}, \alpha_i\in\Phi\}$$

The Weyl group W_0 of Φ acts on Q.

Thus we can form the semi-direct product:

 $W := W_0 \ltimes Q$

This is the affine Weyl group associated to Φ .

- V: Euclidean space of dimension r.
- Φ : Irreducible root system of *V*.

For any $\alpha \in \Phi$ and $k \in \mathbb{Z}$ let :

$$H_{\alpha,k} = \{ x \in V \mid \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} = k \}$$

The Weyl group W_0 of Φ is generated the orthogonal reflections with fixed point set $H_{\alpha,0}$. We have:

$$W_0 = \langle \sigma_1, \sigma_2 | (\sigma_1 \sigma_2)^6 = 1, \sigma_i^2 = 1
angle$$

- V: Euclidean space of dimension r.
- Φ : Irreducible root system of V.

For any
$$\alpha \in \Phi$$
 and $k \in \mathbb{Z}$ let :

$$H_{\alpha,k} = \{ x \in V \mid \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} = k \}$$

The Weyl group W_0 of Φ is generated the orthogonal reflections with fixed point set $H_{\alpha,0}$. We have:

$$W_0 = \langle \sigma_1, \sigma_2 | \ (\sigma_1 \sigma_2)^6 = 1, \sigma_i^2 = 1
angle$$

The affine Weyl group W of Φ is generated by all the orthogonal reflections $\sigma_{H_{\alpha,k}}$ with fixed point set $H_{\alpha,k}$.

Here we have:

$$W = \langle \sigma_1, \sigma_2, \sigma_3 | (\sigma_1 \sigma_2)^6 = 1, (\sigma_2 \sigma_3)^3 = 1, (\sigma_1 \sigma_3)^2 = 1, \sigma_i^2 = 1 \rangle$$

Let W be an affine Weyl group with generating set S.

For $w \in W$, let $\ell(w)$ be the smallest integer $n \in \mathbb{N}$ such that

 $w = s_1...s_n$ with $s_i \in S$. The function ℓ is called the length function.

Let L be a weight function, that is a function $L: W \to \mathbb{N}$ such that :

$$L(ww') = L(w) + L(w')$$
 whenever $\ell(ww') = \ell(w) + \ell(w')$
 $L(w) > 0$ unless $w = 1$

The case $L = \ell$ is known as the equal parameter case. From the above relations, one can see that:

- A weight function L is completely determined by its values on S
- Let s, t ∈ S, if the order of (st) is odd, then we must have
 L(s) = L(t).

Let (W, S) be an affine Weyl group and L a weight function on W. Let \mathcal{H} be the associated Iwahori-Hecke algebra over $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$. Standard basis $\{T_w \mid w \in W\}$ with multiplication

$$T_{s}T_{w} = \begin{cases} T_{sw} & \text{if } \ell(sw) > \ell(w) \\ T_{sw} + (v^{L(s)} - v^{-L(s)})T_{w} & \text{if } \ell(sw) < \ell(w) \end{cases}$$

One can see that $T_s^{-1} = T_s - (v^{L(s)} - v^{-L(s)})T_1$.

There is a unique ring involution $\mathcal{A} \to \mathcal{A}$, $a \mapsto \overline{a}$, such that $\overline{v} = v^{-1}$. We can extend it to a ring involution $\mathcal{H} \to \mathcal{H}$, $h \mapsto \overline{h}$, such that:

$$\overline{\sum_{w\in W}a_w\,T_w}=\sum_{w\in W}ar{a}_w\,T_{w^{-1}}^{-1}\qquad(a_w\in\mathcal{A}).$$

Theorem. KAZHDAN-LUSZTIG (\sim 1979) LUSZTIG (\sim 1983)

For any $w \in W$, there exists a unique $C_w \in \mathcal{H}$ such that:

•
$$\overline{C_w} = C_w$$

•
$$C_w = T_w + \sum_{\ell(y) < \ell(w)} P_{y,w} T_y$$
 where $P_{y,w} \in v^{-1}\mathbb{Z}[v^{-1}]$

Furthermore, the C_w 's form a basis of \mathcal{H} known as the Kazhdan-Lusztig basis.

