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Introduction

This thesis is concerned with the theory of Hecke algebras, whose origin lies in a pa-

per by Iwahori in 1964; see [23]. These algebras naturally arise in the representation

theory of reductive algebraic groups over finite or p-adic fields, as endomorphism al-

gebras of certain induced representations. The overall philosophy is that a significant

amount of the representation theory of the group is controlled by the representation

theory of those endomorphism algebras.

A standard situation can be described as follows. Let G be a finite group with a

BN -pair with associated Weyl group W . Let H be the endomorphism algebra of

the permutation representation of G on the cosets of B. By standard results, the

irreducible representations of H are in bijection with the irreducible representations

of G which admit non-zero vectors fixed by B. Now H has a standard basis indexed

by the elements of W , usually denoted by {Tw|w ∈ W}. The multiplication can be

described in purely combinatorial terms. Let S be a set of Coxeter generators of W .

For any w ∈ W , we have Tw = Ts1...Tsl
if w = s1...sl (si ∈ S) is a reduced expression

of w. Furthermore, we have T 2
s = qsT1+(qs−1)Ts for any s ∈ S, where qs = |BsB/B|.

Now assume that G is the set of Fq-rational points of a connected reductive algebraic

defined over Fq. Then we have qs = qcs where the numbers cs are positive integers;

they are called the parameters of H. They extend to a weight function L : W → Z

in the sense of Lusztig [38], where L(s) = cs for all s ∈ S. Then it turns out that

the above rules for the multiplication can be used to give an abstract definition of

H without reference to the underlying group G, namely by explicit generators and

relations in terms of W and the weight function L.

More generally, one can consider endomorphism algebras of representations obtained

by Harish-Chandra induction of cuspidal representations of Levi subgroups of G. In

another direction, one can consider p-adic groups instead of finite groups, in which

case we obtain Hecke algebras associated with affine Weyl groups. Thus, it is an

interesting and important problem to study the representation theory of abstract

“Iwahori-Hecke algebras” associated with a finite or an affine Weyl group W and a

weight function L. One should note, however, that not all possible weight functions

actually arise “in nature”, i.e., in the framework of representations of reductive groups
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6 INTRODUCTION

over finite or p-adic fields. For example, consider the finite Weyl group W of type G2

and the corresponding affine Weyl groups G̃2, with diagrams

G2 : e e

G̃2 : e e e

The only weight functions on G2 arising “in nature” are those with the following values

on the simple reflections (1, 1), (3, 1), (9, 1); see [26, Table II, p35].

The only weight functions on G̃2 arising “in nature” are those with the following val-

ues on the simple reflections (9, 1, 1), (3, 1, 1), (1, 1, 1), (1, 3, 3); see [37, 7.9, 7.23,

7.36, 8.14].

A major breakthrough in the study of representations of Hecke algebras with equal

parameters was achieved in the celebrated paper “Representation of Coxeter groups

and Hecke algebras” by Kazhdan and Lusztig (see [24]) where they first introduced the

notion of left, right and two-sided cells of an arbitrary Coxeter group. The definition

involves a new, canonical basis of the Iwahori-Hecke algebra H. In a following paper

([25]), they showed that the Kazhdan-Lusztig basis of a Hecke algebra associated to

a Weyl group has a geometric interpretation in terms of intersection cohomology of

algebraic varieties. This connection has been of crucial importance to solve a number

of problems in different aspects of representation theory; see [36].

From then on, cells have been intensively studied. Not only they give rise to rep-

resentations of the Coxeter group W but also of the corresponding Iwahori-Hecke

algebra H. In type A, it turns out that the representations afforded by left cells

give all the irreducible representations of H. This is not true in general, however.

In the general case of a Weyl group W , we say that two irreducible representations

of W are linked if they both appear as constituents in a representation afforded by

a left cell. By taking the transitive closure of this relation, we obtain a partition of

the irreducible representations of W into so-called “families”. These are in a natural

bijection with the two-sided cells of W and play a crucial role in the classification

of unipotent representations of reductive groups over finite fields; see Lusztig [29].

The decomposition for Weyl groups of the left cell representations into irreducible

representations is completely known, see [32].

The cell theory of affine Weyl groups in the equal parameter case was first studied

by Lusztig. In a series of papers, he studied the representations of the corresponding

Hecke algebra afforded by cells (see [30, 33, 34, 35]). In particular, he described
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all the cells of the affine Weyl groups of ranks less than 2. The decomposition into

cells have been explicitly described for type Ãr, r ∈ N (see [31, 40]), ranks 2, 3 (see

[2, 14, 30]) and types B̃4, C̃4 and D̃4 (see [10, 43, 44]).

A special feature of affine Weyl groups is that there is a distinguished two-sided cell,

the so called “lowest two-sided cell”, which contains, roughly speaking, most of the

elements of the group. This cell has been thoroughly studied by Shi ([41, 42]). In

particular, he described the left cells lying in the lowest two-sided cell.

In 1983, Lusztig [28] generalized the definition of cells in the case where the simple

reflections of the Coxeter groups are given different weights. This generalization of

cells give rise to representations of Iwahori-Hecke algebras with unequal parameters.

Many of the problems that have been studied in the equal parameter case have nat-

ural extensions to the general case of unequal parameters. However, the knowledge

in that case in nowhere near the one in the equal parameter case. The main reason

is that a crucial ingredient in the proofs of the above-mentioned results in the equal

parameter case is the geometric interpretation of the Kazhdan-Lusztig basis and the

resulting “positivity properties”, such as the positivity of the coefficient of the struc-

ture constants with respect to the Kazhdan-Lusztig basis. Simple examples show that

these “positivity properties” definitely do no longer hold in the case of unequal pa-

rameters. Hence, the need to develop new methods for dealing with Kazhdan-Lusztig

cells without reference to those “positivity properties”. Ideally, these methods should

work uniformly for all choices of parameters.

A major step in this direction is achieved by Lusztig’s formulation of 15 conjectural

properties P1–P15 in [38, Chap. 14], which capture essential properties of cells

for all choices of parameters. These properties can be used as an axiomatic basis

for studying the structure and representations of Hecke algebras. See, for example,

[38, Chap. 22] where Lusztig develops the representation theory of Hecke algebras

associated with finite Weyl groups on the basis of P1–P15. These conjectures are

known to hold for finite and affine Weyl groups in the equal parameter case, thanks

to the above-mentioned geometric interpretation. As far as unequal parameters are

concerned, P1–P15 are only known to hold in some special situation, including:

• type Bn in the “asymptotic case”, see [7, 18];

• infinite dihedral type, see [38, Chap. 17].

However, a general proof of P1–P15 seems far out of reach at present.

In this context, our thesis forms a contribution to the programme of developping

methods for dealing with cells which a) work uniformly for all choices of parameters
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and b) do not refer to a geometric interpretation. More precisely, we are mostly

concerned with affine Weyl groups; the starting point is a thorough study of the cells

in the affine Weyl group of type G2 with unequal parameters. If P1–P15 were known

to hold then, for example, we could deduce that there are only finitely many left cells in

each case. One of the results of this thesis shows that this conclusion is true, without

using P1–P15. We also show that, in fact, there are only finitely many partitions

of G̃2 into left cells. The main ingredients for the proof of these results are, on the

one hand, the invariance of the Kazhdan-Lusztig polynomials under “long enough”

translations in an affine Weyl group and, on the other hand, explicit computations

using GAP [39] and COXETER [11]. We will also determine the exact decomposition

of G̃2 into left cells for a certain class of weight functions.

The main theoretical results of this thesis concern the theory of the “lowest two-sided

cell”, which has been described by Xi ([46]) and Bremke ([9]) in the general case of

unequal parameters. As mentioned before, the decomposition of this cell into left cells

is known in the equal parameter case. It has also been determined is some specific

cases of unequal parameters which still admit a geometric interpretation; see [9]. Our

main result describes the decomposition of this lowest two-sided cell into left cells

thus completing the work begun by Xi and Bremke. The proof uniformly works for

all choices of parameters.

We now give an outline of the content of this thesis.

In Chapter 1, we present the theory of Coxeter groups. We give a classification of the

Weyl groups and the affine Weyl groups.

In Chapter 2, we present the Kazhdan-Lusztig theory. In particular, we define left,

right and two-sided cells and give some examples.

In Chapter 3, we introduce the geometric presentation in term of alcoves. Since it

plays a key role in many results of this thesis, we give a number of examples. In the

final section, we use this presentation to determine an upper bound on the degrees of

the structure constants with respect to the standard basis.

In Chapter 4, we introduce the original setting for cells with unequal parameter, as

defined in [28], where instead of a weight function, Lusztig defined the cells with

respect to an abelian group and a total order on it. Then we show that this setting

can be used to determine whether two weight functions give rise to essentially the

same data on a given finite subset of an affine Weyl group. The main result of this

chapter is the invariance of the Kazhdan-Lusztig polynomials of an affine Weyl group
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under “long enough” translations. We then apply both these results to G̃2 to obtain

some finiteness results about cells in this group.

In Chapter 5, we generalized an argument due to Geck ([15]) on the induction of

Kazhdan-Lusztig cells (see also [21], where this idea was first developed). This result

will be our main tool to “separate” cells. We give a first application where we show

that under some specific condition on the parameters, the cells in a certain parabolic

subgroup are still cells in the whole group.

In Chapter 6, we study the lowest two-sided cell of an affine Weyl group in the general

case of unequal parameters. Using the generalized induction of Kazhdan-Lusztig cells,

we determine its decomposition into left cells.

Finally, in Chapter 7, we give the decomposition of the affine Weyl group G̃2 into

left and two-sided cells for a whole class of weight functions. We also determine

the partial left (resp. two-sided) order on the left (resp. two-sided) cells. Finally,

we briefly discuss the “semicontinuity properties” of Kazhdan-Lusztig cells, recently

conjectured by Bonnafé. We give some “conjectural” decompositions of G̃2 into left

cells for any weight functions, and show that it agrees with Bonnafé’s conjecture.
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CHAPTER 1

Reflection groups and Coxeter groups

We start this chapter with the study of finite reflection groups in a real Euclidean

space. Each reflection determines a reflecting hyperplane (the set of fixed points)

and a vector orthogonal to it (the “root”). This leads to the theory of root systems

which will allow us to find simple presentations of finite reflection groups in terms of

generators and relations; see Section 1.1.1. We will focus on finite reflection groups

which arise naturally in Lie Theory, namely the “Weyl groups”. Then, we will describe

a class of infinite reflection groups, generated by affine reflections (the so-called “affine

Weyl groups”) which are closely related to Weyl groups; see Section 1.1.3. Such groups

admit a simple presentation, similar to those of Weyl groups.

Motivated by the examples of finite reflection groups and affine Weyl groups, we

will study a more general type of group, the Coxeter groups; see Section 1.2. Such

groups are defined by a set of generators of order 2 subject only to relations which

give the order of any product of two generators. This presentation leads to many

combinatorial properties such as the Bruhat order; see Section 1.2.5.

The basic references for this chapter are [8],[22] and [38]

1.1. Reflection groups

Let V be a real Euclidean space with scalar product denoted by 〈., .〉. We are inter-

ested in the study of reflection groups. First of all we should clarify what we mean by

reflection. A reflection is a linear transformation on V which sends a non-zero vector

α ∈ V to −α and fixes pointwise the hyperplane orthogonal to α. We denote such a

reflection by σα and by Hα its set of fixed points. Let x ∈ V , we have

σα(x) = x−
2〈x, α〉

〈α, α〉
α.

1.1.1. Root system. A root system Φ is a finite set of non-zero vectors in V

such that

(R1) for all α ∈ Φ we have Φ ∩Rα = {α,−α},

(R2) for all α ∈ Φ, we have σαΦ = Φ.

13



14 1. REFLECTION GROUPS AND COXETER GROUPS

The rank of Φ is the dimension of the vector space spanned by Φ. A root system is

said to be “reducible” if there exist two orthogonal subspaces V1, V2 of V and two root

systems Φ1 (resp. Φ2) of V1 (resp. V2) such that Φ = Φ1 ∪ Φ2.

We denote by W the group generated by the reflections σα, α ∈ Φ.

Remark 1.1.1. The interest of this definition is that any finite reflection group can

be realized in this way. Conversely, any reflection group arising from a root system

is finite.

We fix a root system Φ in V . A set of positive roots (there can be many choices) is

a subset Φ+ of Φ such that

(1) for each root α exactly one of the roots α,−α is contained in Φ+,

(2) for any α, β ∈ Φ+ such that α + β ∈ Φ, we have α + β ∈ Φ+.

Note that such a set exists. A simple system is a subset ∆ ⊂ Φ such that

(1) ∆ is a basis of the R-vector space spanned by Φ.

(2) any α ∈ Φ is a Z-linear combination of elements of ∆ with coefficients all of

the same sign.

Note that simple systems exist and they are all conjugate in W . The elements of ∆

are called simple roots.

Remark 1.1.2. A set of positive roots contains a unique simple system. Conversely,

every simple system is contained in a unique set of positive roots.

Fix a simple system ∆. The reflection group W associated to Φ is in fact generated

by the set {σα, α ∈ ∆}. Let α, β ∈ ∆, we denote by mα,β the order of σασβ in W .

It can be shown that a group W arising from a root system has a presentation of the

form

〈σα, α ∈ ∆ | (σασβ)mα,β = 1, σ2
α = 1, α, β ∈ ∆〉.

Example 1.1.3. Let n ∈ N. Let V be the Euclidean plane. Then, the set

Φ := {αi :=
(

cos(
2iπ

n
), sin(

2iπ

n
)
)

| 0 ≤ i ≤ m− 1}

is certainly a root system (of rank 2).

In Figure 1, we consider the case n = 8. The plain arrows represent a choice of

positive roots and the thick arrows represent a simple system.
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Figure 1. Root system of the Dihedral group of order 8

The reflection group associated to Φ is the Dihedral group with 8 elements. It is

generated by σα0 and σα3 and has presentation

D8 := 〈σα0 , σα3 | σ
2
α0

= σ2
α3

= (σα0σα3)
4 = 1〉.

1.1.2. Weyl group. We say that a root system Φ is crystallographic if it satisfies

the additional requirement

(R3) for all α, β ∈ Φ, we have 2〈α,β〉
〈α,α〉

∈ Z.

The groups generated by crystallographic root systems are known as Weyl groups.

Let α, β ∈ Φ, then (R3) forces the angle between the hyperplanes Hα and Hβ to be

in {π
6
, π

4
, π

3
, π

2
}. Since the composition of the reflections σα and σβ is a rotation of

angle twice the angle between Hα and Hβ, we see that if Φ is crystallographic then

mα,β ∈ {2, 3, 4, 6}.

Example 1.1.4. On Figure 2, we show all the possible crystallographic root systems

of rank two. Note that the root system A1 × A1 is reducible and the root systems

A2, B2 and G2 are irreducible.

Remark 1.1.5. We shall not give details of the classification of irreducible crystallo-

graphic root systems. It can be found in [8]. One should only know that if Φ is an

irreducible crystallographic root system, then at most two root lengths are possible.

Moreover, there exist two root systems Bn and Cn (n ≥ 3) which differ only by the

length of their roots. They give rise to the same Weyl group. If n = 2, then the roots

system B2 and C2 are the same.
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Root system A1 × A1

π
3

Root system A2

π
4

Root system B2

π
6

Root system G2

Figure 2. Crystallographic Root systems of rank 2

1.1.3. Affine Weyl group. Let Φ be a crystallographic root system with Weyl

group W . We assume that Φ spans V . Let Q be the root lattice

Q := {n1α1 + . . . + nkαk | ni ∈ Z, αi ∈ Φ}.

The Weyl group W acts on Q (see (R2)), thus we can form the semi-direct product

W̃ := W ⋉ Q.

The group W̃ is called the affine Weyl group of Φ.

We give a geometric interpretation of W̃ . Basically, instead of considering only linear

transformations on V , we also consider affine transformations. Let α ∈ Φ. We denote

by α̌ the coroot of α defined by α̌ = 2〈α,.〉
〈α,α〉

∈ V ∗ (where V ∗ is the dual space of V ).

One can identify α̌ ∈ V ∗ with 2α
〈α,α〉

∈ V . Then the set Φ̌ = {α̌ | α ∈ Φ} (called the

dual root system of Φ) is a crystallographic root system of V with Weyl group W .

For any α ∈ Φ and k ∈ Z let

Hα,k = {x ∈ V | α̌(x) =
2〈α, x〉

〈α, α〉
= k}.
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The group W̃ is the group generated by all the reflections with fixed point sets the

hyperplanes Hα,k. We denote such a reflection by σα,k. Note that W is generated by

σα,0 for α ∈ Φ. Assume that Φ is irreducible and let n be the rank of Φ, then it can

be shown that W̃ is generated by n + 1 reflections and has a presentation similar to

the presentation of the Weyl group W .

Remark 1.1.6. The root systems Bn and Cn introduced in Remark 1.1.5 are dual.

They give rise to the same Weyl group but not the same affine Weyl group.

Example 1.1.7. In the following figure, we give the example of G̃2, the affine Weyl

group associated to the root system G2. The thick arrows represent a choice of positive

roots. One can check that G̃2 has the following presentation

〈σ1, σ2, σ3 | σ
2
1 = σ2

2 = σ2
3 = 1, (σ1σ2)

6 = (σ2σ3)
3 = (σ1σ3)

2 = 1〉.

σ1σ2

σ3
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1.2. Coxeter groups

A Coxeter system (W, S) consists of a group W and a finite set of generators S ⊂W

subject (only) to the relations

(ss′)ms,s′ = 1

where ms,s = 1 and ms,s′ = ms′,s ≥ 2 for s 6= s′. As we have seen in the previous

section, finite reflection groups and affine Weyl groups are Coxeter systems. That is

why the elements of S are often called simple reflections. We will sometime refer to

(W, S) as a Coxeter group.

In this section, (W, S) denotes a Coxeter system.

1.2.1. Coxeter graph. A convenient way to encode the informations in the

presentation of W is in the so-called “Coxeter graph”. The vertices of the Coxeter

graph (say Γ) are in one to one correspondence with the set of generators S; if ms,s′ = 2

(i.e. s and s′ commute) we do not join the corresponding vertices. We join the other

vertices as follows

- If ms,s′ = 3, we join the vertices by 1 edge;

- If ms,s′ = 4, we join the vertices by 2 edges;

- If ms,s′ = 6, we join the vertices by 3 edges;

- In any other cases we label the edge with ms,s′.

Example 1.2.1. The Dihedral group of order 8 (see Example 1.1.3) has the following

graph
e e

1.2.2. Standard parabolic subgroup and irreducible Coxeter group. Let

I be a subset of S. Then one can consider the group generated by the generators

s ∈ I. It is called a standard parabolic subgroup and we denote it by WI .

Proposition 1.2.2. Let (W, S) be a Coxeter system with graph Γ. Denote by Γi

(1 ≤ i ≤ n) the connected components of Γ and by Si the corresponding subset of S.

Then W is the direct product of the parabolic subgroups WSi
, for 1 ≤ i ≤ n.

When the graph of (W, S) is connected, we say that (W, S) is irreducible. The above

proposition shows that the study of Coxeter groups can be reduced to the case where

W is irreducible.

Remark 1.2.3. It is readily checked that if Φ is an irreducible root system, then the

associated reflection group W have a connected graph and hence is irreducible.
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1.2.3. Geometric representation of W . As noticed before, finite reflection

groups are Coxeter groups. Of course not all Coxeter groups will be reflection groups

(in the sense of Section 1.1), however, if we redefine a reflection to be merely a linear

transformation which fixes pointwise an hyperplane and send some non-zero vector

to its opposite, we obtain a reasonable substitute...

Let (W, S) be a Coxeter system. Let V be a vector space with basis {es, s ∈ S}. Let

B be the bilinear form on V defined by

B(es, es′) = −cos(
π

ms,s′
).

We clearly have B(es, es) = 1 and B(es, es′) ≤ 0 if s 6= s′. Now, to any s ∈ S we can

associate a “reflection” σs defined by

σs(x) = x− 2B(es, x)es for all x ∈ V .

One can easily check that σs(es) = −es and that Hs, the hyperplane orthogonal to es

(with respect to B) is fixed pointwise. Furthermore, σs (for all s ∈ S) preserves the

form B.

Definition 1.2.4. We say that

(1) W is tame if the bilinear form B is positive, that is B(e, e) ≥ 0 for all e ∈ V ;

(2) W is integral if ms,s′ ∈ {2, 3, 4, 6,∞}.

The linear form B gives some informations about the Coxeter group W . For instance,

we have

Theorem 1.2.5. Let W be a Coxeter group. The following are equivalent

(i) W is finite.

(ii) The bilinear form B is positive definite.

(iii) W is a finite reflection group.

1.2.4. Classification. In this thesis, we are primarily concerned with tame Cox-

eter groups. There are 3 different kinds of tame, irreducible Coxeter groups:

(1) finite and integral (i.e. the Weyl groups);

(2) finite and non integral;

(3) infinite and automatically integral (i.e. affine Weyl groups);

We give a classification of such groups in the following theorem.
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Theorem 1.2.6. Let W be an irreducible, finite, tame and integral Coxeter group.

Then W has one of the following graphs (where the index denotes the number of

vertices in the graph)

An, (n ≥ 1) d d d d d d

Bn, (n ≥ 2) d d d d d d

Dn, (n ≥ 4) d d d d d
d

d

E6
d d d d d

d

E7
d d d d d d

d

E8
d d d d d d d

d

F4
d d d d

G2
d d

Let W be an irreducible, finite, tame and non-integral Coxeter group, then W has one

of the following graphs

H3
d

5
d d

H4
d

5
d d d

I2(m)

m /∈ {2, 3, 4, 6}

d
m

d
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Let W be an irreducible, tame and infinite Coxeter group. Then W has one of the

following graphs (where the index n indicates that the graph has n + 1 vertices)

Ã1
d d
∞

Ãn, (n ≥ 2) d d d d d d

d

B̃2 = C̃2
d d d

B̃n, (n ≥ 3) d d d d d
d

d

C̃n, (n ≥ 3) d d d d d d

D̃n, (n ≥ 4) d d d d
d

d

d

d

Ẽ6
d d d d d

d

d

Ẽ7
d d d d d d d

d

Ẽ8
d d d d d d d d

d

F̃4
d d d d d

G̃2
d d d

Remark 1.2.7. One can check that any proper standard parabolic subgroup of an

irreducible affine Weyl group is finite.
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1.2.5. Bruhat order. The specific presentation of a Coxeter group gives rise to

many combinatorial properties. We give a brief overview of these properties.

Let w ∈ W . The length of w (denoted ℓ(w)) is the smallest integer n ∈ N such that

w can be written s1s2 . . . sn where si ∈ S for all 1 ≤ i ≤ n. In that case, s1 . . . sn

is called a reduced expression of w. The length is well defined and unique, however,

given w ∈W , there might be many different reduced expressions. It is readily checked

that, for s ∈ S and w ∈ W , we have either ℓ(sw) = ℓ(w) − 1 or ℓ(sw) = ℓ(w) + 1.

This leads to the following definition.

Definition 1.2.8. Let w ∈W . We set

L(w) := {s ∈ S | ℓ(sw) = ℓ(w)− 1} and R(w) = {s ∈ S | ℓ(ws) = ℓ(w)− 1}.

The set L(w) (resp. R(w)) is called the left descent (resp. the right descent) set of

w.

We will also need the following definition.

Definition 1.2.9. Let x, y, z ∈ W . We write x.y if and only if ℓ(xy) = ℓ(x) + ℓ(y).

Similarly, we write x.y.z if and only if ℓ(xyz) = ℓ(x) + ℓ(y) + ℓ(z).

The following result is the key fact about reduced expressions and is a very powerful

tool in the study of Coxeter groups.

Theorem 1.2.10. Exchange Condition

Let w ∈ W and s ∈ S be such that ℓ(sw) = ℓ(w)− 1. Let w = s1 . . . sn be a reduced

expression of W . Then there exists j ∈ {1, . . . , n} such that

ss1 . . . sj−1 = s1 . . . sj

Remark 1.2.11. In fact, it can be shown that a group which is generated by elements

of order 2 and which satisfy the exchange condition is a Coxeter group (see [8]).

