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Introduction

This thesis is concerned with the theory of Hecke algebras, whose origin lies in a pa-
per by Iwahori in 1964; see [23|. These algebras naturally arise in the representation
theory of reductive algebraic groups over finite or p-adic fields, as endomorphism al-
gebras of certain induced representations. The overall philosophy is that a significant
amount of the representation theory of the group is controlled by the representation

theory of those endomorphism algebras.

A standard situation can be described as follows. Let G be a finite group with a
BN-pair with associated Weyl group W. Let H be the endomorphism algebra of
the permutation representation of G on the cosets of B. By standard results, the
irreducible representations of H are in bijection with the irreducible representations
of G which admit non-zero vectors fixed by B. Now H has a standard basis indexed
by the elements of W, usually denoted by {T,,|w € W}. The multiplication can be
described in purely combinatorial terms. Let S be a set of Coxeter generators of W.
For any w € W, we have T,, = Ty, ..T, if w = s1...5; (s; € S) is a reduced expression
of w. Furthermore, we have T? = ¢, 71+ (¢s—1)T} for any s € S, where ¢, = |BsB/B|.
Now assume that G is the set of F -rational points of a connected reductive algebraic
defined over F;. Then we have ¢, = ¢ where the numbers ¢, are positive integers;
they are called the parameters of H. They extend to a weight function L : W — Z
in the sense of Lusztig [38], where L(s) = ¢, for all s € S. Then it turns out that
the above rules for the multiplication can be used to give an abstract definition of
‘H without reference to the underlying group G, namely by explicit generators and

relations in terms of W and the weight function L.

More generally, one can consider endomorphism algebras of representations obtained
by Harish-Chandra induction of cuspidal representations of Levi subgroups of G. In
another direction, one can consider p-adic groups instead of finite groups, in which
case we obtain Hecke algebras associated with affine Weyl groups. Thus, it is an
interesting and important problem to study the representation theory of abstract
“Iwahori-Hecke algebras” associated with a finite or an affine Weyl group W and a
weight function L. One should note, however, that not all possible weight functions

actually arise “in nature”, i.e., in the framework of representations of reductive groups
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6 INTRODUCTION

over finite or p-adic fields. For example, consider the finite Weyl group W of type Gs
and the corresponding affine Weyl groups Go, with diagrams

Gy: =0

Gy: &=0—0

The only weight functions on G5 arising “in nature” are those with the following values
on the simple reflections (1,1), (3,1), (9,1); see [26, Table II, p35].

The only weight functions on Gy arising “in nature” are those with the following val-
ues on the simple reflections (9,1,1), (3,1,1), (1,1,1), (1,3,3); see [37, 7.9, 7.23,
7.36, 8.14].

A major breakthrough in the study of representations of Hecke algebras with equal
parameters was achieved in the celebrated paper “Representation of Coxeter groups
and Hecke algebras” by Kazhdan and Lusztig (see [24]) where they first introduced the
notion of left, right and two-sided cells of an arbitrary Coxeter group. The definition
involves a new, canonical basis of the Iwahori-Hecke algebra H. In a following paper
([25]), they showed that the Kazhdan-Lusztig basis of a Hecke algebra associated to
a Weyl group has a geometric interpretation in terms of intersection cohomology of
algebraic varieties. This connection has been of crucial importance to solve a number

of problems in different aspects of representation theory; see [36].

From then on, cells have been intensively studied. Not only they give rise to rep-
resentations of the Coxeter group W but also of the corresponding Iwahori-Hecke
algebra H. In type A, it turns out that the representations afforded by left cells
give all the irreducible representations of H. This is not true in general, however.
In the general case of a Weyl group W, we say that two irreducible representations
of W are linked if they both appear as constituents in a representation afforded by
a left cell. By taking the transitive closure of this relation, we obtain a partition of
the irreducible representations of W into so-called “families”. These are in a natural
bijection with the two-sided cells of W and play a crucial role in the classification
of unipotent representations of reductive groups over finite fields; see Lusztig [29].
The decomposition for Weyl groups of the left cell representations into irreducible

representations is completely known, see [32].

The cell theory of affine Weyl groups in the equal parameter case was first studied
by Lusztig. In a series of papers, he studied the representations of the corresponding
Hecke algebra afforded by cells (see [30, 33, 34, 35]). In particular, he described
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all the cells of the affine Weyl groups of ranks less than 2. The decomposition into
cells have been explicitly described for type A,,r € N (see [31, 40]), ranks 2, 3 (see
[2, 14, 30]) and types By, Cy and Dy (see [10, 43, 44]).

A special feature of affine Weyl groups is that there is a distinguished two-sided cell,
the so called “lowest two-sided cell”, which contains, roughly speaking, most of the
elements of the group. This cell has been thoroughly studied by Shi ([41, 42]). In
particular, he described the left cells lying in the lowest two-sided cell.

In 1983, Lusztig [28| generalized the definition of cells in the case where the simple
reflections of the Coxeter groups are given different weights. This generalization of

cells give rise to representations of Iwahori-Hecke algebras with unequal parameters.

Many of the problems that have been studied in the equal parameter case have nat-
ural extensions to the general case of unequal parameters. However, the knowledge
in that case in nowhere near the one in the equal parameter case. The main reason
is that a crucial ingredient in the proofs of the above-mentioned results in the equal
parameter case is the geometric interpretation of the Kazhdan-Lusztig basis and the
resulting “positivity properties”, such as the positivity of the coefficient of the struc-
ture constants with respect to the Kazhdan-Lusztig basis. Simple examples show that
these “positivity properties” definitely do no longer hold in the case of unequal pa-
rameters. Hence, the need to develop new methods for dealing with Kazhdan-Lusztig
cells without reference to those “positivity properties”. Ideally, these methods should

work uniformly for all choices of parameters.

A major step in this direction is achieved by Lusztig’s formulation of 15 conjectural
properties P1-P15 in [38, Chap. 14|, which capture essential properties of cells
for all choices of parameters. These properties can be used as an axiomatic basis
for studying the structure and representations of Hecke algebras. See, for example,
[38, Chap. 22| where Lusztig develops the representation theory of Hecke algebras
associated with finite Weyl groups on the basis of P1-P15. These conjectures are
known to hold for finite and affine Weyl groups in the equal parameter case, thanks
to the above-mentioned geometric interpretation. As far as unequal parameters are
concerned, P1-P15 are only known to hold in some special situation, including:

e type B, in the “asymptotic case”, see |7, 18];

e infinite dihedral type, see [38, Chap. 17].

However, a general proof of P1-P15 seems far out of reach at present.

In this context, our thesis forms a contribution to the programme of developping

methods for dealing with cells which a) work uniformly for all choices of parameters
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and b) do not refer to a geometric interpretation. More precisely, we are mostly
concerned with affine Weyl groups; the starting point is a thorough study of the cells
in the affine Weyl group of type G with unequal parameters. If P1-P15 were known
to hold then, for example, we could deduce that there are only finitely many left cells in
each case. One of the results of this thesis shows that this conclusion is true, without
using P1-P15. We also show that, in fact, there are only finitely many partitions
of G into left cells. The main ingredients for the proof of these results are, on the
one hand, the invariance of the Kazhdan-Lusztig polynomials under “long enough”
translations in an affine Weyl group and, on the other hand, explicit computations
using GAP [39] and COXETER [11]. We will also determine the exact decomposition

of G into left cells for a certain class of weight functions.

The main theoretical results of this thesis concern the theory of the “lowest two-sided
cell”; which has been described by Xi ([46]) and Bremke (|9]) in the general case of
unequal parameters. As mentioned before, the decomposition of this cell into left cells
is known in the equal parameter case. It has also been determined is some specific
cases of unequal parameters which still admit a geometric interpretation; see [9]. Our
main result describes the decomposition of this lowest two-sided cell into left cells
thus completing the work begun by Xi and Bremke. The proof uniformly works for

all choices of parameters.

We now give an outline of the content of this thesis.

In Chapter 1, we present the theory of Coxeter groups. We give a classification of the

Weyl groups and the affine Weyl groups.

In Chapter 2, we present the Kazhdan-Lusztig theory. In particular, we define left,

right and two-sided cells and give some examples.

In Chapter 3, we introduce the geometric presentation in term of alcoves. Since it
plays a key role in many results of this thesis, we give a number of examples. In the
final section, we use this presentation to determine an upper bound on the degrees of

the structure constants with respect to the standard basis.

In Chapter 4, we introduce the original setting for cells with unequal parameter, as
defined in [28], where instead of a weight function, Lusztig defined the cells with
respect to an abelian group and a total order on it. Then we show that this setting
can be used to determine whether two weight functions give rise to essentially the
same data on a given finite subset of an affine Weyl group. The main result of this

chapter is the invariance of the Kazhdan-Lusztig polynomials of an affine Weyl group
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under “long enough” translations. We then apply both these results to G» to obtain

some finiteness results about cells in this group.

In Chapter 5, we generalized an argument due to Geck ([15]) on the induction of
Kazhdan-Lusztig cells (see also [21], where this idea was first developed). This result
will be our main tool to “separate” cells. We give a first application where we show
that under some specific condition on the parameters, the cells in a certain parabolic

subgroup are still cells in the whole group.

In Chapter 6, we study the lowest two-sided cell of an affine Weyl group in the general
case of unequal parameters. Using the generalized induction of Kazhdan-Lusztig cells,

we determine its decomposition into left cells.

Finally, in Chapter 7, we give the decomposition of the affine Weyl group G into
left and two-sided cells for a whole class of weight functions. We also determine
the partial left (resp. two-sided) order on the left (resp. two-sided) cells. Finally,
we briefly discuss the “semicontinuity properties” of Kazhdan-Lusztig cells, recently
conjectured by Bonnafé. We give some “conjectural” decompositions of G5 into left

cells for any weight functions, and show that it agrees with Bonnafé’s conjecture.
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CHAPTER 1

Reflection groups and Coxeter groups

We start this chapter with the study of finite reflection groups in a real Euclidean
space. Each reflection determines a reflecting hyperplane (the set of fixed points)
and a vector orthogonal to it (the “root”). This leads to the theory of root systems
which will allow us to find simple presentations of finite reflection groups in terms of
generators and relations; see Section 1.1.1. We will focus on finite reflection groups
which arise naturally in Lie Theory, namely the “Weyl groups”. Then, we will describe
a class of infinite reflection groups, generated by affine reflections (the so-called “affine
Weyl groups”) which are closely related to Weyl groups; see Section 1.1.3. Such groups

admit a simple presentation, similar to those of Weyl groups.

Motivated by the examples of finite reflection groups and affine Weyl groups, we
will study a more general type of group, the Coxeter groups; see Section 1.2. Such
groups are defined by a set of generators of order 2 subject only to relations which
give the order of any product of two generators. This presentation leads to many

combinatorial properties such as the Bruhat order; see Section 1.2.5.

The basic references for this chapter are [8],[22] and 38|

1.1. Reflection groups

Let V' be a real Euclidean space with scalar product denoted by (.,.). We are inter-
ested in the study of reflection groups. First of all we should clarify what we mean by
reflection. A reflection is a linear transformation on V' which sends a non-zero vector
a € V to —a and fixes pointwise the hyperplane orthogonal to a. We denote such a
reflection by o, and by H, its set of fixed points. Let z € V| we have

2(x, a)

(a,a)

Oo(x) =12 —

1.1.1. Root system. A root system & is a finite set of non-zero vectors in V
such that

(R1) for all &« € & we have ® NRa = {a, —a},
(R2) for all @ € @, we have 0,9 = d.
13



14 1. REFLECTION GROUPS AND COXETER GROUPS

The rank of ® is the dimension of the vector space spanned by ®. A root system is
said to be “reducible” if there exist two orthogonal subspaces Vi, V5 of V' and two root
systems ®; (resp. ®y) of V; (resp. V3) such that & = &1 U d,.

We denote by W the group generated by the reflections o, o € .

REMARK 1.1.1. The interest of this definition is that any finite reflection group can
be realized in this way. Conversely, any reflection group arising from a root system

is finite.

We fix a root system ® in V. A set of positive roots (there can be many choices) is
a subset @t of ® such that

(1) for each root « exactly one of the roots «, —a is contained in &7,
(2) for any a, 3 € ®* such that o + 3 € ®, we have a + [ € T,

Note that such a set exists. A simple system is a subset A C ® such that

(1) A is a basis of the R-~vector space spanned by ®.
(2) any a € @ is a Z-linear combination of elements of A with coefficients all of

the same sign.

Note that simple systems exist and they are all conjugate in W. The elements of A

are called simple roots.

REMARK 1.1.2. A set of positive roots contains a unique simple system. Conversely,

every simple system is contained in a unique set of positive roots.

Fix a simple system A. The reflection group W associated to @ is in fact generated
by the set {o,, a € A}. Let o, € A, we denote by m, g the order of v,05 in W.
It can be shown that a group W arising from a root system has a presentation of the

form
(Caya €A | (0005)™? =1, 02 =1, a,3 € A).
EXAMPLE 1.1.3. Let n € N. Let V' be the Euclidean plane. Then, the set
¢ = {w; = (cos(m%),sin(zz%)) |0<i<m-—1}
is certainly a root system (of rank 2).

In Figure 1, we consider the case n = 8. The plain arrows represent a choice of

positive roots and the thick arrows represent a simple system.
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FIGURE 1. Root system of the Dihedral group of order 8

The reflection group associated to ® is the Dihedral group with 8 elements. It is

generated by o,, and o,, and has presentation
D8 = <0a070a3 | Uio = 023 = (Uaoaa3)4 = 1>
1.1.2. Weyl group. We say that a root system @ is crystallographic if it satisfies
the additional requirement

(R3) for all a, 5 € &, we have 2&5; SYA

The groups generated by crystallographic root systems are known as Weyl groups.

Let a, 8 € @, then (R3) forces the angle between the hyperplanes H, and Hz to be
in {§,7,%, 5} Since the composition of the reflections o, and op is a rotation of
angle twice the angle between H, and Hpg, we see that if ® is crystallographic then

Map € {2,3,4,6}.

EXAMPLE 1.1.4. On Figure 2, we show all the possible crystallographic root systems
of rank two. Note that the root system A; x A; is reducible and the root systems
Ay, By and (G5 are irreducible.

REMARK 1.1.5. We shall not give details of the classification of irreducible crystallo-
graphic root systems. It can be found in [8]. One should only know that if ® is an
irreducible crystallographic root system, then at most two root lengths are possible.
Moreover, there exist two root systems B,, and C,, (n > 3) which differ only by the
length of their roots. They give rise to the same Weyl group. If n = 2, then the roots

system By and Cy are the same.
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\As
/\
Root system A; x A Root system As
i ;
Root system B, Root system G,

FI1GURE 2. Crystallographic Root systems of rank 2

1.1.3. Affine Weyl group. Let ® be a crystallographic root system with Weyl
group W. We assume that ® spans V. Let ) be the root lattice

Q:={nja1 + ...+ npay, | n; € Z, o; € P}
The Weyl group W acts on @ (see (R2)), thus we can form the semi-direct product
W:=WKx Q.
The group W is called the affine Weyl group of ®.

We give a geometric interpretation of W. Basically, instead of considering only linear
transformations on V', we also consider affine transformations. Let o« € ®. We denote
by @& the coroot of a defined by & = ?éaa; € V* (where V* is the dual space of V).
One can identify & € V* with (O%% € V. Then the set & = {@ | o € ®} (called the
dual root system of ®) is a crystallographic root system of V' with Weyl group W.

For any o € ® and k € Z let

Hop={z €V | ale) = 22 = k),
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The group W is the group generated by all the reflections with fixed point sets the
hyperplanes H, ;. We denote such a reflection by o, ;. Note that W is generated by
Oqp for o € ®. Assume that ® is irreducible and let n be the rank of ®, then it can
be shown that W is generated by n + 1 reflections and has a presentation similar to

the presentation of the Weyl group W.

REMARK 1.1.6. The root systems B, and C,, introduced in Remark 1.1.5 are dual.
They give rise to the same Weyl group but not the same affine Weyl group.