For example, we have :

$$C_1 = T_1$$
 and $C_s = T_s + v^{-L(s)}T_1$

Pre-order relation \leq_L defined by :

$$\mathcal{H}C_w \subset \sum_{y \leq_L w} \mathcal{A}C_y$$

Let $s \in S$ and $w \in W$ such that $\ell(w) < \ell(sw)$, then:

$$C_s C_w = C_{sw} + \dots$$
 so we have $sw \leq_L w$

Corresponding equivalence relation \sim_L .

The equivalence classes are called left cells.

Similarly we define \leq_R , \sim_R and right cells.

We say that $y \leq_{LR} w$ if there exists a sequence:

$$y = y_0, y_1, ..., y_n = w$$

such that for any $0 \le i \le n-1$ we have:

$$y_i \leq_L y_{i+1}$$
 or $y_i \leq_R y_{i+1}$

We get the equivalence relation \sim_{LR} and the two-sided cells.

Structure constants: Write

$$C_x C_y = \sum_{z \in W} h_{x,y,z} C_z$$
 where $h_{x,y,z} \in \mathcal{A}$.

G. LUSZTIG (1985): Define function $a: W \to \mathbb{N}_0$ by $a(z) = \min\{i \ge 0 \mid v^{-i}h_{x,y,z} \in \mathbb{Z}[v^{-1}] \; \forall x, y \in W\}.$

If W is finite, then this function is clearly well defined. In the affine case, it is not clear that this minimum exists! But, it does... Let $\tilde{\nu} = L(w_0)$ where w_0 is the longest element of the Weyl group W_0 associated to W. We have :

$$v^{-\tilde{\nu}}h_{x,y,z} \in \mathbb{Z}[v^{-1}]$$
 for all $x, y, z \in W$.

In other words, $a(z) \leq \tilde{\nu}$ for all $z \in W$.

The pre-order \leq_{LR} induces a partial order on the two-sided cells.

Theorem.

Let

$$c_0 = \{ w \in W \mid a(w) = \tilde{\nu} \}.$$

Then c_0 is a two-sided cell. Moreover, c_0 is the lowest two-sided cell.

Why lowest? Lusztig conjectures:

if $z \leq_{LR} z'$ then $a(z') \leq a(z)$.

Let $z' \in c_0$. Let $z \leq_{LR} z'$. We have:

 $ilde{
u} = a(z') \leq a(z) \leq ilde{
u}$

which implies $a(z) = \tilde{\nu}$ and $z \in c_0$.

イロト (得) (注) (注) (注) シスペ

- Shi (\sim 1987): c_0 is a two-sided cell (equal parameter case).
- Shi (\sim 1988): c_0 contains $|W_0|$ left cells (equal parameter).
- Bremke and Xi (\sim 1996): c_0 is a two-sided cell (unequal parameter).
- Bremke (\sim 1996): c_0 contains at most $|W_0|$ left cells.
- Bremke (~ 1996): c₀ contains |W₀| left cells when the parameters are coming from a graph automorphism

When we know the exact number of left cells in c_0 , it involves some deep properties of Kazhdan-Lusztig polynomials, such as positivity of the coefficient. Problem: Not true in general!

Example: \tilde{G}_2

- V: Euclidean space of dimension r.
- Φ : Irreducible root system of V.

For any $\alpha \in \Phi$ and $n \in \mathbb{Z}$ let :

$$H_{\alpha,k} = \{ x \in V \mid \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} = k \}$$

An alcove is a connected component of :

 $V = \bigcup H_{\alpha,k}$

Denote by X the set of alcoves.

Let
$$\Omega = \langle \sigma_{H_{\alpha,k}}, k \in \mathbb{Z}, \alpha \in \Phi \rangle$$

 Ω acts simply transitively on X.

Let A_0 be the fundamental alcove :

$$A_0 = \{ x \in V \mid 0 < \frac{2\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} < 1 \}$$

for all $\alpha \in \Phi^+$.