Let w ∈ W . Let Xw be the set which consists of all sequences (s1, s2, . . . , sn) in W

such that s1s2 . . . sn is a reduced expression of w. We look at X as a graph where

two vertices are joined if one is obtained by the other replacing a subsequence of the

form (s, s′, s, s′ . . .) of length ms,s′ < ∞ by (s′, s, s′, s . . .). The next result is due to

Matsumoto and Tits.

Theorem 1.2.12. Let w ∈W . The graph Xw defined above is connected.

We are now ready to define the Bruhat order.
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Definition 1.2.13. Let y, w ∈W . We write y ≤ w if there exist a reduced expression

w = s1 . . . sn and a subsequence i1 < i2 < . . . < ir of 1, . . . , n such that

y = si1 . . . sir and ℓ(y) = r

We have the following characterization of the Bruhat order.

Lemma 1.2.14. The following are equivalent

(1) y ≤ w;

(2) for any reduced expression w = s1 . . . sn there exists a subsequence i1 < i2 <

. . . < ir of 1, . . . , n such that

y = si1 . . . sir and ℓ(y) = r

(3) There exists a sequence y = y0, y1, . . . , yn = w such that ℓ(yi) − ℓ(yi−1) = 1

for all 1 ≤ i ≤ n and yi−1 is obtained from yi by deleting a simple reflection

in a reduced expression of yi.

Example 1.2.15. Let W be a Weyl group of type A2 with graph as follows

e
s

e
t

Then W contains 6 elements and the Bruhat order can be described by the following

Hasse diagram

e

e e

e e

e

e

s t

ts st

sts = tst

Figure 3. Bruhat order on A2

1.2.6. Finite Coxeter group. A special feature in finite Coxeter groups is that

there exists a unique element of maximal length which has many nice properties.

Let (W, S) be a finite Coxeter group and let w0 be the unique element of maximal

length. Since ℓ(w0) = ℓ(w−1
0 ), by unicity of the longest element, we must have

w0 = w−1
0 . Furthermore we have

ℓ(w0y) = ℓ(yw0) = ℓ(w0)− ℓ(y) for all y ∈W.
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In fact, w0 is characterized by the fact that sw0 < w0 for all s ∈ S. One can easily

check that for all y ∈W we have y ≤ w0. Moreover, for all y, w ∈W , we have

y ≤ w ⇐⇒ w0w ≤ w0y ⇐⇒ ww0 ≤ yw0.

It can be shown that, if W is a Weyl group with root system Φ, then the length of

the longest element is equal to the cardinal of any set of positive roots.

Example 1.2.16. Let W be the Weyl group of type G2 generated by s, t. The longest

element is

ststst = tststs.

1.2.7. Coset of parabolic subgroups. Let I be a subset of S. We denote by

WI the subgroup of W generated by I.

Proposition 1.2.17. Let z ∈W and zWI be a coset in W .

(1) This coset has a unique element w of minimal length.

(2) Let y ∈WI . We have ℓ(wy) = ℓ(w) + ℓ(y).

(3) The element w is characterized by the fact that w < ws for all s ∈ I.

We denote by XI the set which consists of all the elements z ∈W which have minimal

length in their coset zWI ; it is called the set of minimal coset representatives with

respect to I.

Assume that WI is finite.

(1) The coset zWI has a unique element x of maximal length.

(2) Let y ∈WI . We have ℓ(xy) = ℓ(x)− ℓ(y).

(3) The element x is characterized by the fact that xs < x for all s ∈ I.

Remark 1.2.18. Let I ⊂ S and z ∈ W . Then z can be written uniquely under the

form xw where x ∈ XI , w ∈WI and ℓ(xw) = ℓ(x) + ℓ(w).

Lemma 1.2.19. Deodhar’s lemma

Let I ⊂ S and XI be the set of minimal coset representatives of WI . Let x ∈ XI and

s ∈ S. One of the following statement holds:

(i) sx ∈ XI and ℓ(sx) = ℓ(x) + 1;

(ii) sx ∈ XI and ℓ(sx) = ℓ(x)− 1;

(iii) sx /∈ XI , in which case there exists t ∈ I such that sx = xt and

ℓ(sx) = ℓ(x) + 1 = ℓ(xt).



CHAPTER 2

Iwahori-Hecke algebras and Kazhdan-Lusztig cells

This chapter is an introduction to the fundamental Kazhdan-Lusztig theory. Follow-

ing Lusztig ([38]), we start with the definition of weight functions on a Coxeter group

(W, S). We then define the Iwahori-Hecke algebra associated to a Coxeter group and

a weight function. Next we define the Kazhdan-Lusztig basis of an Iwahori-Hecke

algebra. Using this “new basis” we introduce the notion of (left, right and two-sided)

cells of a Coxeter group and the representations associated to them; see Section 2.6.

Then we state a number of conjectures due to Lusztig, which are known to be true in

the equal parameter case but for which no elementary proofs are known (see Section

2.9). Finally, we introduce the asymptotic algebra J, which plays an important part

in the study of Iwahori-Hecke algebras; see Section 2.10.

In this chapter, (W, S) denotes an arbitrary Coxeter system. We follow the exposition

of Lusztig in [38] and we refer to this publication for more details and proofs.

2.1. Weight functions

Definition 2.1.1. A weight function L is a function L : W → Z such that

L(ww′) = L(w) + L(w′) whenever ℓ(ww′) = ℓ(w) + ℓ(w′).

Note that the length function is a weight function.

Let L be a weight function on W . We see that

(1) L is completely determined by its values on S;

(2) if s, t ∈ S are conjugate, then L(s) = L(t).

The set {L(s))|s ∈ S} is called the set of parameters. When L = ℓ we say that we

are in the equal parameter case. In this thesis, we will only consider positive weight

functions, that is L(s) > 0 for all s ∈ S (except for Section 7.3). Note that L(e) = 0

where e denotes the identity element of W .

When a weight function L is fixed, we say that W, L is a weighted Coxeter group.

25
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Example 2.1.2. Let W be an affine Weyl group of type G̃2 with graph given by

e e e
s1 s2 s3

Let L be a weight function on W . The order of s2s3 is odd, thus they are conjugate

and we must have L(s2) = L(s3) ∈ N∗. Hence a positive weight function on W is

completely determined by the values L(s1) = a ∈ N∗ and L(s2) = b ∈ N∗.

If W is a finite irreducible Weyl group, unequal parameters can only arise in types

Bn, F4 and G2. Note that we have at most two distinct parameters.

If W is an irreducible affine Weyl group, unequal parameters can only arise in types

Ã1, B̃n, C̃n, F̃4 and G̃2. In type C̃n there can be 3 distinct parameters. In the other

cases, we have at most 2 distinct parameters.

2.2. Iwahori-Hecke algebras

From now and until the end of this chapter, we fix a weight function L on W . Let

A := Z[v, v−1] where v is an indeterminate. For s ∈ S we set vs = vL(s) and

ξs = vs − v−1
s . We keep this setting until the end of this chapter. Recall that we

always assume that L(s) > 0 for all s ∈ S.

Let H be the free A-algebra with basis {Tw | w ∈ W}, identity element Te (where e

is the identity element of W ) and multiplication given by

TsTw =







Tsw, if sw > w,

Tsw + (vs − v−1
s )Tw, if sw < w,

for all s ∈ S, w ∈ W . The algebra H is called the Iwahori-Hecke algebra associated

to the weighted Coxeter group W, L.

Remark 2.2.1. The definition of H depends on the weight function L, thus from now

on, everything we say depends on L.

From the definition, one can check that Ts is invertible for all s ∈ S with inverse

T−1
s = Ts − ξsTe.

Let w ∈W and w = s1 . . . sn be a reduced expression of w. We have

Tw = Ts1Ts2 . . . Tsn
,
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thus, since each Tsi
is invertible, we see that Tw is invertible for all w ∈W .

The basis {Tw}w∈W is called the standard basis. For x, y ∈W we set

TxTy =
∑

z∈W

fx,y,zTz

where fx,y,z ∈ A are the structure constants with respect to the standard basis.

We define an A-linear map τ : H → A by τ(Tw) = δw,1 for all w ∈W .

Proposition 2.2.2. Let x, y, z ∈W and h, h′ ∈ H. We have

(1) τ(TxTy) = δxy,1;

(2) τ(hh′) = τ(h′h);

(3) τ(TxTyTz) ∈ vMZ[v−1] where M = min(L(x), L(y), L(z)).

Remark 2.2.3. The form τ is symmetric. The dual basis of {Tw | w ∈W} is clearly

{Tw−1 | w ∈W}.

2.3. The ¯ operator

There exists a unique ring involution on A = Z[v, v−1] such that v̄ = v−1. We can

extend this map to a ring involution ¯ : H → H such that
∑

w∈W

awTw =
∑

w∈W

āwT−1
w−1 where aw ∈ A.

Let w ∈W . We can write uniquely

T̄w = T−1
w−1 =

∑

y∈W

R̄y,wTy

where Ry,w ∈ A are zero for all but finitely many y ∈ W . Note that these elements

are denoted by ry,w in [38].

Proposition 2.3.1. Let y, w ∈ W . The R-polynomials satisfy the following proper-

ties.

(1) Let s ∈ S be such that sw < w. We have

Ry,w =







Rsy,sw, if sy < y,

Rsy,sw + ξsRy,sw, if sy > y.

(2) If Ry,w 6= 0 then y ≤ w.

(3) We have
∑

z∈W

R̄y,zRz,w = δy,w.
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Example 2.3.2. Let y ≤ w ∈W . One can show that

• Ry,y = 1;

• if ℓ(w) = ℓ(y) + 1 then y is obtained by deleting a simple reflection s ∈ S in

a reduced expression of w and Ry,w = ξs.

• if ℓ(w) = ℓ(y)+2 then y is obtained by deleting two simple reflections s, t ∈ S

in a reduced expression of w and Ry,w = ξsξt.

There exists a unique involutive antiautomorphism ♭ of H which sends Ts to Ts for

any s ∈ S. It carries Tw to Tw−1 , for any w ∈ W . This antiautomorphism will be

useful later on.

2.4. Kazhdan-Lusztig basis

We first introduce some notation. Let

A<0 := v−1Z[v−1] and A≤0 := Z[v−1]

and

H<0 :=
∑

w∈W

A<0Tw and H≤0 :=
∑

w∈W

A≤0Tw.

The following theorem is due to Kazhdan and Lusztig ([24]) in the equal parameter

case (i.e L = ℓ) and to Lusztig ([28, 38]) in the unequal parameter case. It is the

cornerstone of this theory.

Theorem 2.4.1. Let w ∈W . There exists a unique element Cw ∈ H≤0 such that

(1) Cw = Cw and

(2) Cw ≡ Tw mod H<0

The elements {Cw | w ∈ W} form an A-basis of H known as the Kazhdan-Lusztig

basis.

These elements were formerly denoted by C ′
w in [24] and [28] ; they are denoted by

cw in [38].

For any w ∈ W we set

Cw =
∑

y∈W

Py,wTw

where Py,w ∈ A≤0. These polynomials are called the Kazhdan-Lusztig polynomials.

Note that they are denoted by py,w in [38].
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Proposition 2.4.2. Let y, w ∈ W . The Kazhdan-Lusztig polynomials Py,w satisfy

the following properties.

(1) Py,y = 1 for all y ∈W .

(2) Py,w = 0 unless y ≤ w.

(3) Py,w ∈ A<0 if y < w.

(4) For all x, w ∈W we have

P̄x,w =
∑

y;x≤y≤w

Rx,yPy,w.

Example 2.4.3. Let s ∈ S. One can check that Ts + v−1
s Te is stable under the ¯

involution, thus we have Cs = Ts + v−1
s Te and Pe,s = v−1

s .

Remark 2.4.4. The antiautomorphism ♭ carries H≤0 to itself. Moreover, it commutes

with ¯ . Thus one can check that ♭(Cw) = Cw−1.

Let w ∈W and s ∈ S, we have the following multiplication formula

CsCw =











Csw +
∑

z;sz<z<w

Ms
z,wCz, if w < sw,

(vs + v−1
s )Cw, if sw < w,

where Ms
y,w ∈ A satisfies

Ms
y,w = Ms

y,w, (2.1)

(
∑

z;y≤z<w;sz<z

Py,zM
s
z,w)− vsPy,w ∈ A<0. (2.2)

Let y, w and s ∈ S be such that ys < y < w < ws. Using the anti-involution

♭ one gets similar formulas for right multiplication. We obtain some polynomials

Ms,r
y,w = Ms

y−1,w−1.

Since Cs = Ts + v−1
s Te, one can see that

TsCw =











Csw − v−L(s)Cw +
∑

z;sz<z<w

Ms
z,wCz, if w < sw,

vL(s)Cw, if sw < w.

Let y, w ∈ W and s ∈ S be such that sw < w. The Kazhdan-Lusztig polynomials

satisfy the following recursive formula

Py,w =







vsPy,sw + Psy,sw −
∑

y≤z<sw Py,zM
s
z,sw if sy < y,

v−1
s Psy,w, if y < sy.
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Example 2.4.5. Let W be a Weyl group of type G2 with graph and weight function

given by

h h
t

a

s

b

where a > b ∈ N∗. We want to compute the Kazhdan-Lusztig polynomials (see [46,

Example 1.21]). First let w0 be the longest element of W . Using the above recursive

formula and the properties of the longest element, one can check that, for all y ∈W ,

we have

Py,w0 = vL(y)−L(w0).

Doing some more computations we obtain

Pt,tst = Ptst,tstst = v−a−b − v−a+b

Pe,tst = Pts,tstst = Pst,tstst = v−2a−b − v−2a+b

Pt,tstst = v−2a−2b − v−2a + v−2a+2b

Pe,tstst = v−3a−2b − v−3a + v−3a+2b

Ps,sts = Psts,ststs = v−a−b + v−a+b

Pe,sts = Pts,ststs = Pst,ststs = v−a−2b + v−a

Pt,ststs = v−a−3b + v−a−b

Ps,ststs = v−2a−2b + v−2a

Pe,ststs = v−2a−3b + v−2a−b.

and Py,w = vL(y)−L(w) for all other pairs y ≤ w ∈ W .

We have

M t
tsts,ststs = M t

tst,stst = M t
ts,sts = M t

t,st = va−b + vb−a,

M t
t,stst = M t

ts,ststs = 1

and all the others are zero.

Remark 2.4.6. Let y, w ∈ W and [y, w] := {z ∈ W | y ≤ z ≤ w}. Using Propo-

sition 2.4.2 (3) and the definition of the M-polynomials, one can see that the set of

polynomials

{Ms
x,z, Px,z | x, z ∈ [y, w]}

is completely determined by the weight function L and the set of R-polynomials

{Rx,z | x, z ∈ [y, w]}.
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Let x, y ∈W . We set

CxCy =
∑

z∈W

hx,y,zCz

where hx,y,z ∈ A are the structure constants with respect to the Kazhdan-Lusztig

basis. It is clear that

hx,y,z = hx,y,z.

2.5. Kazhdan-Lusztig cells

Let y, w ∈ W . We write y ←L w if there exists s ∈ S such that Cy appears with

a non-zero coefficient in the expression of TsCw in the Kazhdan-Lusztig basis. The

Kazhdan-Lusztig left pre-order ≤L on W is the transitive closure of this relation. One

can see that

HCw ⊆
∑

y≤Lw

ACy for any w ∈W .

The equivalence relation associated to ≤L will be denoted by ∼L, that is

x ∼L y ⇐⇒ x ≤L y and y ≤L x (x, y ∈W ).

The corresponding equivalence classes are called the left cells of W . Similarly, we

define ≤R, ∼R and right cells, multiplying on the right. In fact, using the antiauto-

morphism ♭ one can show that

x ≤L y ⇐⇒ x−1 ≤R y−1 (x, y ∈ W ).

We say that x ≤LR y if there exists a sequence

x = x0, x1, . . . , xn = y

such that for all 1 ≤ i ≤ n we have xi−1 ←L xi or xi−1 ←R xi. We denote by ∼LR the

associated equivalence relation and the equivalence classes are called the two-sided

cells of W . One can see that

HCwH ⊆
∑

y≤LRw

ACy for any w ∈W .

Remark 2.5.1. A two-sided cell is a union of left cells which is also a union of right

cells. However, even if one knows the decomposition into left cells of W (and hence

the decomposition into right cells via ♭) it is complicated to find the decomposition

into two-sided cells (see for example [7] and [4]).

The pre-orders ≤L, ≤R and ≤LR induce partial orders on the left, right and two-sided

cells.
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Example 2.5.2. Let W be of type G2 with graph and weight function as in Example

2.4.5. The decomposition of W into left cells is as follows (see [46, Examples 1.21])

{e}, {s}, {tstst}, {t, st, tst, stst}, {ts, sts, tsts, ststs}, {ststst}.

The partial order on the left cells can be described by the following Hasse diagram

e

e e

e e

e

{e}

{s} {t, st, tst, stst}

{ts, sts, tsts, ststs} {tstst}

{ststst}

The two-sided cells are (in order)

{e} ≤LR {s} ≤LR {t, st, ts, tst, sts, tsts, stst, ststs} ≤LR {tstst} ≤LR {ststst}.

Now assume that L = ℓ. In that case the left cells are

{e}, {t, st, tst, stst, tstst}, {s, ts, sts, tsts, ststs}, {ststst}

and the order is as follows

e

e e

e

{e}

{t, st, tst, stst, tstst} {s, ts, sts, tsts, ststs}

{ststst}

The two-sided cells are given by

{e} ≤LR {t, st, tst, stst, tstst, s, ts, sts, tsts, ststs} ≤LR {ststst}.

The following result shows some connections between descent sets and cells.

Proposition 2.5.3. Let y, w ∈W . We have

y ≤L w ⇒R(w) ⊆ R(y) and y ≤R w ⇒ L(w) ⊆ L(y).

In particular, if y ∼L w (resp. y ∼R w) then R(y) = R(w) (resp. L(y) = L(w)).

Definition 2.5.4. Let B be a subset of W . We say that B is a left ideal of W if

and only if the A-submodule generated by {Cw|w ∈ B} is a left ideal of H. Similarly

one can define right and two-sided ideals of W .
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Remark 2.5.5. Here are some straightforward consequences of this definition

∗ Let B be a left ideal and let w ∈ B. We have

HCw ⊆
∑

y∈B

ACy.

In particular, if y ≤L w then y ∈ B and B is a union of left cells.

∗ A union of left ideals is a left ideal.

∗ An intersection of left ideals is a left ideal.

∗ A left ideal which is stable by taking the inverse is a two-sided ideal. In particular

it is a union of two-sided cells.

Example 2.5.6. Let J be a subset of S. We set

RJ := {w ∈W | J ⊆ R(w)} and LJ := {w ∈W | J ⊆ L(w)}

Then the set RJ is a left ideal of W . Indeed let w ∈ RJ and y ∈ W be such that

y ≤L w. Then we have J ⊆ R(w) ⊆ R(y) and y ∈ RJ . Similarly one can see that LJ

is a right ideal of W .

2.6. Cell representations

In this section, we show how each cell gives rise to a representation of H.

Lemma 2.6.1. Let w ∈W .

(1) H≤Lw = ⊕
y;y≤Lw

ACy is a left ideal of H.

(2) H≤Rw = ⊕
y;y≤Rw

ACy is a right ideal of H.

(3) H≤LRw = ⊕
y;y≤LRw

ACy is a two-sided ideal of H.

Let C be a left cell of W and let w ∈ C. The set

⊕
y;y≤Lw

ACy � ⊕
y;y<Lw

ACy

is a quotient of two left ideals (independent of the choice of w ∈ C), hence it is a left

H-module. We denote this left module by VC . It has an A-basis which consists of the

images of Cy, y ∈ C (via the canonical projection). More precisely, let ey (y ∈ C) be

the image of Cy. The action of H on VC is given by the Kazhdan-Lusztig structure

constants

Cw.ey =
∑

z∈C

hw,y,zez for all y ∈ C and w ∈W.
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Let θ : A −→ Q be the unique ring homomorphism which sends v to 1. Then if we

extend the scalars from A to Q (via θ) we obtain a representation of Q⊗AH = Q[W ]

on Q⊗A VC.

One can do similar constructions with right and two-sided cells. We obtain respec-

tively right modules and two-sided modules.

We now give two examples where the left cells representations actually give rise to all

the irreducible representations of H.

Example 2.6.2. In the fundamental paper of Kazhdan and Lusztig ([24]), where

they first introduced Kazhdan-Lusztig cells, they showed that if W is a Weyl group

of type An (note that we are automatically in the equal parameter case), then the

left cell representations are irreducible. Furthermore, any irreducible representation

can be realized as a left cell representation.

Let W be a Weyl group of type Bn with weight function and diagram given by

Bn, (n ≥ 2) ea eb eb eb eb eb

where a, b ∈ N∗ satisfy a/b > n − 1. Then we are in the so-called “asymptotic case”

where the left cells have been described by Bonnafé and Iancu ([4, 7]). It turns out

that in that case the left cell representations are irreducible. Conversely, any irre-

ducible representation can be realized as a left cell representation. However, in the

equal parameter case, it is not true anymore.

Note that if W is an affine Weyl group, some cells are infinite and thus give rise to

infinite dimensional H-modules.

2.7. On the structure constants

Let y, w ∈W . We set

Q′
y,w :=

∑

(−1)nPz0,z1Pz1,z2 . . . Pzn−1,zn

(where the sum runs over all the sequences y = z0 < z1 < . . . < zn = w in W ) and

Qy,w = (−1)ℓ(y)+ℓ(w)Q′
y,w.

In [38], these polynomials are denoted by q′y,w and qy,w. For all y, w ∈W , we have,
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• Qw,w = 1;

• Qy,w ∈ A<0 if y 6= w;

• Qy,w = 0 unless y ≤ w;

Recall that, for x, y ∈W , we have set

TxTy =
∑

z∈W

fx,y,zTz and CxCy =
∑

z∈W

hx,y,zCz.

Let

TxTy =
∑

z∈W

f ′
x,y,zCz.

Proposition 2.7.1. Let x, y, z ∈W . We have

(1) fx,y,z =
∑

z′∈W Pz,z′f
′
x,y,z′;

(2) f ′
x,y,z =

∑

z′∈W Qz,z′fx,y,z′;

(3) hx,y,z =
∑

x′,y′∈W Px′,xPy′,yf
′
x′,y′,z.

All the above sums are finite.

Note that if hx,y,z 6= 0 then z ≤R x and z ≤L y.

Definition 2.7.2. We say that W is bounded if there exists N ∈ N such that

v−Nfx,y,z ∈ A≤0 for all x, y, z ∈W .

Let I be the set which consists of all subsets I of S such that WI is finite. For I ∈ I,

we denote by wI the longest element of WI . Let

N := max
I∈I

L(wI).

Lusztig has conjectured that N should be a bound for W . One can easily see that N

is reached. Indeed, vL(wI) appears in fwI ,wI ,wI
for all I ∈ I. It is known that N is a

bound for W in the following case

∗ W is finite (see [38]);

∗ W is an affine Weyl group (see [9, 30]).

Using Proposition 2.7.1, we see that if N is a bound for W , then, for all x, y, z ∈ W

we have

(1) v−Nf ′
x,y,z ∈ A≤0,

(2) v−Nhx,y,z ∈ A≤0.
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2.8. The a-function

We now introduce Lusztig’s a-function (see [38, Chap. 13]). In the remainder of this

section, we assume that W is bounded by N ∈ N.

Definition-Proposition 2.8.1. Let z ∈ W . There exists a unique integer a(z) ∈

[0..N ] such that

(a) hx,y,z ∈ va(z)Z[v−1] for all x, y ∈W ,

(b) hx,y,z /∈ va(z)−1Z[v−1] for some x, y ∈W .

For any x, y, z ∈ W , we define γx,y,z−1 ∈ Z by the condition

hx,y,z ≡ γx,y,z−1va(z) mod va(z)−1Z[v−1].

Note that, for any z ∈W , there exist x, y ∈W such that γx,y,z−1 6= 0.

For any x, y, z ∈ W we have

f ′
x,y,z = γx,y,z−1va(z) mod va(z)−1Z[v−1].

We now state some properties of the a-function.