EXAMPLE 1.1.7. In the following figure, we give the example of G, the affine Weyl
group associated to the root system G5. The thick arrows represent a choice of positive

roots. One can check that G has the following presentation

(01,00,03 | 0f = 03 = 035 =1, (0102)° = (0203)" = (0103)* = 1).
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1.2. Coxeter groups

A Coxeter system (W, S) consists of a group W and a finite set of generators S C W
subject (only) to the relations

(88)™ss" =1
where my, = 1 and myy = my s > 2 for s # s’. As we have seen in the previous
section, finite reflection groups and affine Weyl groups are Coxeter systems. That is
why the elements of S are often called simple reflections. We will sometime refer to
(W, S) as a Coxeter group.

In this section, (W, S) denotes a Coxeter system.

1.2.1. Coxeter graph. A convenient way to encode the informations in the
presentation of W is in the so-called “Coxeter graph”. The vertices of the Coxeter
graph (say I') are in one to one correspondence with the set of generators S; if m, ¢ = 2
(i.e. s and s’ commute) we do not join the corresponding vertices. We join the other

vertices as follows

- If my ¢ = 3, we join the vertices by 1 edge;
- If my ¢ =4, we join the vertices by 2 edges;
- If my ¢ = 6, we join the vertices by 3 edges;

- In any other cases we label the edge with my 4.

EXAMPLE 1.2.1. The Dihedral group of order 8 (see Example 1.1.3) has the following
graph
C——————0

1.2.2. Standard parabolic subgroup and irreducible Coxeter group. Let
I be a subset of S. Then one can consider the group generated by the generators

s € I. Tt is called a standard parabolic subgroup and we denote it by W7.

PROPOSITION 1.2.2. Let (W,S) be a Cozeter system with graph T'. Denote by T;
(1 <i < n) the connected components of I' and by S; the corresponding subset of S.
Then W is the direct product of the parabolic subgroups Ws,, for 1 <i <n.

When the graph of (W, S) is connected, we say that (W, .S) is irreducible. The above
proposition shows that the study of Coxeter groups can be reduced to the case where
W is irreducible.

REMARK 1.2.3. It is readily checked that if ® is an irreducible root system, then the

associated reflection group W have a connected graph and hence is irreducible.
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1.2.3. Geometric representation of W. As noticed before, finite reflection
groups are Coxeter groups. Of course not all Coxeter groups will be reflection groups
(in the sense of Section 1.1), however, if we redefine a reflection to be merely a linear
transformation which fixes pointwise an hyperplane and send some non-zero vector

to its opposite, we obtain a reasonable substitute...

Let (W, S) be a Coxeter system. Let V' be a vector space with basis {e,, s € S}. Let
B be the bilinear form on V' defined by

™

).

We clearly have B(eg, es) = 1 and B(es,ey) < 01if s # s'. Now, to any s € S we can

associate a ‘reflection” o, defined by

Bles,eq) = —cos(ms,s,

os(x) =z —2B(es,x)es forallz € V.

One can easily check that os(es) = —e;s and that Hy, the hyperplane orthogonal to e
(with respect to B) is fixed pointwise. Furthermore, o, (for all s € S) preserves the
form B.

DEFINITION 1.2.4. We say that
(1) W is tame if the bilinear form B is positive, that is B(e,e) > 0 for all e € V;
(2) W is integral if m, » € {2,3,4,6,00}.
The linear form B gives some informations about the Coxeter group W. For instance,
we have

THEOREM 1.2.5. Let W be a Coxeter group. The following are equivalent

(i) W is finite.
(ii) The bilinear form B is positive definite.
(iii) W is a finite reflection group.

1.2.4. Classification. In this thesis, we are primarily concerned with tame Cox-

eter groups. There are 3 different kinds of tame, irreducible Coxeter groups:

(1) finite and integral (i.e. the Weyl groups);
(2) finite and non integral;

(3) infinite and automatically integral (i.e. affine Weyl groups);

We give a classification of such groups in the following theorem.
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THEOREM 1.2.6. Let W be an irreducible, finite, tame and integral Coxeter group.
Then W has one of the following graphs (where the index denotes the number of

vertices in the graph)

A,, (n>1) o O - -0 o
B,, (n>2) a o - -0 o
D,, (n>4) o O---0 o<
FEk o T o)
Er o T o)
FEyg o T o)
Fy O——O0—=0—0
Go =0

Let W be an irreducible, finite, tame and non-integral Coxeter group, then W has one

of the following graphs

Hj O—5—0—0
Hy oTo—o—o
I(m) O—7-0

m ¢ {2,3,4,6}
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Let W be an irreducible, tame and infinite Cozeter group. Then W has one of the
following graphs (where the index n indicates that the graph has n + 1 vertices)

An, (n22) o-=-0

B ! :

B ool :
F} o o

G o=—=0—0

REMARK 1.2.7. One can check that any proper standard parabolic subgroup of an
irreducible affine Weyl group is finite.
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1.2.5. Bruhat order. The specific presentation of a Coxeter group gives rise to

many combinatorial properties. We give a brief overview of these properties.

Let w € W. The length of w (denoted ¢(w)) is the smallest integer n € N such that
w can be written $185...5, where s; € S for all 1 < ¢ < n. In that case, s;...5s,
is called a reduced expression of w. The length is well defined and unique, however,
given w € W, there might be many different reduced expressions. It is readily checked
that, for s € S and w € W, we have either {(sw) = ¢(w) — 1 or {(sw) = {(w) + 1.
This leads to the following definition.

DEFINITION 1.2.8. Let w € W. We set
L(w):={se S| lsw)=Ll(w)—1} and R(w)={se€ S| l(ws)="Ll(w)—1}.
The set L(w) (resp. R(w)) is called the left descent (resp. the right descent) set of

w.

We will also need the following definition.

DEFINITION 1.2.9. Let x,y,z € W. We write x.y if and only if ¢(xy) = ((x) + ((y).
Similarly, we write z.y.z if and only if £(zyz) = {(z) + ((y) + {(2).

The following result is the key fact about reduced expressions and is a very powerful

tool in the study of Coxeter groups.

THEOREM 1.2.10. Exchange Condition
Let w € W and s € S be such that {(sw) = (w) — 1. Let w = $1...8, be a reduced
expression of W. Then there exists j € {1,...,n} such that

§81...85j-1=81...5j
REMARK 1.2.11. In fact, it can be shown that a group which is generated by elements

of order 2 and which satisfy the exchange condition is a Coxeter group (see [8]).

Let w € W. Let X, be the set which consists of all sequences (si,s2,...,5,) in W
such that s;ss...s, is a reduced expression of w. We look at X as a graph where
two vertices are joined if one is obtained by the other replacing a subsequence of the
form (s,s’,s,s"...) of length m, ¢ < 0o by (¢',s,5",s...). The next result is due to

Matsumoto and Tits.

THEOREM 1.2.12. Let w € W. The graph X,, defined above is connected.

We are now ready to define the Bruhat order.
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DEFINITION 1.2.13. Let y,w € W. We write y < w if there exist a reduced expression
w=81...5, and a subsequence i; < iy < ... <1, of 1,...,n such that

y==5i...8, and L(y)=r

We have the following characterization of the Bruhat order.
LEMMA 1.2.14. The following are equivalent

(1) y <w;
(2) for any reduced expression w = 1 ...s, there exists a subsequence iy < iy <
o<1 of 1,...,n such that

Yy==5i...8, and L(y)=r

(3) There exists a sequence y = Yo, Y1, ---,Yn = w such that ((y;) — l(y;i—1) = 1
for all1 <1 <mn and y;_1 is obtained from y; by deleting a simple reflection

n a reduced expression of y;.

ExXAMPLE 1.2.15. Let W be a Weyl group of type A, with graph as follows

Oo——>0
S t

Then W contains 6 elements and the Bruhat order can be described by the following

Hasse diagram

ts st

sts = tst

FIGURE 3. Bruhat order on A,

1.2.6. Finite Coxeter group. A special feature in finite Coxeter groups is that

there exists a unique element of maximal length which has many nice properties.

Let (W,S) be a finite Coxeter group and let wy be the unique element of maximal
length. Since /(wy) = £(wy?'), by unicity of the longest element, we must have

wy = wy . Furthermore we have

U(woy) = L(ywo) = L(wo) — L(y) forally € W.
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In fact, wy is characterized by the fact that swy < wg for all s € S. One can easily

check that for all y € W we have y < wy. Moreover, for all y,w € W, we have

y<w <= wwlwy < wwy < ywy.

It can be shown that, if W is a Weyl group with root system &, then the length of

the longest element is equal to the cardinal of any set of positive roots.

EXAMPLE 1.2.16. Let W be the Weyl group of type G, generated by s,t. The longest
element is
ststst = tststs.

1.2.7. Coset of parabolic subgroups. Let I be a subset of S. We denote by
Wi the subgroup of W generated by I.

PROPOSITION 1.2.17. Let z € W and zW7 be a coset in W.

(1) This coset has a unique element w of minimal length.
(2) Lety € W;. We have l(wy) = L(w) + £(y).
(3) The element w is characterized by the fact that w < ws for all s € 1.

We denote by X the set which consists of all the elements z € W which have minimal
length in their coset zWy; it is called the set of minimal coset representatives with

respect to 1.

Assume that Wy is finite.

(1) The coset zW; has a unique element x of mazimal length.
(2) Lety € Wi. We have l(xy) = l(z) — L(y).
(3) The element x is characterized by the fact that xs < x for all s € 1.

REMARK 1.2.18. Let I C S and z € W. Then z can be written uniquely under the
form zw where x € X;, w € W and {(aw) = {(x) + {(w).

LEMMA 1.2.19. Deodhar’s lemma
Let I C S and X be the set of minimal coset representatives of Wy. Let x € X and
s € 5. One of the following statement holds:

(i) sz € X1 and {(sx) = l(x) + 1;
(i) sz € X1 and {(sx) = l(x) — 1;

(ili) sx ¢ X, in which case there exists t € I such that sx = xt and

U(sx) =l(x) + 1 = L(xt).



CHAPTER 2

Iwahori-Hecke algebras and Kazhdan-Lusztig cells

This chapter is an introduction to the fundamental Kazhdan-Lusztig theory. Follow-
ing Lusztig (|38]), we start with the definition of weight functions on a Coxeter group
(W, S). We then define the Iwahori-Hecke algebra associated to a Coxeter group and
a weight function. Next we define the Kazhdan-Lusztig basis of an Iwahori-Hecke
algebra. Using this “new basis” we introduce the notion of (left, right and two-sided)
cells of a Coxeter group and the representations associated to them; see Section 2.6.
Then we state a number of conjectures due to Lusztig, which are known to be true in
the equal parameter case but for which no elementary proofs are known (see Section
2.9). Finally, we introduce the asymptotic algebra J, which plays an important part
in the study of Iwahori-Hecke algebras; see Section 2.10.

In this chapter, (W, S) denotes an arbitrary Coxeter system. We follow the exposition

of Lusztig in [38| and we refer to this publication for more details and proofs.

2.1. Weight functions

DEFINITION 2.1.1. A weight function L is a function L : W — Z such that

L(ww") = L(w) + L(w') whenever ((ww') = l(w)+ {(w').

Note that the length function is a weight function.

Let L be a weight function on W. We see that

(1) L is completely determined by its values on S;
(2) if s,t € S are conjugate, then L(s) = L(t).

The set {L(s))|s € S} is called the set of parameters. When L = ¢ we say that we
are in the equal parameter case. In this thesis, we will only consider positive weight
functions, that is L(s) > 0 for all s € S (except for Section 7.3). Note that L(e) = 0
where e denotes the identity element of W.

When a weight function L is fixed, we say that W, L is a weighted Coxeter group.

25
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EXAMPLE 2.1.2. Let W be an affine Weyl group of type G, with graph given by

===—"0
S1 59 53

Let L be a weight function on W. The order of sys3 is odd, thus they are conjugate
and we must have L(sy) = L(s3) € N*. Hence a positive weight function on W is
completely determined by the values L(s1) = a € N* and L(sy) = b € N*.

If W is a finite irreducible Weyl group, unequal parameters can only arise in types

B,,, F, and G5. Note that we have at most two distinct parameters.

If W is an irreducible affine Weyl group, unequal parameters can only arise in types
fll, Bn, C’n, ﬁ’4 and ég. In type é’n there can be 3 distinct parameters. In the other

cases, we have at most 2 distinct parameters.

2.2. Iwahori-Hecke algebras

From now and until the end of this chapter, we fix a weight function L on W. Let
A = Z[v,v™'] where v is an indeterminate. For s € S we set v, = v*® and
& = vy —v;t. We keep this setting until the end of this chapter. Recall that we
always assume that L(s) > 0 for all s € S.

Let ‘H be the free A-algebra with basis {7, | w € W}, identity element T, (where e
is the identity element of W) and multiplication given by

Tow, if sw > w,
T.T, =
Tow + (vs — vy, if sw < w,

for all s € S, w € W. The algebra H is called the Iwahori-Hecke algebra associated
to the weighted Coxeter group W, L.

REMARK 2.2.1. The definition of H depends on the weight function L, thus from now

on, everything we say depends on L.

From the definition, one can check that T is invertible for all s € .S with inverse
TV =T, — &T..
Let we W and w = s;...5s, be a reduced expression of w. We have

Ty=T1sTs,...Ts,,
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thus, since each T}, is invertible, we see that T, is invertible for all w € W.

The basis {7, }wew is called the standard basis. For z,y € W we set

TmTy = Z fm,y,sz

zeW

where f,, . € A are the structure constants with respect to the standard basis.
We define an A-linear map 7: H — A by 7(T,) = d,1 for all w € W.

PROPOSITION 2.2.2. Let x,y,z € W and h,h' € H. We have

(1) 7(T:Ty) = Ouyas

(2) 7(hh') = T(W'h);

(3) 7(T,T,T.) € vMZ[v™| where M = min(L(x), L(y), L(2)).
REMARK 2.2.3. The form 7 is symmetric. The dual basis of {T, | w € W} is clearly
{wal ‘ w e W}

2.3. The ~ operator

There exists a unique ring involution on A = Z[v,v!] such that v = v~!. We can

extend this map to a ring involution ~ : H — H such that

Z T Z &wTU}ll where a,, € A.

weW weWw

Let w € W. We can write uniquely
T,=T," =Y R,.T,
yeW

where R, ,, € A are zero for all but finitely many y € W. Note that these elements
are denoted by r,,, in [38].

PROPOSITION 2.3.1. Let y,w € W. The R-polynomials satisfy the following proper-

ties.

(1) Let s € S be such that sw < w. We have

R Rsy,swv Zf sY < Y,
yw — .
Rsy,sw + gsRy,sun Zf sy >y.

(2) If Ry, # 0 theny < w.
(3) We have

: : Ry?'sz7w = 6y7w.
zeW
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EXAMPLE 2.3.2. Let y < w € W. One can show that

e Ryy=1

e if /(w) ={(y) + 1 then y is obtained by deleting a simple reflection s € S in
a reduced expression of w and R, ,, = &;.

e if /(w) = {(y)+2 then y is obtained by deleting two simple reflections s,t € S

in a reduced expression of w and R, = &:&.

There exists a unique involutive antiautomorphism b of H which sends Ty to T, for
any s € S. It carries T, to T,,-1, for any w € W. This antiautomorphism will be

useful later on.

2.4. Kazhdan-Lusztig basis

We first introduce some notation. Let
A :=v 'Z[v™'] and Ay :=Z[v™]

and
H<0 = Z A<0Tw and HSO = Z AgoTw.
weWw weW
The following theorem is due to Kazhdan and Lusztig (|24]) in the equal parameter
case (i.e L = () and to Lusztig (28, 38]) in the unequal parameter case. It is the

cornerstone of this theory.
THEOREM 2.4.1. Let w € W. There exists a unique element Cy, € H<o such that

(1) C, =C, and
(2) Cp, =T, mod Hg

The elements {C,, | w € W} form an A-basis of H known as the Kazhdan-Lusztig

basis.

These elements were formerly denoted by C! in [24] and 28] ; they are denoted by
¢y in [38].

For any w € W we set
Cw=Y_ PyuTu
yeW
where P,,, € A<y. These polynomials are called the Kazhdan-Lusztig polynomials.
Note that they are denoted by p,,, in [38].
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PROPOSITION 2.4.2. Let y,w € W. The Kazhdan-Lusztig polynomials P, ., satisfy

the following properties.

1

(1) P,y =1 forally e W.
(2)
(3)
(4)

P,
P, =0 unless y < w.
3) Pywe Ac if y <w.