A face is a co-dimension 1 facet of an alcove. Examples : The faces of A_0 .

メロト メポト メヨト メヨト

A face is a co-dimension 1 facet of an alcove.

Examples : The faces of A_0 .

We look at the orbits of the faces under $\boldsymbol{\Omega}.$

Let S be the set of orbits.

Here we have 3 orbits, namely :

 $s_1 =$ green $s_2 =$ red $s_3 =$ blue A face is a co-dimension 1 facet of an alcove.

Examples : The faces of A_0 .

We look at the orbits of the faces under $\boldsymbol{\Omega}.$

Let S be the set of orbits.

Here we have 3 orbits, namely :

 $s_1 =$ green $s_2 =$ red $s_3 =$ blue

For $s \in S$, we define an involution $A \mapsto sA$ of X, where sA is the unique alcove which shares with A a face of type s. The set of such map is a group of permutation of X which is a Coxeter group W. We have $W \simeq \Omega$.

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. $s_{3}A_{0}$,

Jérémie Guilhot (UoA, UCBL1)

| 金 連 ト | 4 三 ト

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$.

 $s_{3}A_{0}$,

| 金 連 ト | 4 三 ト

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$.

 s_3A_0 , $s_2s_3A_0$,

| 金澤 ト | 金澤 ト

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$.

 s_3A_0 , $s_2s_3A_0$,

| 金澤 ト | 金澤 ト

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. s_3A_0 , $s_2s_3A_0$, $s_1s_2s_3A_0$,

▲ 글 ▶ | ▲ 글 ▶

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. s_3A_0 , $s_2s_3A_0$, $s_1s_2s_3A_0$,

▲ 글 ▶ | ▲ 글 ▶

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. s_3A_0 , $s_2s_3A_0$, $s_1s_2s_3A_0$, $s_2 s_1 s_2 s_3 A_0$,

| 金澤 ト | 金澤 ト

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. s_3A_0 , $s_2s_3A_0$, $s_1s_2s_3A_0$, $s_2 s_1 s_2 s_3 A_0$,

| 金澤 ト | 金澤 ト

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$, $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$, $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$, $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,

• We have
$$(s_2 s_1)^6 = e$$
.
Example

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$, $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,

• We have
$$(s_2 s_1)^6 = e$$
.

• We have
$$(s_2 s_3)^3 = e$$
.

< 注♪ < 注♪

Example

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $s_3 s_2 s_1 s_2 s_3 A_0$. $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$, $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,

• We have
$$(s_2 s_1)^6 = e$$
.

• We have
$$(s_2 s_3)^3 = e$$
.

• We have
$$(s_1 s_3)^2 = e$$
.

< 注♪ < 注♪

The action of W on X commutes with the action of Ω . We identify $w \in W$ with the alcove wA_0 .

Example:

• alcove $5_3 5_2 5_1 5_2 5_3 A_0$. $s_3 A_0$, $s_2 s_3 A_0$, $s_1 s_2 s_3 A_0$, $s_2 s_1 s_2 s_3 A_0$, $s_3 s_2 s_1 s_2 s_3 A_0$,

• We have
$$(s_2 s_1)^6 = e$$
.

• We have
$$(s_2 s_3)^3 = e$$
.

• We have
$$(s_1 s_3)^2 = e$$
.

Let $s, t \in S$. If a hyperplane H supports a face of type s and a face of type t then s and t are conjugate in W. Therefore we can associate to any hyperplane H a weight $c_H = L(s)$ if H supports a face of type s.

Let $x, y \in W$. Consider yA_0 and xyA_0

Let $x, y \in W$. Consider yA_0 and xyA_0 First consider the hyperplanes which separate A_0 and yA_0 ;

Let $x, y \in W$. Consider yA_0 and xyA_0 First consider the hyperplanes which separate A_0 and yA_0 ; next, the hyperplanes which separate yA_0 and xyA_0 ;

Let $x, y \in W$. Consider yA_0 and xyA_0 First consider the hyperplanes which separate A_0 and yA_0 ; next, the hyperplanes which separate yA_0 and xyA_0 ;

finally, let $H_{x,y}$ be the intersection.