Proposition 2.8.2. We have

(1) a(e) = 1;

(2) If z ∈ W − {e}, then a(z) ≥ min
s∈S

L(s) > 0;

(3) a(z) = a(z−1);

(4) for all x, y, z ∈W , γx,y,z = γy−1,x−1,z−1.

Assume that W is finite and let w0 be the longest element of W , then

(1) a(w0) = L(w0);

(2) for any w ∈W − {w0} we have a(w) < L(w0).

Example 2.8.3. Let W be a Weyl group of type G2 with graph and weight function

as in Example 2.4.5. It turns out that the a function is constant on the two-sided
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cells (see next section). We have (see [18])

a(e) = 0

a(s) = L(s)

a(t) = L(t)

a(tstst) = 3L(t)− 2L(s)

a(ststst) = 3L(s) + 3L(t).

We refer to [18, 38] for more examples.

2.9. Lusztig’s conjectures

In this section we assume that W is bounded. We state a number of conjectures due

to Lusztig (see [38, Chap. 14]), which are known in the equal parameter case (see

Remark 2.9.2). For z ∈W , let ∆(z) ∈ N be such that

Pe,z = nzv
−∆(z) + strictly smaller powers of v (nz 6= 0).

One can check that ∆(z) = ∆(z−1), ∆(e) = 0 and 0 < ∆(z) ≤ L(z) for z 6= e. Finally

let

D := {z ∈W | a(z) = ∆(z)}.

We have z ∈ D ⇒ z−1 ∈ D. We are now ready to state the conjectures.

Conjecture 2.9.1 (Lusztig). The following properties hold.

P1. For any z ∈W we have a(z) ≤ ∆(z).

P2. If d ∈ D and x, y ∈W satisfy γx,y,d 6= 0, then x = y−1.

P3. If y ∈W , there exists a unique d ∈ D such that γy−1,y,d 6= 0.

P4. If z′ ≤LR z then a(z′) ≥ a(z). Hence, if z′ ∼LR z, then a(z) = a(z′).

P5. If d ∈ D, y ∈W , γy−1,y,d 6= 0, then γy−1,y,d = nd = ±1.

P6. If d ∈ D, then d2 = 1.

P7. For any x, y, z ∈W , we have γx,y,z = γy,z,x.

P8. Let x, y, z ∈W be such that γx,y,z 6= 0. Then x ∼L y−1, y ∼L z−1, z ∼L x−1.

P9. If z′ ≤L z and a(z′) = a(z), then z′ ∼L z.

P10. If z′ ≤R z and a(z′) = a(z), then z′ ∼R z.

P11. If z′ ≤LR z and a(z′) = a(z), then z′ ∼LR z.

P12. Let I ⊆ S and WI be the parabolic subgroup generated by I. If y ∈ WI , then

a(y) computed in terms of WI is equal to a(y) computed in terms of W .
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P13. Any left cell C of W contains a unique element d ∈ D. We have γx−1,x,d 6= 0

for all x ∈ C.

P14. For any z ∈W , we have z ∼LR z−1.

P15. Let v′ be a second indeterminate and let h′
x,y,z ∈ Z[v′, v′−1] be obtained from

hx,y,z by the substitution v 7→ v′. If x, x′, y, w ∈W satisfy a(w) = a(y) then
∑

y′

h′
w,x′,y′hx,y′,y =

∑

y′

hx,w,y′h′
y′,x′,y .

Remark 2.9.2. Assume that L = ℓ, that W is bounded and that we have

(1) hx,y,z ∈ N[v, v−1] for all x, y, z ∈W ;

(2) Py,w ∈ N[v, v−1] for all y, w ∈W .

In the case where W is integral, using an interpretation of the Kazhdan-Lusztig

polynomials in terms of intersection cohomology, one can show that (1) and (2) hold

(see [30, 38, 45]). In the case where W is of type I2(m) (m /∈ {2, 3, 4, 6}), H3

or H4, (1) and (2) have been proved by Fokko du Cloux and Alvis, using explicit

computations (see [1, 13]).

Under the assumptions (1) and (2), it can be shown that P1–P15 hold (see [38, Chap.

15]). However, in the unequal parameter case, (1) and (2) do not hold anymore. For

instance, even in a very small group like G2, we have seen that negative coefficients

arise in some Kazhdan-Lusztig polynomials (see Example 2.4.5).

For unequal parameters, these conjectures are known to be true in the following cases

(1) in the “quasi-split case” (see [38, Chap. 16]);

(2) infinite dihedral group (see [38, Chap. 17]);

(3) finite dihedral groups for any parameters (see [18]);

(4) type F4 for any parameters (see [16]);

(5) type Bn in the “asymptotic case” (see [7, 18] and the references there in).

For instance, these conjectures yield the following.

Theorem 2.9.3. Let W be a tame Coxeter group and assume that P1–P15 hold. We

have

(1) Any two-sided cell in W meets a finite parabolic subgroup.

(2) W has only finitely many left (resp. right, two-sided) cells.

(3) D is a finite set.

(4) A two-sided cell is a minimal union of left cells which is also a union of right

cells.
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2.10. The asymptotic algebra J

Following Lusztig, we introduce the asymptotic algebra J. Even though we will not

study this algebra in this thesis, it is important to mention it, since it plays a crucial

role in the study of Iwahori-Hecke algebras associated to Weyl groups. In this section

we assume that W is tame and that P1–P15 hold.

Definition 2.10.1. Let J be the free Z-module with basis {tw, w ∈ W}. We define

a bilinear product on J by

txty =
∑

z∈W

γx,y,z−1tz.

Theorem 2.10.2 (Lusztig [38, Chap. 18]). The free module J with the above multipli-

cation is an associative ring with identity element 1J =
∑

d∈D ndtd. Let JA = A⊗Z J.

Then we have a unital homomorphism of A-algebras

φ : H → JA, Cw 7→
∑

z∈W,d∈D

a(z)=a(d)

hw,d,z n̂z tz,

where n̂z is defined as follows. Given z ∈ W , let d be the unique element of D such

that d ∼L z−1; then n̂z = nd = ±1. (See P5, P13.) Note that the function z 7→ n̂z is

constant on the right cells of W .

This ring J is called the asymptotic Hecke algebra. It plays a very important part in

the proof of the following theorem.

Theorem 2.10.3 (Geck [17]). Assume that W is a finite Weyl group. Let HQ be

the Iwahori-Hecke algebra defined over Q[v, v−1] (instead of Z[v, v−1]). Then HQ is

cellular in the sense of Graham-Lehrer ([19]).

This theorem provides the general theory of Specht modules for Iwahori-Hecke alge-

bras.





CHAPTER 3

Geometric presentation of an affine Weyl group

In this section we give another geometric presentation of an irreducible affine Weyl

group in terms of alcoves (see [9, 27, 46]). This presentation is a very convenient

way to “picture” an affine Weyl group. For instance, sets such as descent sets or the

minimal left coset representatives (with respect to a parabolic subgroup) are easily

“seen” in this presentation; see Examples 3.2.1 and 3.2.2. On a deeper level, it was

conjectured by Lusztig that a left cell should be a connected set in this presentation.

Within this chapter, we give a number of examples to get used to this presentation.

In the final section, we prove a result (using this presentation) which give a “local”

bound on the degree of the structure constants associated to the standard basis. This

theorem will play a crucial role in the study of the lowest two-sided cell; see Chapter 6.

3.1. Geometric presentation of an affine Weyl group

We now present a geometric presentation which will be of great use along this thesis.

The basic references for this section are [9, 27, 46].

Let V be a Euclidean space of dimension r ∈ N∗. Let Φ be an irreducible crystallo-

graphic root system of rank r and Φ+ a fixed set of positive roots. Note that Φ spans

V . We denote by α̌ the coroot associated to α and we write 〈x, α̌〉 for the value of

α̌ ∈ V ∗ at x, that is 〈x, α̌〉 = 2〈x,α〉
〈α,α〉

. As in Section 1.3, for α ∈ Φ+ and k ∈ Z, we

define the hyperplane

Hα,k = {x ∈ V | 〈x, α̌〉 = k}.

We denote by F the set of all such hyperplanes and by σα,k the reflection with fixed

point set Hα,k. Let Ω be the group generated by all these reflections (it is the affine

Weyl group generated by Φ). An alcove is a connected component of the set

V −
(

⋃

H∈F

H
)

.

The group Ω acts simply transitively on the set of alcoves X. We regard Ω as acting

on the right on X.

41
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Let S be the set of Ω-orbits in the set of faces (codimension 1 facets) of alcoves. Then

S consists of r + 1 elements which can be represented as the r + 1 faces of an alcove.

If a face f is contained in the orbit t ∈ S, we say that f is of type t.

Let s ∈ S. We define an involution A 7→ sA of X as follows. Let A ∈ X; then sA is

the unique alcove distinct from A which shares with A a face of type s. The set of

such maps generates a group of permutations of X which is a Coxeter group (W, S).

In fact, it is the affine Weyl group associated to Φ and we have W ≃ Ω. We regard

W as acting on the left on X.

Proposition 3.1.1. W acts simply transitively on X. Furthermore the action of W

on X commutes with the action of Ω.

Let A0 be the fundamental alcove defined by

A0 = {x ∈ V | 0 < 〈x, α̌〉 < 1 for all α ∈ Φ+}.

We associate to any alcove A ∈ X the element w ∈W such that A = wA0. Conversely,

to any w ∈W we associate the alcove wA0.

One can easily check that for w ∈W and any alcove A ∈W we have

ℓ(w) = number of hyperplanes which separate A and wA.

Let H = Hα,n ∈ F . Then H divides V −H into two half-spaces

V +
H = {x ∈ V | 〈x, α̌〉 > n},

V −
H = {x ∈ V | 〈x, α̌〉 < n}.

3.2. Some examples

Example 3.2.1. In Figure 1, we consider an affine Weyl group of type G̃2

W := 〈s1, s2, s3 | (s1s2)
6 = 1, (s2s3)

3 = 1, (s1s3)
2 = 1〉.

The thick arrows represent a set Φ+ of positive roots. The alcove zA0 is the image of

the fundamental alcove A0 under the action of z = s3s2s1s2s1s2 ∈W .

Let W1,2 be the parabolic subgroup generated by s1 and s2. We denote by X1,2 the

set of minimal left coset representatives with respect to W1,2. Finally, let

C := {xs2s1s2s1A0 | x ∈ X1,2}.
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A0

C

0

zA0

Figure 1. Geometric presentation of G̃2

Example 3.2.2. Again let W be of type G̃2 as in the previous example. Let Hi

(1 ≤ i ≤ 3) be the hyperplane which contains the face of A0 of type si. Let αi ∈ Φ+

be such that Hi = Hαi,0. We have

si ∈ R(w) ⇐⇒ wA0 ∈ V −
Hi

= {x ∈ V |〈x, α̌i〉 < 0} if i = 1, 2

s3 ∈ R(w) ⇐⇒ wA0 ∈ V +
H3

= {x ∈ V |〈x, α̌i〉 > 1}

In the next figure, we show the shape of the sets R{s1,s2}, R{s2,s3} and R{s1,s3} (where

RJ = {w ∈W |J ⊂ R(w)}).
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Now let W be an arbitrary irreducible affine Weyl group.

We have seen in the previous example how one can describe the right descent sets in

the geometric presentation. The next natural question is how can we characterized

in this presentation the fact that x.y (see Definition 1.2.9) for x, y ∈W ? To this end

we introduce a new definition.

Definition 3.2.3. Let z ∈W and A ∈ X. Let H1, . . . , Hn be the set of hyperplanes

which separate A and zA. For 1 ≤ i ≤ n, let EHi
(zA) be the half-space defined by

Hi which contains zA. Let

hA(z) =

n
⋂

i=1

EHi
(zA).

Recall that for any w ∈W and any A ∈ X, ℓ(w) is the number of hyperplanes which

separate A and wA. Therefore one can see that x.y if and only if

{H | H separates A and yA} ∩ {H | H separates yA and xyA} = ∅,

or in other words

Lemma 3.2.4. Let x, y ∈W and A ∈ X. We have

x.y ⇔ x(yA) ⊂ hA(y).

See Example 4.2.4 for examples of such sets.

3.3. Weight function and geometric presentation

Let W be an irreducible affine Weyl group and let L be a weight function on W ; we

want to introduce L “into the picture”. The following result will allow us to do so (see

[9, Lemma 2.1]).

Lemma 3.3.1. Let H ∈ F and suppose that H supports a face of type s ∈ S and a

face of type t ∈ S. Then s and t are conjugate in W .

As a consequence of this lemma, we can associate a weight cH to any H ∈ F , where

cH = L(s) if H supports a face of type s.

Let λ be a 0-dimensional facet of an alcove. We denote by Wλ the stabilizer in W of

the set of alcoves containing λ in their closure. It is a maximal parabolic subgroup of

W with generating set Sλ = S ∩Wλ, thus it is finite and we denote by wλ its longest

element.

We now introduce the notion of special points.
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Definition 3.3.2. For a 0-dimensional facet λ of an alcove, we set

m(λ) :=
∑

H,λ∈H∈F

cH .

We say that λ is a special point if m(λ) is maximal (among the values of m on

0-dimensional facets of alcoves). We denote by T the set of special points.

Remark 3.3.3. One can see that for any special point λ, we have

m(λ) = max
I(S

L(wI).

It can be shown that it is enough to take the maximum where I runs over the subsets

of S such that WI is isomorphic to the underlying Weyl group. In the equal parameter

case, we have m(λ) = |Φ+| for any special point λ; see [27].

Let λ be a special point. A quarter with vertex λ is a connected component of the

set

V −
(

⋃

λ∈H∈F

H
)

Following Bremke, we now want to determine the set of special points for all affine

Weyl groups. In order to do so, the following lemma is crucial (see [9, Lemma 2.2]).

Lemma 3.3.4. Let H, H ′ be two parallel hyperplanes in F and let s 6= s′ ∈ S. Assume

that H supports a face of type s and H ′ a face of type s′. One (and only one) of the

following statements holds.

(1) W is of type C̃r (r ≥ 2) with graph

e e e e e e
s1 s2 s3 sr−1 sr sr+1

and (s, s′) = (s1, sr+1);

(2) W is of type Ã1 with graph

e e
∞s1 s2

and (s, s′) = (s1, s2);

(3) s and s′ are conjugate in W .

Thus, if W is not of type C̃r (r ≥ 2) or Ã1, then any two parallel hyperplanes have

the same weight.

We now fix some conventions about C̃r and Ã1. We keep the notation of the above

lemma. If W is of type C̃r, we assume that the Weyl group associated to Φ is generated



Figure 3. Special points of C̃2.
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by {s1, . . . , sr} and that L(s1) ≥ ℓ(sr+1) (this is possible because of the symmetry of

the graph). Similarly if W is of type Ã1, we assume that the Weyl group associated

to Φ is generated by {s1} and that L(s1) ≥ L(s2).

We now give the classification of special points (see [9]). Let P be the weight lattice

P := {x ∈ V |〈x, α̌〉 ∈ Z for all α ∈ Φ+}.

Note that P is the set of points which lie in the intersection of |Φ+| hyperplanes. Let

T be the set of special points. We have

(1) If W is not of type C̃r (r ≥ 2) or Ã1 then T = P .

(2) If W is of type C̃r (r ≥ 2) with L(s1) = L(sr+1) or of type Ã1 with L(s1) =

L(s2) then T = P .

(3) If W is of type C̃n (r ≥ 2) with L(s1) > L(sr+1) or of type Ã1 with L(s1) >

L(s2) then T is equal to the root lattice.

In all cases (with our convention for type C̃r and Ã1), the point 0 is always a special

point and W0 is the Weyl group associated to the root system Φ.

Remark 3.3.5. The group Ω acts on the set of special points T . If λ1, λ2 ∈ T lie in

the same orbit then Wλ1 = Wλ2 . If λ, λ′ ∈ T do not lie in the same orbit then Wλ

and Wλ′ are isomorphic but they are not generated by the same simple reflections in

S. Let ν̃ = m(λ) for λ ∈ T . The number N of orbits in T is

N := |{J ⊂ S|WJ ≃W0 and L(wJ) = ν̃}|.

For instance, in type Ãn there are n + 1 orbits and in type G̃2 only 1.

Example 3.3.6. Let W be an affine Weyl group of type C̃2. We keep the notation

of Lemma 3.3.4. The next figure describes the special points of C̃2. In the case

L(s1) = L(s3), all the “circled” points are special points. There are two orbits under

the action of Ω representated by the “white” and the “gray” points. In the case

L(s1) > L(s3), only the “gray” points are special points and there is only one orbit.
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3.4. Strips

We keep the setting of the previous sections. We say that two hyperplanes in F have

the same direction if they are orthogonal to the same positive root. This defines an

equivalence relation on F . We denote by F the set of directions (i.e. the equivalence

classes of the above relation). We denote by H the direction of H ∈ F . For i ∈ F ,

we set

ci := max
H∈F ,H=i

cH for all i ∈ F .

Remark 3.4.1. If W is not of type C̃n (n ≥ 2) or Ã1 then for every i ∈ F and for

any hyperplane H of direction i we have ci = cH ; see Lemma 3.3.4.

Following [3, 9], we introduce the notion of strips.

Definition 3.4.2. Let i ∈ F . The strips of direction i are the connected components

of the set

V −
⋃

H∈F , H=i

H.

For A ∈ X, we denote by Ui(A) the unique strip of direction i which contains A.

The maximal strips of direction i are the connected components of

V −
⋃

H∈F , H=i

cH=ci

H.

Note that the strips as defined in [9] correspond to our maximal strips.

Remark 3.4.3. Let A ∈ X and i ∈ F and consider the strip Ui(A). There exists a

unique α ∈ Φ+ and a unique n ∈ Z such that

Ui(A) = {x ∈ V | n < 〈x, α̌〉 < n + 1},

in other words

Ui(A) = V +
Hα,n
∩ V −

Hα,n+1
.

We say that Ui(A) is defined by Hα,n and Hα,n+1.

Now let i, j ∈ F and σ ∈ Ω be such that σ(i) = j. Then we have, for every A ∈ X,

σ(Ui(A)) = Uj(Aσ) and the strip Uj(Aσ) is defined by the hyperplanes σ(Hα,n) and

σ(Hα,n+1)



Figure 5. Maximal strips of direction s1 containing A0.

Figure 4. Strips of direction s1 containing A0.
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Example 3.4.4. Let W be an affine Weyl group of type C̃2 generated by s1, s2, s3

where s1 and s3 commute. If L(s1) = L(s3) then the set of maximal strips and the

set of strips coincide. In Figure 4, we show the strips of direction s1 which contain

A0 (where s1 is the direction of the hyperplane containing the face of type s1 of A0).

If L(s1) > L(s3) then the maximal strips are different from the strips. In Figure 5,

we show the maximal strips of direction s1 in this case.
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3.5. Multiplication of the standard basis

In this section we give a result which gives an upper bound for the degree of the

structure constants with respect to the standard basis.

For two alcoves A, B ∈ X, let

H(A, B) = {H ∈ F | H separates A and B}.

Let x, y ∈W ; we define

Hx,y = {H ∈ F | H ∈ H(A0, yA0) ∩H(yA0, xyA0)},

Ix,y = {i ∈ F | ∃H ; H = i, H ∈ Hx,y}.

For i ∈ Ix,y, let

cx,y(i) = max
H∈Hx,y,H=i

cH

and

cx,y =
∑

i∈Ix,y

cx,y(i).

We have

Theorem 3.5.1. Let x, y ∈W and

TxTy =
∑

z∈W

fx,y,zTz where fx,y,z ∈ A.

Then, the degree of fx,y,z in v is at most cx,y.

Remark 3.5.2. Note that this theorem implies that an affine Weyl group is bounded;

see Section 2.7.

In order to prove this theorem we need a number of preliminary lemmas.

Lemma 3.5.3. Let x, y ∈W and s ∈ S be such that x < xs and y < sy. We have

cxs,y = cx,sy.

Proof. Let Hs be the unique hyperplane which separates yA0 and syA0. Since

x < xs and y < sy, one can see that

H(A0, yA0) ∪ {Hs} = H(A0, syA0),

H(A0, yA0) ∩ {Hs} = ∅,
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and

H(syA0, xsyA0) ∪ {Hs} = H(yA0, xsyA0),

H(syA0, xsyA0) ∩ {Hs} = ∅.

Therefore we have

Hx,sy = H(A0, syA0) ∩H(syA0, xsyA0)

= (H(A0, yA0) ∪ {Hs}) ∩H(syA0, xsyA0)

= (H(A0, yA0) ∩H(syA0, xsyA0)) ∪ ({Hs} ∩H(syA0, xsyA0))

= H(A0, yA0) ∩H(syA0, xsyA0)

and

Hxs,y = H(yA0, xsyA0) ∩H(A0, yA0)

= (H(syA0, xsyA0) ∪ {Hs}) ∩H(A0, yA0)

= (H(syA0, xsyA0) ∩H(A0, yA0)) ∪ ({Hs} ∩H(A0, yA0))

= H(syA0, xsyA0) ∩H(A0, yA0)

= Hx,sy.

Thus cx,sy = cxs,y. �

Lemma 3.5.4. Let x, y ∈W and s ∈ S be such that xs < x and sy < y. We have

cxs,sy ≤ cx,y.

Proof. Let Hs be the unique hyperplane which separate yA0 and syA0. One can

see that

Hxs,sy = Hx,y − {Hs}.

The result follows. �

Lemma 3.5.5. Let x, y ∈ W and s ∈ S be such that xs < x and sy < y. Let Hs be

the unique hyperplane which separates yA0 and syA0. Then we have

Hs /∈ Ixs,y and Hs ∈ Ix,y.

Proof. We have

sy < y =⇒ Hs ∈ H(A0, yA0),

xs < x =⇒ Hs ∈ H(yA0, xyA0).

Thus Hs ∈ Hx,y and Hs ∈ Ix,y.
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Let αs ∈ Φ+ and ns ∈ Z be such that Hs = Hαs,ns
. Assume that ns ≥ 1 (the case

where ns ≤ 0 is similar).

Since Hs ∈ H(A0, yA0) and yA0 has a facet contained in Hs, we have

ns < 〈x, αs〉 < ns + 1 for all x ∈ yA0.

Therefore, for all m > ns, we have Hαs,m /∈ H(A0, yA0).

Now, since xs < x, we have

xsyA0 ⊂ {λ ∈ V | ns < 〈λ, αs〉}.

Therefore, for all m ≤ ns, we have Hαs,m /∈ H(yA0, xsyA0). Thus, there is no

hyperplane parallel to Hs in Hxs,y, as required. �

Let x, y ∈ W and s ∈ S be such that xs < x and sy < y. Let Hs be the unique

hyperplane which separates yA0 and syA0 and let σs be the corresponding reflection.

Assume that Ixs,y 6= ∅ and let i ∈ Ixs,y. Recall that Ui(yA0) is the unique strip of

direction i which contains yA0. Since i ∈ Ixs,y we have

A0 6⊂ Ui(yA0) and xsyA0 6⊂ Ui(yA0).

One can see that one and only one of the hyperplanes which defines Ui(yA0) lies in

Hxs,y. We denote by H(i) this hyperplane.

Let H ∈ Hxs,y. By the previous lemma we know that H 6= Hs. Consider the 4

connected components of V − {H, Hs}. We denote by EA0, EyA0 , EsyA0 and ExsyA0

the connected component which contains, respectively, A0, yA0, syA0 and xsyA0.

Assume that σs(H) 6= H . Then, we have either

σs(H) ∩ EyA0 6= ∅ and σs(H) ∩EA0 6= ∅

or

σs(H) ∩ExsyA0 6= ∅ and σs(H) ∩EsyA0 6= ∅.

Furthermore, in the first case, σs(H) separates ExsyA0 and EsyA0 , and, in the second

case, σs(H) separates EyA0 and EA0 . In particular, we have

σs(H) ∩ EyA0 6= ∅ =⇒ σs(H) ∈ H(syA0, xsyA0)

σs(H) ∩ ExsyA0 6= ∅ =⇒ σs(H) ∈ H(A0, yA0).