4) For all x,w € W we have

Px,w = Z Rx,yPy,w

y;z<y<w

EXAMPLE 2.4.3. Let s € S. One can check that T, + vs_lTe is stable under the ~

-1

involution, thus we have Cy = Ty + v;'T, and P, ; = v,

REMARK 2.4.4. The antiautomorphism b carries H<g to itself. Moreover, it commutes
with ~. Thus one can check that b(Cy) = Cypy-1.

Let w € W and s € S, we have the following multiplication formula

Cow+ >, M:,C., ifw<sw,
Csow — z;sz<z<w ’
(vs +v;1) Oy if sw < w,

where M, € A satisfies
Ms., =M, (2.1)

y7w ’

(> P.M,)—v.P.€ Ay (2.2)
zyy<z<w;sz<z
Let y,w and s € S be such that ys < y < w < ws. Using the anti-involution
b one gets similar formulas for right multiplication. We obtain some polynomials
M;’ZJ = M;717w71.
Since Cy =T, + vs_lTe, one can see that
Cow —vHOC, + 3 M ,C., ifw < sw,

Tst — z;82<z<w
vy, if sw < w.

Let y,w € W and s € S be such that sw < w. The Kazhdan-Lusztig polynomials

satisfy the following recursive formula

UsPy,sw + Psy,sw - Zy§z<sw Py,ZMj,sw if sy <vy,

P,, = _1 .
vy Poy ), it y < sy.

)
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EXAMPLE 2.4.5. Let W be a Weyl group of type G2 with graph and weight function

given by
a b
C=—=>
t S

where a > b € N*. We want to compute the Kazhdan-Lusztig polynomials (see [46,
Example 1.21]). First let wy be the longest element of W. Using the above recursive
formula and the properties of the longest element, one can check that, for all y € W,
we have

P LW —L(wo)

ywo —

Doing some more computations we obtain

P = Prststst = @b gmatd

PevtSt = Pts,tstst = Pst,tstst = U—2a—b _ U—Qa—l—b
B,tstst = U_2a_2b _ ,U—2a + U—2a+2b
Poistsy = v 302 gm0y g8t

PS’StS = Psts,ststs = U_a_b + U_‘H'b

PevStS = Pts,ststs = Lst,ststs — U—a—2b +o0v7 @
Pt,ststs = U—a—?,b + U_a_b
Ps,ststs = U_2a_2b + 'U_2a
Pe,ststs = U_2a_3b -+ ,U—2a—b.

and P, ,, = vPW=L) for all other pairs y < w € W.
We have

t _ t _ t
M - Mtst,stst - M

tsts,ststs ts,sts
=1

t _ t
Mt,stst - M

ts,ststs

gt .a=b b—a
—Mmst—v + 0",

and all the others are zero.

REMARK 2.4.6. Let y,w € W and [y,w] := {z € W | y < 2z < w}. Using Propo-
sition 2.4.2 (3) and the definition of the M-polynomials, one can see that the set of

polynomials
{Mms,zv P..|x,z €[y wl}

is completely determined by the weight function L and the set of R-polynomials

{Ra | x,2 € [y, w]}.
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Let z,y € W. We set
CmCy = Z hx,y,zCz

zeW
where h,, . € A are the structure constants with respect to the Kazhdan-Lusztig

basis. It is clear that

hfb,y% = hw,%z'

2.5. Kazhdan-Lusztig cells

Let y,w € W. We write y < w if there exists s € § such that C, appears with
a non-zero coefficient in the expression of T,C,, in the Kazhdan-Lusztig basis. The
Kazhdan-Lusztig left pre-order <; on W is the transitive closure of this relation. One

can see that

HC, C Z AC, for any w € W.

y<pw
The equivalence relation associated to <j will be denoted by ~, that is

r~py<—c<pyandy<pz (xr,yeW).

The corresponding equivalence classes are called the left cells of W. Similarly, we
define <, ~g and right cells, multiplying on the right. In fact, using the antiauto-

morphism b one can show that

r<py<s=a ' <zgyt (z,ycW).

We say that x <pr y if there exists a sequence
T =T, L1y--yLyp =1Y

such that for all 1 <¢ < n we have x;_1 <, x; or x;_1 < x;. We denote by ~r the
associated equivalence relation and the equivalence classes are called the two-sided
cells of W. One can see that

HC,H S Y AC, for any w e W.
Y<SLRW
REMARK 2.5.1. A two-sided cell is a union of left cells which is also a union of right
cells. However, even if one knows the decomposition into left cells of W (and hence
the decomposition into right cells via b) it is complicated to find the decomposition

into two-sided cells (see for example [7] and [4]).

The pre-orders <;, <r and < induce partial orders on the left, right and two-sided
cells.
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EXAMPLE 2.5.2. Let W be of type GG, with graph and weight function as in Example

2.4.5. The decomposition of W into left cells is as follows (see [46, Examples 1.21])
{e}, {s}, {tstst}, {t,st,tst,stst}, {ts,sts,tsts, ststs}, {ststst}.

The partial order on the left cells can be described by the following Hasse diagram

{e}

{s} {t, st, tst, stst}

{ts, sts, tsts, ststs} {tstst}

{ststst}

The two-sided cells are (in order)
{e} <pr {s} <ir {t,st,ts,tst,sts,tsts, stst,ststs} <pp {tstst} <pr {ststst}.
Now assume that L = £. In that case the left cells are
{e}, {t,st,tst,stst,tstst}, {s,ts,sts, tsts,ststs}, {ststst}

and the order is as follows

{e}

{t, st, tst, stst, tstst} {s,ts, sts, tsts, ststs}

{ststst}
The two-sided cells are given by

{e} <pgr {t,st, tst,stst,tstst, s, ts, sts,tsts, ststs} <pr {ststst}.

The following result shows some connections between descent sets and cells.

PROPOSITION 2.5.3. Let y,w € W. We have
y<pw=Rw) CR(y) and y<gpw= L(w)C L(y).
In particular, if y ~p w (resp. y ~r w) then R(y) = R(w) (resp. L(y) = L(w)).

DEFINITION 2.5.4. Let B be a subset of W. We say that 98 is a left ideal of W if
and only if the A-submodule generated by {C,|w € B} is a left ideal of H. Similarly
one can define right and two-sided ideals of WW.
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REMARK 2.5.5. Here are some straightforward consequences of this definition
* Let B be a left ideal and let w € B. We have
HC, C Y AC,.

yeB

In particular, if y <; w then y € B and *B is a union of left cells.

* A union of left ideals is a left ideal.

* An intersection of left ideals is a left ideal.

x A left ideal which is stable by taking the inverse is a two-sided ideal. In particular

it is a union of two-sided cells.

EXAMPLE 2.5.6. Let J be a subset of S. We set
R ={weW|JCRw)} and L' :={weW |JC L(w)}

Then the set R” is a left ideal of W. Indeed let w € R’ and y € W be such that
y < w. Then we have J C R(w) C R(y) and y € R”. Similarly one can see that £/
is a right ideal of W.

2.6. Cell representations
In this section, we show how each cell gives rise to a representation of H.
LEMMA 2.6.1. Let w € W.

(1) H<,w= & AC, is a left ideal of H.

YySLw
(2) H<pw = @ AC, is a right ideal of H.
B Y;y<Rw
(3) Heppw = & ACy is a two-sided ideal of H.
T YYSLRW

Let C be a left cell of W and let w € C. The set
® AC, / @ AC,
Yyy<pw yy<pw
is a quotient of two left ideals (independent of the choice of w € C), hence it is a left
‘H-module. We denote this left module by V. It has an A-basis which consists of the
images of Cy, y € C (via the canonical projection). More precisely, let e, (y € C) be
the image of C,. The action of H on V; is given by the Kazhdan-Lusztig structure
constants
Cy.ey = Z Iy e, forallyeCandweW.

zeC
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Let # : A — Q be the unique ring homomorphism which sends v to 1. Then if we
extend the scalars from A to Q (via #) we obtain a representation of Q@4 H = Q[W]
on @ ®A Vc.

One can do similar constructions with right and two-sided cells. We obtain respec-

tively right modules and two-sided modules.
We now give two examples where the left cells representations actually give rise to all

the irreducible representations of H.

EXAMPLE 2.6.2. In the fundamental paper of Kazhdan and Lusztig (|24]), where
they first introduced Kazhdan-Lusztig cells, they showed that if W is a Weyl group
of type A, (note that we are automatically in the equal parameter case), then the
left cell representations are irreducible. Furthermore, any irreducible representation

can be realized as a left cell representation.

Let W be a Weyl group of type B, with weight function and diagram given by

a b b b b b
B,, (n>2) c—0—0--0—0—20

where a,b € N* satisfy a/b > n — 1. Then we are in the so-called “asymptotic case”
where the left cells have been described by Bonnafé and Iancu ([4, 7]). It turns out
that in that case the left cell representations are irreducible. Conversely, any irre-
ducible representation can be realized as a left cell representation. However, in the

equal parameter case, it is not true anymore.

Note that if W is an affine Weyl group, some cells are infinite and thus give rise to

infinite dimensional H-modules.

2.7. On the structure constants

Let y,w € W. We set

ny,w = Z(_l)nPZO,lezl7Z2 N

(where the sum runs over all the sequences y = 29 < 21 < ... < 2z, = w in W) and

Quuw = (—1)5(9)“(1”)@;@.

In [38], these polynomials are denoted by ¢, ,, and g, ., For all y,w € W, we have,
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L Qw,w = 1a

® (Qyw = 0 unless y < w;

Recall that, for z,y € W, we have set
T,T, =Y foy:To and C,Cy =Y hyy.C..
zeW zeW
Let

T.T, =Y fi,.C-.

zeW

PROPOSITION 2.7.1. Let x,y,z € W. We have

(V) foz = D2oew Poatfry i
(2) alc,y,z = ZZIEW Qz7z’fx7y,z’;
(3) hx,y,z = le7y/€W P:(:’@Py’,yfg/;/’y/J-

All the above sums are finite.

Note that if h,, . # 0 then z <z x and z < y.

DEFINITION 2.7.2. We say that W is bounded if there exists N € N such that
VN fry. € A for all x,y, 2 € W.

Let T be the set which consists of all subsets I of S such that W is finite. For [ €1,
we denote by w; the longest element of W;. Let
N := max L(wy).
Iel
Lusztig has conjectured that N should be a bound for W. One can easily see that N

L(wr)

is reached. Indeed, v appears in fy, w,w, for all I € I. It is known that N is a

bound for W in the following case

« W is finite (see [38]);
« W is an affine Weyl group (see [9, 30]).

Using Proposition 2.7.1, we see that if NV is a bound for W, then, for all z,y,z € W

we have

(1) o= Nf € A0,

v T,Y,z
(2) v

_Nh%y,z c ASO
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2.8. The a-function

We now introduce Lusztig’s a-function (see [38, Chap. 13]). In the remainder of this
section, we assume that W is bounded by N € N.

DEFINITION-PROPOSITION 2.8.1. Let z € W. There exists a unique integer a(z) €
[0..N] such that

(a) hyy. € V*AZW™Y for all z,y € W,
(D) hey.- & v2OZWTY for some x,y € W.

For any r,y,z € W7 we deﬁne Va,y,z—1 W/ by the condition
hx,y@ = f}/x,y,z*lva(z) mod v? 1Z[ ]

Note that, for any z € W, there exist x,y € W such that v, . # 0.
For any x,y,z € W we have

£ = Yeye1v* mod v TZ[w Y.

x7y7'z

We now state some properties of the a-function.

PROPOSITION 2.8.2. We have

(1) ale) =

(2) If z € W {e}, then a(z) > min L(s) > 0;
(3)

(4)

ses
3) a(z) = a(z71);
4) for all x,y,2 € W, Yoy = Vy-1a-1.-1.

Assume that W is finite and let wq be the longest element of W, then

(1) a(wo) = L(wo);
(2) for any w € W — {wp} we have a(w) < L(wy).

EXAMPLE 2.8.3. Let W be a Weyl group of type G5 with graph and weight function

as in Example 2.4.5. It turns out that the a function is constant on the two-sided
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cells (see next section). We have (see [18])

ale) =0
a(s) = L(s)
a(t) = L(t)

a(tstst) = 3L(t) — 2L(s)

(
(
(t)
(
a(ststst) = 3L(s) + 3L(1).

We refer to |18, 38| for more examples.

2.9. Lusztig’s conjectures

In this section we assume that W is bounded. We state a number of conjectures due
to Lusztig (see |38, Chap. 14]), which are known in the equal parameter case (see
Remark 2.9.2). For z € W, let A(z) € N be such that

P..= n,v" 2% 4 strictly smaller powers of v (n, #0).

One can check that A(z) = A(z7!), A(e) = 0 and 0 < A(z) < L(z) for z # e. Finally
let
D:={zeW]|a(z) =A(2)}.

We have z € D = 27! € D. We are now ready to state the conjectures.

CONJECTURE 2.9.1 (Lusztig). The following properties hold.

P1. For any z € W we have a(z) < A(z).
P2. Ifd € D and x,y € W satisfy Voya # 0, then x = y~t.
P3. If y € W, there exists a unique d € D such that v,-1, 4 # 0.
P4. If 2/ <pg z then a(2’) > a(z). Hence, if 2/ ~pg z, then a(z) = a(?’).
P5. IfdeD,ye W, vy1,4# 0, then vy,-1, 4 =ng = £1.
P6. Ifd € D, then d*> = 1.
P7. For any x,y,z € W, we have Yy . = Vy 2.2
P8. Let x,y,z € W be such that v,,. #0. Thenx ~p y~ ', y~p 27t 2z ~p a7t
P9. If 2/ < z and a(?') = a(z), then 2/ ~p, 2.
P10. If 2/ <g z and a(2') = a(z), then 2’ ~g z.
P11. If 2 <;g z and a(?') = a(z), then 2’ ~pp .
P12. Let I C S and W7 be the parabolic subgroup generated by I. If y € Wy, then

a(y) computed in terms of Wy is equal to a(y) computed in terms of W.
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P13. Any left cell C of W contains a unique element d € D. We have y,-1 ;4 # 0
for all x € C.

P14. For any z € W, we have z ~pp 2.

P15. Let v be a second indeterminate and let hl, , . € Z[v',v'""] be obtained from

Nay, by the substitution v — v'. If z,2',y,w € W satisfy a(w) = a(y) then
Z hiﬂyxl7y’hxvylvy = Z h’x,w,y’h;/’x/y .
Yy Y
REMARK 2.9.2. Assume that L = ¢, that W is bounded and that we have

(1) hyy. € Nv,v™!] for all z,y,z € W;
(2) P, € Njv,v™ ] for all y,w € W.

In the case where W is integral, using an interpretation of the Kazhdan-Lusztig
polynomials in terms of intersection cohomology, one can show that (1) and (2) hold
(see |30, 38, 45]). In the case where W is of type Ir(m) (m ¢ {2,3,4,6}), Hs
or Hy, (1) and (2) have been proved by Fokko du Cloux and Alvis, using explicit

computations (see |1, 13]).

Under the assumptions (1) and (2), it can be shown that P1-P15 hold (see [38, Chap.
15]). However, in the unequal parameter case, (1) and (2) do not hold anymore. For
instance, even in a very small group like G5, we have seen that negative coefficients

arise in some Kazhdan-Lusztig polynomials (see Example 2.4.5).

For unequal parameters, these conjectures are known to be true in the following cases

(1) in the “quasi-split case” (see [38, Chap. 16|);

(2) infinite dihedral group (see [38, Chap. 17]);

(3) finite dihedral groups for any parameters (see [18));

(4) type Fy for any parameters (see [16]);

(5) type B, in the “asymptotic case” (see [7, 18] and the references there in).

For instance, these conjectures yield the following.

THEOREM 2.9.3. Let W be a tame Coxeter group and assume that P1-P15 hold. We

have

(1) Any two-sided cell in W meets a finite parabolic subgroup.

(2) W has only finitely many left (resp. right, two-sided) cells.

(3) D is a finite set.

(4) A two-sided cell is a minimal union of left cells which is also a union of right

cells.



2.10. THE ASYMPTOTIC ALGEBRA J 39

2.10. The asymptotic algebra J

Following Lusztig, we introduce the asymptotic algebra J. Even though we will not
study this algebra in this thesis, it is important to mention it, since it plays a crucial
role in the study of Iwahori-Hecke algebras associated to Weyl groups. In this section
we assume that W is tame and that P1-P15 hold.