Let $x, y \in W$. Consider yA_0 and xyA_0 First consider the hyperplanes which separate A_0 and yA_0 ; next, the hyperplanes which separate yA_0 and xyA_0 ; finally, let $H_{x,y}$ be the intersection. Let $c_{x,y}$ be... On this example, we have $c_{x,y} = L(s_2) + L(s_1)$.

Let $x, y \in W$. Consider yA_0 and xyA_0 First consider the hyperplanes which separate A_0 and yA_0 ; next, the hyperplanes which separate yA_0 and xyA_0 ; finally, let $H_{x,y}$ be the intersection. Let $c_{x,y}$ be... On this example, we have $c_{x,y} = L(s_2) + L(s_1)$.

Proposition. G. (\sim 2006)

We have:

$$T_x T_y = \sum_{z \in W} f_{x,y,z} T_z$$
 where $\deg(f_{x,y,z}) \leq c_{x,y}$.

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all

 $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of

W'. Then $X' \mathcal{C}$ is a union of left cells.

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all

 $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then X'.C is a union of left cells.

Let's take the example of \tilde{G}_2 with $W' = \langle s_1, s_2 \rangle$ and parameters :

- < E ▶ < E ▶ = ∽ Q @

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all

 $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then X'.C is a union of left cells.

Let's take the example of $ilde{G}_2$ with $W'=\langle s_1,s_2
angle$ and parameters :

Now, $X'A_0$ has the following shape.

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all

 $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then X'.C is a union of left cells.

Let's take the example of \tilde{G}_2 with $W' = \langle s_1, s_2 \rangle$ and parameters :

Now, $X'A_0$ has the following shape. The decomposition into left cells is as follows.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

Let $W' \subseteq W$ be a standard parabolic subgroup, and let X' be the set of all $w \in W$ such that w has minimal length in the coset wW'. Let C be a left cell of W'. Then $X' \cdot C$ is a union of left cells.

Let's take the example of \tilde{G}_2 with $W' = \langle s_1, s_2 \rangle$ and parameters :

Now, $X'A_0$ has the following shape. The decomposition into left cells is as follows.

Thus the theorem gives:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

For $J \subset S$, we denote by W_J the group generated by J and by w_J the longest element of W_J . We look at the subsets J of S such that the group generated by J is isomorphic to W_0 . Here, we find just $J = \{s_1, s_2\}$ and $w_J = s_1 s_2 s_1 s_2 s_1 s_2$ Then:

$$c_0 = \{w \in W | w = z.w_J.z', z, z' \in W\}$$

For $J \subset S$, we denote by W_J the group generated by J and by w_J the longest element of W_J . We look at the subsets J of S such that the group generated by J is isomorphic to W_0 . Here, we find just $J = \{s_1, s_2\}$ and $w_J = s_1 s_2 s_1 s_2 s_1 s_2$ Then:

$$c_0 = \{w \in W | w = z.w_J.z', z, z' \in W\}$$

$$W_0 :=$$

For $J \subset S$, we denote by W_J the group generated by J and by w_J the longest element of W_J . We look at the subsets J of S such that the group generated by J is isomorphic to W_0 . Here, we find just $J = \{s_1, s_2\}$ and $w_J = s_1 s_2 s_1 s_2 s_1 s_2$ Then:

$$c_0 = \{w \in W | w = z.w_J.z', z, z' \in W\}$$

Moreover, let $M_J = \{z \in W | sw_J z \notin c_0, \text{ for all } s \in J\}$. We have:

$$c_0 = \bigcup_{z \in M_J} \{ w \in W | w = x.w_J.z, x \in W \}$$

We have:

Theorem. G. (~ 2007)

Let $z \in M_J$. The set $\{w \in W | w = x.w_J.z, x \in W\}$ is a union of left cells.

This implies that:

- c_0 contains exactly $|W_0|$ left cells.
- For $z \in M_J$, the set $\{w \in W | w = x.w_J.z, x \in W\}$ is a left cell.

Ĝ2

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@