Moreover, we see that

σs(H) ∩ EyA0 6= ∅ =⇒ σs(H) ∈ H(syA0, xsyA0)

=⇒ σs(H) ∈ H(yA0, xsyA0),
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We will say that H ∈ Hxs,y is of s-type 1 if σs(H) ∩ EyA0 6= ∅, and of s-type 2 if

σs(H) ∩ ExsyA0 6= ∅. Note that the type depends on element s ∈ S that we consider.

To sum up, we have

- if H is of s-type 1 then σs(H) ∈ H(yA0, xsyA0);

- if H is of s-type 2 then σs(H) ∈ H(A0, yA0).

We illustrate this result in Figure 6. Note that if H, H ′ ∈ Hxs,y are parallel, then they

have the same type.

xsyA0

xyA0

A0

yA0

syA0

Hs

Hσs(H)

ExsyA0

EA0
EsyA0

EyA0

s-type 1 s-type 2

xsyA0

xyA0

A0

yA0

syA0

Hs

σs(H)H

ExsyA0

EA0
EsyA0

EyA0

FIGURE 6. s-type 1 and s-type 2 hyperplanes

Lemma 3.5.6. Let x, y ∈ W and s ∈ S be such that xs < x and sy < y. Let Hs be

the unique hyperplane which separates yA0 and syA0 and let σs be the corresponding

reflection. We have the following.

a) Let H ∈ F . We have

H ∈ H(yA0, xsyA0)⇒ σs(H) ∈ H(yA0, xyA0).

b) Let H ∈ Hxs,y be of s-type 1; then H ∈ Hx,y.

c) Let H ∈ Hxs,y be of s-type 2; then σs(H) ∈ Hx,y.

d) Let H ∈ Hxs,y such that σs(H) = H; then H ∈ Hx,y.

Proof. We prove (a). Let H ∈ H(yA0, xsyA0). Then σs(H) separates yA0σs

and xsyA0σs. But we have

yA0σs = syA0 and xsyA0σs = xssyA0 = xyA0.
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Since H 6= Hs, we have σs(H) 6= Hs and this implies that σs(H) separates yA0 and

xyA0.

We prove (b). We have H ∈ Hxs,y = H(A0, yA0)∩H(yA0, xsyA0). The hyperplane H

is of s-type 1 thus σs(H) ∈ H(yA0, xsyA0). Using (a) we see that H ∈ H(yA0, xyA0).

Therefore, H ∈ Hx,y.

We prove (c). Since H is of s-type 2 we have σs(H) ∈ H(A0, yA0). Moreover,

H ∈ H(yA0, xsyA0) thus, using (a), we see that σs(H) ∈ H(yA0, xyA0). Therefore,

σs(H) ∈ Hx,y.

We prove (d). Using (a), we see that σs(H) = H ∈ H(yA0, xyA0) and since H ∈

Hx0,y ⊂ H(A0, yA0), we get H ∈ Hx,y.

�

Lemma 3.5.7. Let x, y ∈W and s ∈ S be such that xs < x and sy < y. Let Hs be the

unique hyperplane which separates yA0 and syA0. There is an injective map ϕ from

Ixs,y to Ix,y − {Hs}.

Proof. Let σs be the reflection with fixed point set Hs. If Ixs,y = ∅ then the

result is clear. We assume that Ixs,y 6= ∅. We define ϕ as follows.

(1) If σs(H
(i)) ∈ H(A0, yA0) then set ϕ(i) = σs(i);

(2) ϕ(i) = i otherwise.

We need to show that ϕ(i) ∈ Ix,y − {Hs}. The fact that ϕ(i) 6= Hs is a consequence

of Lemma 3.5.5, where we have seen that Hs /∈ Ixs,y. Indeed, since ϕ(i) is either i or

σs(i) and i 6= Hs we cannot have ϕ(i) = Hs.

Let i ∈ Ixs,y be such that σs(H
(i)) ∈ H(A0, yA0). By Lemma 3.5.6 (a), we have

σs(H
(i)) ∈ H(yA0, xyA0). It follows that σs(H

(i)) ∈ Hx,y and σs(i) ∈ Ix,y as required.

Let i ∈ Ixs,y be such that σs(H
(i)) /∈ H(A0, yA0). Then H(i) is of s-type 1. By the

previous lemma we have H(i) ∈ Hx,y and i ∈ Ix,y.

We show that ϕ is injective. Let i ∈ Ixs,y be such that ϕ(i) = σs(i) and assume that

σs(i) ∈ Ixs,y. We have

σs(Ui(yA0)) = Uσs(i)(syA0) = Uσs(i)(yA0)

and σs(H
(i)) is one of the hyperplane which defines Uσs(i)(yA0). Furthermore since

σs(H
(i)) ∈ H(A0, yA0) we must have σs(H

(i)) = H(σs(i)). It follows that σs(H
(σs(i))) ∈

H(A0, yA0) and ϕ(σs(i)) = i. The result follows.

�
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Proposition 3.5.8. Let x, y ∈ W and s ∈ S be such that xs < x and sy < y. Let

Hs be the unique hyperplane which separates yA0 and syA0. We have

cxs,y ≤ cx,y − cx,y(Hs).

Proof. Let ϕ be as in the proof of the previous lemma. We keep the same

notation. If Ixs,y = ∅ then the result is clear, thus we may assume that Ixs,y 6= 0.

First assume that W is not of type C̃r (r ≥ 2) or Ã1. Then any two parallel hyper-

planes have the same weight, therefore we obtain, for i ∈ Ixs,y

cxs,y(i) = cH(i) ,

Moreover, since cH = cσ(H) for any H ∈ F and σ ∈ Ω, one can see that

cxs,y(i) = cx,y(ϕ(i)),

and the result follows using Lemma 3.5.7.

Now, assume that W is of type C̃r, with graph and weight function given by

e e e e e e
s1

a

s2

c

s3

c

sr−1

c

sr

c

sr+1

b

We have seen that the only case where two parallel hyperplanes H , H ′ do not have the

same weight is when one of them, say H , supports a face of type s1 and H ′ supports

a face of type sr+1.

If a = b, then parallel hyperplanes have the same weight and we can conclude as

before.

Now assume that a > b. Let i ∈ F be such that not all the hyperplanes with direction

i have the same weight. Let H = Hα,n be a hyperplane with direction i and weight

a. Then Hα,n−1 and Hα,n+1 have weight b because otherwise all the hyperplanes with

direction i would have weight a.

Claim 3.5.9. Let i ∈ Ixs,y. We have

(1) if H(i) is of s-type 2 then cx,y(ϕ(i)) ≥ cxs,y(i);

(2) if σs(H
(i)) = H(i) then cx,y(ϕ(i)) ≥ cxs,y(i);

(3) if H(i) is of s-type 1 and σs(H
(i)) /∈ H(A0, yA0) then cx,y(ϕ(i)) ≥ cxs,y(i);

Proof. We prove (1). Since H(i) is of s-type 2 we have σs(H
(i)) ∈ H(A0, yA0)

and ϕ(i) = σs(i). Let H ∈ Hxs,y be such that H = i. Then H is of s-type 2 and

σs(H) ∈ Hx,y (see Lemma 3.5.6 (c)). The result follows.
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We prove (2). Since σs(H
(i)) = H(i) we have H(i) ∈ Hx,y (see Lemma 3.5.6 (d)) and

ϕ(i) = i. Let H ∈ Hxs,y be such that H = i. Then σs(H) = H and H ∈ Hx,y. The

result follows.

We prove (3). In that case we have ϕ(i) = i. Let H ∈ Hxs,y be such that H = i.

Then H is of s-type 1 and H ∈ Hx,y (see Lemma 3.5.6 (b)). The result follows. �

Claim 3.5.10. Let i ∈ Ixs,y be such that

cxs,y(i) = a and cx,y(ϕ(i)) = b

Then we have σs(i) ∈ Ixs,y, ϕ(σs(i)) = i and

cxs,y(σs(i)) = b and cx,y(i) = a

Proof. By the previous claim, we know that H(i) is of s-type 1 and σs(H
(i)) ∈

H(A0, yA0). Thus σs(H
(i)) ∈ Hx,y and ϕ(i) = σs(i). In particular, since cx,y(ϕ(i)) =

b, we must have cσs(H(i)) = b, which implies that cH(i) = b.

Since H(i) is of s-type 1 we have σs(H
(i)) ∈ H(yA0, xsyA0) which implies that

σs(H
(i)) ∈ Hxs,y. Thus σs(i) ∈ Ixs,y. Arguying as in the proof of Lemma 3.5.7,

we obtain σs(H
(i)) = H(σs(i)) and ϕ(σs(i)) = i.

Let α ∈ Φ+ and n ∈ Z be such that H(i) = Hα,n. Since cxs,y(i) = a, one can see

that one of the hyperplanes Hα,n−1, Hα,n+1 lies in Hxs,y. We denote this hyperplane

by H . Note that cH = a. Thus, since cx,y(σs(i)) = b we have σs(H) /∈ Hx,y. Both

hyperplanes σs(H) and σs(H
(i)) separate yA0 and xyA0 but only σs(H

(i)) lies in

Hx,y. This implies that A0 lies in the strip defined by σs(H) and σs(H
(i)). Since

σs(H
(i)) = H(σs(i)) this shows that the only hyperplane of direction σs(i) which lies

in Hxs,y is H(σs(i)). Thus we have cxs,y(σs(i)) = b. Moreover ϕ(σs(i)) = i and H is of

s-type 1, thus H ∈ Hx,y (see Lemma 3.5.6 (2)) and cx,y(i) = a.

�

We now go back to the proof of Proposition 3.5.8. Let I> be the subset of Ixs,y

which consists of the directions i such that cxs,y(i) = a and cx,y(ϕ(i)) = b. Using

the previous claim, we see that the set σs(I>) is a subset of Ixs,y such that for all

i ∈ σs(I>) we have cxs,y(i) = b and cx,y(ϕ(i)) = a. The proposition follows in the case

where W is of type C̃r (r ≥ 2).

In the case where W is of type Ã1, the result is clear, since we always have Ixs,y = ∅.

The proposition is proved.
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Proof of Theorem 3.5.1. Let x, y ∈W and

TxTy =
∑

z∈W

fx,y,zTz where fx,y,z ∈ A.

We want to prove that the degree of fx,y,z in v is less than or equal to cx,y. We proceed

by induction ℓ(x) + ℓ(y).

If ℓ(x) + ℓ(y) = 0 the result is clear.

If cx,y = 0 then Hx,y = ∅ and x.y. Thus TxTy = Txy and the result follows.

We may assume that Hx,y 6= ∅, which implies that ℓ(x) > 0 and ℓ(y) > 0. Let x =

sk . . . s1 be a reduced expression of x. There exists 1 ≤ i ≤ k such that (si−1 . . . s1).y

and sisi−1 . . . s1y < si−1 . . . s1y. Let x0 = sk . . . si and y0 = si−1 . . . s1.y. Let Hsi
be

the unique hyperplane which separates y0A0 and siy0A0. Note that cHsi
= L(si). We

have

TxTy = Tx0Ty0

Using Lemma 3.5.3, we obtain cx,y = cx0,y0. We have

Tx0,y0 = Tsk...si+1
Tsi

Ty0

= Tsk...si+1
(Tsiy0 + ξsi

Ty0)

= Tsk...si+1
Tsiy0 + ξsi

Tsk...si+1
Ty0

= Tx0si,siy0 + ξsi
Tx0si,y0

By induction, Tx0si
Tsiy0 is an A-linear combination of Tz with coefficients of degree

less than or equal to cx0si,siy0. Using Lemma 3.5.4, we have cx0si,siy0 ≤ cx0,y0 = cx,y.

By induction, Tx0si
Ty0 is an A-linear combination of Tz with coefficients of degree

less than or equal to cx0si,y0. Therefore the degree of the polynomials occuring in

ξsi
Tx0si

Ty0 is less than or equal to L(si) + cx0si,y0. Applying Proposition 3.5.8 to x0

and y0 we obtain

cx0si,y0 ≤ cx0,y0 − cx0,y0(Hsi
)

Since cx0,y0(Hsi
) ≥ cHsi

= L(si) we obtain

L(si) + cx0si,y0 ≤ cx0,y0 = cx,y.

The theorem is proved.

�



CHAPTER 4

On the determination of cells in affine Weyl groups

In this chapter, we introduce the original setting for cells with unequal parameters,

where instead of a weight function, Lusztig ([28]) defined the cells with respect to an

abelian group and a total order on it. Then following Geck ([16]), we find a criterion

in order to determine whether two weight functions give rise to essentially the same

data (i.e R-polynomials, Kazhdan-Lusztig polynomials...) on a given subset of W ,

namely a Bruhat interval. In Section 4.3.1, we prove that, in an affine Weyl group, the

Kazhdan-Lusztig polynomials are invariant under “long enough” translations. Finally,

applying these results to the case where W is of type G̃2, we will show that

(1) there are only finitely many possible decompositions of W into left cells;

(2) the number of left cells is finite in each case.

We use the geometric presentation of an affine Weyl group and keep the same notation

as in the previous chapter.

4.1. Weight function and total order

4.1.1. Total ordering. Let W be an arbitrary Coxeter group. Following Lusztig

([28]), let Γ be an abelian group written multiplicatively and let A := Z[Γ] be the

group algebra of Γ over Z. Let {vs | s ∈ S} be a subset of Γ such that vs = vt

whenever s, t ∈ S are conjugate in W . Then we can define the corresponding generic

Iwahori-Hecke algebra H, with A-basis {Tw | w ∈ W}, identity element Te and

multiplication given by the rule

TsTw =







Tsw, if ℓ(sw) > ℓ(w),

Tsw + (vs − v−1
s )Tw, if ℓ(sw) < ℓ(w).

Let a→ ā be the involution of Z[Γ] defined by g = g−1 for g ∈ Γ. We can extend it

to a map from H to itself by
∑

w∈W

awTw =
∑

w∈W

āwT
−1
w−1 (aw ∈ Z[Γ]).

Then h→ h̄ is a ring involution.

57
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Doing the same construction as in Chapter 2, we obtain the generic R-polynomials,

which satisfy similar properties as the R-polynomials.

Now we choose a total ordering of Γ. This is specified by a multiplicatively closed

subset Γ+ ⊂ Γ−{1} such that Γ = Γ+ ∪{1}∪Γ− (disjoint union) where Γ− = {g−1 |

g ∈ Γ+}. Moreover, assume that

{vs | s ∈ S} ⊂ Γ+.

Thus, in Chapter 2 one can replace A<0 by Z[Γ−]. We obtain

(1) the corresponding Kazhdan-Lusztig basis {Cw}w∈W ;

(2) the Kazhdan-Lusztig polynomials Py,w ∈ Z[Γ−] for all y < w ∈W ;

(3) the polynomials M
s
y,w whenever sy < y < w < sw (s ∈ S, y, w ∈W ).

As before, these data determine a pre-order relation ≤L (resp. ≤LR) on W and the

corresponding partition of W into left cells (resp. two-sided cells).

To sum up, we have the following correspondences

A = Z[v, v−1] ←→ A = Z[Γ]

weight function L ←→ total order Γ = Γ+ ∪ {1} ∪ Γ−

vL(s) ∈ {vn|n ∈ N∗} ←→ vs ∈ Γ+

H ←→ H

Tw ←→ Tw

Ry,w ←→ Ry,w

A<0 = v−1Z[v−1] ←→ Z[Γ−]

Cw ←→ Cw

Py,w ∈ A<0 ←→ Py,w ∈ Z[Γ−]

Ms
y,w ←→ M

s
y,w

Example 4.1.1. Let W be a Weyl group of type G2, generated by s, t. Let Q, q be

independent indeterminates over Z and consider the abelian group

Γ = {Qiqj | i, j ∈ Z}.

Consider the lexicographic order on Γ (with Q > q), i.e.:

Γ+ := {Qiqj | i > 0, j ∈ Z} ∪ {qi | i > 0}.
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We set vt = Q and vs = q. Doing some computations (see [46, Example 1.21]), we

obtain

Pt,tst = Ptst,tstst = Q−1q−1 −Q−1q

Pe,tst = Pts,tstst = Pst,tstst = Q−2q−1 −Q−2q

Pt,tstst = Q−2q−2 −Q−2 + Q−2q2

Pe,tstst = Q−3q−2 −Q−3 + Q−3q2

Ps,sts = Psts,ststs = Q−1q−1 + Q−1q

Pe,sts = Pts,ststs = Pst,ststs = Q−1q−2 + Q−1

Pt,ststs = Q−1q−3 + Q−1q−1

Ps,ststs = Q−2q−2 + Q−2

Pe,ststs = Q−2q−3 + Q−2q−1.

For all other pairs y ≤ w we have Py,w = Qℓt(y)−ℓt(w)qℓs(y)−ℓs(w), where ℓt(z) (resp. ℓs)

denotes the number of t’s (resp. s’s) which appears in a reduced expression of z.

The M polynomials are as follows

M
t
tsts,ststs = M

t
tst,stst = M

t
ts,sts = M

t
t,st = Qq−1 + Q−1q

M
t
t,stst = M

t
ts,ststs = 1

and all the others are zero.

Compare to the situation in Example 2.4.5.

4.1.2. Total order and weight function.

4.1.2.1. Finite Coxeter Groups. Let W be a finite Coxeter group. In [16], Geck

has established a link between these two situations, where you have an abelian group

Γ with a total order specified by Γ+ ⊂ Γ and a choice of parameters {vs | s ∈ S} ⊂ Γ+

on the one hand, and a weight function L on the other hand. We keep the setting of

the previous section.

First, let Γa
+(W ) be the set of all elements γ ∈ Γ+ such that γ−1 occurs with a

non zero coefficient in a polynomial Py,w for some y < w in W . Next for any y, w

in W and s ∈ S such that M
s
y,w 6= 0, we write M

s
y,w = n1γ1 + ... + nrγr where

0 6= ni ∈ Z, γi ∈ Γ and γ−1
i−1γi ∈ Γ+ for 2 ≤ i ≤ r. Let Γb

+(W ) be the set of all

elements γ−1
i−1γi ∈ Γ+ arising in this way, for any y, w, s such that M

s
y,w 6= 0. Finally

set Γ+(W ) = Γa
+(W ) ∪ Γb

+(W ).
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Proposition 4.1.2 (Geck [16, 2.10]). Assume that we have a ring homomorphism

σ : Z[Γ]→ Z[v, v−1], vs → vL(s)

such that

σ(Γ+(W )) ⊆ {vn | n > 0}. (∗)

Then σ(Py,w) = Py,w for all y < w in W and σ(Ms
y,w) = Ms

y,w for any y, w ∈W such

that sy < y < w < sw. Furthermore, the relation ≤L on W defined with respect to

the weight function L is the same as the one defined with respect to Γ+ ⊂ Γ.

Example 4.1.3. Let W be a Weyl group of type G2 generated by s, t. On the one

hand, let Q, q be independent indeterminates over Z and consider the abelian group

Γ = {Qiqj | i, j ∈ Z}.

On the other hand, let L be a weight function L on W . It is determined by the values

L(s1) = a ∈ N∗ and L(s2) = b ∈ N∗. We shall denote such a weight function by La,b.

We denote by σa,b the ring homomorphism

σa,b : Z[Γ] −→ Z[v, v−1]

Q 7−→ va

q 7−→ vb

Consider the lexicographic order on Γ (with Q > q). In Example 4.1.1 we have

computed all the Kazhdan-Lusztig polynomials and all the M-polynomials. Thus we

see that

Γ+(W ) ⊂ {Q3q−1, Q3q−2, Q2q−1, Q2q−2, Q1q−1, Qcqd(where c, d > 0)}.

In other words, Condition (∗) in the previous proposition is satisfied for any ring

homomorphism σa,b such that a > b. Thus any weight function La,b such that a > b

gives rise to the same left cell decomposition. Now by symmetry of the graph, the

case b > a is similar.

To sum up, there are just three distinct decompositions into left cells corresponding

to the following weight functions

(1) La,b such that a > b;

(2) La,b such that a = b;

(3) La,b such that a < b.
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Example 4.1.4. Let W be a Weyl group of type F4 with graph as follows

F4 : e e e e
s1 s2 s3 s4

We denote by La,b the weight function on W such that L(s1) = L(s2) = a ∈ N∗ and

L(s3) = L(s4) = b ∈ N∗. By symmetry of the graph we may assume that a ≥ b. We

have the following theorem.

Theorem 4.1.5 (Geck [16, Theorem 4.8]). Let L = La,b and L′ = La′,b′ be two weight

functions on W such that b ≥ a > 0 and b′ ≥ a′ > 0. Then L, L′ define the same

partition of W into left cells if and only if L, L′ ∈ Li for i ∈ {0, 1, 2, 3}, where Li are

defined as follows:

L0 = {(c, c, c, c) | c > 0},

L1 = {(c, c, 2c, 2c) | c > 0},

L2 = {(c, c, d, d) | 2c > d > c > 0},

L3 = {(c, c, d, d) | d > 2c > 0}.

4.1.2.2. Infinite Coxeter groups. If W is an infinite Coxeter group, we cannot

compute the set Γ+(W ). However, if we restrict ourself to a finite subset of W ,

namely a Bruhat interval, we find a similar result.

Let y, w ∈ W , s ∈ S and I = [y, w]. We now define three subsets Γa
+(I), Γb,s

+ (I),

Γc,s
+ ⊂ Γ+. First, let Γa

+(I) be the set of all elements γ ∈ Γ+ such that γ−1 occurs

with a non-zero coefficient in a polynomial Pz1,z2 for some z1 < z2 in I. Next for any

z1, z2 in I such that M
s
z1,z2
6= 0 we write M

s
z1,z2

= n1γ1 + ... + nrγr where 0 6= ni ∈ Z,

γi ∈ Γ and γ−1
i−1γi ∈ Γ+ for 2 ≤ i ≤ r. Let Γb,s

+ (I) be set of all elements γ−1
i−1γi ∈ Γ+

arising in this way, for any z1, z2 ∈ I such that M
s
z1,z2
6= 0. Finally let Γc,s

+ be the set of

all elements γ ∈ Γ+ such that γ−1 occurs with a non-zero coefficient in a polynomial

of the form
∑

z;z1≤z<z2;sz<z

Pz1,zM
s
z,z2
− vsPz1,z2

where z1, z2 ∈ I and sz1 < z1 < z2 < sz2. We set Γs
+(I) = Γa

+(I) ∪ Γb,s
+ (I) ∪ Γc,s

+ .

Proposition 4.1.6. Let y, w ∈ W , s ∈ S and I = [y, w]. Assume that we have a

ring homomorphism

σ : Z[Γ]→ Z[v, v−1], vs → vL(s)

such that

σ(Γs
+(I)) ⊆ {vn | n > 0}. (∗)
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Then σ(Pz1,z2) = Pz1,z2 for all z1 < z2 in I and σ(Ms
z1,z2

) = Ms
z1,z2

for any z1, z2 ∈ I

such that sz1 < z1 < z2 < sz2.

Proof. We have σ(p) = σ(p) for all p ∈ Z[Γ]. Moreover, the R-polynomials do

not depend on the order, therefore we have σ(Rz1,z2) = Rz1,z2 for any z1, z2 ∈W .

We prove by induction on ℓ(z2)− ℓ(z1) that σ(Pz1,z2) = Pz1,z2 for all z1 ≤ z2 in I. If

ℓ(z2)− ℓ(z1) = 0 it is clear.

Assume that ℓ(z2) − ℓ(z1) > 0. Applying σ to the formula in Proposition 2.4.2 (3)

using the induction hypothesis yields

σ(Pz1,z2)− σ(Pz1,z2) =
∑

z1<z≤z2

σ(Rz1,z)σ(Pz,z2)

=
∑

z1<z≤z2

Rz1,zPz,z2.

This relation and condition (∗) implies that σ(Pz1,z2) = Pz1,z2.

Let z1, z2 ∈ I and s ∈ S be such that sz1 < z1 < z2 < sz2. We prove by induction on

ℓ(z2)− ℓ(z1) that σ(Ms
z1,z2

) = Ms
z1,z2

.

Since M
s
z1,z2

= Ms
z1,z2

, we have σ(Ms
z1,z2

) = σ(Ms
z1,z2

). Furthermore, using (∗) and

the definition of the M-polynomials we have

σ(Ms
z1,z2

) +
∑

z;z1<z<z2;sz<z

Pz1,zM
s
z,z2
− vL(s)Pz1,z2 ∈ v−1Z[v−1].