DEFINITION 2.10.1. Let J be the free Z-module with basis {t,,,w € W}. We define
a bilinear product on J by
toty = D Yoye-its:

zeW

THEOREM 2.10.2 (Lusztig [38, Chap. 18|). The free module J with the above multipli-
cation is an associative ring with identity element 13 = Zdep ngtq. Let J4 = A®7J.

Then we have a unital homomorphism of A-algebras

¢: H— JAv Cw — Z hw,d,z ﬁz tm
zeW,deD
a(z)=a(d)

where 1, is defined as follows. Given z € W, let d be the unique element of D such
that d ~p 271; then i, = ng = +1. (See P5, P13.) Note that the function z — ., is
constant on the right cells of W.

This ring J is called the asymptotic Hecke algebra. It plays a very important part in
the proof of the following theorem.

THEOREM 2.10.3 (Geck [17]). Assume that W is a finite Weyl group. Let Hg be
the Iwahori-Hecke algebra defined over Qv, v (instead of Zv,v™']). Then Hg is
cellular in the sense of Graham-Lehrer ([19]).

This theorem provides the general theory of Specht modules for Iwahori-Hecke alge-

bras.






CHAPTER 3

Geometric presentation of an affine Weyl group

In this section we give another geometric presentation of an irreducible affine Weyl
group in terms of alcoves (see [9, 27, 46]). This presentation is a very convenient
way to “picture” an affine Weyl group. For instance, sets such as descent sets or the
minimal left coset representatives (with respect to a parabolic subgroup) are easily
“seen” in this presentation; see Examples 3.2.1 and 3.2.2. On a deeper level, it was

conjectured by Lusztig that a left cell should be a connected set in this presentation.

Within this chapter, we give a number of examples to get used to this presentation.
In the final section, we prove a result (using this presentation) which give a “local”
bound on the degree of the structure constants associated to the standard basis. This

theorem will play a crucial role in the study of the lowest two-sided cell; see Chapter 6.

3.1. Geometric presentation of an affine Weyl group

We now present a geometric presentation which will be of great use along this thesis.

The basic references for this section are |9, 27, 46].

Let V be a Euclidean space of dimension r» € N*. Let ® be an irreducible crystallo-
graphic root system of rank r and ®* a fixed set of positive roots. Note that ® spans
V. We denote by & the coroot associated to a and we write (x, &) for the value of
& € V* at x, that is (x,q) = ig;; As in Section 1.3, for a« € 1 and k € Z, we
define the hyperplane

Hypy={xeV | (z,a) =k}
We denote by F the set of all such hyperplanes and by o, the reflection with fixed
point set H, ;. Let © be the group generated by all these reflections (it is the affine
Weyl group generated by ®). An alcove is a connected component of the set
v—(lJ H).

HeF
The group 2 acts simply transitively on the set of alcoves X. We regard €2 as acting
on the right on X.

41
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Let S be the set of Q-orbits in the set of faces (codimension 1 facets) of alcoves. Then
S consists of r + 1 elements which can be represented as the r 4+ 1 faces of an alcove.

If a face f is contained in the orbit t € S, we say that f is of type t.

Let s € S. We define an involution A — sA of X as follows. Let A € X; then sA is
the unique alcove distinct from A which shares with A a face of type s. The set of
such maps generates a group of permutations of X which is a Coxeter group (W, .S).
In fact, it is the affine Weyl group associated to & and we have W ~ ). We regard
W as acting on the left on X.

PROPOSITION 3.1.1. W acts simply transitively on X. Furthermore the action of W
on X commutes with the action of ().
Let Ay be the fundamental alcove defined by

Ay={z eV ]|0<(x,a)<1foral aecd}

We associate to any alcove A € X the element w € W such that A = wAy. Conversely,

to any w € W we associate the alcove wAy.

One can easily check that for w € W and any alcove A € W we have
¢(w) = number of hyperplanes which separate A and wA.
Let H = H,, € F. Then H divides V — H into two half-spaces
Vi ={z eV |{x,a) > n},
Vi ={x eV | (z,a) <n}.

3.2. Some examples

EXAMPLE 3.2.1. In Figure 1, we consider an affine Weyl group of type G
W = (s1,59,53 | (5152)% = 1, (5953)% =1, (s153)% = 1).

The thick arrows represent a set ®* of positive roots. The alcove z Ay is the image of
the fundamental alcove Ay under the action of z = s35951828180 € W.
Let W2 be the parabolic subgroup generated by s; and s;. We denote by X o the

set of minimal left coset representatives with respect to W . Finally, let

C:= {I82818281A0 | T € Xl’g}.
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Ay

A

FIGURE 1. Geometric presentation of Go

EXAMPLE 3.2.2. Again let W be of type Gs as in the previous example. Let H;
(1 < i < 3) be the hyperplane which contains the face of Ag of type s;. Let o € &+
be such that H;, = H,, . We have

si € R(w) <= wAoeVy ={rveV|(r,a;) <0} ifi=12
s3 € R(w) <= whAy eV ={zeV|(z,a)>1}

In the next figure, we show the shape of the sets Ris1s2} Ris2:53} and R{s1:53} (where
R ={we W|J C R(w)}).

51,
A

1,
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Now let W be an arbitrary irreducible affine Weyl group.

We have seen in the previous example how one can describe the right descent sets in
the geometric presentation. The next natural question is how can we characterized
in this presentation the fact that x.y (see Definition 1.2.9) for x,y € W? To this end
we introduce a new definition.

DEFINITION 3.2.3. Let z € W and A € X. Let Hy,..., H, be the set of hyperplanes
which separate A and zA. For 1 < i < n, let Ey, (zA) be the half-space defined by
H; which contains zA. Let

ha(z) = (En,(2A).

i=1
Recall that for any w € W and any A € X, {(w) is the number of hyperplanes which
separate A and wA. Therefore one can see that z.y if and only if

{H | H separates A and yA} N {H | H separates yA and zyA} = 0,

or in other words

LEMMA 3.24. Let z,y € W and A € X. We have

vy < x(yA) C ha(y).
See Example 4.2.4 for examples of such sets.

3.3. Weight function and geometric presentation

Let W be an irreducible affine Weyl group and let L be a weight function on W; we
want to introduce L “into the picture”. The following result will allow us to do so (see
[9, Lemma 2.1]).

LEMMA 3.3.1. Let H € F and suppose that H supports a face of type s € S and a
face of type t € S. Then s and t are conjugate in W.

As a consequence of this lemma, we can associate a weight cg to any H € F, where

cy = L(s) if H supports a face of type s.

Let A be a 0-dimensional facet of an alcove. We denote by W) the stabilizer in W of
the set of alcoves containing A in their closure. It is a maximal parabolic subgroup of
W with generating set Sy = S NW,, thus it is finite and we denote by w) its longest
element.

We now introduce the notion of special points.
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DEFINITION 3.3.2. For a O-dimensional facet \ of an alcove, we set
m(A) = Z cH-
HMeHEF

We say that A is a special point if m(\) is maximal (among the values of m on

0-dimensional facets of alcoves). We denote by T' the set of special points.
REMARK 3.3.3. One can see that for any special point A, we have

m(A\) = I}lélg( L(wy).

It can be shown that it is enough to take the maximum where I runs over the subsets
of S such that W7y is isomorphic to the underlying Weyl group. In the equal parameter

case, we have m(\) = |®T| for any special point \; see [27].

Let A\ be a special point. A quarter with vertex A is a connected component of the

v-( U #)

ANeHeF

set

Following Bremke, we now want to determine the set of special points for all affine

Weyl groups. In order to do so, the following lemma is crucial (see |9, Lemma 2.2]).

LEMMA 3.3.4. Let H, H' be two parallel hyperplanes in F and let s # s € S. Assume
that H supports a face of type s and H' a face of type s'. One (and only one) of the

followning statements holds.
(1) W is of type C, (r > 2) with graph

"0 O0—(CO0—=0
S1 S2 §3  Sr—1  Sp Sr41

and (Sv S/) = (Slu 87‘+1)7‘
(2) W is of type Ay with graph
S1 o0 So
and (s,s") = (81, 82);

(3) s and s' are conjugate in W.

Thus, if W is not of type C, (r >2)or Ay, then any two parallel hyperplanes have
the same weight.

We now fix some conventions about C’r and fll. We keep the notation of the above

lemma. If W is of type C,, we assume that the Weyl group associated to ® is generated
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by {s1,...,s,} and that L(sy) > ¢(s,+1) (this is possible because of the symmetry of
the graph). Similarly if W is of type Ay, we assume that the Weyl group associated
to ® is generated by {s;} and that L(s1) > L(s2).

We now give the classification of special points (see [9]). Let P be the weight lattice
P:={zeV|(z,a) € Z for all « € d*}.

Note that P is the set of points which lie in the intersection of |®*| hyperplanes. Let
T be the set of special points. We have

(1) If W is not of type C, (r >2) or A; then T = P.

(2) If W is of type C, (r > 2) with L(s1) = L(s,41) or of type A; with L(s;) =
L(sy) then T'= P.

(3) If W is of type C,, (r > 2) with L(sy) > L(s,41) or of type A; with L(s;) >
L(sy) then T is equal to the root lattice.

In all cases (with our convention for type C, and Al), the point 0 is always a special
point and W, is the Weyl group associated to the root system .

REMARK 3.3.5. The group €2 acts on the set of special points T'. If A\, Ay € T lie in
the same orbit then Wy, = W,,. If A, \' € T do not lie in the same orbit then Wy

and W), are isomorphic but they are not generated by the same simple reflections in
S. Let 7 = m(A) for A € T. The number N of orbits in 7" is

N:=|{JC S|W;~Wyand L(wy) = v}|.
For instance, in type A, there are n + 1 orbits and in type G5 only 1.

EXAMPLE 3.3.6. Let W be an affine Weyl group of type Cy. We keep the notation
of Lemma 3.3.4. The next figure describes the special points of Cy. In the case
L(s1) = L(s3), all the “circled” points are special points. There are two orbits under
the action of €2 representated by the “white” and the “gray” points. In the case

L(s1) > L¢ss3), only the “gray” points are special points and there is only one orbit.

FIGURE 3. Special points of Cs.
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3.4. Strips

We keep the setting of the previous sections. We say that two hyperplanes in F have
the same direction if they are orthogonal to the same positive root. This defines an
equivalence relation on F. We denote by F the set of directions (i.e. the equivalence
classes of the above relation). We denote by H the direction of H € F. For i € F,
we set

ci:'= max cy forallieF.
HeF H=i

REMARK 3.4.1. If W is not of type C, (n > 2) or A; then for every i € F and for

any hyperplane H of direction ¢ we have ¢; = cy; see Lemma 3.3.4.

Following [3, 9], we introduce the notion of strips.

DEFINITION 3.4.2. Let i € F. The strips of direction ¢ are the connected components

of the set
v— |y H
HeF, H=i
For A € X, we denote by U;(A) the unique strip of direction ¢ which contains A.
The maximal strips of direction i are the connected components of
v- U H

HeF, H=i
CH=C;

Note that the strips as defined in [9] correspond to our maximal strips.

REMARK 3.4.3. Let A € X and i € F and consider the strip U;(A). There exists a

unique o € ®* and a unique n € Z such that
Ui(A)={z eV |n<(z,&) <n+1},

in other words

U(A)=Vg, NVg .
We say that U;(A) is defined by H, , and Hy 1.
Now let 7,5 € F and o € Q be such that o(i) = j. Then we have, for every A € X,
o(Ui(A)) = U;(Ao) and the strip U;(Ao) is defined by the hyperplanes o(H, ) and

U(Ha,n-i-l)
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EXAMPLE 3.4.4. Let W be an affine Weyl group of type Cy generated by sq, 5o, 53
where s; and s3 commute. If L(s;) = L(s3) then the set of maximal strips and the
set of strips coincide. In Figure 4, we show the strips of direction §; which contain
Ap (where 57 is the direction of the hyperplane containing the face of type s; of Ap).
If L(sy) > L(s3) then the maximal strips are different from the strips. In Figure 5,

we show the maximal strips of direction 57 in this case.

FIGURE 4. Strips of direction 37 containing Aj.

FIGURE 5. Maximal strips of direction 57 containing Aj.
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3.5. Multiplication of the standard basis

In this section we give a result which gives an upper bound for the degree of the
structure constants with respect to the standard basis.
For two alcoves A, B € X, let
H(A,B)={H € F | H separates A and B}.
Let x,y € W; we define
HLy = {H eF | H e H(Ao,on) N H(yA(],LUyA(])},
I,,={ic F|3H;H=i,HeH,,}

Fori € I, ,, let

Cpy(i) = max cy
HeH; y,H=i
and
Coy = E Cl‘7y(7’)
’iEIac,y
We have

THEOREM 3.5.1. Let x,y € W and

T,T, = fo,y,sz where fy, . € A.

zeW

Then, the degree of fy,.. in v is at most cg .

REMARK 3.5.2. Note that this theorem implies that an affine Weyl group is bounded;

see Section 2.7.

In order to prove this theorem we need a number of preliminary lemmas.

LEMMA 3.5.3. Let x,y € W and s € S be such that x < s and y < sy. We have

CmS,y = C:B,Sy’

PROOF. Let H, be the unique hyperplane which separates yAy and syAy. Since

xr < xs and y < sy, one can see that
H(AOa yAO) U {Hs} = H(AOa SyAO)>
H (Ao, yAo) N{H,} =0,
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and

H(syAp, xsyAg) U{Hs} = H(yAo, zsyAo),
H(syAy, xsyAg) N {H,} = 0.
Therefore we have
H, 5y = H(Ao, syAo) N H(syAo, zsyAo)
= (H (Ao, yAp) U{H}) N H(syAo, zsyAyp)
= (H(Ao,yAo) N H(syAo, zsyAo)) U ({ Hs} N H(syAo, xsyAo))
= H(Ao,yAo) N H(syAo, xsyAo)

and
H,s, = H(yAo, xsyAo) N H(Ag, yAo)
= (H(syAo, zsyAy) U{Hs}) N H(Ag,yAo)
= (H(syAy, zsyAo) N H(Ag,yA)) U ({Hs} N H(Ap,yAp))
= H(syAo, zsyAo) N H (Ao, yAo)
= H, 4.
Thus ¢, sy = Cas,y- O

LEMMA 3.5.4. Let x,y € W and s € S be such that xs < x and sy <y. We have

Cys,sy < Cayy-

PROOF. Let H, be the unique hyperplane which separate yAy and syAy. One can
see that
Hxs,sy - Hx,y - {Hs}
The result follows. O

LEMMA 3.5.5. Let x,y € W and s € S be such that xs < x and sy < y. Let Hy be
the unique hyperplane which separates yAg and syAq. Then we have

H,¢ I, and H, €l,,

ProOoOF. We have
sy <y= H, € H(Ao,yA),
xs <x = H; € H(yAp, xyAy).

Thus H, € H,, and H, € I,
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Let as € @ and n; € Z be such that H; = H,, ,,. Assume that ny > 1 (the case

where ny < 0 is similar).

Since Hy, € H(Ap, yAp) and yAg has a facet contained in Hj, we have
ns < (r,as) < ns+ 1 for all z € yA,.

Therefore, for all m > ng,, we have H,_,, ¢ H(Ap, yAo).

Now, since zs < x, we have
xsyAo C{N eV | ng < (N, a,) }.

Therefore, for all m < ng, we have H,, ,, ¢ H(yAo,xsyAy). Thus, there is no
hyperplane parallel to H; in H,,,, as required. U

Let z,y € W and s € S be such that zs < x and sy < y. Let Hg be the unique
hyperplane which separates yAy and syAg and let o4 be the corresponding reflection.
Assume that I, # 0 and let i € I,5,. Recall that U;(yAy) is the unique strip of

direction ¢ which contains yA,. Since ¢ € 1,5, we have

Ao  Ui(yAo) and xsyAg ¢ Ui(yAo).
One can see that one and only one of the hyperplanes which defines U;(yAp) lies in
H,s,. We denote by H @) this hyperplane.

Let H € H,,,. By the previous lemma we know that H # H,. Consider the 4
connected components of V' — {H, Hy}. We denote by E4,, Eya,, Esya, and Eiga,
the connected component which contains, respectively, Ay, yAo, syAg and xsyA.
Assume that o4(H) # H. Then, we have either

os(H)NEyay # 0 and og(H) N E4, # 0

or
O'S(H) N E:cson =+ () and O'S(H) N Eson #+ 0.