This relation implies that σ(Ms
z1,z2

) = Ms
z1,z2

. Moreover we can see that if M
s
z1,z2
6= 0

then Ms
z1,z2

is a combination of pairwise different powers of v. Thus Ms
z1,z2
6= 0. �

If condition (∗) is satisfied for all s ∈ S, then we can conclude that x, z ∈ I satisfy

x ←L z with respect to the total order Γ+ if and only if they satisfy x ←L z with

respect to the weight function L. For an example, see Section 4.4.

4.2. On the translations in an affine Weyl group

Let (W, S) be an irreducible affine Weyl group.

Definition 4.2.1. Let u ∈W . We say that u is a translation if there exists a vector

~u 6= 0 such that t~u, the translation by the vector ~u, is in Ω and

uA0 = A0t~u.

Note that t~u is uniquely determined by u.



u1 = s2s1s2s1s2s3

u2 = s1s2s1s2s3s2

u3 = s1s2s3s2s1s2

u4 = s3s2s1s2s1s2

u5 = s2s3s2s1s2s1

u6 = s2s1s2s3s2s1
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Remark 4.2.2. There can be elements in W which “translate” A0 but which are not

translations according to our definition. For instance, let W be an affine Weyl group

of type C̃2, generated by S := {s1, s2, s3} where s1s3 = s3s1. Let u = s1s2s3. Then

uA0 is a translate of A0 by a vector ~u, however, t~u does not lie in Ω.

Let u ∈W be a translation and let B be an alcove. Let σ ∈ Ω be such that A0σ = B.

We have

uB = u(A0σ) = A0t~uσ = A0σtσ(~u) = Btσ(~u)

Therefore uB is a translate of B. Note that we have used the fact that the action of

Ω commutes with the action of W .

From now on and until the end of this section, we fix a translation u ∈W . Consider

the orbit of ~u under the action of Ω. It is finite since the group of linear transforms

associated to Ω is isomorphic to Ω0 (the stabilizer of the origin in V ) which is finite.

Let

OrbΩ(~u) = {~u1 = ~u, ~u2, ..., ~un}.

We denote by ui ∈ W the corresponding translations in W . Finally, let vi be the

special point t ~ui
(0).

Recall the definition of hA0(w) for w ∈ W in 3.2.3 and Definition 1.2.9.

Lemma 4.2.3. Let u ∈W be a translation associated to t~u ∈ Ω.

(a) Let r1 ≤ r2 ∈ N∗. We have

hA0(u
r2) ⊂ hA0(u

r1) and hA0(u
r2) = t(r2−r1)~u(hA0(u

r1)).

(b) Let r ∈ N∗. We have

z.u⇔ z.ur.

Before giving the proof, we give the example of G̃2 to illustrate this lemma.

Example 4.2.4. Let W be an affine Weyl group of type G̃2 generated by S =

{s2, s2, s3} where s1 and s3 commute. Let u = u1 = s2s1s2s1s2s3. Then one can

check that u is a translation and its orbit under the action of Ω contains 6 elements,

namely



~u1

hA0(u1)hA0(u2)

hA0(u3)

hA0(u4)

hA0(u
2
4) hA0(u5)

hA0(u6)

Figure 1. The sets hA0(ui) in G̃2
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In Figure 1, we show the shape of the set hA0(ui) (1 ≤ i ≤ 6).

Remark 4.2.5. The sets hA0(ui) are disjoint. As we will see later on, it is true in

general for any translation in an affine Weyl group. In fact, this will be the key point

to prove the invariance of the Kazhdan-Lusztig polynomials by translation.

Proof. (a) Let α ∈ Φ+ and kα = 〈~u, α̌〉. Since t~u ∈ Ω, one can see that kα ∈ Z.

For any r ∈ N, we have

rkα < 〈x, α̌〉 < rkα + 1 for all x ∈ urA0.

Note that, if kα = 0, there is no hyperplane of the form Hα,m (m ∈ Z) which separates

A0 and urA0.

Let ϕ (resp. ϕ+, ϕ−) be the subset of Φ+ which consists of all positive roots β such

that kβ 6= 0 (resp. kβ > 0, kβ < 0). For β ∈ ϕ, we define

Hβ =







Hβ,rkβ
if β ∈ ϕ+,

Hβ,rkβ+1 if β ∈ ϕ−.

Then, one can check that

hA0(u
r) =

⋂

β∈ϕ

EHβ(urA0). (∗)
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Let r1 ≤ r2 ∈ N∗ and β ∈ ϕ. We suppose that β ∈ ϕ+ (the case β ∈ ϕ− is similar).

We have

EHβ(ur1) = {x ∈ V | 〈x, β̌〉 > r1kβ}

and

EHβ(ur2) = {x ∈ V | 〈x, β̌〉 > r2kβ}.

Thus

EHβ(ur2) ⊂ EHβ(ur1) and EHβ(ur2) = t(r2−r1)~uEHβ(ur1)

and the result follows using relation (∗).

(b) The statement follows from (a) and Lemma 3.2.4. �

Remark 4.2.6. Note that this Lemma implies that ℓ(ur) = rℓ(u). Indeed, we have

u(uA0) ∈ hA0(u
2) ⊂ hA0(u)

thus, using Lemma 3.2.4, we get the result.

From now on, we write [1, n] := {1, . . . , n}.

Lemma 4.2.7. (a) For any i, j ∈ [1, n] we have ℓ(ui) = ℓ(uj).

(b) Let z1, z2 ∈ W , r ∈ N∗ and i ∈ [1, n] be such that z1.u
r
i .z2. There exists

k, m ∈ [1, n] such that

z1.u
r
i .z2 = z1.z2.u

r
m = ur

k.z1.z2.

(c) Let z1, z2 ∈W , r ≥ 1 and i ∈ [1, n]. We have the following equivalence

z1.u
r
i .z2 ⇔ z1.u

r+1
i .z2.

Proof. (a) Let A ∈ X and A′ be a translate of A (by a translation in Ω).

Then the number of hyperplanes which separate A and A′ is equal to the number of

hyperplanes which separate zA and zA′ for any z ∈W .

Let i, j ∈ [1, n], σ ∈ Ω and z ∈W be such that ~uiσ = ~uj and zA0 = A0σ.

We have

ℓ(ui) = |{H | H separates A0 and Avi
}|

= |{H | H separates z−1A0 and z−1Avi
}|

= |{H | H separates z−1A0σ and z−1Avi
σ}|.

Since

z−1A0σ = A0
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and

z−1Avi
σ = z−1A0t~ui

σ = z−1A0σt~uj
= Avj

,

we obtain

ℓ(ui) = |{H | H separates z−1A0σ and z−1Avi
σ}|

= |{H | H separates A0 and Avj
}|

= ℓ(uj)

as desired.

(b) Let σz1 , σz2 ∈ Ω and k, m ∈ [1, n] be such that

z1A0 = A0σz1 , σ−1
z1

(~ui) = ~uk.

and

z2A0 = A0σz2 , σz2(~ui) = ~um.

We have

z1.u
r
i .z2A0 = A0σz1tr~ui

σz2 = A0trσ−1
z1

(~ui)
σz1σz2 = ur

kz1z2A0,

which implies that z1.u
r
i .z2 = ur

kz1z2. Now, since ℓ(ui) = ℓ(uk), we must have ur
k.z1.z2.

Similarly, one can show that z1.u
r
i .z2 = z1.z2.u

r
m.

(c) The statement follows from (b) and Lemma 4.2.3 (b).

�

We now state the main result of this section.

Theorem 4.2.8. Let i, j ∈ [1, n] and r1, r2 ∈ N∗ be such that i 6= j. We have

hA0(u
r1
i ) ∩ hA0(u

r2
j ) = ∅.

Proof. According to Lemma 4.2.3 (a), to prove the theorem, it is enough to show

that, for any i 6= j ∈ [1, n], we have

hA0(ui) ∩ hA0(uj) = ∅.

Let

F0 := {H ∈ F | 0 ∈ H, vi /∈ H for all i ∈ [1, n]}.

Consider the connected component of

V −
⋃

H∈F0

H.

Since there exists σ ∈ Ω0 such that σ(vi) = vj , there is a hyperplane which separates

vi and vj and which contains 0. Therefore Avi
and Avj

do not lie in the same connected
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component. For i ∈ [1, n], let Ci be the connected component which contains Avi
. To

prove the theorem, it is enough to show that hA0(ui) ⊂ Ci for all i ∈ [1, n].

Let H be a wall of Ci and let EH(Ci) be the half-space defined by H which contains

Ci. Since 0 ∈ H and vi /∈ H , one can see that H ′ = t ~ui
(H) 6= H . Thus either H

separates A0 and Avi
or H ′ does.

If H separates A0 and Avi
then, as Avi

⊂ Ci, we must have hA0(ui) ⊂ EH(Ci).

Now, assume that H does not separate A0 and Avi
. Let β ∈ Φ+ and m ∈ Z be such

that H = Hβ,0 and H ′ = Hβ,m. In that case we have

A0, Avi
∈ EH(Ci) = {x ∈ V | 〈x, β̌〉 > 0}.

Thus one can see that we must have m > 0. Let EH′(Avi
) be the half-space defined

by H ′ which contains Avi
. We have

EH′(Avi
) = {x ∈ V | 〈x, β̌〉 > m}

and

hA0(ui) ⊂ EH′(Avi
) ⊂ EH(Ci).

We have shown that for every wall of Ci, hA0(ui) lies on the same side of this wall as

Ci, thus hA0(ui) ⊂ Ci as required. �

Corollary 4.2.9. (of Theorem 4.2.8)

(a) Let z, z′ ∈W , r ∈ N∗, m ∈ N and i, j ∈ [1, n]. We have

z.ur
i = z′.ur+m

j =⇒ i = j and z = z′.um
j .

(b) Let z1, z2, z
′
1, z

′
2 ∈W , r ∈ N∗, m ∈ N and i, j ∈ [1, n]. For all k ≥ 0 we have

z1.u
r
i .z2 = z′1.u

r+m
j .z′2 ⇔ z1.u

r+k
i .z2 = z′1.u

r+k+m
j .z′2.

Proof. (a) We have z.ur
i A0 ∈ hA0(u

r
i ) and z′.ur+m

j = z′.um
j .ur

j ∈ hA0(u
r
j). Since

z.ur
i = z′.ur+m

j , applying Theorem 4.2.8 yields i = j. The result follows.

(b) The statement follows from Lemma 4.2.7 and (a). �

4.3. On the Kazhdan-Lusztig polynomials

Let u ∈W be a translation associated to t~u ∈ Ω and let M = ℓ(u). One can easily see

that M ≥ 2. We keep the same notations as in the previous section. In this section

we want to prove
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Theorem 4.3.1. Let z, z′ ∈ W and i, j ∈ [1, n] be such that z.ui and z′.uj. Let

N = ℓ(z′)− ℓ(z). Then for all r > N(M + 1) and for all k ≥ 0 we have

Pzur
i ,z′ur

j
= Pzur+k

i
,z′ur+k

j

and if there exists s ∈ S which satisfies szur
i < zur

i < z′ur
j < sz′ur

j , then

M
s
zur

i ,z′ur
j

= M
s

z.ur+k
i ,z′ur+k

j

.

Our first task is to construct an isomorphism from the Bruhat interval [z.ur
i , z

′.ur
j ] to

[z.ur+k
i , z′.ur+k

j ] and then to show that the corresponding R-polynomials are equal.

Lemma 4.3.2. Let z ∈ W and i ∈ [1, n] be such that z.ui. Let r ∈ N∗ and y ∈ W be

such that r > ℓ(z.ur
i )− ℓ(y). Then we have

y ≤ z.ur
i ⇔ ∃z1, z2 ∈W, n1, n2 ∈ N such that z1.u

r−N
i .z2 = y

z1 ≤ z.un1
i , z2 ≤ un2

i and n1 + n2 = N .

Furthermore, there exists a unique zy ∈W and m ∈ [1, n] such that y = zy.u
r−N
m .

Proof. “⇐′′ is clear.

“⇒′′ Let N = ℓ(z.ur
i )− ℓ(y). We proceed by induction on N .

If N = 0, it’s clear.

Let N > 0. There exists y′ ∈W such that y ≤ y′ ≤ z.ur
i and

ℓ(z.ur
i )− ℓ(y′) = N − 1 and ℓ(y′)− ℓ(y) = 1.

Applying the inductive assumption yields

∃z′1, z
′
2 ∈W, n′

1, n
′
2 ∈ N such that z′1.u

r−N+1
i .z′2 = y′

z′1 ≤ z.u
n′

1
i , z′2 ≤ u

n′

2
i , n′

1 + n′
2 = N − 1 .

Let

y′ = sp...sm+1(sm...sk)
r−N+1sk−1...s1 (p ≥ m ≥ k ≥ 1)

be a reduced expression of y′ such that

z′1 = sp...sm+1, ui = sm...sk and z′2 = sk−1...s1 .

We know that y can be obtained by deleting a simple reflection s ∈ S in a reduced

expression of y′. If there exists l ∈ N such that

y = sp...ŝl...sk(sm...sk)
r−Nsk−1...s1 (p ≥ l ≥ k)
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or

y = sp...sm+1(sm...sk)
r−Nsm...ŝl...s1 (m ≥ l ≥ 1)

(where ŝ means that we have deleted s) the result is straightforward.

Now assume that there exists l1, l2 ∈ N∗ such that l1 + l2 = r −N and

y = z′1.u
l1
i .ûi.u

l2
i .z′2 .

where ûi is obtained by deleting a simple reflection in sm...sk.

Let j ∈ [1, n] be such that ul1
i .ûi = ûi.u

l1
j . We have y = z′1.ûi.u

l2
j .ul1

i .z′2 which implies

that ul2
j .ul1

i . Furthermore, we have

ul2
j .ul1

i A0 = A0tl2~uj
tl1~ui

= A0tl1~ui
tl2~uj

= ul1
i .ul2

j A0.

Applying Corollary 4.2.9, we get i = j. Thus

y = z′1.u
l1
i .ûi.u

l2
i .z′2 = z′1.ûi.u

r−N
i .z′2.

Let

z1 = z′1.ûi n1 = n′
1 + 1

z2 = z′2 n2 = n′
2.

Then one can check that z1 = z′1.ûi ≤ z.un1
i and z2 ≤ un2

i . Thus we get the result by

induction.

Let m ∈ [1, n] be such that y = z1.u
r−N
i .z2 = z1.z2.u

r−N
m . Let zy = z1.z2. Assume

that there exists w ∈W and k ∈ [1, n] such that y = w.ur−N
k . By Corollary 4.2.9, we

have k = m and w = zy, which concludes the proof. �

Lemma 4.3.3. Let z, z′ ∈ W and i, j ∈ [1, n] be such that z.ui and z′.uj. Let r1, r2 ∈ N∗

be such that r2 ≥ ℓ(z′.ur2
j )− ℓ(z.ur1

i ). Then for all k ≥ 0 we have

z.ur1
i ≤ z′.ur2

j ⇔ z.ur1+k
i ≤ z′.ur2+k

j .

Proof. Let N = ℓ(z′.ur2
j )−ℓ(z.ur1

i ). Applying the previous lemma and Corollary

4.2.9 yields the following equivalences, for any k ≥ 0

z.ur1
i ≤ z′.ur2

j

⇔ ∃z1, z2 ∈W, n1, n2 ∈ N such that z1.u
r2−N
j .z2 = z.ur1

i

z1 ≤ z′.un1
j , z2 ≤ un2

j and n1 + n2 = N

⇔ ∃z1, z2 ∈W, n1, n2 ∈ N such that z1.u
r2−N+k
j .z2 = z.ur1+k

i ,

z1 ≤ z′.un1
j , z2 ≤ un2

j and n1 + n2 = N

⇔ zur1+k
i ≤ z′ur2+k

j .
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�

Proposition 4.3.4. Let z, z′ ∈ W and i, j ∈ [1, n] be such that z.ui and z′.uj. Let

r ∈ N∗ be such that r > ℓ(z′.ur
j)− ℓ(z.ur

i ). Then for all k ≥ 0, the Bruhat interval

I1 = [z.ur
i , z

′.ur
j ] = {y ∈ W | z.ur

i ≤ y ≤ z′.ur
j}

is isomorphic to I2 = [z.ur+k
i , z′.ur+k

j ].

Proof. Let y ∈ I1 and Ny = ℓ(z′.ur
j) − ℓ(y). There exists a unique zy ∈ W and

m ∈ N such that y = zy.u
r−Ny
m .

Let
ϕ : I1 −→ I2

zy.u
r−Ny
m 7−→ zy.u

r+k−Ny
m .

We need to show that ϕ is an isomorphism of Bruhat intervals.

Let y′ ≤ y ∈ I1. Let Ny′ = ℓ(z′.ur
j)− ℓ(y′). There exists a unique zy′ ∈W and m′ ∈ N

such that y = zy′ .u
r−Ny′

m′ . One can check that we can apply Lemma 4.3.3, we obtain

z.ur
i ≤ y = zy.u

r−Ny

m ≤ y′ = zy′ .u
r−N ′

y

m′ ≤ z′.ur
j

⇐⇒ z.ur+k
i ≤ ϕ(y) = zy.u

r−Ny+k
m ≤ ϕ(y′) = zy′ .u

r−Ny′+k

m′ ≤ z′.ur+k
j .

By Corollary 4.2.9 we see that ϕ is injective. One can easily check that ϕ is surjective.

The result follows. �

The next step is to show that the corresponding R-polynomials are equal. Let Γ be

an abelian group together with a total order specified by Γ+. Let {vs | s ∈ S} ⊂ Γ+

be the set of parameters and ξs = vs − v−1
s .

Let y, w ∈W and s ∈ S be such that sw < w. Recall that the R-polynomials satisfy

Ry,w = 0 unless y ≤ w, Ry,y = 1 and the recursive relation

Ry,w =







Rsy,sw, if sy < y,

Rsy,sw + (vs − v−1
s )Ry,sw, if sy > y .

Proposition 4.3.5. Let z, z′ ∈ W and i, j ∈ [1, n] be such that z.ui and z′.uj. Let

r ∈ N∗ be such that r > (ℓ(z′)− ℓ(z))M . Then for all k ≥ 0 we have

Rz.ur
i ,z′.ur

j
= Rz.ur+k

i ,z′.ur+k
j

.

Proof. Let N = ℓ(z′)− ℓ(z). We proceed by induction on N .

If i = j or if N < 0 then the result is obvious.
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If N = 0, since

Rz.ur
i ,z′.ur

j
= δz.ur

i ,z′.ur
j

and Rz.ur+k
i ,z.ur+k

j
= δz.ur+k

i ,z.ur+k
j

the result follows from Corollary 4.2.9.

Let N ≥ 1 and i 6= j. Note that in this case r > M .

Let uj = sM ...s1 be a reduced expression. There exists 1 ≤ l ≤ M such that

(z.ur
i s1...sl−1)sl > z.ur

i s1...sl−1. Indeed, if not, then z.ur
i = y.uj for some y ∈ W .

By Corollary 4.2.9, this implies that i = j, but we assumed that i 6= j. Let l ∈

[1, m] be the smallest element with this property. The minimality of l implies that

ℓ(z.ur
i s1...sl−1) = ℓ(z.ur

i )− (l − 1).

One can see that zur
i s1...sl−1 ≤ z.ur

i . Let y, w ∈W and m, q, p ∈ [1, n] be such that

zur
i s1...sl−1 = y.ur−l+1

m

y.ur−l+1
m .sl = y.sl.u

r−l+1
p

z′ur
js1...sl = z′.ur−1

j .sM ...sl+1 = w.ur−1
q

By Corollary 4.2.9 we see that

zur+k
i s1...sl−1 = y.ur+k−l+1

m

y.ur+k−l+1
m .sl = y.sl.u

r+k−l+1
p

z′ur+k
j s1...sl = z′.ur+k−1

j .sM ...sl+1 = w.ur+k−1
q .

Applying the recursive formula for the R-polynomials, we obtain

Rz.ur
i ,z.ur

j
= Rzur

i s1...sl−1,z2ur
js1...sl−1

= Ry.ur−l+1
m ,z2ur

js1...sl−1

= Rysl.u
r−l+1
p ,w.ur−1

q
+ ξsl

Ry.ur−l+1
m ,w.ur−1

q

and

Rz.ur+k
i ,z.ur+k

j
= Rzur+k

i s1...sl−1,z2ur+k
j s1...sl−1

= Ry.ur−l+1+k
m ,z2ur+k

j
s1...sl−1

= Rysl.u
r−l+1+k
p ,w.ur−1+k

q
+ ξsl

Ry.ur−l+1+k
m ,w.ur−1+k

q
.



72 4. ON THE DETERMINATION OF CELLS IN AFFINE WEYL GROUPS

Therefore to prove the theorem it is enough to show that

Rysl.u
r−l+1
p ,w.ur−1

q
= Rysl.u

r−l+1+k
p ,w.ur−1+k

q
,

Ry.ur−l+1
m ,w.ur−1

q
= Ry.ur−l+1+k

m ,w.ur−1+k
q

.

If l = 1 we have

Rysl.ur
p,w.ur−1

q
= R(ysl.up).ur−1

p ,w.ur−1
q

,

Ry.ur
m,w.ur−1

q
= R(y.um).ur−1

m ,w.ur−1
q

and

ℓ(w)− ℓ(yslup) = N − 2,

ℓ(w)− ℓ(yum) = N − 1.

Moreover r − 1 > 0 (we have seen that r > M ≥ 2) and

r − 1 > MN − 1 ≥MN −N = M(N − 1) > M(N − 2).

Therefore in both cases we can apply the induction hypothesis which yields the desired

equalities.

If l > 1, we have

Ryslu
r−l+1
p ,w.ur−1

q
= Ryslu

r−l+1
p ,w.ul−2

q .ur−l+1
q

,

Ry.ur−l+1
m ,w.ur−1

q
= Ry.ur−l+1

m ,w.ul−2
q ur−l+1

q

and

ℓ(w.ul−2
q )− ℓ(ysl) = N − 2,

ℓ(w.ul−2
q )− ℓ(y) = N − 1.

Moreover r − l + 1 > 0 and

r − l + 1 > r −M > M(N − 1) > M(N − 2)

and once more the induction hypothesis gives the desired equalities. �

We are now ready to prove Theorem 4.3.1.

Proof. The intervals I1 = [z.ur
i , z

′.ur
j ], I2 = [z.ur+k, z′.ur+k] are isomorphic with

respect to the Bruhat order via ϕ (as defined in Proposition 4.3.4).

Let y1, y2 ∈ I (ℓ(y1) ≤ ℓ(y2)), z1, z2 ∈ W , N1, N2 ∈ N and m1, m2 ∈ [1, n] be such

that

N1 = ℓ(z′.ur+k)− ℓ(y1) and y1 = z1u
r−N1
m1

,
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N2 = ℓ(z′.ur+k)− ℓ(y2) and y2 = z2u
r−N2
m2

.

We have

r −N1 ≥ r −N > N(M + 1)−N = MN ≥M(ℓ(y2)− ℓ(y1)).

Thus, by Proposition 4.3.5, we obtain

Ry1,y2 = R
z1u

r−N1
m1

,z2u
r−N2
m2

= R
z1u

r−N1
m1

,z2u
N1−N2
m2

u
r−N1
m2

= R
z1u

r+k−N1
m1

,z2u
N1−N2
m2

u
r+k−N1
m2

= Rϕ(y1),ϕ(y2).

Therefore, by Remark 2.4.6, we get the result. �

4.4. Application to G̃2

The aim of this section is to use the invariance of the Kazhdan-Lusztig polynomials by

translation and the methods presented in Section 4.1.2 to prove the following result.

Theorem 4.4.1. Let W be an affine Weyl group of type G̃2. We have

(1) there are only finitely many possible decompositions of W into left cells;

(2) the number of left cells is finite in each case.

The proof of this theorem involves some explicit computations. We have developed

some program in GAP3 which given an interval I, s ∈ S and a monomial order on Γ,

compute the following data

(1) The Kazhdan-Lusztig polynomials Py,w for all y, w ∈ I,

(2) M
s
y,w for all y, w ∈ I such that sy < y < w < sw,

(3)
∑

z;z1≤z<z2;sz<z

Pz1,zM
s
z,z2
− vsPz1,z2 for all z1, z2 ∈ I,

so that we can compute the set Γs
+(I) as described in Proposition 4.1.6.

To prove the theorem we proceed as follows. Using Proposition 4.1.6, Theorem 4.3.1

and our GAP3 program, we will find a collection of non-zero M-polynomials. We will

then find a finite number of infinite sets such that each of these sets is included in a

left cell for any choice of parameters and such that all the elements of W lie in one

of these sets except for a finite number.
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Throughout this section, let W be an affine Weyl group of type G̃2 together with a

positive weight function, with presentation as follows

W := 〈s1, s2, s3 | (s1s2)
6 = 1, (s2s3)

3 = 1, (s1s3)
2 = 1〉.

A weight function L on W is uniquely determined by

L(s1) = a and L(s2) = L(s3) = b a, b ∈ N∗

We shall denote such a weight function by L = La,b.

4.4.1. Computations. In this section, we study an example in detail to show

how one can prove that a M-polynomial is non zero for a whole class of weight

functions.

Let Q, q be independent indeterminates over Z and consider the abelian group

Γ = {Qiqj | i, j ∈ Z}.

Let v be another indeterminate. For all a, b ∈ N∗ we have a ring homomorphism

σa,b : Z[Γ]→ Z[v, v−1], Qiqj → vai+bj .

We will need the following lemma.

Lemma 4.4.2. Let y < w ∈W , I = [y, w] and s ∈ S be such that

sy < y < w < sw.

(1) Consider the total order given by

Γ1
+ = {Qiqj | i > 0, j ∈ Z} ∪ {qi | i > 0}.

Suppose that, for c, d ∈ N∗, we have

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | i > 0, ci + dj ≥ 0}.

Then condition (∗) in Proposition 4.1.6 holds for any σa,b such that a/b >

c/d.

Furthermore, if M
s
y,w 6= 0, then for any weight function La,b such that

a/b > c/d, we have Ms
y,w 6= 0.

(2) Let c ≥ d ∈ N∗. Consider the total order given by

Γ2
+ = {Qiqj | ci + dj > 0} ∪ {Qdjq−cj | j > 0}.
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Suppose that we have, for some e > c/d ∈ Q>0

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | i > 0, i + j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ e} ∪ {Qiqj | −j > i > 0,−j/i ≤ c/d}.

Then condition (∗) in Proposition 4.1.6 holds for any σa,b such that e >

a/b > c/d.

Furthermore, if M
s
y,w 6= 0, then for any weight function La,b such that e >

a/b > c/d, we have Ms
y,w 6= 0.

Proof. We prove 1. Let i, j ∈ Z be such that Qiqj ∈ Γs
+(I). We must show that

ai + bj > 0 provided that a/b > c/d.

If i = 0 then j > 0 and ai + bj = bj > 0.

If i > 0 and ci + dj ≥ 0 then

ai + bj = b(ia/b + j) > b(ic/d + j) ≥ 0

as required.

We prove 2. Let i, j ∈ Z be such that Qiqj ∈ Γs
+(I). We must show that ai + bj > 0

provided that e > a/b > c/d.

If i = 0 then j > 0 and ai + bj = bj > 0.

If i > 0 and i + j ≥ 0 then

ai + bj > b(c/d)i + bj = b(ic/d + j) > b(i + j) ≥ 0.

If j > −i > 0 and −j/i ≥ e then

ai + bj = bj((a/b)(i/j) + 1) > bj(ei/j + 1) ≥ 0.

Finally, if −j > i > 0 and −j/i ≤ c/d then

ai + bj = ai(1 + (b/a)j/i) > ai(1 + (d/c)(i/j)) ≥ 0

as required.

�

Note that, in the situation of the above lemma, we will always have a > b. But similar

results also hold for b > a.

We now study an example in detail. Let u = s1s2s1s2s3s1s2s1s2s3 ∈W . Let x = s3u
6

and y = s3s2s1s2s3s1s2s1s2s3u
6. We want to show that Ms1

x,y 6= 0 for all parameters

a, b such that a ≥ b.
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Claim 4.4.3. For any parameters a, b such that a/b > 3 we have Ms1
x,y 6= 0.

Proof. Consider the total order given by

Γ+ = {Qiqj | i > 0, j ∈ Z} ∪ {qi | i > 0}.

Using our GAP3 program to compute the set Γs1
+ (I), we find M

s1
x,y 6= 0 and

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | 3i + j ≥ 0}.

Therefore, applying Lemma 4.4.2, we see that, for any parameters a, b such that

a/b > 3, we have

Ms1
x,y = σa,b(M

s1
x,y) and M

s1
x,y 6= 0 =⇒Ms1

x,y 6= 0.

�

In order to deal with weight functions La,b such that a/b < 3, we proceed as follows.

Let

E = {x ∈ Q>0 | x = ±j/i where j < 0, i 6= 0, Qiqj ∈ Γs
+(I)}.

The largest element of E below 3 is 2. This leads us to consider the total order given

by

Γ+ = {Qiqj | 2i + j > 0} ∪ {Qjq−2j | j > 0}.

Claim 4.4.4. For any parameters a, b such that 3 > a/b > 2 we have Ms1
x,y 6= 0.

Proof. Consider the total order given by

Γ+ = {Qiqj | 2i + j > 0} ∪ {Qjq−2j | j > 0}.

Computing Γs
+(I) gives M

s1
x,y 6= 0 and

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | i > 0, i + j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 3} ∪ {Qiqj | −j > i > 0,−j/i ≤ 2}.

Therefore, for any parameters a, b such that 3 > a/b > 2, we have

Ms1
x,y = σa,b(M

s1
x,y) and M

s1
x,y 6= 0 =⇒Ms1

x,y 6= 0.

�

Again we look at the set

E = {x ∈ Q>0 | x = ±j/i where j < 0, i 6= 0, Qiqj ∈ Γs
+(I)}.

The largest element of E below 2 is 3/2.
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Claim 4.4.5. For any parameters a, b such that 2 > a/b > 3/2 we have

Ms1
x,y 6= 0.

Proof. Consider the total order given by

Γ+ = {Qiqj | 3i + 2j > 0} ∪ {Q2jq−3j | j > 0}.

We find M
s1
x,y 6= 0 and

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | i > 0, i + j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 2} ∪ {Qiqj | −j > i > 0,−j/i ≤ 3/2}.

The result follows using Lemma 4.4.2. �

We look at the set E (defined as above), we find that the largest element of E below

3/2 is 4/3.

Claim 4.4.6. For any parameters a, b such that 3/2 > a/b > 4/3 we have Ms1
x,y 6= 0.

Proof. Consider the total order given by

Γ+ = {Qiqj | 4i + 3j > 0} ∪ {Q3jq−4j | j > 0}.

We find M
s1
x,y 6= 0 and

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | i > 0, i + j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 3/2} ∪ {Qiqj | −j > i > 0,−j/i ≤ 4/3}.

The result follows using Lemma 4.4.2. �

We now continue the procedure.

Claim 4.4.7. For any parameters a, b such that 4/3 > a/b > 5/4 we have Ms1
x,y 6= 0.

Proof. Consider the total order given by

Γ+ = {Qiqj | 5i + 4j > 0} ∪ {Q4jq−5j | j > 0}.

We find M
s1
x,y 6= 0 and

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | i > 0, i + j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 4/3} ∪ {Qiqj | −j > i > 0,−j/i ≤ 5/4}

The result follows using Lemma 4.4.2. �

Claim 4.4.8. For any parameters a, b such that 5/4 > a/b > 1 we have

Ms1
x,y 6= 0.
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Proof. Consider the total order given by

Γ+ = {Qiqj | i + j > 0} ∪ {Qjq−j | j > 0}.

We find M
s1
x,y 6= 0 and

Γs
+(I) ⊆ {qj | j > 0} ∪ {Qiqj | i > 0, i + j ≥ 0}

∪{Qiqj | j > −i > 0,−j/i ≥ 5/4}

The result follows using Lemma 4.4.2. �

Finally we compute Ms1
x,y for the parameters a, b where a/b ∈ {3, 2, 3/2, 4/3, 5/4, 1},

and we find that these are non-zero. Thus Ms1
x,y is non zero for all parameters such

that a ≥ b.

4.4.2. Proof of Theorem 4.4.1. Using the methods of the previous section, we

find a collection of non-zero M-polynomials and some infinite sets which are included

in a left cell for any parameters.

Let u = s1s2s1s2s3s1s2s1s2s3 ∈ W . One can check that u is a translation. Let

Π = {e, s3, s2s3, s1s2s3, s2s1s2s3,

s3s2s1s2s3, s1s2s1s2s3, s3s1s2s1s2s3, s2s3s1s2s1s2s3,

s1s2s3s1s2s1s2s3, s2s1s2s3s1s2s1s2s3, s3s2s1s2s3s1s2s1s2s3}

W1 = {e, s1, s1s2, s1s2s1, s1s2s1s2, s1s2s1s2s1}

= {w1, w2, w3, w4, w5, w6}

and y = s3s2s1s2s3s1s2s1s2s3.

For wi ∈W1 let σwi
∈ Ω be such that wiA0 = A0σwi

. One can check that

OrbΩ(~u) = {~uσw1, ..., ~uσw6} = {~u1, ..., ~u6}.

For 1 ≤ i ≤ 6, let

xr
1,i = s3.u

r.wi and yr
1,i = y.ur.wi

and

xr
2,i = s3s1s2s1s2s3u

r.wi and yr
2,i = y.s1s2s1s2s3.wi.u

r
i .

Let k = 1, 2. We know that for r large enough we have

Ms1
xr

k,i
,yr

k,i
= Ms1

xr+n
k,i

,yr+n
k,i

for all n ≥ 0.
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In fact using our GAP3 program one can show that this is true for all r ≥ 6. Doing

as in the previous section, one can show that

Ms1
xr
1,i,y

r
1,i

and Ms1
xr
2,i,y

r
2,i

are non-zero for all r ≥ 6 and for all parameters. This implies that the following sets

are included in a left cell:

Ci = {z.ur
1.wi | r ≥ 7, z ∈ Π}, 1 ≤ i ≤ 6.

We show the shape of the sets Ci on Figure 2.

Now, let u = s2s1s2s1s2s3 ∈W . One can check that u is a translation. Let

W2 = {e, s2, s2s1, s2s1s2, s2s1s2s1, s2s1s2s1s2} = {w1, w2, w3, w4, w5, w6}.

For wi ∈W2 let σwi
∈ Ω be such that wiA0 = A0σwi

. One can check that

OrbΩ(~u) = {~uσw1, ..., ~uσw6} = {~u1, ..., ~u6}.

For 1 ≤ i ≤ 6, let

xr
1,i = s2s3.u

r.wi and yr
1,i = y.ur.wi

and

xr
2,i = s3s2s1s2s3u

r.wi and yr
2,i = s3s2s1s2s1s2s3u

r+1.wi.

We know that for r large enough we have

Ms1
xr

k,i
,yr

k,i
= Ms1

xr+n
k,i

,yr+n
k,i

for all n ≥ 0.

In fact using our GAP3 program one can show that this is true for all r ≥ 6. Doing

as in the previous section, one can show that

Ms2
xr
1,i,y

r
1,i

and Ms2
xr
2,i,y

r
2,i

are non-zero for all r ≥ 6 and for all parameters a, b such that a/b ≤ 2. Therefore,

for these parameters, the following sets are included in a left cell:

Bi = {z.ur.wi | r ≥ 7, z ∈ Π}, 1 ≤ i ≤ 6.

We show the shape of the sets Bi on Figure 2.
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Let a, b ∈ N be such that a/b > 2. Arguing as before, we find that, for r ≥ 6, the

polynomials

Ms1
s1s2s3urwi,s2s3s2s1s2s1s2s3urwi

, Ms2

s2s3urwi,s3ur+1wi

Ms1
s1s2s3urwi,s3s2s1s2s3urwi

are non-zero. Therefore, for these parameters, the following sets are included in a left

cell:

Bi = {z.ur.wi | r ≥ 7, z ∈ Π}, 1 ≤ i ≤ 6

Let w0 = s1s2s1s2s1s2. The set

WT = {w ∈W | w = z′.w0.z, z
′ ∈W}

is known to contain finitely many left cells; see [9, 46] and Chapter 6. Now one can

check that the set WT together with the Bi’s and the Ci’s contain all the elements of

W except for a finite number. The theorem follows.

Computing some more coefficients in the case where a >> b, we find a more precise

decomposition of W which is included in the left cell decomposition. We show this

decomposition on Figure 2. We identify w ∈ W with the alcove wA0. The sets

which are included in a left cell are formed by the alcoves lying in the same connected

component after removing the thick line. In fact, we will prove that this the actual

decomposition of W into left cells; see Chapter 7.

We have

WT =
12
∪

i=1
Ai.

The figure also show the shape of the sets Bi and Ci.
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CHAPTER 5

Generalized induction of Kazhdan-Lusztig cells

In [15], Geck showed that the Kazhdan-Lusztig cells are compatible with parabolic

subgroups. In a more precise sense, any left cell of a parabolic subgroup can be

“induced” to obtain a union of left cells of the whole group. The main observation of

this chapter is that the methods of [15] work in somewhat more general settings, so

that we can “induce” from subsets which may not be parabolic subgroups. This leads

to our “Generalized Induction Theorem”.

In the final section, using this theorem, we show that, under specific technical con-

ditions on the parameters, the cells of a certain finite parabolic subgroup are cells in

the whole group.

In this section W denotes an arbitrary Coxeter group together with generating set

S. Let L be a positive weight function on W and H be the Iwahori-Hecke algebra

associated to W, L.

5.1. Main result

Consider a subset U ⊂ W and a collection {Xu | u ∈ U} of subsets of W satisfying

the following conditions

I1. for all u ∈ U , we have e ∈ Xu,

I2. for all u ∈ U and x ∈ Xu we have x.u,

I3. for all u, v ∈ U such that u 6= v we have Xuu ∩Xvv = ∅,

I4. the submodule M := 〈TxCu| u ∈ U, x ∈ Xu〉A of H is a left ideal,

I5. for all u ∈ U , x ∈ Xu and u1 < u we have

Pu1,uTxTu1 is an A<0-linear combination of Tz.

Let u ∈ U and x ∈ Xu. We have

TxCu = Txu + a A-linear combination of Tz with ℓ(z) < ℓ(xu).

83
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Since the set {Tw|w ∈W} is a basis of H, using I3, one can see that B = {TxCu|u ∈

U, x ∈ Xu} is a basis ofM.

Let u ∈ U and z ∈ W . Using I1 and I4 and the fact that B is a basis of M, we can

write

TzCu =
∑

u∈U,x∈Xu

ax,uTxCu for some ax,u ∈ A.

Let � be the relation on U defined as follows. Let u, v ∈ U . We write v � u if there

exist x ∈ W and z ∈ Xv such that TzCv appears with a non-zero coefficient in the

expression of TxCu in the basis B. We still denote by � the pre-order induced by this

relation (i.e the transitive closure). Since Cu ∈M, we have

HCu =
∑

v�u,z∈Xv

ATzCv.

Remark 5.1.1. If we choose U = W and Xw = {e} for all w ∈ W , the pre-order �

is the left pre-order ≤L on W .

We are now ready to state the main result of this section.

Theorem 5.1.2. Let U be a subset of W and {Xu|u ∈ U} be a collection of subsets of

W satisfying conditions I1–I5. Let U be a subset of U such that the following holds:

v � u ∈ U =⇒ v ∈ U .

Then, the set

{x.u|u ∈ U , x ∈ Xu}

is a left ideal of W .

The proof of this theorem will be given in the next section. First we discuss some

consequences of this theorem.

Corollary 5.1.3. Let C be an equivalence class on U with respect to �. Then the

subset {x.u|u ∈ C, x ∈ Xu} of W is a union of left cells.

Proof. Let v ∈ C, y ∈ Xv and z ∈ W be such that z ∼L y.v. Consider the

set U = {u ∈ U |u � v}. Then U satisfies the requirement of Theorem 5.1.2, thus

M := {x.u|u ∈ U , x ∈ Xu} is a left ideal of W . Since z ≤L y.v and y.v ∈ M, there

exist uz ∈ U and x ∈ Xuz
such that z = x.uz and uz � v.

We also have y.v ≤L x.uz. Applying the same argument as above to the set {u ∈
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U |u � uz} yields that there exists uy ∈ U and w ∈ Xuy
such that y = w.uy and

uy � uz. By condition I3, we see that uy = v. Thus uz ∈ C and the result follows. �

Remark 5.1.4. In [15], Geck proved the following theorem, where (W, S) is an arbi-

trary Coxeter system.

Theorem 5.1.5. Let W ′ ⊂ W be a parabolic subgroup of W and let X ′ be the set of

all w ∈ W such that w has minimal length in the coset wW ′. Let C be a left cell of

W ′. Then X ′C is a union of left cells of W .

Let U = W ′ and for all w ∈W ′ let Xw = X ′. We claim that this theorem is a special

case of Theorem 5.1.2 and Corollary 5.1.3. Indeed, conditions I1–I3 and I5 are clearly

satisfied. Condition I4 is a straightforward consequence of Deodhar’s lemma; see [15,

Lemma 2.2]. Hence, it is sufficient to show that the pre-order � on U = W ′ coincides

with the Kazhdan-Lusztig left pre-order defined with respect to W ′ (denoted ≤′
L) and

the corresponding parabolic subalgebra HW ′ := 〈Tw | w ∈W ′〉 ⊂ H. In other words,

we need to show the following

u ≤′
L v ⇐⇒ u � v.

Let u, v ∈ W ′ be such that u ≤′
L v. We may assume that there exists s ∈ S ′ (where

S ′ is the generating set of W ′) such that

TsCv =
∑

w∈W ′

aw,vCw where aw,v ∈ A and au,v 6= 0.

Since Cw ∈ B for all w ∈ W ′, this is the expression of TsCv in B, which shows that

u � v.

Conversely, let u, v ∈W ′ be such that u � v. We may assume that there exist z ∈W

and x ∈ X ′ such that

TzCv =
∑

w∈W ′,y∈X′

ayw,zvTyCw where ayw,zv ∈ A and axu,zv 6= 0.

We can write uniquely z = z1.z0 where z0 ∈W ′ and z1 ∈ X ′. Then, we have

TzCv = Tz1(Tz0Cv) = Tz1(
∑

w∈W ′,w≤′

L
v

aw,vCw) =
∑

w∈W ′,w≤′

L
v

aw,vTz1Cw

and this is the expression of TzCv in the basis B. We assumed that TxCu appears

with a non-zero coefficient, thus u ≤′
L v as desired.
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5.2. Proof of Theorem 5.1.2

We keep the setting of the last section and we introduce the following relation. Let

u, v ∈ U , x ∈ Xu and y ∈ Xv. We write xu ⊏ yv if xu < yv (Bruhat order) and

u � v. We write xu ⊑ yv if xu ⊏ yv or x = y and u = v.

The main reference is the proof of [15, Theorem 1].

Lemma 5.2.1. Let v ∈ U , y ∈ Xu. We have

T−1
y−1Cv =

∑

u∈U, x∈Xu

rxu,yvTxCu

where ryv,yv = 1 and rxu,yv = 0 unless xu ⊑ yv.

Proof. Let v ∈ U and y ∈ Xv. Recall that

T−1
y−1 = Ty +

∑

z<y

Rz,yTz

where Rz,y ∈ A are the usual R-polynomials as defined in Section 2.3. Thus

T−1
y−1Cv = (Ty +

∑

z<y

Rz,yTz)Cv

= TyCv +
∑

z<y

Rz,yTzCv.

Now we also have

TzCv = A-linear combination of TxCu where u � v and x ∈ Xu.

We still have to show that if TxCu appears in this sum then xu < yv.

This comes from the fact that TzCv, expressed in the standard basis, is an A-linear

combination of terms of the form Tw0.w1 where w0 ≤ z and w1 ≤ v. In particular,

since z < y we have w0w1 < yv. Then, expressing the right hand side of the equality

in the standard basis, one can see that we must have xu < yv if TxCu appears with

a non-zero coefficient.

Finally, by definition of ⊑, we see that

T−1
y−1Cv = TyCv +

∑

xu⊏yv

rxu,yvTxCu.

The result follows. �

Lemma 5.2.2. Let u, v ∈ U , x ∈ Xu and y ∈ Xv. Then
∑

w∈U,z∈Xw

xu⊑zw⊑yv

rxu,zwrzw,yv = δx,yδu,v
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Proof. Since the map h 7→ h is an involution and Cv = Cv, we have

TyCv = T−1
y−1Cv

=
∑

w∈U,z∈Xw

rzw,yvTzCw

=
∑

w∈U,z∈Xw

rzw,yvT
−1
z−1Cw

=
∑

w∈U,z∈Xw

rzw,yv

(

∑

u∈U,x∈Xu

rxu,zwTxCu

)

=
∑

u∈U,x∈Xu

(

∑

w∈U,z∈Xw

rxu,zwrzw,yv

)

TxCu.

Since B is a basis ofM, using Lemma 5.2.1 and comparing the coefficients yields the

desired result. �

Lemma 5.2.3. Let u ∈ U and x ∈ Xu. We have

TxCu ∈ Txu +
⊕

z<xu

A<0Tz.

Proof. We have

TxCu = Tx

(

∑

u1≤u

Pu1,uTu1

)

= Txu +
∑

u1<u

Pu1,uTxTu1

and the result follows, using I5. �

Proposition 5.2.4. Let v ∈ U and y ∈ Xv. We have

Cyv = TyCv +
∑

u∈U,x∈Xu

xu⊏yv

p∗xu,yvTxCu where p∗xu,yv ∈ A<0.

Proof. By Lemma 5.2.2, there exists a unique family (p∗xu,yv)xu⊏yv of polynomials

in A<0 such that

C̃yv := TyCv +
∑

u∈U,x∈Xu

xu⊑yv

p∗xu,yvTxCu

is stable under the ¯ involution; see [12], this contains a general setting to include

the arguments in [38, Theorem 5.2], [15, Corollary 3.3]. Moreover, using the previous

lemma, we see that C̃yv is an A<0-linear combination of Tz where z < yv. The result

follows. �
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Let U ⊂ U be as in Theorem 5.1.2. By definition of � one can see that

MU := 〈TyCv | v ∈ U , y ∈ Xv〉A

is a left ideal of H.

Corollary 5.2.5.

MU = 〈Cyv | v ∈ U , y ∈ Xv〉A.

Proof. Let v ∈ U and y ∈ Xv, using the previous proposition, we see that

Cyv = TyCv +
∑

u∈U ,x∈Xu

xu⊏yv

p∗xu,yvTxCu.

Thus Cyv ∈MU . Now, a straightforward induction on the order relation ⊑ yields

TyCv = Cyv + an A-linear combination of Cxu

where u ∈ U , x ∈ Xu and xu ⊏ yv.

This yields the desired assertion. �

We can now prove Theorem 5.1.2.

Let U be a subset of U such that

{v ∈ U | v � u for some u ∈ U} ⊂ U .

We know that MU = 〈TzCw | w ∈ U , z′ ∈ Xw〉A is a left ideal of H. We want to

show that the set B := {y.v|v ∈ U , y ∈ Xv} is a left ideal of W .

Let v ∈ U , y ∈ Xv and z ∈ W be such that z ≤L y.v. We may assume that there

exists s ∈ S such that Cz appears with a non-zero coefficient in the expression of

TsCyv in the Kazhdan-Lusztig basis. By Corollary 5.2.5, we have Cyv ∈ MU . Since

MU is a left ideal we have TsCyv ∈ MU . Thus, using Corollary 5.2.5 once more, we

have

TsCyv =
∑

u∈U , x∈Xu

axu,yvCxu where axu,yv ∈ A

and this is the expression of TsCyv in the Kazhdan-Lusztig basis. Now, the fact that

Cz appears with a non-zero coefficient in that expression implies that z = xu for some

u ∈ U and x ∈ Xu. Thus z ∈ B, as desired. �.

5.3. On some finite cells

Recall that, for J ⊂ S, we denote by XJ the minimal left coset representatives with

respect to the subgroup generated by J and by RJ the set {w ∈W | J ⊂ R(w)}.
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Let W ′ ⊂ W be a standard finite parabolic subgroup with generating set S ′ and

longest element w0. Let t ∈ S − S ′ be such that L(t) > L(w0). We keep this setting

in this section.