Furthermore, in the first case, 05(H) separates E, g4, and Ey,4,, and, in the second

case, 0,(H) separates E, 4, and E4,. In particular, we have
os(H)NEyay #0 =  o0s(H) € H(syAo, xsyAo)
0s(H)N Epsyay #0 = o05(H) € H(Ap, yAo).
Moreover, we see that
os(H)NEya, #0 = o(H) € H(syAo, vsyAo)
= 0s(H) € H(yAp, xsyAy),
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We will say that H € H,s, is of s-type 1 if o5(H) N Eya, # 0, and of s-type 2 if
0s(H) N Eysya, # 0. Note that the type depends on element s € S that we consider.

To sum up, we have

- if H is of s-type 1 then o,(H) € H(yAg, xsyAo);
- if H is of s-type 2 then o4(H) € H(Ap, yAo).

We illustrate this result in Figure 6. Note that if H, H' € H,,, are parallel, then they

have the same type.

s-type 1 s-type 2
os(H)\ H H 0s(H)
/
Eon \\\ E:L‘Son Eon // ExSon
\ A //
Ag \ rSyAy Aq I,xson
Kya, [ s lyAy s
YAo \\ zy Ao Yso 2y Ao
Eson \\ Ey, Eson ,/ E4,
\ /
\ %0 1 %0

FIGURE 6. s-type 1 and s-type 2 hyperplanes

LEMMA 3.5.6. Let x,y € W and s € S be such that xs < x and sy < y. Let Hy be
the unique hyperplane which separates yAg and syAq and let o, be the corresponding

reflection. We have the following.

a) Let H € F. We have
H € H(yAo, vsyAo) = o,(H) € H(yAo, zyAo).

b) Let H € H,,, be of s-type 1; then H € H,,,.
c) Let H € H,g, be of s-type 2; then o,(H) € H,,,.
d) Let H € H,y,, such that o,(H) = H; then H € H,,,,.

PROOF. We prove (a). Let H € H(yAoy, vsyAp). Then o4(H) separates yAgos

and xsyAgo,. But we have

yAgos = syAg and wzsyAgos = xssyAg = xyAo.
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Since H # H,, we have o4(H) # H, and this implies that o,(H) separates yAy and
xyAg.

We prove (b). We have H € H,,, = H(Ay, yAo) NH (yAo, xsyAp). The hyperplane H
is of s-type 1 thus o4(H) € H(yAo, zsyAp). Using (a) we see that H € H(yAy, zyAp).
Therefore, H € H,,,.

We prove (c). Since H is of s-type 2 we have o4(H) € H(Ap,yAy). Moreover,
H € H(yAp,xsyAp) thus, using (a), we see that o,(H) € H(yAg, xyAo). Therefore,
os(H) € Hy .

We prove (d). Using (a), we see that os(H) = H € H(yAo, vyAy) and since H €
H,, C H(Ap,yAp), we get H € H, .
U

LEMMA 3.5.7. Letx,y € W and s € S be such that xs < x and sy < y. Let Hy be the

unique hyperplane which separates yAqy and syAq. There is an injective map ¢ from
Ly to I, — {H}.

PROOF. Let o, be the reflection with fixed point set H,. If I, = () then the
result is clear. We assume that I, # (. We define ¢ as follows.

(1) If o (HY) € H(Ap,yAp) then set ¢(i) = 0,(i);
(2) ¢(i) =i otherwise.

We need to show that ¢(i) € I, — {H,}. The fact that (i) # H, is a consequence
of Lemma 3.5.5, where we have seen that H ¢ I,,,. Indeed, since ¢(i) is either i or
os(i) and i # H, we cannot have ¢(i) = H,.

Let i € I, be such that o (H?Y) € H(Ay,yAp). By Lemma 3.5.6 (a), we have
o (H®) € H(yAy,xyAy). It follows that o,(H?V) € H,, and o,(i) € I, as required.
Let i € I, be such that o (H") ¢ H(Ag,yAy). Then H® is of s-type 1. By the
previous lemma we have H® € H,,andicl,,.

We show that ¢ is injective. Let i € I, be such that ¢(i) = 04(7) and assume that
os(i) € I5,. We have

os(Ui(yAo)) = Us, ) (syAo) = Us, i) (yAo)

and o4(H®) is one of the hyperplane which defines U, ;) (yA4o). Furthermore since
oy (HD) € H(Ay,yAo) we must have o,(H®) = H®) Tt follows that o,(H ) €
H(Ap,yAo) and p(04(i)) = i. The result follows.

O
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PROPOSITION 3.5.8. Let x,y € W and s € S be such that xs < x and sy < y. Let
H, be the unique hyperplane which separates yAy and syAq. We have

Casy < Cay — Cw,y(E)-

PROOF. Let ¢ be as in the proof of the previous lemma. We keep the same

notation. If I, = () then the result is clear, thus we may assume that I, # 0.
First assume that W is not of type C, (r > 2) or A;. Then any two parallel hyper-
planes have the same weight, therefore we obtain, for i € I,

st,y(i) = CH(i),

Moreover, since cg = co(gr) for any H € F and o € (2, one can see that

Casy(1) = €y (0(2)),
and the result follows using Lemma 3.5.7.

Now, assume that W is of type C,, with graph and weight function given by

a c c c c b
oc———C0—0O0 - O0——CO—0
S1 S92 S3  Sr—1  Sr  Sr41

We have seen that the only case where two parallel hyperplanes H, H' do not have the
same weight is when one of them, say H, supports a face of type s; and H' supports

a face of type s,,1.

If a = b, then parallel hyperplanes have the same weight and we can conclude as
before.

Now assume that @ > b. Let i € F be such that not all the hyperplanes with direction
¢ have the same weight. Let H = H,, be a hyperplane with direction ¢ and weight
a. Then H, ,_; and H, ,4 have weight b because otherwise all the hyperplanes with

direction ¢ would have weight a.
CLAM 3.5.9. Let i € I,5,. We have

(1) if H® is of s-type 2 then ¢, ,(0(i)) > cus4(i);
(2) if o, (HD) = HD then ¢, ,(p(1)) > Cpsy(i);
(3) if H® is of s-type 1 and o,(H®W) ¢ H(Ag, yAg) then c,,(0(i)) > cpsy(i);

PROOF. We prove (1). Since H® is of s-type 2 we have o,(H®W) € H (A, yAo)
and (i) = o4(i). Let H € H,,, be such that H = i. Then H is of s-type 2 and
os(H) € H,, (see Lemma 3.5.6 (c)). The result follows.
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We prove (2). Since o(H?) = H® we have H") € H,, (see Lemma 3.5.6 (d)) and
¢(i) =i. Let H € H,, be such that H = i. Then o4(H) = H and H € H,,. The
result follows.

We prove (3). In that case we have ¢(i) = i. Let H € H,,, be such that H = i.
Then H is of s-type 1 and H € H,, (see Lemma 3.5.6 (b)). The result follows. [

CLAIM 3.5.10. Let @ € 1,5, be such that

Casy(i) =a and  cgy(p(i)) = b
Then we have 0(i) € I,s,, p(0s(7)) = ¢ and

Cosy(05(1)) =b and ¢, (i) =a

PROOF. By the previous claim, we know that H is of s-type 1 and o,(H®) €
H(Ap,yAp). Thus o (H?V) € H,, and ¢(i) = o4(i). In particular, since ¢, ,(¢(i)) =
b, we must have ¢, gy = b, which implies that cyu) = b.

Since H® is of s-type 1 we have o,(H®) € H(yAy, xsyAy) which implies that
o, (H) € H,,,. Thus o,(i) € I,,,. Arguying as in the proof of Lemma 3.5.7,
we obtain o,(H®) = H0) and ¢(0,(i)) = i.

Let a € ®F and n € Z be such that H® = H, . Since cgs,(i) = a, one can see
that one of the hyperplanes Hy,—1, Hqpnt1 lies in Hy,,. We denote this hyperplane
by H. Note that cy = a. Thus, since ¢, ,(04(7)) = b we have o5(H) ¢ H,,. Both
hyperplanes o,(H) and o, (H®) separate yA, and xyA, but only o,(H®) lies in
H,,. This implies that Ay lies in the strip defined by o,(H) and o (H®). Since
oy (HD) = H@®) this shows that the only hyperplane of direction o,(i) which lies
in H,,, is H®%). Thus we have c,,,(04(i)) = b. Moreover p(0,(i)) =i and H is of
s-type 1, thus H € H,, (see Lemma 3.5.6 (2)) and ¢, ,(i) = a.

U

We now go back to the proof of Proposition 3.5.8. Let I, be the subset of I,
which consists of the directions i such that c,s,(i) = a and ¢, ,(¢(i)) = b. Using
the previous claim, we see that the set o4(/s) is a subset of I, such that for all
i € 05(I>) we have ¢, ,(i) = b and ¢, ,(¢(i)) = a. The proposition follows in the case
where W is of type C, (r > 2).

In the case where W is of type A;, the result is clear, since we always have Lsy = 0.

The proposition is proved.
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PrROOF OF THEOREM 3.5.1. Let z,y € W and

T.T, =Y foy:T. where f,,. € A
zeW

We want to prove that the degree of f, , . in v is less than or equal to ¢, ,. We proceed
by induction ¢(x) + £(y).

If ¢(z) + ¢(y) = 0 the result is clear.

If ¢;, = 0 then H,, =0 and z.y. Thus T, T, = T, and the result follows.

We may assume that H,, # (), which implies that ¢(z) > 0 and ¢(y) > 0. Let z =
Sk ... 81 be a reduced expression of x. There exists 1 < i < k such that (s;_1...81).y
and s;s;_1...51y < S;j—1...51Yy. Let xg = s;...s; and yo = s;_1...51.y. Let Hy, be
the unique hyperplane which separates yoAo and s;yoAo. Note that cy, = L(s;). We

have
1.1y = Ty, Ty,
Using Lemma 3.5.3, we obtain ¢, , = ¢z, 4, We have

Twmyo =T,

sk...si+1TsiTy0

== Tsk...si+1 (Tsiyo + gsz-Tyo)

== Tsk...si+1Tsiyo + gsiTSk---SHlTyO
- Txosi,siyo + gsiTu’COSi,yO

By induction, T}, %s,y, is an A-linear combination of 7, with coefficients of degree
less than or equal to cyys; 5,0- Using Lemma 3.5.4, we have cus; 5,50 < Cao,y0 = Cay-

By induction, T},T,, is an A-linear combination of 7T, with coefficients of degree
less than or equal to cgs,,,. Therefore the degree of the polynomials occuring in
;' Luosi Ty 1s less than or equal to L(s;) + Cyps;0- Applying Proposition 3.5.8 to zg

and yo we obtain

Cxosi,y0 < Cxo,y0 — Czo,50 (HSZ)

Since ¢y, (Hs;) > cu,, = L(s;) we obtain
L(5:) + Cagsio < Caoyo = Cay-

The theorem is proved.



CHAPTER 4

On the determination of cells in affine Weyl groups

In this chapter, we introduce the original setting for cells with unequal parameters,
where instead of a weight function, Lusztig (|28]) defined the cells with respect to an
abelian group and a total order on it. Then following Geck (|16]), we find a criterion
in order to determine whether two weight functions give rise to essentially the same
data (i.e R-polynomials, Kazhdan-Lusztig polynomials...) on a given subset of W,
namely a Bruhat interval. In Section 4.3.1, we prove that, in an affine Weyl group, the
Kazhdan-Lusztig polynomials are invariant under “long enough” translations. Finally,

applying these results to the case where W is of type G», we will show that

(1) there are only finitely many possible decompositions of W into left cells;

(2) the number of left cells is finite in each case.

We use the geometric presentation of an affine Weyl group and keep the same notation

as in the previous chapter.

4.1. Weight function and total order

4.1.1. Total ordering. Let W be an arbitrary Coxeter group. Following Lusztig
([28]), let I" be an abelian group written multiplicatively and let A := Z[I'] be the
group algebra of I' over Z. Let {vs | s € S} be a subset of I' such that v, = v,
whenever s,t € S are conjugate in W. Then we can define the corresponding generic
Iwahori-Hecke algebra H, with A-basis {T, | w € W}, identity element T, and

multiplication given by the rule

Tsw, if {(sw) > l(w),

T, T, =
T, + (Vs —v;)Ty, if {(sw) < {(w).

Let a — a be the involution of Z[I'] defined by g = ¢! for g € I'. We can extend it
to a map from H to itself by

Y a,Ty= > a, ' (a, €Z[)).
weW weW

Then h — h is a ring involution.
57
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Doing the same construction as in Chapter 2, we obtain the generic R-polynomials,

which satisfy similar properties as the R-polynomials.

Now we choose a total ordering of I'. This is specified by a multiplicatively closed
subset 'y € ' — {1} such that I' =T, U{1} UT_ (disjoint union) where I'_ = {g~* |
g € ', }. Moreover, assume that

{vs | s € S} C Ty

Thus, in Chapter 2 one can replace Ao by Z[I'_]. We obtain

(1) the corresponding Kazhdan-Lusztig basis {C, }wew;
(2) the Kazhdan-Lusztig polynomials P, ,, € Z[I'_] for all y < w € W;
(3) the polynomials M , whenever sy <y <w < sw (s € S, y,w € W).

As before, these data determine a pre-order relation <; (resp. <pr) on W and the

corresponding partition of W into left cells (resp. two-sided cells).

To sum up, we have the following correspondences

A=Z[v, v — A =7
weight function L — total order I' ="', U{1}UT_
v € {v"n € N*} — vs €Ty
H — H
T, — T,
Ry — R, .
Ao =vZ[v — Z[I'_]
Cw — C.,
Py e A — P,. € Z[l_]
M, — My .,

ExXAMPLE 4.1.1. Let W be a Weyl group of type Gs, generated by s,t. Let @, q be

independent indeterminates over Z and consider the abelian group
I ={Q¢ |i.jez}
Consider the lexicographic order on I' (with @ > q), i.e.:

I={Q'¢ |i>0,j€ZyU{q |i>0}.
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We set v; = @ and vs = ¢. Doing some computations (see [46, Example 1.21]), we
obtain
Piio = Proistst = Q_lq_l - Q_lq
Peiwo = Pisistsr = Potstst = Q 2 _1 Q_Qq
Pt,tstst = Q 2 _2 Q_ +Q_
Pe,tstst = Q_3Q_2 - Q_S + Q_3q2
Ps,sts = Psts,ststs Q" ! _1 "‘Q_lq
Pegs = Prossts = Paass =Q ¢ >+ Q7!
Pt,ststs = Q ! _3"‘@ Yt
Ps,ststs = Q 2 _2+Q_
Pe,ststs = Q_ q_ + Q_2q_1-

For all other pairs y < w we have P, ,, = Q*®W =W gtW)~t(w) where ¢,(2) (resp. {;)
denotes the number of ¢’s (resp. s’s) which appears in a reduced expression of z.

The M polynomials are as follows

t _ t _ t _ t
Mtsts ,ststs T Mtst ,stst Mts sts T Mt st T Qq + Q q
t _ t
M, ga = M =1

ts,ststs —

and all the others are zero.

Compare to the situation in Example 2.4.5.

4.1.2. Total order and weight function.
4.1.2.1. Finite Cozeter Groups. Let W be a finite Coxeter group. In [16], Geck

has established a link between these two situations, where you have an abelian group
I' with a total order specified by I';. C I" and a choice of parameters {vs | s € S} C I'y
on the one hand, and a weight function L on the other hand. We keep the setting of

the previous section.

First, let I'% (W) be the set of all elements v € T'y such that v~ occurs with a
non zero coefficient in a polynomial P, ,, for some y < w in W. Next for any y, w
in W and s € S such that M; ., # 0, we write My, = mim + ... + ny, where
0#mn; €Z v €T and v v € I'y for 2 < i < r. Let I'% (W) be the set of all
elements v, ',y; € T'y arising in this way, for any y, w, s such that M; , # 0. Finally
set I (W) =T%(W)UTE(W).
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PROPOSITION 4.1.2 (Geck [16, 2.10]). Assume that we have a ring homomorphism
o: 2 — Zv,v7Y, v, — vt
such that
ol (W)) € {v" [ n >0} (%)
Then 0(Py.) = Py for ally <w in Wand o(M; ) = M, for any y,w € W such

that sy < y < w < sw. Furthermore, the relation <p on W defined with respect to
the weight function L is the same as the one defined with respect to I'y C T.

EXAMPLE 4.1.3. Let W be a Weyl group of type Gy generated by s,t. On the one

hand, let @), ¢ be independent indeterminates over Z and consider the abelian group
I ={Q'¢ |i,j € Z}.

On the other hand, let L be a weight function L on W. It is determined by the values

L(s1) = a € N* and L(s2) = b € N*. We shall denote such a weight function by L.

We denote by o, the ring homomorphism

Oap: Z[I' — Z[v,v_l]

Consider the lexicographic order on I' (with @ > ¢). In Example 4.1.1 we have
computed all the Kazhdan-Lusztig polynomials and all the M-polynomials. Thus we
see that

L,(W) c{Q% ", Q%2 Q% " Q% * Q"¢ ", Q% (where ¢,d > 0)}.

In other words, Condition (*) in the previous proposition is satisfied for any ring
homomorphism o, such that a > 0. Thus any weight function L,; such that a > b
gives rise to the same left cell decomposition. Now by symmetry of the graph, the

case b > a is similar.

To sum up, there are just three distinct decompositions into left cells corresponding

to the following weight functions

(1) Lgp such that a > b;
(2) Lgp such that a = b;
(3) Lgp such that a < b.
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EXAMPLE 4.1.4. Let W be a Weyl group of type F; with graph as follows

. O0—C—_"C0—=0

F4 S1 So S3 S4
We denote by L, the weight function on W such that L(s;) = L(s3) = @ € N* and
L(s3) = L(s4) = b € N*. By symmetry of the graph we may assume that a > b. We

have the following theorem.

THEOREM 4.1.5 (Geck [16, Theorem 4.8]). Let L = L, and L' = Ly be two weight
functions on W such that b > a > 0 and b’ > ' > 0. Then L,L’ define the same
partition of W into left cells if and only if L, L' € L; fori € {0,1,2,3}, where L; are
defined as follows:

c,c,c,c) | c> 0}

{(
{(¢,¢,2¢,2c) | ¢ > 0},
{(
{(

c,c,d,d) | 2c>d>c>0},
c,c,d,d) | d>2c>0}.

Lo
L4
Ly
Ls

4.1.2.2. Infinite Coxeter groups. If W is an infinite Coxeter group, we cannot
compute the set 'y (W). However, if we restrict ourself to a finite subset of W,

namely a Bruhat interval, we find a similar result.

Let y,w € W, s € S and I = [y,w]. We now define three subsets I'} (1), Flf([),
I'S* C I'y. First, let T'% (1) be the set of all elements v € I'y such that 4! occurs
with a non-zero coefficient in a polynomial P, ., for some z; < 25 in /. Next for any
21, z2 in [ such that M7 # 0 we write M ., =mm + ... + 1 where 0 #*n; €7,
v € Tand 7,4, € Ty for 2 < i < r. Let T%*(I) be set of all elements vy € Ty
, 7 0. Finally let T'" be the set of

occurs with a non-zero coefficient in a polynomial

arising in this way, for any z1, 2, € I such that M7 |
1

all elements v € I'; such that v~

of the form

E s
PZl,ZMz,zg - USPZI,ZQ

2321 <2<292;52<%2

where 21,2, € I and 521 < 2 < 25 < s25. We set [.(I) =T (1) UTY* (1) UTS’.

PROPOSITION 4.1.6. Let y,w € W, s € S and I = [y,w]|. Assume that we have a
ring homomorphism
o: 2 — Zv,vY, v, — vt
such that
oI (1) € {v" [n >0} (%)
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Then o(P, »,) = P, ., for all zy < zg in I and o(MS, , ) = M? . for any 21,20 € 1

21,22 21,22

such that sz; < z1 < 29 < S2z.

PROOF. We have o(p) = o(p) for all p € Z[I']. Moreover, the R-polynomials do

not depend on the order, therefore we have o(R,, ,,) = R., ., for any 21,20 € W.

We prove by induction on £(z3) — €(21) that o(P,, .,) = Ps, ., for all 2 < 2z in L. If
l(z9) — (z) = 0 it is clear.

Assume that ¢(z2) — ¢(z1) > 0. Applying o to the formula in Proposition 2.4.2 (3)
using the induction hypothesis yields

U(thw) —0(P,, ) = Z o(R;,2)o(Ps,)

21<2<29

- Z Rzl,sz,zg-

21<2<29

This relation and condition (x) implies that o(P,, .,) = P, -

Let 21,20 € I and s € S be such that sz; < 21 < 29 < sz. We prove by induction on
U(z9) — U(z) that (M2 ) = M?

21,22 z21,22°

Since M3 = M3 _ we have o(M? _ ) = (M _ ). Furthermore, using (%) and

21,22 21,227 21,22 21,22

the definition of the M-polynomials we have

oML+ Y P, "R, vz,

21,22 2,22
z2,21<2z<z22;82<z

This relation implies that (M3 , ) = M? . . Moreover we can see that if M, # 0

21,22 z1,22° 21,22

then M _, is a combination of pairwise different powers of v. Thus M} _, #0. O

If condition (x) is satisfied for all s € S, then we can conclude that z,z € I satisfy
x < z with respect to the total order I', if and only if they satisty x «p 2z with

respect to the weight function L. For an example, see Section 4.4.

4.2. On the translations in an affine Weyl group

Let (W, S) be an irreducible affine Weyl group.

DEFINITION 4.2.1. Let u € W. We say that u is a translation if there exists a vector
i # 0 such that tz, the translation by the vector @, is in €2 and

UAQ = Aotg.

Note that t; is uniquely determined by w.
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REMARK 4.2.2. There can be elements in W which “translate” Ay but which are not
translations according to our definition. For instance, let W be an affine Weyl group
of type Cs, generated by S := {s1, 82, 83} where s183 = s3s1. Let u = s18953. Then

uAy is a translate of Ag by a vector @, however, t; does not lie in €.

Let u € W be a translation and let B be an alcove. Let o € € be such that Ago = B.
We have

ubB = u(Ago) = Aptgo = Agoty@) = Bty
Therefore uB is a translate of B. Note that we have used the fact that the action of

) commutes with the action of W.

From now on and until the end of this section, we fix a translation u € W. Consider
the orbit of @ under the action of €. It is finite since the group of linear transforms
associated to 2 is isomorphic to €y (the stabilizer of the origin in V') which is finite.
Let

Orbg () = {t; = U, u3, ..., up }.
We denote by u; € W the corresponding translations in W. Finally, let v; be the
special point ¢z (0).
Recall the definition of h,(w) for w € W in 3.2.3 and Definition 1.2.9.

LEMMA 4.2.3. Let u € W be a translation associated to tgz € §2.

(a) Let ry <ry € N*. We have

hAo(urz) C hAo(url) and hAo(urz) = Tz r1)U (hAo( ))
(b) Let r € N*. We have

zu & zal.

Before giving the proof, we give the example of G, to illustrate this lemma.

EXAMPLE 4.2.4. Let W be an affine Weyl group of type Go generated by S =
{82, $2, 83} where s; and s3 commute. Let u = u; = $95189518253. Then one can
check that u is a translation and its orbit under the action of {2 contains 6 elements,

namely

U = $2515251592S53
Uz = 8515251525352
Uz = 515253525152
Ug — 835251525152
Us = 525352515251

Ug — S95152535251
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In Figure 1, we show the shape of the set ha,(u;) (1 <i <6).

FIGURE 1. The sets ha,(u;) in G,

REMARK 4.2.5. The sets hy,(u;) are disjoint. As we will see later on, it is true in
general for any translation in an affine Weyl group. In fact, this will be the key point

to prove the invariance of the Kazhdan-Lusztig polynomials by translation.

PROOF. (a) Let o € ®T and k, = (@, &). Since tz € 2, one can see that k, € Z.

For any r € N, we have
rko < (z,d&) < rky+ 1 for all x € u"A,.

Note that, if k, = 0, there is no hyperplane of the form H, , (m € Z) which separates
Ag and u" Ay.

Let ¢ (resp. ¢T, ¢ ) be the subset of ®* which consists of all positive roots 3 such
that kg # 0 (resp. kg > 0, kg < 0). For 3 € ¢, we define

Hg i, if € ",
Hprpprr B E@.

HP =

Then, one can check that

hay(u") = () Eps (u” Ao). (+)

Bey
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Let r1 < ry € N* and ( € . We suppose that 3 € ¢ (the case 3 € ¢~ is similar).
We have
Eps(u™) ={z € V | (z,0) > riks}
and
Eys(u™) = {z € V | (&, 0) > roks}.
Thus
Eps(u) C Egs(u™) and  Egs(u”) = te,—r)alps (u™)

and the result follows using relation (x).

(b) The statement follows from (a) and Lemma 3.2.4. O

REMARK 4.2.6. Note that this Lemma implies that ¢(u") = r¢(u). Indeed, we have
u(uApy) € ha,(u?) C ha,(u)

thus, using Lemma 3.2.4, we get the result.

From now on, we write [1,n] :={1,...,n}.

LEMMA 4.2.7. (a) For any i,j € [1,n] we have {(u;) = {(u;).
(b) Let z1,20 € W, r € N* and i € [1,n] be such that z.u}.zo. There exists
k,m € [1,n] such that

21U 2y = 21.29.U = Uy.21.29.

(c) Let z1,20 € W, r>1 and i € [1,n]. We have the following equivalence

r+1

2.5 29 S 2L 2.

PROOF. (a) Let A € X and A’ be a translate of A (by a translation in Q).
Then the number of hyperplanes which separate A and A’ is equal to the number of
hyperplanes which separate zA and zA’ for any z € W.

Let 4,j € [1,n], 0 € Q and z € W be such that @0 = u; and zA) = Ago.
We have
((u;) = |[{H | H separates Ay and A,, }|
= |{H | H separates z ' Ay and z ' A, }|
= |{H | H separates z ' Ago and 274, 0}|.

Since
Z_IA()O' = AO
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and
z_lAUia = Z_letgiU = Z_leUtgj = Ay,
we obtain
((u;) = |{H | H separates z~'Ayo and z A, 0}
= |{H | H separates Ay and A,, }|
= {(u;)
as desired.

(b) Let 0,,,0,, € Q and k,m € [1,n] be such that

ZlAQ = 1400'Z1 s O'_l(ﬁi) = _)k-
and

ZQAO = A00'22 y Oz, (ﬁl) = ?Im

We have

r . _ _ T
z1.u; .20 A0 = A0y trg, 02 = Aotm;ll (@)1 0z = 212240,

which implies that z;.ul.zo = uj,z122. Now, since £(u;) = €(uy,), we must have u},.z;.25.

Similarly, one can show that z;.u}.ze = z1.20.u] .

(c) The statement follows from (b) and Lemma 4.2.3 (b).

We now state the main result of this section.

THEOREM 4.2.8. Leti,j € [1,n] and ri,r5 € N* be such that i # j. We have

By (0]1) 1 hag () = 0.

PROOF. According to Lemma 4.2.3 (a), to prove the theorem, it is enough to show
that, for any ¢ # j € [1,n], we have

g (1) O Py (1) = 0.
Let
Fo={HeF|0e€H, v;¢ H forall i € [1,n]}.
Consider the connected component of
V- |J K
HeFo

Since there exists o € y such that o(v;) = v;, there is a hyperplane which separates

v; and v; and which contains 0. Therefore A,, and A,; do not lie in the same connected
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component. For ¢ € [1,n], let C; be the connected component which contains A,,. To

prove the theorem, it is enough to show that ha,(u;) C C; for all i € [1,n].

Let H be a wall of C; and let Ey(C;) be the half-space defined by H which contains
C;. Since 0 € H and v; ¢ H, one can see that H' = t;(H) # H. Thus either H
separates Ag and A, or H' does.

If H separates Ay and A,, then, as A,, C C;, we must have hu,(u;) C Eg(C;).
Now, assume that H does not separate Ay and A,,. Let 8 € ®* and m € Z be such
that H = Hzy and H' = Hp,,. In that case we have

AO,AWGEH( ) {ZE’EV|<ZE /6>>0}

Thus one can see that we must have m > 0. Let Eg/(A,,) be the half-space defined
by H’ which contains A,,. We have

Ew(Ay) ={z €V | (z,5) > m}
and
hAO(uZ-) C EH’(Avi> C EH(CZ)
We have shown that for every wall of C;, ha,(u;) lies on the same side of this wall as

Ci, thus ha,(u;) C C; as required. O
COROLLARY 4.2.9. (of Theorem 4.2.8)

(a) Let z,2 e W, re N*, me N and i,j € [1,n]. We have

zuy =2 =i =j and z = 2 u}'

(b) Let z1,29,21,20 € W, r e N*, me N and i,j € [1,n]. For all k > 0 we have

zuf.zy = 24T 2 &zl = 2T

PROOF. (a) We have z.ujAg € ha,(uf) and 2".uf™ = 2/ uf.uf € ha,(uf). Since

+m

zaup = 2'ui™™, applying Theorem 4.2.8 yields i = j. The result follows

(b) The statement follows from Lemma 4.2.7 and (a). O

4.3. On the Kazhdan-Lusztig polynomials

Let u € W be a translation associated to tz € 2 and let M = ¢(u). One can easily see
that M > 2. We keep the same notations as in the previous section. In this section

we want to prove
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THEOREM 4.3.1. Let z,2/ € W and i,j € [1,n] be such that z.u; and 2'.u;. Let
N =((2") — U(z). Then for allr > N(M + 1) and for all k > 0 we have

T T —
qui 2l qu:+k,z’u;+k

and if there exists s € S which satisfies szuj < zuj < 2'uj < sz'uj, then
S

s
T ol T — M 4k .
zug 2l z.u§+k,z’u;+k

Our first task is to construct an isomorphism from the Bruhat interval [z.u], 2".u}] to

r+k r+k

, . .
[z.u; ™", 2".u;™"] and then to show that the corresponding R-polynomials are equal.

LEMMA 4.3.2. Let z € W and i € [1,n] be such that z.u;. Let r € N* andy € W be
such that r > {(z.u}) — {(y). Then we have
y<zu; < dz,2 € W,ny,ne €N such that Zl.u:;_N.ZQ =y
2 <zt ze < u? and nyg +mng = N.

r—N

Furthermore, there exists a unique z, € W and m € [1,n] such that y = z,.u],

PROOF. “ <" is clear.
“="Let N =/{(z.u]) — {(y). We proceed by induction on N.
If N =0, it’s clear.
Let N > 0. There exists y' € W such that y <y’ < z.u] and

l(zu])—L(y)=N—-1 and L(y)—L(y) = 1.

Applying the inductive assumption yields

— / /
N+1.Z

32, 25 € W,n},nj € N such that 2].u] b =1

/ ny ny I
2 <zau; ' zy <wu?,ny+ng=N-—-1.

Let

y = sp...smH(sm...sk)T_N“sk_l...sl p>m>k>1)

be a reduced expression of ¢’ such that
! o d !
21 = Sp---Sm+1, Ui = S;m...S alld Z9 = Sg_1...51 .

We know that y can be obtained by deleting a simple reflection s € S in a reduced
expression of 3. If there exists [ € N such that

Yy = sp...§l...sk(sm...sk)r_Nsk_l...sl (p>1>k)
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or

Yy = sp...sm+1(sm...sk)T_Nsm...§l...31 (m>1>1)

(where § means that we have deleted s) the result is straightforward.
Now assume that there exists [y, ly € N* such that [; + 1 =r — N and

Iy o 2

o /
y — Zl.uZ .UZ.UZ .Z2 .

where 4; is obtained by deleting a simple reflection in s,,...s.

la I

Let j € [1,n] be such that ul'.i; = ﬁzugl We have y = z}.4;.u u;'.25 which implies

that ug?.ulil. Furthermore, we have
Iy 1 Lol
uf.uile = Aotia;tna, = Aotnatia, = uil.u]?Ao.

Applying Corollary 4.2.9, we get i = 7. Thus

l1 lo

_ S/ . r—N
Y = 2.0 .

I o /

Let
21221.’&2‘ n1 :n/1+1
/ /

ni
i

Then one can check that z; = 2].14; < z.u;* and 2z < w;?. Thus we get the result by

induction.