Theorem 5.3.1. The set

{w ∈W | w = y.w′, y ∈ R{t} ∩XS′, w′ ∈W ′}

is a left ideal of W .

Once and for all, we fix t ∈ S − S ′ such that L(t) > L(w0).

Let U = tW ′. For u ∈ U let

Xu = (R{t} ∩XS′)t.

We want to apply Theorem 5.1.2 to the set U . One can directly check that conditions

I1–I3 hold. In order to check conditions I4–I5 we need some preliminary lemmas.

We denote by HW ′ the Hecke algebra associated to (W ′, S ′) and the weight function

L (more precisely the restriction of L on S ′).

Lemma 5.3.2. Let w′ ∈W ′. We have

CtCw′ = Ctw′ and TtCw′ = Ctw′ − v−L(t)Cw′

Proof. We know that

CtCw′ = Ctw′ +
∑

tz<z<w′

M t
z,w′Cz,

TtCw′ = Ctw′ − v−L(t)Cw′ +
∑

tz<z<w′

M t
z,w′Cz.

But z < w′ implies that z ∈W ′, thus we cannot have tz < z. The result follows. �

Remark 5.3.3. Let s′ ∈ S ′. Since L(t) 6= L(s′), the order of s′t has to be even or

infinite (otherwise, s′ and t would be conjugate and L(s′) = L(t)).

Lemma 5.3.4. Let s′ ∈ S ′ and w ∈ W ′. Let m ≤ n be such that m is less than or

equal to the order of s′t. We have

T(s′t)mCw =
∑

w′∈W ′

m−1
∑

i=0

aw′,iT(s′t)is′Ctw′ + h′
m

where aw′,i ∈ A and h′
m ∈ HW ′, and

T(ts′)mCw =
∑

w′∈W ′

m−1
∑

i=0

bw′,iT(ts′)iCtw′ + h′′
m
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where bw′,i ∈ A and h′′
m ∈ HW ′. Furthermore, h′

m = h′′
m.

Proof. The first two equalities come from a straightforward induction.

It is clear that h0 = h′
0 = Cw. Even though it is not necessary, we do the case m = 1

to show how the multiplication process works. We have

Ts′Cw =
∑

w′∈W ′

aw′Cw′ for some aw′ ∈ A.

Thus we obtain (using the previous lemma)

Ts′tCw′ = Ts′Ctw′ − v−L(t)
∑

w′∈W ′

aw′Cw′

and

Tts′Cw′ =
∑

w′∈W ′

aw′Ctw′ − v−L(t)
∑

w′∈W ′

aw′Cw′.

It follows that

h′
1 = −v−L(t)

∑

w′∈W ′

aw′Cw′ = h′′
1.

Now, by induction, one can see that

h′
m = −v−L(t)Ts′h

′
m−1 ∈ HW ′ and h′′

m = −vL(t)Ts′h
′′
m−1 ∈ HW ′.

The result follows. �

Proposition 5.3.5. The submodule

M := 〈TxCu | u ∈ U, x ∈ Xu〉A ⊂ H

is a left ideal of H.

Proof. Let z ∈ W , u ∈ U and x ∈ Xu. We need to show that TzTxCu ∈ M.

Since TzTx is an A-linear combination of Ty (y ∈ W ), it is enough to show that

TyCu ∈M for all y ∈W and u ∈ U .

We proceed by induction on ℓ(y). If ℓ(y) = 0, then the result is clear.

Assume that ℓ(y) > 0. We may assume that y /∈ Xu. Let w′ ∈ W ′ be such that

u = tw′. Recall that Xu = (R{t} ∩XS′)t.

Suppose that yt < y and let y0 = yt. We have

TyCtw′ = Ty0TtCtw′ = vL(t)Ty0Ctw′ ∈M
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by induction.

Suppose that yt > y. Since yt ∈ R{t} and yt /∈ R{t} ∩XS′, there exists s′ ∈ S ′ such

that (yt)s′ < yt. Let 2n be the order of ts′. One can see that there exists y0 (with

ℓ(y0) < ℓ(y)) such that yt = y0(ts
′)n.

Using Lemma 5.3.2 and the relation Ct = Tt + v−L(t)Te we see that

Ctw′ = CtCw′ = TtCw′ + v−L(t)Cw′.

Since s′ ∈ S ′ and w′ ∈W ′ we have

Ts′Cw =
∑

wi∈W ′

awi
Cwi

for some awi
∈ A.

Thus we get

TyCtw′ = TytCw′ + v−L(t)TyCw′

= Ty0T(ts′)nCw′ + v−L(t)Ty0T(s′t)n−1s′Cw′

= Ty0

(

T(ts′)n−1Tt

∑

wi∈W ′

awi
Cwi

+ v−L(t)T(s′t)n−1

∑

wi∈W ′

awi
Cwi

)

=
∑

awi
Ty0.(ts′)n−1Ctwi

+ v−L(t)Ty0

∑

awi

(

T(s′t)n−1Cwi
− T(ts′)n−1Cwi

)

.

By induction we see that
∑

awi
Ty0T(ts′)n−1Ctwi

∈M.

Lemma 5.3.4 implies that

T(s′t)n−1Cw − T(ts′)n−1Cw

is an A-linear combination of terms of the form T(s′t)ms′Ctw′ and T(ts′)mCtw′, for some

tw′ ∈ J and m ≤ n− 2 (it is 0 if n = 1). Thus it follows by induction that

Ty0

∑

awi

(

T(s′t)n−1Cwi
− T(ts′)n−1Cwi

)

∈M

as required. �

Proposition 5.3.6. For all u ∈ U , u1 < u and y ∈ Xu we have

Pu1,uTyTu1 is an A<0-linear combination of Tz.

Proof. Let u = tw′ ∈ U , u1 < u and y ∈ Xu. One can see that we have either

u1 ∈W ′ (then u1 ≤ w′) or there exists w ∈ W ′ such that u1 = t.w and w < w′.

Assume that u1 ∈W ′. Then tu1 > u1 and we have (using ([38, Theorem 6.6])

Pu1,u = Pu1,tw′ = v−L(t)Ptu1,tw′ ∈ v−L(t)A≤0.
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Furthermore, the degree of the polynomials occurring in the decomposition of TyTu1

in the standard basis is at most L(u1). Thus, since L(t) > L(w0) ≥ L(u1), we get the

result in that case.

Assume that u1 = t.w (w ∈W ′). Then, since y ∈ (R{t} ∩XS′)t, we see that y.u1 and

TyTu1 = Tyu1 . The result follows. �

We are now ready to prove Theorem 5.3.1. Conditions I4 and I5 follow respectively

from Proposition 5.3.5 and 5.3.6. Applying Theorem 5.1.2 yields that

{x.u| u ∈ U, x ∈ Xu} = {w ∈W | w = y.w′, y ∈ R{t} ∩XS′, w′ ∈W ′}

is a left ideal of W . We obtain the following corollary.

Corollary 5.3.7. Let (W, S) be an arbitrary Coxeter system together with a weight

function L. Let W ′ ⊂ W be a finite standard parabolic subgroup with generating set

S ′ and longest element w0. If L(t) > L(w0) for all t ∈ S−S ′ then the left cells (resp.

two-sided cells) of W ′ with respect to the restriction of L to W ′ are left cells (resp.

two-sided cells) of W .

Proof. For all t ∈ S−S ′ we have L(t) > L(w0). Thus Theorem 5.3.1 yields that
⋃

t∈S−S′

{w ∈W | w = y.w′, y ∈ R{t} ∩XS′, w′ ∈W ′} = W −W ′

is a left ideal of W . Furthermore, since it is stable by taking the inverse, it’s a two-

sided ideal. Thus W −W ′ is a union of cells and so is W ′. Let y, w ∈W ′ be such that

y ≤L w in W . Then using Theorem 5.1.5, one gets that y ≤L w in W ′. Similarly, if

y ≤R w in W then y ≤R w in W ′. The result follows. �

Example 5.3.8. Let W be of type G̃2 with presentation as follows

W := 〈s1, s2, s3 | (s1s2)
6 = 1, (s2s3)

3 = 1, (s1s3)
2 = 1〉

and let L be a weight function on W . The longest element of the subgroup W ′

generated by s2, s3 is w0 = s2s3s2 and L(w0) = 3L(s2). Thus if L(s1) > 3L(s2), we

can apply Theorem 5.3.1. We obtain that the following sets (which are the cells of

W ′):

{e} ∪ {s2, s3s2} ∪ {s3, s2s3} ∪ {w0} (left cells)

{e} ∪ {s2, s3, s3s2, s2s3} ∪ {w0} (two-sided cells).

are left cells (resp. two-sided cells) of W .



CHAPTER 6

The lowest two-sided cell of an affine Weyl group

Bremke and Xi ([9, 46]) determined the lowest two-sided cell for an irreducible affine

Weyl group with unequal parameters. In [9], it is shown that it consists of at most

|W0| left cells where W0 is the associated Weyl group. We prove that this bound is

exact. Previously, this was known in the equal parameter case ([41, 42]) and when

the parameters are coming from a graph automorphism ([9]). Our argument works

uniformly for any choice of parameters.

Consider the set

c0 := {w ∈W | w = z.wλ.z
′, w, w′ ∈ W, λ ∈ T}.

We will show that it is a two-sided cell, that it is the lowest (with respect to ≤LR)

and we will determine the left cells lying in c0.

In this chapter, (W, S) denotes an irreducible affine Weyl group together with a weight

function L.

6.1. Presentation of the lowest two-sided cell

We begin this section by giving an example.

Example 6.1.1. Let W be an affine Weyl group of type C̃2, with parameters as

follows

e e e
s1 s2 s3

a b c

By symmetry of the graph we may assume that a ≥ c. In Example 3.3.6, we have

determined the set of special points in the case a > c and a = c. In the next two

figures, the gray sets describe the lowest two-sided cell in those two cases.
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Figure 2. Lowest two-sided cell of C̃2 in the case a = c.

Figure 1. Lowest two-sided cell of C̃2 in the case a > c.

94 6. THE LOWEST TWO-SIDED CELL OF AN AFFINE WEYL GROUP

Remark 6.1.2. In fact, using the classification of special points (see 3.3), we see that

if W is not of type C̃n (n ≥ 2) or Ã1, then the lowest two-sided cell is the same for

any choice of parameters.
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We can describe c0 in terms of strips (see [3, 9]).

Theorem 6.1.3. Let U be the set which consists of all maximal strips (of any direc-

tion) which contain A0. We have

c0 := {w ∈W | wA0 6⊂ U}.

Remark 6.1.4. Compare the previous example and Example 3.4.4.

Finally, we have the following description; see [9, Theorem 6.13].

Theorem 6.1.5. We have

c0 := {w ∈W | a(w) = ν̃}

where ν̃ = L(wλ) for any special point λ.

6.2. The lowest two-sided cell

We recall some notation, definitions and facts from Chapter 3. Let T be the set of

special points and let λ ∈ T . We denote by

(1) Wλ the stabilizer in W of the set of alcoves containing λ in their closure;

(2) wλ the longest element of Wλ;

(3) Sλ the subset of S defined by Sλ := S ∩Wλ.

Note that we have

swλ < wλ for any s ∈ Sλ.

Let λ ∈ T and z ∈W be such that wλ.z. We set

Nλ,z = {w ∈W | w = z′.wλ.z, z′ ∈W}.

Proposition 6.2.1. Let λ ∈ T and z ∈ W be such that wλ.z. Then the set Nλ,z is

included in a left cell.

Proof. We only sketch the proof here and refer to [9] for details.

Let y = z′.wλ.z ∈ Nλ,z for some z′ ∈ W . Let x = z−1.wλ.z ∈ Nλ,z. Note that x−1 = x.

Using Proposition 2.2.2 we know that

τ(TxTy−1Ty) = τ(Ty−1TyTx) = τ(TyTxTy−1).

Furthermore, one can check that

τ(Ty−1TyTx) = fy−1,y,x−1 = fy−1,y,x and τ(TyTxTy−1) = fy,x,y.
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It can be shown that v−ν̃τ(TxTy−1Ty) has a non-zero constant term, thus the degree

of fy−1,y,x and fy,x,y in v is equal to ν̃. We have seen that (see Proposition 2.7.1)

(1) f ′
x,y,z = fx,y,z +

∑

z′,z<z′ Qz,z′fx,y,z′

(2) hx,y,z = hx,y,z +
∑

x′<x,y′<y Px′,xPy′,yf
′
x′,y′,z

where Qz,z′ ∈ A<0. Since ν̃ is a bound for W , all the powers of v which appear in the

“big” sum above are stricly less than ν̃. It follows that vν̃ appears with a non-zero

coefficient in hy,x,y and hy−1,y,x. Hence y ≤L x and x ≤L y. In other words, any

y ∈ Nλ,z is ∼L equivalent to x and Nλ,z is included in a left cell. �

Let

Mλ = {z ∈W | wλ.z, swλz /∈ c0 for all s ∈ Sλ}.

Following [42], we choose a set of representatives for the Ω-orbits on T and denote it

by R. Then

c0 =
⋃

λ∈R, z∈Mλ

Nλ,z

where the union is disjoint and is over |W0| elements.

We are now ready to state the main results of this chapter.

Theorem 6.2.2. Let λ ∈ R and z ∈ Mλ. The set Nλ,z is a left ideal of W . In

particular it is a union of left cells.

The proof of this theorem will be given in the next section. We first discuss a number

of consequences of this result.

Corollary 6.2.3. Let λ ∈ T and z ∈Mλ. The set Nλ,z is a left cell.

Proof. The set Nλ,z is a union of left cells (Theorem 6.2.2) which is included in

a left cell (Proposition 6.2.1). Hence it is a left cell. �

The next step is to prove the following.

Proposition 6.2.4. The set c0 is included in a two-sided cell.

Proof. Recall that R = {λ1, ..., λn} is a set of representatives for the Ω-orbits

on T (see Example 3.3.6). Set

cλi
= {w ∈W | w = z′.wλi

.z, z, z′ ∈W}.

One can see that

c0 =
i=n
⋃

i=1

cλi
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and for 1 ≤ i ≤ j ≤ n we have cλi
∩ cλj

6= ∅. Therefore to prove the proposition, it is

enough to show that each of the sets cλi
is included in a two-sided cell.

Fix 1 ≤ i ≤ n. Let z′.wλi
.z ∈ cλi

and y′.wλi
.y ∈ cλi

. Using Proposition 6.2.1, together

with its version for right cells, we obtain

z′wλi
z ∼L wλi

.z ∼R wλi
y ∼R y′wλi

y.

The result follows. �

Finally, combining the previous results of Shi, Xi and Bremke with Theorem 6.2.2,

we obtain the following description of the lowest two-sided cell in complete generality.

Theorem 6.2.5. Let W be an irreducible affine Weyl group with associated Weyl

group W0. Let

c0 = {w ∈W | w = z′.wλ.z, z, z′ ∈W, λ ∈ T}

where T is the set of special points. We have:

(1) c0 is a two-sided cell.

(2) c0 is the lowest two-sided cell with respect to the partial order on the two-sided

cell induced by the pre-order ≤LR.

(3) c0 contains exactly |W0| left cells.

(4) The decomposition of c0 into left cells is as follows

c0 =
⋃

λ∈R, z∈Mλ

Nλ,z.

Proof. We have seen that c0 is included in a two-sided cell. Let w ∈ c0 and

y ∈ W be such that y ∼LR w. In particular we have y ≤LR w. We may assume that

y ≤L w or y ≤R w. We know that

c0 =
⋃

λ∈R, z∈Mλ

Nλ,z.

Thus w ∈ Nλ,z for some λ ∈ R and z ∈ Mλ. If y ≤L w then, using Theorem 6.2.2,

we see that y ∈ Nλ,z and thus y ∈ c0. If y ≤R w then using [38, §8.1], we have

y−1 ≤L w−1. But c0 is stable by taking the inverse, so as before, we see that y−1 ∈ c0

and y ∈ c0. This implies that c0 is a two-sided cell and that it is the lowest one with

respect to ≤LR.

By [42], we know that

c0 =
⋃

λ∈R, z∈Mλ

Nλ,z

is a disjoint union over |W0| terms. By Corollary 6.2.3, (3) and (4) follow. �
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6.3. Proof of Theorem 6.2.1

Once and for all we fix λ ∈ R and z ∈Mλ. We want to apply Theorem 5.1.2. We set

U = {wλ.z} = {u} and Xu = XSλ
(the minimal coset representatives with respect to

Wλ). Conditions I1–I3 are clearly satisfied. We have

Lemma 6.3.1. The set

M := 〈TyCu | y ∈ Xu〉

is a left ideal of H.

Proof. Since H is generated by Ts for s ∈ S, it is enough to check that TsTxCv ∈

M for x ∈ Xu. According to Deodhar’s lemma, there are three cases to consider

(1) sx ∈ Xu and ℓ(sx) > ℓ(x). Then TsTxCv = TsxCv ∈M as required.

(2) sx ∈ Xu and ℓ(sx) < ℓ(x). Then TsTxCv = TsxCv + (vs − v−1
s )TxCv ∈ M as

required.

(3) t := x−1sx ∈ Sλ. Then ℓ(sx) = ℓ(x) + 1 = ℓ(tx). Now, since tv < v, we have

TtCv = vL(t)Cv.

Thus, we see that

TsTxCv = TsxCv = TxtCv = TxTtCv = vL(t)TxCv,

which is inM as required.

�

Thus condition I4 is satisfied.

We now have a look at condition I5.

Lemma 6.3.2. Let y ∈ Xu and u1 < u = wλ.z. Then, Pu1,uTyTu1 is an A-linear

combination of Tz with coefficients in A<0.

Proof. We can write u1 = w.u′, where w ∈ Wλ and u′−1 ∈ XSλ
. First, assume

that w = wλ. In that case, we have y.u1 and TyTu1 = Tyu1 . Since Pu1,u ∈ A<0 the

result follows.

Next, assume that w < wλ. Let wu1 ∈ W be such that wu1 .w = wλ. We know that

the Kazhdan-Lusztig polynomials satisfy the following relation

Px,z = v−L(s)Psx,z, where x < sx and sw < w .
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Therefore, one can see that

(1) Pu1,u ∈ v−L(wu1 )A<0 if wλ.u
′ < u,

(2) Pu1,u = v−L(wu1) if wλ.u
′ = u.

Thus, to prove the lemma, it is sufficient to show that the polynomials occuring in

TyTu1 are of degree less than or equal to L(wu1) in the first case and L(wu1) − 1 in

the second case.

Using Theorem 3.5.1, we know that the degree of these polynomials is less than or

equal to cy,u1 (for the definition of cy,u1 , see Section 3.5).

Let wu1 = sn...sm+1 and w = sm...s1 be reduced expressions, and let Hi be the unique

hyperplane which separates si−1...s1u
′A0 and si...s1u

′A0. Note that cHi
= L(si). Let

λ′ be the unique special point contained in the closure of u′A0 and wλu
′A0. One can

see that yu1A0 lies in the quarter C with vertex λ′ which contains u1A0.

Let 1 ≤ i ≤ m. Let αi and k ∈ Z be such that Hi = Hαi,k. Assume that k > 0 (the

case k ≤ 0 is similar). We have u1A0 ∈ V +
Hi

. Now, since λ′ lies in the closure of u1A0

and λ′ ∈ Hi, one can see that

k < 〈x, α̌i〉 < k + 1 for all x ∈ u1A0.

Moreover, yu1A0 ∈ C implies that

k < 〈x, α̌i〉 for all x ∈ yu1A0.

From there, we conclude that, if l ≤ k then Hαi,l /∈ H(u1A0, yu1A0) and that none of

the hyperplanes Hαi,l with l > k lie in H(A0, u1A0). Thus Hi /∈ Iu1,y and we have

Iy,u1 ⊂ {Hm+1, ..., Hn},

which implies

cy,u1 ≤
i=n
∑

i=m+1

cy,u1(Hi).

Now, if W is not of type C̃r or Ã1 then any two parallel hyperplanes have same weight

and we have

cy,u1(Hi) =







0 if i /∈ Iy,u1,

L(si) otherwise.

Thus

cy,u1 ≤
i=n
∑

i=m+1

L(si) = L(wu1),

as required in the first case.
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Assume that W is of type C̃r or Ã1. Then, one can see that, since λ′ is a special

point, we have for all 1 ≤ i ≤ n, cHi
= cHi

= L(si). Thus we can argue as above.

Assume that we are in case 2. We have u1 = w.u′ < wλu
′ = u and u = wλ.z (where

z ∈Mλ). Recall that

Mλ = {z ∈W | wλ.z, swλz /∈ c0 for all s ∈ Sλ}

thus u1 = w.u′ /∈ c0. The elements of c0 are characterized by the fact that they

don’t lie in any strip of maximal weight which contains the identity. Thus, since

u1 /∈ c0, u1A0 lies in a strip of maximal weight which contains A0. Let 1 ≤ i ≤ m. By

definition, Hi separates A0 and u1A0 and since λ′ is a special point, cHi
= cHi

. Thus,

the maximal strip which contains A0 and u1A0 has to be a strip of direction Hk with

k > m.

If W is not of type C̃r or Ã1, then our strips and the strip as defined in [9] are the

same. Therefore, since A0 and u1A0 lie in the same strip of direction Hk, we have

Hk /∈ Iu1,y and

cy,u1 ≤
i=n
∑

i=m+1
i6=k

cy,u1(Hi) ≤
i=n
∑

i=m+1
i6=k

L(si) < L(wu1),

as required.

Assume that W is of type C̃r or Ã1. First, if all the hyperplanes with direction Hk

have same weight then we have Hk /∈ Iy,u1 and we can conclude as before. Assume

not, then we must have cHk
= cHk

(since λ′ ∈ Hk) and there is no hyperplane with

direction Hk and maximal weight which separates A0 and u1A0. Therefore

cy,u1 ≤
i=n
∑

i=m+1

cy,u1(Hi) <

i=n
∑

i=m+1
i6=k

cy,u1(Hi) + cHk
≤

i=n
∑

i=m+1

L(si) = L(wu1),

as required. �

We have checked that conditions I1–I5 are satisfied. Thus Theorem 6.2.2 is a conse-

quence of the generalized induction theorem.



CHAPTER 7

Decomposition of G̃2

Let W be an affine Weyl group of type G̃2 with diagram and weight function given

by

e e e
s1 s2 s3

a b b

where a, b are positive integers.

The main aim of this chapter is to find the decomposition of W into left cells and

two-sided cells for any weight function L such that a/b > 4. Furthermore we will

determine the partial left (resp. two-sided) order on the left (resp. two-sided) cells (see

Section 7.2.4). In the final section, we introduce a conjecture of Bonnafé concerning

the behaviour of Kazhdan-Lusztig cells when the parameters are varying. We then

discuss the decomposition of G̃2 for other values of the parameters and show that it

agrees with the conjecture.

In Figure 1, we present a partition of W using the geometric realization as defined in

Chapter 3, where the pieces are formed by the alcoves lying in the same connected

component after removing the thick lines. Using the same methods as in Chapter 4,

Section 4.4, one can show that each of these pieces are included in a left cell for any

weight function L such that a/b > 4. Thus in order to show that this is the actual

decomposition of W into left cells, it is enough to show that each of these pieces are

included in a union of left cells.

Remark 7.0.3. Note that we have changed the notation of the sets Ai, Bi and Ci

(see Chapter 4). The notation here are more convenient to describe the partial left

order on the left cells.

We now consider the union of all subsets of W whose name contains a fixed capital

letter; we denote this union by that capital letter. For instance

A = (
6
∪

i=1
Ai)

⋃

(
6
∪

i=1
A′

i).

The decomposition of W into two-sided cells is as follows

W = A ∪ B ∪ C ∪D ∪ E ∪ F ∪ {e}.

101
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Remark 7.0.4. In this section we need to compute some Kazhdan-Lusztig polyno-

mials Px,y (x, y ∈ W ) for a whole class of weight functions. This is done using

Proposition 4.1.6. In particular, this involved some computation with GAP ([39]).