Let m € [1,n] be such that y = z.ul V.20 = z1.20.u77 V. Let Zy = 21.73. Assume
that there exists w € W and k € [1,n] such that y = w.uj . By Corollary 4.2.9, we

have k = m and w = z,, which concludes the proof. 0

LEMMA 4.3.3. Letz,2" € W andi, j € [1,n] be such that z.u; and 2’ .uj. Letry,ry € N*
be such that vy > ((2'.u}?) — ((z.u;"). Then for all k > 0 we have

7f2+k

! k /
zat <z .ugz & z.uglJr < zl.uj

PROOF. Let N = £(2".u}?) —{(z.u;"). Applying the previous lemma and Corollary
4.2.9 yields the following equivalences, for any k£ > 0

/
zagt <2l

< dz1, 20 € W, nq,no € N such that Zl.ugz_N.ZQ =zt

" and ny +ny = N

/
2 < z .u;-”,zg < uj

& Jz1, 29 € W,nq,ny € N such that zl.u’f—NJrk. 5 =zt tH
21 <2tz < u? and ny +ng = N

k k
& uttt < z'u§2+ )
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U
PROPOSITION 4.3.4. Let z,2 € W and 1,5 € [1,n] be such that z.u; and 2'.u;. Let
r € N* be such that r > £(2".u}) — £(z.u]). Then for all k > 0, the Bruhat interval
L= [z, 2] ={y e W | zu <y <2 j}

u:—l—k / r+k] )

is isomorphic to Iy = [z. ARy

PROOF. Let y € I and N, = {(2".u}) — £(y). There exists a unique 2, € W and

m € N such that y = z,.up, "
Let
p: I — I
r—Ny r+k—Ny
2y U —— ZyUm .

We need to show that ¢ is an isomorphism of Bruhat intervals.
Let y' <y € I . Let Ny = €(2".u}) —£(y'). There exists a unique z,, € W and m’ € N
such that y = zy/.urm_,Ny'. One can check that we can apply Lemma 4.3.3, we obtain

"
J

_ ~N,+k
= 2l <opy) =zl <o) =z YT < 2altE

m J

_ r—N!
zaul <y=z.ul, Ny < of = zpu,, ' <z

By Corollary 4.2.9 we see that ¢ is injective. One can easily check that ¢ is surjective.
The result follows. O

The next step is to show that the corresponding R-polynomials are equal. Let I" be
an abelian group together with a total order specified by I',.. Let {vs | s € S} C T'y

be the set of parameters and &, = v, — v !

Let y,w € W and s € S be such that sw < w. Recall that the R-polynomials satisfy
R, . = 0 unless y < w, R,, = 1 and the recursive relation
Rsy,swa if sy <y,

Ry = , .
Rsy,sw + ('Us —v )Ry,swa if Sy > Yy .

s

PROPOSITION 4.3.5. Let 2,2/ € W and i,j € [1,n] be such that z.u; and 2'.u;. Let
r € N* be such that r > (¢(2") — £(2))M. Then for all k > 0 we have

T o T — .
Rz.ui,z U Rz.urﬂ“ z’.u§+k

i )

PROOF. Let N = {(z') — £(z). We proceed by induction on N.
If i = j or if N <0 then the result is obvious.
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If N =0, since

Rz.ug,z’.u; = 5z.u£'7zl.u;' and Rz.u§'+k,z.u;+k = 5zu:+k’zu;+k

the result follows from Corollary 4.2.9.

Let N > 1 and i # j. Note that in this case r > M.

Let u; = sp...s1 be a reduced expression. There exists 1 < [ < M such that
(zufsy...s1-1)s; > z.ufsy...si—1. Indeed, if not, then z.u] = y.u; for some y € W.
By Corollary 4.2.9, this implies that ¢ = j, but we assumed that ¢ # j. Let | €
[1,m] be the smallest element with this property. The minimality of [ implies that
U(zulsy...si—1) =l(zul) — (I —1).

One can see that zu}sy...s;-1 < z.ul. Let y,w € W and m,q,p € [1,n] be such that

r _ r—I+1
ZU; 81-+.S1—1 = Y. Uy,

r—I[+1 . r—I+1
y.u,, S = y.sl.up

/T o or—1 . r—1
z ujsl...sl =z .uj SM---Sl1 = w.uq

By Corollary 4.2.9 we see that

rk |
ZUu;  S1...81—-1 = YU,
rh—l+1 k141
y.ul S = y.s.u
z'u§+k81...sl = z'.u;M_l.sM...slH = w.ug““_l.

Applying the recursive formula for the R-polynomials, we obtain

Rzu:,zug - Rzufsl...sl,l,zzugsl...sl,l

- R r—Il+1
Y. Uy ,zzu;sl...sl,l

-1

— R r-—l+17w_u;71 + gisy.u:,le,

"
YSUp W.Ug

and

R r+k r+k:R r+k r+k
zug Lz Zuy ST 81— 1,22U) 81811

- R —l+1+k k
y'“‘:n it 322 T

U, 81...81—
j 1 -1

yspady~UFIHE g =14 + §isy_u:nfz+1+k7w_u571+k
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Therefore to prove the theorem it is enough to show that

ysl.u;'*“rl,w.u:;*l = Rysl_u;7l+1+k7w'ugfl+k,
Ry.uf{“rl,w.uz;fl — Ry.u%7l+1+k,w.u271+k‘
If I =1 we have
Rysl.ug,w.u271 = R(ysl.up).uzr,*l,w.ugfl’
Ry.ufn,w.ugfl = R(y.um).uﬁfl,w.ugfl

and
l(w) — L(ysiu,) = N — 2,
l(w) = L(yum) = N — 1.
Moreover r — 1 > 0 (we have seen that r > M > 2) and
r—1>MN—-1>MN—-N=M(N-1)>M(N —2).

Therefore in both cases we can apply the induction hypothesis which yields the desired
equalities.
If [ > 1, we have

R r—I1+1 r—1 — R r—I+1 1—2 r—I+1
YSiup W Ug YSiUp W.Ug ~Ug )

R r—Il+1 r—1 — R r—Il+1
m b m b

y.u w.Ug y.u

=2 r—I+1
w.Ug “Ug

and
ﬁ(w.ufl_z) —l(ys;)) = N — 2,
ﬁ(w.ufl_z) —l(y) =N — 1.
Moreover r — [+ 1 > 0 and
r—Il+1>r—M>M(N—-1)> M(N —2)

and once more the induction hypothesis gives the desired equalities. U
We are now ready to prove Theorem 4.3.1.

PROOF. The intervals Iy = [z.uf, z".uf], I = [z.u" ™%, 2/ u"*] are isomorphic with
respect to the Bruhat order via ¢ (as defined in Proposition 4.3.4).
Let y1,y2 € I (U(y1) < U(y2)), 21,22 € W, N, Ny € N and my, my € [1,n] be such
that
Ny = 0(Z W) —(y)) and gy = zul ™

mi1 Y
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Ny = 0(Z "™ —l(yy) and gy = zul 2.

ma2

We have
r—Ni>r—N>NM+1)—N=MN > MU y2) — l(y1)).
Thus, by Proposition 4.3.5, we obtain

R =R

Y152 gz 2
=R e
=R rr-N Ni—Ny r+k—Nj
21Umq 22Umg Umgy
= Rown).eu)-
Therefore, by Remark 2.4.6, we get the result. U

4.4. Application to G5

The aim of this section is to use the invariance of the Kazhdan-Lusztig polynomials by

translation and the methods presented in Section 4.1.2 to prove the following result.

THEOREM 4.4.1. Let W be an affine Weyl group of type Go. We have

(1) there are only finitely many possible decompositions of W into left cells;
(2) the number of left cells is finite in each case.

The proof of this theorem involves some explicit computations. We have developed
some program in GAP3 which given an interval I, s € S and a monomial order on I,
compute the following data

(1) The Kazhdan-Lusztig polynomials P, ,, for all y,w € I,
(2) M; ,, for all y,w € I such that sy <y < w < sw,
(3) > P, .M, —vP. ., forall 2,2 €,

2;21<2<29;82<z2

so that we can compute the set I'S (I) as described in Proposition 4.1.6.

To prove the theorem we proceed as follows. Using Proposition 4.1.6, Theorem 4.3.1
and our GAP3 program, we will find a collection of non-zero M-polynomials. We will
then find a finite number of infinite sets such that each of these sets is included in a
left cell for any choice of parameters and such that all the elements of W lie in one

of these sets except for a finite number.
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Throughout this section, let W be an affine Weyl group of type Go together with a
positive weight function, with presentation as follows
W = (s1,59,53 | (5152)% = 1, (5953)% =1, (5153)% = 1).
A weight function L on W is uniquely determined by
L(s1) =a and L(sy) = L(s3) =b a,beN*

We shall denote such a weight function by L = L.

4.4.1. Computations. In this section, we study an example in detail to show
how one can prove that a M-polynomial is non zero for a whole class of weight

functions.

Let @, g be independent indeterminates over Z and consider the abelian group
F={Q¢ |i.jez}
Let v be another indeterminate. For all a,b € N* we have a ring homomorphism

Ua7b : Z[F] — Z[U,'U_l]’ qu] N ,Uaz'-{-bj‘
We will need the following lemma.

LEMMA 4.4.2. Lety <w € W, I = [y,w] and s € S be such that

sy<y<w< sw.

(1) Consider the total order given by
Il ={Q'¢ |i>0,j€Z}u{q |i>0}.
Suppose that, for c,d € N*, we have
D) C{¢ | j > 0} U{Q'¢ |i > 0,ci+dj > 0}.

Then condition (%) in Proposition 4.1.6 holds for any o,y such that a/b >
c/d.

Furthermore, if M; , # 0, then for any weight function Lap such that
a/b>c/d, we have M, # 0.

(2) Let ¢ > d € N*. Consider the total order given by

[ ={Q'¢ [ ci+dj >0} U{QY 7 |j > 0}.
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Suppose that we have, for some e > c/d € Qg
Iy €{d |7 >0 u{Q'¢ |i>0,i+j >0}

Q¢ [j>—i>0,—j/i > e} U{Q'¢ | —j >i>0,—j/i <c/d}.

Then condition (x) in Proposition 4.1.6 holds for any o., such that e >
a/b>c/d.

Furthermore, if My, # 0, then for any weight function L, such that e >
a/b>c/d, we have M; , # 0.

PROOF. We prove 1. Let ¢, j € Z be such that Q'¢’ € T'%.(1). We must show that
ai + bj > 0 provided that a/b > ¢/d.
If i =0 then j > 0 and ai + bj = bj > 0.
If+ >0 and ci + dj > 0 then
ai + bj = b(ia/b + j) > blic/d + j) > 0
as required.

We prove 2. Let i, € Z be such that Q'¢’ € ', (I). We must show that ai + bj > 0
provided that e > a/b > ¢/d.

If i =0 then 7 > 0 and ai + bj = bj > 0.

Ifi>0and ¢+ 7 > 0 then

ai +bj > b(c/d)i + bj = bic/d+ j) > b(i + j) > 0.
If j >—i>0and —j/i > e then
ai +bj =bj((a/b)(i/7) + 1) > bj(ei/j+ 1) > 0.
Finally, if —j > ¢ > 0 and —j/i < ¢/d then
ai +bj = ai(l+ (b/a)j/i) > ai(1+ (d/c)(i/7)) >0

as required.
O

Note that, in the situation of the above lemma, we will always have a > b. But similar
results also hold for b > a.

We now study an example in detail. Let u = 51595152535152515953 € W. Let o = sgub

and y = $3595152535152515253u’. We want to show that Mj}y # 0 for all parameters
a,b such that a > b.
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CLAIM 4.4.3. For any parameters a,b such that a/b > 3 we have M;! # 0.

PRrROOF. Consider the total order given by
I, ={Q'¢ |i>0,j€ZyU{q |i>0}.
Using our GAP3 program to compute the set I} (1), we find M3!, # 0 and
() C{¢ |7 >0y u{Q¢ | 3i+j >0}

Therefore, applying Lemma 4.4.2, we see that, for any parameters a,b such that
a/b > 3, we have

M, = 0.5(M;) and M # 0= M #0.

Y

U

In order to deal with weight functions L, such that a/b < 3, we proceed as follows.
Let
E={r€Qs|x==£j/i where j <0, i #0,Q"¢’ € I’.(I)}.
The largest element of £ below 3 is 2. This leads us to consider the total order given
by
Ty ={Q'¢ [2i+j>0}U{@Q¢™]j>0}

CLAIM 4.4.4. For any parameters a, b such that 3 > a/b > 2 we have M, # 0.

ProOF. Consider the total order given by
Ly ={Q'¢ [2i+j >0} U{Qq¢ ™ |j >0}
Computing Iy (I) gives M;!, # 0 and
() C{q |5 >01u{Q¢ [i>0,i+;>0}
ULQU | j > —i > 0,—j/i 23y U{Qi¢ | —j > i >0, —j/i < 2}.
Therefore, for any parameters a, b such that 3 > a/b > 2, we have

M;,ly - Ua,b(Mj:}y) and M‘;{y # 0 — M;l # 0

Y

Again we look at the set
E={r€Qs|x==xj/i where j <0, i #0,Q"¢’ € I’.(I)}.

The largest element of £ below 2 is 3/2.
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CLAIM 4.4.5. For any parameters a, b such that 2 > a/b > 3/2 we have
M, # 0.
ProOF. Consider the total order given by

Iy ={Q'¢ [3i+2j >0} U{Q¥¢ ¥ |j >0}

We find M3!, # 0 and
L) €{d |7 >0 u{Q'¢ |i>0,i+j >0}

Q' [j > —i>0,—j/i >2U{Q'¢ | —j >i>0,—j/i <3/2}.
The result follows using Lemma 4.4.2. U

We look at the set £ (defined as above), we find that the largest element of £ below
3/2is 4/3.

CLAIM 4.4.6. For any parameters a,b such that 3/2 > a/b > 4/3 we have M} # 0.

ProOF. Consider the total order given by
Ly ={Q'¢’ [4i+3j > 01U{Q¥¢" | j > 0}.
We find M3!, # 0 and
Ly e |j>0u{Q¢d |i>0,i+j >0}
Q¢ | j>—i>0,—j/i >3/2yU{Q"¢ | —j >i>0,—j/i <4/3}.
The result follows using Lemma 4.4.2. U
We now continue the procedure.

CLAIM 4.4.7. For any parameters a,b such that 4/3 > a/b > 5/4 we have M3} # 0.

ProOF. Consider the total order given by
Ty ={Q'¢ | 5i+45 >0y u{QY¢™™ | j > 0}.
We find M3!, # 0 and
() C{¢ |5 >0yu{Q¢ [i>0,i+j>0}
HQ' 1j>—i>0,—j/i = 4/3}U{Q'¢’ | —j >i>0,—j/i <5/4}
The result follows using Lemma 4.4.2. U
CLAIM 4.4.8. For any parameters a, b such that 5/4 > a/b > 1 we have

M3 £ 0.

Y
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PRrROOF. Consider the total order given by
Ly ={Q'¢ |i+j>0}U{Qq7|j>0}.
We find M3!, # 0 and
Py €{d |7 >0 u{Q'¢ |i>0,i+j >0}

W{Q'¢ |j > —i>0,—j/i>5/4}
The result follows using Lemma 4.4.2. 0

Finally we compute M3}, for the parameters a,b where a/b € {3,2,3/2,4/3,5/4,1},

and we find that these are non-zero. Thus M is non zero for all parameters such
that a > b.

4.4.2. Proof of Theorem 4.4.1. Using the methods of the previous section, we
find a collection of non-zero M-polynomials and some infinite sets which are included

in a left cell for any parameters.

Let u = $1595152535152518283 € W. One can check that u is a translation. Let

II = {6, S3, S2S53, S1S52S53, S25159S3,
5352515253, 5152515253, 535152515283, S2535152515283,
§152535152815283, 525152535152515253, 53825152838152818253}
Wy = {6’, 51, 8152, §15251, 51525152, 5182815281}
= {w, wy, w3, wy, ws, W §
and y = $3595152535152515253.
For w; € W let oy, € 2 be such that w; Ay = Apo,,. One can check that
Orbo (i) = {toy,, ..., U0 } = {U1, ..., Us}-
For 1 <: <6, let
ry; =s3u w;  and oy, =youloayg

and

r r r r
$27i — 8§3518528515283U . W; and y2,i = Y.5152515283.W;.U; .