For any subset J ⊆ {1, 2, 3}, let

(1) RJ := {w ∈W | {sj|j ∈ J} ⊆ R(w)};

(2) WJ be the subgroup of W generated by {sj; j ∈ J};

(3) XJ := {w ∈W | w has minimal length in wWJ}.

For details of the computations, see [20].

A0

A1A′
6

A6

A′
5

A5

A4

A′
4

A3

A′
3

A2

A′
2A′

1

C4

C3

C2

C1

C6

C5

B3

B2

B1B6

B5

B4

E1
E2

D3

D2 D1

F

Figure 1. Decomposition of G̃2 into left cells in the case a > 4b
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7.1. Preliminaries

In this section (W, S) denotes an arbitrary Coxeter system and L a positive weight

function on W . We give a number of lemmas which will be needed later on.

Lemma 7.1.1. Let S ′ ⊆ S be such that

(1) for all s′1, s
′
2 ∈ S ′, we have L(s′1) = L(s′2),

(2) for all t ∈ S − S ′ and s′ ∈ S ′ we have L(t) > L(s′).

Let y, w ∈W and s′ ∈ S ′ be such that s′y < y < w < s′w. Then if Ms′

y,w 6= 0, we have

either L(w) ⊆ L(y) or there exists s ∈ S ′ such that w = sy, in which case Ms′

y,w = 1.

Proof. We proceed by induction on ℓ(w)−ℓ(y). Assume first that ℓ(w)−ℓ(y) = 1.

Since s′y < y and s′w > w one can see that there exist s ∈ S such that s 6= s′ and

w = sy. In that case we have (see [28, Proposition 5])

Ms′

y,w =







0, if L(s) > L(s′),

1, if L(s) = L(s′).

Thus if Ms′

z,w 6= 0 we must have s ∈ S ′.

Assume that ℓ(w)−ℓ(y) > 1 and that L(w) * L(y). Let s ∈ S be such that s ∈ L(w)

and s /∈ L(y). We have

Ms′

y,w +
∑

z;y<z<w,s′z<z

Py,zM
s′

z,w − vs′Py,w ∈ A<0.

Thus in order to show that Ms′

y,w = 0 it is enough to show that
∑

z;y<z<w,s′z<z

Py,zM
s′

z,w − vs′Py,w ∈ A<0.

Let z ∈ W be such that Ms′

z,w 6= 0. By induction we have either Ms′

z,w = 1 or

L(w) ⊆ L(z). In the first case we have Py,zM
s′

z,w ∈ A<0. Assume that we are in the

second case (then s ∈ L(z)). By ([38, proof of Theorem 6.6]) we know that

Py,z = v−1
s Psy,z ∈ A≤0.

Furthermore the degree in v of Ms′

z,w is at most L(s′)−1 ([38, Proposition 6.4]). Since

s′ ∈ S ′ we have L(s) ≥ L(s′) and

Py,zM
s′

z,w ∈ A<0.

Similarly vs′Py,w ∈ A<0 (since ℓ(w)− ℓ(y) > 1). Thus if L(w) * L(y) we must have

Ms′

y,w = 0, as required.
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�

Lemma 7.1.2. Let B ⊆ W be a left ideal of W . Let s ∈ S and B′
s (resp. Bs) be the

subset of B which consists of all w ∈ B such that ws > w (resp. ws < w). Assume

that there exists a left ideal A of W such that, for all w′ ∈ B′
s, we have

Cw′Cs = Cw′s +
∑

z∈A

ACz.

Then A ∪Bs ∪B′
s.s is a left ideal of W . Furthermore, B′

s.s is a union of left cells.

Proof. Let w ∈ A ∪Bs ∪B′
s.s. Let y ∈ W be such that y ≤L w. We need to

show that y ∈ A ∪Bs ∪B
′
s.s.

If w ∈ A then y ∈ A, since A is a left ideal.

If w ∈ Bs then y ∈ B. Note that since

y ≤L w =⇒R(w) ⊆ R(y)

we have s ∈ R(y) and y ∈ Bs. This shows that Bs is a left ideal.

Finally, assume that w ∈ B′
s.s and let w′ ∈ B′

s be such that w′s = w. We may

assume that there exists t ∈ S such that Cy appears with a non-zero coefficient in the

expression of CtCw in the Kazhdan-Lusztig basis. We have

CtCw = CtCw′s

= Ct

(

Cw′Cs +
∑

z∈A

ACz

)

=
(

∑

z∈B

ACz

)

Cs +
∑

z∈A

ACz

=
∑

z∈B′

ss

ACz +
∑

z∈Bs

ACz +
∑

z∈A

ACz.

Thus we see that y ∈ A ∪Bs ∪B
′
s.s as desired. Now, since A and Bs are unions of

left cells, we obtain that B′
ss is a union of left cells. �

Lemma 7.1.3. Let T be a union of left cells which is stable by taking the inverse. Let

T = ∪ Ti (1 ≤ i ≤ N) be the decomposition of T into left cells. Assume that for all

i, j ∈ {1, ..., N} we have

T−1
i ∩ Tj 6= ∅ (∗)

Then T is included in a two-sided cell.

Proof. Let y, w ∈ T and i, j ∈ {1, ..., N} be such that y ∈ Ti and w ∈ Tj . Using

(∗), there exist y1, y2 ∈ Ti such that y−1
1 ∈ Ti and y−1

2 ∈ Tj . We have

y ∼L y1 ∼L y2 =⇒ y ∼L y−1
1 ∼R y−1

2 ∼L w
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as required. �

7.2. Decomposition of G̃2 in the “asymptotic case”

Let W be an affine Weyl group of type G̃2. Let L be a weight function on W such

that a/b > 4. We keep the notation of Figure 1 (i.e. Bi, Ci...).

7.2.1. The sets Ci. In this section we want to prove that Ci is a left cell (for all

1 ≤ i ≤ 6) and that C = ∪Ci is a two-sided cell.

For 1 ≤ i ≤ 6, let

(1) ui ∈ Ci be the element of minimal length in Ci;

(2) vi ∈ Ai be the element of minimal length in Ai;

(3) v′
i ∈ A′

i be the element of minimal length in A′
i.

For instance, we have

u1 = s1s2s1s2s1;

v1 = s1s2s1s2s1s2;

v′
1 = s2s1s2s1s2s3s1s2s1s2s1.

We set U := {ui, vi, v
′
i | 1 ≤ i ≤ 6}, Xvi

= Xv′i
= X1,2 for all 1 ≤ i ≤ 6 and

Xui
= {z ∈W | z.ui ∈ Ci}.

We want to apply Corollary 5.1.3. One can check that conditions I1–I3 of Theorem

5.1.2 hold. We now have a look at condition I4.

Lemma 7.2.1. The set

M := 〈TxCu | u ∈ U, x ∈ Xu〉

is a left ideal of H.

Proof. We know that, for all 1 ≤ i ≤ 6, the sets

〈TxCvi
| x ∈ X1,2〉 and 〈TxCv′i

| x ∈ X1,2〉

are left ideals of H; see Lemma 6.3.1. Thus, in order to show that M is a left ideal

of H, it is enough to prove that TxCui
∈ M for all 1 ≤ i ≤ 6 and all x ∈ W . We

proceed by induction on ℓ(x). If ℓ(x) = 0 it’s clear. Assume that ℓ(x) > 0. We

may assume that x /∈ Xui
. Then, one can see that we have either x = x0.s2 or

x = x1.s2s1s2s1s2s3. Now, doing explicit computations, one can show that Ts2Cui
is
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an A-linear combination of Cu with u ∈ U . For example, we have

Ts2Cu1 = Cv1 − v−L(s2)Cu1

and

Ts2Cu5 = Cv5 − v−L(s2)Cu5 + Cv1 .

Thus, by induction, TxCui
= Tx0Ts2Cui

∈M as required.

Similarly, one can show that Ts2s1s2s1s2s3Cui
is an A-linear combination of terms of

the form TzCu where u ∈ U , z ∈ Xu and ℓ(z) < ℓ(s2s1s2s1s2s3). For example we have

Ts2s1s2s1s2s3Cu1 = Cv′1
+ATs1s2s1s2s3Cu1 +ATs2s1s2s3Cu1 +ATs1s2s3Cu1

+ATs2s3Cu1 +ATs3Cu1 +ACu1 +ACv1.

Thus by induction, we obtain TxCui
∈M as required. �

We now have a look at condition I5. Let u ∈ U , u′ < u and y ∈ Xu. We need to

show that

Pu′,uTyTu′ is an A<0-linear combination of Tz.

For u = vi or u = v′
i, it is proved in Lemma 6.3.2. In order to prove it for u = ui we

proceed as follows. We determine an upper bound for the degree of the polynomials

occurring in the expression of TyTu′ (where y ∈ Ci, u′ < ui) in the standard basis using

either Theorem 3.5.1 or explicit computations. Then we compute the polynomials

Pu′,u and we can check that the condition is satisfied.

We can now apply Corollary 5.1.3. We need to find the equivalence classes on U with

respect to �. Using the fact that 〈TxCvi
| x ∈ X ′〉 and 〈TxCv′

i
| x ∈ X ′〉 are left

ideals of H for all 1 ≤ i ≤ 6 and the relations computed in the previous proof, one

can check that

{{ui}{vi}, {v
′
i} | 1 ≤ i ≤ 6}

is the decomposition of U into equivalence classes. Hence by Corollary 5.1.3, the set

Xui
.ui = Ci is a union of left cells for all 1 ≤ i ≤ 6. Since Ci is included in a left cell,

we obtain that Ci is a left cell, for all 1 ≤ i ≤ 6.

More precisely, the following sets are left ideals of W

Ci ∪Ai ∪A′
i for i = 1, 2, 3, 6

C4 ∪A4 ∪ A′
4 ∪ A2,

C5 ∪A5 ∪ A′
5 ∪ A1.

Proposition 7.2.2. The set C is a two-sided cell.



7.2. DECOMPOSITION OF G̃2 IN THE “ASYMPTOTIC CASE” 107

Proof. Applying Theorem 5.1.2 to the set U yields that A ∪ C is a left ideal of

W . One can check that A ∪ C is stable by taking the inverse, thus it is a two-sided

ideal and A ∪ C is a union of two-sided cells. Since A is a two-sided cell, we see

that C is a union of two-sided cells. Now one can check that C = ∪Ci satisfies the

requirement of Lemma 7.1.3 thus C is included in a two-sided cell. It follows that C

is a two-sided cell. �

7.2.2. The sets Bi. We want to prove that Bi (for all 1 ≤ i ≤ 6) is a left cell

and that the set B is a two-sided cell.

Claim 7.2.3. The set B4 is a left cell.

Proof. The set R2,3 is a left ideal of W (see Example 2.5.6). Furthermore, we

have

R2,3 = {s2s3s2} ∪B4 ∪A4 ∪ A5.

Since A3, A6 and {s2s3s2} are left cells (for {s2s3s2} see Example 5.3.8), it follows

that B4 is a left cell. �

Remark 7.2.4. We have seen in Example 5.3.8 that W −W2,3 is a left ideal of W .

Thus

R2,3 ∩ (W −W2,3) = B4 ∪ A4 ∪A5

is a left ideal of W .

Claim 7.2.5. B2 is a left cell.

Proof. The set R1,3 is a left ideal of W . Since we have

R1,3 = B2 ∪A3 ∪A′
3 ∪ A2 ∪ C3

it follows that B2 is a left cell. �

Claim 7.2.6. B5 is a left cell.

Proof. Let w ∈ R1,3 and w′ ∈ W be such that w = w′.s1s3. We have ws2 > w

and

CwCs2 = Cws2 +
∑

z∈W,zs2<z

µs2,r
z,w Cz.

Applying Lemma 7.1.1 (in its right version), if Ms2,r
z,w 6= 0 we have either {s1, s2, s3} ⊆

R(z) which is impossible or there exists w′′ ∈W such that

w = w′′.s2s3 and z = w′′s2.
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Since w = w′′.s2s3 = w′s1s3 we must have w ∈ A3, which, in turn, implies that z ∈ A1

(recall that A1 is a left ideal). Thus applying Lemma 7.1.2 to A = A1 and B = R1,3

yields that

R1,3.s2 ∪A1 = A1 ∪A5 ∪ A′
5 ∪ A6 ∪ C5 ∪ B5

is a left ideal of W . In particular B5 is a left cell. �

Claim 7.2.7. The set B1 is a left cell.

Proof. Set u = s1s3s2s1 and

Xu1 = {z ∈ W | z.s1s3s2s1 ∈ B1}.

Recall that

u1 = s1s2s1s2s1,

v1 = s1s2s1s2s1s2,

v′
1 = s1s2s1s2s1s2s3s2s1s2s1,

u2 = s1s2s1s2s1s3s2s1,

v2 = s2s1s2s1s2s1s3s2s1,

v′
2 = s2s1s2s1s2s3s1s2s1s2s1s3s2s1

v3 = s2s1s2s1s2s1s3,

and

Xui
= {z ∈W | z.ui ∈ C2},

Xvi
= Xv′i

= X1,2

for 1 ≤ i ≤ 6. Using similar arguments as in Lemma 7.2.1 and the results in Section

7.2.1, one can check that we can apply Theorem 5.1.2 to U := {u, u1, v1, v
′
1, u2, v2, v

′
2, v3}.

We obtain that

{x.ui | ui ∈ J, x ∈ Xui
} = A2 ∪A′

2 ∪ C2 ∪B1 ∪ A1 ∪ A′
1 ∪ C1 ∪A3

is a left ideal. In particular, B1 is a left cell. �

Claim 7.2.8. The set B6 is a left cell.

Proof. Applying Lemma 7.1.2 (in a similar way as in Claim 7.2.6) to

B = A2 ∪ A′
2 ∪ C2 ∪ B1 ∪ A1 ∪A′

1 ∪ C1 ∪A3

and A = A1 we obtain that

A1 ∪ A′
1 ∪ C1 ∪ A6 ∪A′

6 ∪ C6 ∪A5 ∪ B6
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is a left ideal. Thus B6 is a left cell. In fact since R1 is a left ideal and (C1∪A′
1)∩R

1 =

∅, we see that

A1 ∪A6 ∪ A′
6 ∪ C6 ∪ A5 ∪B6

is a left ideal of W . �

Claim 7.2.9. The set B3 is a left cell.

Proof. One could use Lemma 7.1.2 to show that B3 is a left cell. However, later

on we will need a more precise result in order to determine the left order on the left

cells. To this end, we need to go through the proof of Theorem 5.1.2.

We use the notation of the previous section (ui, Xui
etc...). Let v = s1s3s2s1s2s3 and

Xv := {z ∈W |z.v ∈ B3} Yv := {y ∈ Xv|y = y0.s2s1s2}.

We want to apply Theorem 5.1.2 to the set U = {v, u4, v4, v
′
4, v3, v2, v5} and the

corresponding Xu. Arguing as before, one can show that conditions I1–I4 hold.

However, condition I5 does not hold if (and only if) v1 = s1s2s1s2s3 < v and y ∈ Yv.

Indeed, in this case we have Pv1,v = v−L(s3) and

Ty0Ts2s1s2Tv1 = Ty0

(

Ts1s2s1s2s1s3 + (vL(s2) − v−L(s2))Ts1s2s1s2s1s2s3

)

.

Note that y0.s1s2s1s2s1s3 and y0.s1s2s1s2s1s2s3. However, we can certainly construct

the elements C̃x.u such that

C̃x.u = C̃x.u for all u ∈ U and x ∈ Xu.

Now one can check that

(1) C̃x.u = Cx.u for all u ∈ U − {v} and x ∈ Xu.

(2) C̃y.v = Cy.v if y ∈ Xv − Yv.

Let y ∈ Yv. We have

C̃yv = TyCv +
∑

u∈U,x∈Xu

xu⊏yv

p∗xu,yvTxCu

= TyCv +
∑

x<y

p∗xv,yvTxCv +
∑

u∈U,x∈Xu

u 6=v

p∗xu,yvTxCu

= TyCv +
∑

x<y

p∗xv,yvTxCv mod H<0

= TyCv mod H<0

= TyTv + Ty(Pv1,vTv1) mod H<0

= TyTv + Ty0Ts1s2s1s2s1s2s3 mod H<0



lA1 lA
′

1
lA2 lA

′

2
lA3 lA

′

3
lA4 lA

′

4
lA5 lA

′

5
lA6 lA

′

6

lC1 lC2 lC3 lC4 lC5 lC6

lB1
lB2

lB3
lB4

lB5
lB6

lD1 lD3 lD2

lF

lE1
lE2

le

lA1 lA
′

1

lC1
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Thus since C̃yv is stable under the involution ¯, it follows that

C̃yv = Cyv + Cy0.s1s2s1s2s1s2s3.

Furthermore, since y0.s1s2s1s2s1s2s3 ∈ A3, we obtain that

MU = 〈TxCu|u ∈ U, x ∈ Xu〉 = 〈Cx.u|u ∈ U, x ∈ Xu〉

is a left ideal of H. It follows that

B3 ∪ C4 ∪ A4 ∪ A′
4 ∪A3 ∪ A2 ∪ A5

is a left ideal of W . �

Proposition 7.2.10. The set B = ∪Bi is a two-sided cell.

Proof. By the previous proofs, we see that A∪C∪B is a left ideal of W . Arguing

as in the proof of Proposition 7.2.2, we obtain that B is a two-sided cell. �

7.2.3. Finite cells. We know that E1, E2 and F are left cells and that E1 ∪E2

and F are two-sided cells (see Example 5.3.8). Thus

W −A ∪B ∪ C ∪ F = D1 ∪D2 ∪D3 ∪ {e}

is a union of left and two-sided cells. The set {e} is clearly a left cell and a two-sided

cell. Now if w ∈ Di then R(w) = {si}, thus each of the Di’s is a left cell. Now one

can easily see that

D1 ∪D2 ∪D3

is a two-sided cell.

7.2.4. Left and two-sided order.

Theorem 7.2.11. The partial order induced by ≤L on the left cells can be described

by the following Hasse diagram
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Proof. Most of the relations can be deduced using the fact that for s ∈ S and

w ∈ W , if sw > w then sw ≤L w. For instance, for all 1 ≤ i ≤ 6 we have Ai ≤L Ci

and A′
i ≤L Ci.

Some of the relations require some explicit computations, we refer to [20] for details.

The fact that there is no other links comes from the last two sections, where we have

determined many left ideals of W .

�

Theorem 7.2.12. Let T = D or T = F . The partial order induced by ≤LR on the

two-sided cell is as follows

A ≤ C ≤ B ≤ T ≤ E ≤ {e}

and D and F are not comparable.

Proof. This is easily checked. �

Using the explicit decomposition of G̃2 in our case, we can check some of Lusztig

conjectures ([38, Chap14]). For instance

P14. For any z ∈W , we have z ∼LR z−1

is certainly true. The following statement can be deduced from P4 and P9

x ≤L y and x ∼LR y =⇒ x ∼L y.

In our case, it follows from the partial left order on the left cells. Indeed, there is no

relation between two left cells lying in the same two-sided cell.

7.3. Other parameters

In the next two sections we work in the following setting. Let (W, S) be a Coxeter

group. Let I, J be two non-empty subsets of S such that

• S = I ∪ J (disjoint union);

• if s ∈ I and t ∈ J then s and t are not conjugate.

7.3.1. Parameters equal to 0. Let L be a weight function on W such that

L(s) = 0 for all s ∈ I. Set

J̃ := {wtw−1|w ∈WI , t ∈ J}.
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Let W̃ be the subgroup of W generated by J̃ . Then it can be shown that (W̃ , J̃) is

a Coxeter group (see [6, Theorem 1] and the references there) and

W = WI ⋉ W̃ .

Let t̃ ∈ J̃ . We denote by ν(t̃) the unique element of J which is conjugate to t̃. Then

the function L̃ : J̃ → N defined by L̃(t̃) = L(ν(t̃)) is a weight function on W̃ ; see

[6]. Let HW̃ be the Hecke algebra associated to the Coxeter group W̃ and the weight

function L̃. The group WI acts on W̃ and stabilize J , thus it acts naturally on HW̃

and we can form the semi direct product

WI ⋉HW̃ .

It turns out (see [5, Corollary 5.14]) that the left cells of W with respect to the weight

function L are of the form WI .C where C is a left cell of W̃ with respect to L̃. In

particular WI is a left cell of W .

Example 7.3.1. Let W be an affine Weyl group of type G̃2 with diagram and weight

function given by

e e e
s1 s2 s3

a b b

where a, b ∈ N. Assume that b = 0 and a > 0. Then we have

W = W2,3 ⋉ W̃

where W̃ is of type Ã2 and is generated by J̃ = {s1, s2s1s2, s3s2s1s2s3}. Since we know

the decomposition of Ã2 into left cells (see [30]) one can easily find the decomposition

of W into left cells in that case (see Figure 2).

Assume that a = 0 and b > 0. Then we have

W = W1 ⋉ W̃

where W̃ is of type Ã2 and is generated by J̃ = {s2, s3, s1s2s1}. As before, one can

easily find the decomposition of W into left cells in that case (see Figure 10).

7.3.2. Semicontinuity. Recently, Bonnafé has conjectured that the Kazhdan-

Lusztig cells should satisfy some “semicontinuity” properties (see [5]) when the pa-

rameters are varying. We describe briefly this conjecture in the two parameter case

and we refer to [5] for a more general setting.
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Let La,b (a, b ∈ N) be the weight function which takes the value a on I and b on J .

Let r = a/b (we set r = 0 if a = 0 and b > 0 and r = ∞ if a > 0 and b = 0).

The decomposition of W into cells only depends on r. We denote by Lr(W ) the

decomposition into left cells associated to r.

Bonnafé has conjectured the following.

Conjecture 7.3.2. There exists an integer m and some rational numbers 0 < r1 <

... < rm (we set r0 = 0 and rm+1 =∞) which depends on W such that for all θ, θ′ ∈ Q

we have

(1) if ri < θ, θ′ < ri+1 for some 0 ≤ i ≤ m, then Lθ(W ) = Lθ′(W
′);

(2) if ri−1 < θ < ri < θ′ < ri+1 for some 1 ≤ i ≤ m, then the left cells of Lri
(W )

are the smallest subsets of W which are at the same time unions of left cells

of Lθ(W ) and unions of left cells of Lθ′(W ).

(3) if 0 < θ < r1 then the left cells of L0(W ) are the smallest subsets of W which

are at the same time unions of left cells of Lθ(W ) and stable by multiplication

on the left by WI .

(4) if rm < θ then the left cells of L∞(W ) are the smallest subsets of W which

are at the same time unions of left cells of Lθ(W ) and stable by multiplication

on the left by WJ .

In the finite case, the existence of the rational numbers 0 < r1 < ... < rm is clear. In

the case, G̃2 it is proved in Chapter 4.

Remark 7.3.3. We have seen that WI is a left cell of L0(W ). Thus the conjecture

implies that, for θ small enough, WI should be a union of left cells of Lθ(W ). In the

case where WI is finite, it has been proved in Corollary 5.3.7.

Remark 7.3.4. One can easily state similar conjectures for right and two-sided cells.

7.3.3. Semicontinuity in G̃2. Let W be an affine Weyl group of type G̃2 with

diagram and weight function as defined in Example 7.3.1. We denote by r the ratio

a/b (we set r = 0 if a = 0 and b > 0 and r = ∞ if a > 0 and b = 0). The following

figures present some conjectural decompositions of W into left cells for different values

of r. In each case, using our GAP3 program, we can show that the decomposition is

included in the left cell decomposition. One can check that these computations agree

with the “semicontinuity conjecture”.

Remark 7.3.5. The decomposition in the case r = ∞ and r = 0 are the actual left

cell decomposition (see Example 7.3.1). The decomposition in the equal parameter

case (r = 1) has been proved by Lusztig in [30].



Figure 3. r > 2

Figure 2. r =∞
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Figure 5. 2 > r > 3/2

Figure 4. r = 2
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Figure 7. 3/2 > r > 1

Figure 6. r = 3/2
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Figure 9. r < 1

Figure 8. r = 1
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Figure 10. r = 0
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Remark 7.3.6. Note that not all the cases that we have described above arise “in

nature”; we have seen in the introduction that the only parameters on G̃2 that arise

in the framework of representation of reductive groups over p-adic field are

(9, 1, 1), (3, 1, 1), (1, 1, 1), (1, 3, 3).
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