Let £ =1,2. We know that for r large enough we have

M

= M;im i for all m > 0.

-
ki Vi ki Yk
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In fact using our GAP3 program one can show that this is true for all » > 6. Doing

as in the previous section, one can show that

and M?}

s T
Ty Y24

M}

x{,i’y{,i
are non-zero for all » > 6 and for all parameters. This implies that the following sets

are included in a left cell:
Ci={zujw; |r>72z€ll}, 1 <i<6.

We show the shape of the sets C; on Figure 2.

Now, let u = 98182518283 € W. One can check that u is a translation. Let
Wy = {e, s, 8251, $25152, S2518251, $251525152} = {w1, Wa, w3, Wy, Ws, W}
For w; € W let oy, € 2 be such that w; Ay = Ago,,. One can check that
Orbq () = {Uoy,, ..., Uow } = {1, ..., Us}-
For 1 <i<6, let
Ty, = seszuw;  and Yy, = yaueaw;

and

xgz = §359518983u” . w;  and ygi = $389518951S283u" T Lw;.

We know that for r large enough we have

M?2: = M;iM n for all n > 0.

A THE
ki Yk, i kyi Yk

In fact using our GAP3 program one can show that this is true for all » > 6. Doing

as in the previous section, one can show that

M?2 and M?2

9”1,1'79{,1' ‘r2,i7y5,i
are non-zero for all » > 6 and for all parameters a, b such that a/b < 2. Therefore,

for these parameters, the following sets are included in a left cell:
Bi={zu"w; |r>72€lIl}, 1 <i<6.

We show the shape of the sets B; on Figure 2.
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Let a,b € N be such that a/b > 2. Arguing as before, we find that, for » > 6, the
polynomials
M M??

515283u"W;,5253525152515253U"W; ) s2s3uTw;,s3u” T lw;
M3t
s818283U"W;,5352515283U" W;

are non-zero. Therefore, for these parameters, the following sets are included in a left

cell:
Bi={zvu"w; |r>7z€ll}, 1<i<6

Let wg = $15251525152. The set
Wr={weW|w=z2wyz2z €W}

is known to contain finitely many left cells; see [9, 46] and Chapter 6. Now one can
check that the set Wy together with the B;’s and the C;’s contain all the elements of

W except for a finite number. The theorem follows.

Computing some more coefficients in the case where a >> b, we find a more precise
decomposition of W which is included in the left cell decomposition. We show this
decomposition on Figure 2. We identify w € W with the alcove wAy. The sets
which are included in a left cell are formed by the alcoves lying in the same connected
component after removing the thick line. In fact, we will prove that this the actual
decomposition of W into left cells; see Chapter 7.
We have

Wy = UA;
The figure also show the shape of the sets B; and C}.
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CHAPTER 5

Generalized induction of Kazhdan-Lusztig cells

In [15], Geck showed that the Kazhdan-Lusztig cells are compatible with parabolic
subgroups. In a more precise sense, any left cell of a parabolic subgroup can be
“induced” to obtain a union of left cells of the whole group. The main observation of
this chapter is that the methods of [15] work in somewhat more general settings, so
that we can “induce” from subsets which may not be parabolic subgroups. This leads

to our “Generalized Induction Theorem”.

In the final section, using this theorem, we show that, under specific technical con-
ditions on the parameters, the cells of a certain finite parabolic subgroup are cells in

the whole group.

In this section W denotes an arbitrary Coxeter group together with generating set
S. Let L be a positive weight function on W and ‘H be the Iwahori-Hecke algebra
associated to W, L.

5.1. Main result

Consider a subset U C W and a collection {X, | u € U} of subsets of W satisfying

the following conditions

I1. for all uw € U, we have e € X,

I12. for all w € U and x € X,, we have z.u,

I3. for all u,v € U such that u # v we have X, uN X,v = 0,

I4. the submodule M = (T,.C,| u € U, x € X,,) 4 of H is a left ideal,
I5. for all u € U, x € X, and u; < u we have

P, . T,T,, is an Ap-linear combination of T7,.

Let w € U and x € X,,. We have

T.C, = Ty, + a A-linear combination of T, with ¢(z) < £(zu).
83
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Since the set {T,,|w € W} is a basis of H, using I3, one can see that B = {7,C,|u €
U,z € X,} is a basis of M.

Let u € U and z € W. Using I1 and I4 and the fact that B is a basis of M, we can
write
T.C\, = Z a,,1,C, for some a,, € A.
uel,ze Xy
Let < be the relation on U defined as follows. Let u,v € U. We write v < u if there
exist x € W and z € X, such that T,C, appears with a non-zero coefficient in the
expression of T,.C', in the basis B. We still denote by < the pre-order induced by this

relation (i.e the transitive closure). Since C,, € M, we have

HC, = Y ATLC,.

v=Uu,z€ Xy

REMARK 5.1.1. If we choose U = W and X,, = {e} for all w € W, the pre-order <
is the left pre-order <, on W.

We are now ready to state the main result of this section.

THEOREM 5.1.2. Let U be a subset of W and {X,|u € U} be a collection of subsets of
W satisfying conditions 11-15. Let U be a subset of U such that the following holds:

vueld =—=vel.

Then, the set
{zwjuel, z € X,}

s a left ideal of W.

The proof of this theorem will be given in the next section. First we discuss some

consequences of this theorem.

COROLLARY 5.1.3. Let C be an equivalence class on U with respect to <. Then the
subset {z.u|u € C,x € Xy} of W is a union of left cells.

PROOF. Let v € C, y € X, and z € W be such that z ~; y.v. Consider the
set U = {u € Ulu < v}. Then U satisfies the requirement of Theorem 5.1.2, thus
M :={zujuel, € X,} is a left ideal of W. Since z <, y.v and y.v € M, there
exist u, € U and x € X, such that z = x.u, and u, <X v.

We also have y.v <; x.u,. Applying the same argument as above to the set {u €
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Ulu = u.} yields that there exists u, € U and w € X,, such that y = w.u, and

uy = u,. By condition I3, we see that u, = v. Thus u, € C and the result follows. [

REMARK 5.1.4. In [15], Geck proved the following theorem, where (W), S) is an arbi-

trary Coxeter system.

THEOREM 5.1.5. Let W' C W be a parabolic subgroup of W and let X' be the set of
all w € W such that w has minimal length in the coset wW'. Let C be a left cell of
W'. Then X'C is a union of left cells of W.

Let U = W’ and for all w € W' let X, = X’. We claim that this theorem is a special
case of Theorem 5.1.2 and Corollary 5.1.3. Indeed, conditions I1-I3 and I5 are clearly
satisfied. Condition I4 is a straightforward consequence of Deodhar’s lemma; see [15,
Lemma 2.2|. Hence, it is sufficient to show that the pre-order < on U = W’ coincides
with the Kazhdan-Lusztig left pre-order defined with respect to W’ (denoted <’ ) and
the corresponding parabolic subalgebra Hy := (T}, | w € W) C ‘H. In other words,

we need to show the following
u<iv <= u=w.

Let u,v € W’ be such that u <} v. We may assume that there exists s € S’ (where
S’ is the generating set of ') such that
T7.C, = Z ayCy where ay, € A and a,, # 0.
weW’
Since C,, € B for all w € W', this is the expression of T;C, in I3, which shows that
u =< 0.
Conversely, let u,v € W’ be such that u < v. We may assume that there exist z € W
and z € X’ such that
T.C, = Z Ay, 20 1yCry  Where ayy .o € A and agy, .0 7 0.
weW'’ ye X'
We can write uniquely z = z;.29 where 2y € W’ and z; € X’. Then, we have
TZCU = Tzl (Tzocv) = Tzl( Z aw,UCw> = Z aw,szl Cw
weW’ w v weW’ w v

and this is the expression of T,C, in the basis B. We assumed that 7,C, appears

with a non-zero coefficient, thus v < v as desired.
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5.2. Proof of Theorem 5.1.2

We keep the setting of the last section and we introduce the following relation. Let
u,v € U, z € X, and y € X,,. We write zu C yv if zu < yv (Bruhat order) and
u = v. We write zu E yv if zu C yv or x = y and u = v.

The main reference is the proof of [15, Theorem 1].

LEMMA 5.2.1. Letv e U, y € X,. We have
Ty_,ll Cv = Z ?xu,vaxCu
uelU, zeXy,

where 1y gy = 1 and 744, = 0 unless zu C yo.

PROOF. Let v € U and y € X,. Recall that
T =T,+) R.,T.
z<y
where IR, € A are the usual R-polynomials as defined in Section 2.3. Thus
T4C, = (T, + Y R.,T.)C,

z<y
=T,Co+ > R.,T.C,.
z<y

Now we also have
T.C, = A-linear combination of T,,C', where u < v and x € X,,.

We still have to show that if T,,C,, appears in this sum then zu < yv.

This comes from the fact that T,C,, expressed in the standard basis, is an A-linear
combination of terms of the form 7, ., where wy < z and w; < v. In particular,
since z < y we have wow; < yv. Then, expressing the right hand side of the equality
in the standard basis, one can see that we must have zu < yv if T, C, appears with
a non-zero coefficient.

Finally, by definition of C, we see that

TAC, =T,Co+ Y TougeTuCl

rulyv
The result follows. O

LEMMA 5.2.2. Letu,v e U, x € X, and y € X,,. Then

E ?xu,zwrzw,yv - 5:(:,y5u,v

'LUEU,ZEX’UJ
zulzwlyv
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PROOF. Since the map h — h is an involution and C, = C,,, we have

T,C, =T, G,

= Z ?zw,vaz Cw

'LUEU,ZEX’UJ

-1
= E rzw,vazfl Cw

welU,ze Xy

= Y g YL TeunwTeCl)

welU,ze Xy uelU,xe X,

- Z ( Z qu,zwrzw,yv)TmCu.

uel,xeX, welU,ze€Xy

Since B is a basis of M, using Lemma 5.2.1 and comparing the coefficients yields the
desired result. U

LEMMA 5.2.3. Let u € U and x € X,,. We have
TxCu S T:cu + @ A<0Tz-

z<xru

PrROOF. We have

TxCu = Tm( Z Pul,uTul)

ur <u
= Tmu + Z Pul,uTmTul
ul<u

and the result follows, using I5. U

PROPOSITION 5.24. Letv e U and y € X,. We have

Cp =T,Cp + Z Py T2Co where p, ., € A<o-

UGU,IEGXu
rulyv

PROOF. By Lemma 5.2.2, there exists a unique family (p},, ,.,)zucyo of polynomials
in A_g such that
Cpo =T, Cot Y PhuyT:Cu

uelU,ze Xy,
zulyv

is stable under the ~ involution; see [12], this contains a general setting to include
the arguments in [38, Theorem 5.2|, [15, Corollary 3.3]. Moreover, using the previous
lemma, we see that C'yv is an A_-linear combination of T, where z < yv. The result
follows. O



88 5. GENERALIZED INDUCTION OF KAZHDAN-LUSZTIG CELLS

Let U C U be as in Theorem 5.1.2. By definition of < one can see that
Mu = <TyCv | UGZ/{, yEXU)A
is a left ideal of H.

COROLLARY 5.2.5.
Myu=(Cyp |vel, ye X,)a.

PROOF. Let v € U and y € X, using the previous proposition, we see that

—%
Cyo =T,C, + E PrugoleClu-
ueU,xe Xy,
Tul_yv

Thus Cy, € My. Now, a straightforward induction on the order relation C yields
T,C, = Cy, + an A-linear combination of Cy,

where u € U, x € X, and zu C yv.
This yields the desired assertion. U

We can now prove Theorem 5.1.2.
Let U be a subset of U such that

{veU|v=<wuforsomeueld} CU.

We know that My = (T.C,, | w € U, 2’ € X,,) 4 is a left ideal of H. We want to
show that the set B := {y.v|v € U, y € X, } is a left ideal of W.

Let ve U, y € X, and z € W be such that z < y.v. We may assume that there
exists s € S such that C, appears with a non-zero coefficient in the expression of
T,Cy, in the Kazhdan-Lusztig basis. By Corollary 5.2.5, we have C,, € M. Since
My is a left ideal we have T,C,,, € My, Thus, using Corollary 5.2.5 once more, we

have
T,Cypy = Z ApuyoCru  Where agy 4 € A
ueld, X,
and this is the expression of T,C,, in the Kazhdan-Lusztig basis. Now, the fact that
C, appears with a non-zero coefficient in that expression implies that z = zu for some

uw €U and x € X,,. Thus z € B, as desired. [.

5.3. On some finite cells

Recall that, for J C S, we denote by X; the minimal left coset representatives with
respect to the subgroup generated by J and by R’ the set {w € W| J C R(w)}.



5.3. ON SOME FINITE CELLS 89

Let W' C W be a standard finite parabolic subgroup with generating set S’ and
longest element wy. Let ¢t € S — 5’ be such that L(t) > L(wy). We keep this setting
in this section.

THEOREM 5.3.1. The set
{fweW|w=yw, yeRY N Xg,w' cW'

15 a left ideal of W.

Once and for all, we fix ¢t € S — 5" such that L(t) > L(wy).
Let U =tW'. Foru e U let

X, = (RY nXg)t.

We want to apply Theorem 5.1.2 to the set U. One can directly check that conditions
I1-I3 hold. In order to check conditions I4—-I5 we need some preliminary lemmas.
We denote by Hy» the Hecke algebra associated to (W', S’) and the weight function

L (more precisely the restriction of L on S’).

LEMMA 5.3.2. Let w' € W'. We have

CtCu}’ - th’ a/nd EC,W/ = th, — U_L(t)Cw/

PrROOF. We know that

Cth’ = th’ + Z Mi,w’CZa

tz<z<w’

T,.Cy = Cry — v LOC, + Z M ,,C..

tz<z<w’

But z < w’ implies that z € W/, thus we cannot have tz < z. The result follows. [

REMARK 5.3.3. Let s € S’. Since L(t) # L(s’), the order of st has to be even or
infinite (otherwise, s’ and ¢ would be conjugate and L(s') = L(t)).

LEMMA 5.3.4. Let s € S" and w € W'. Let m < n be such that m s less than or
equal to the order of s't. We have

m—1

T(s’t)mcw = Z Z aw’,iT(s’t)is’th’ + h’:n

w'eW’ i=0

where a,; € A and hl, € Hy, and

m—1
TusymCow = > D buriTiay Cour + I,

w'eW’ i=0
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where by ; € A and b)), € Hy. Furthermore, hl, = h .

PRrROOF. The first two equalities come from a straightforward induction.
It is clear that hy = hy = C,,. Even though it is not necessary, we do the case m =1

to show how the multiplication process works. We have
T,C, = Z a,Cy for some a, € A.
w'eW’
Thus we obtain (using the previous lemma)

Ts’th’ = Ts’th’ - U_L(t) Z aw,Cw/

w' eWw’

and

irts’Cw’ = Z aw’ctw’ _'U_L(t) Z aw’ow“

w'eWw’ w'eW’

It follows that
W= —vt 3" a, Cu = 1Y,
w' eW’
Now, by induction, one can see that

n,=—vtOT N, € Hyr and Bl = —POTyh!, | € Hypr.

The result follows. O

PROPOSITION 5.3.5. The submodule
M =(T,C, |uel, v€X,)41CH
is a left ideal of 'H.

PROOF. Let z € W, v € U and = € X,. We need to show that 1T.7,C, € M.
Since T,T, is an A-linear combination of 7, (y € W), it is enough to show that
T,C, € Mforallye Wand uecU.

We proceed by induction on ¢(y). If {(y) = 0, then the result is clear.

Assume that ¢(y) > 0. We may assume that y ¢ X,. Let w’ € W’ be such that
u = tw'. Recall that X, = (R N Xg)t.

Suppose that yt < y and let yo = yt. We have

T, Cr = Ty TyCor = v*IT,, Cy € M
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by induction.

Suppose that yt > y. Since yt € R and yt ¢ R N X, there exists s’ € S’ such
that (yt)s’ < yt. Let 2n be the order of ts’. One can see that there exists yo (with
U(yo) < (y)) such that yt = yo(ts")™.

Using Lemma 5.3.2 and the relation Cy = T} + v EOT, we see that

th’ = Ctow’ = T‘th’ + 'U_L(t)cw“
Since s’ € S and w’ € W’ we have

T,C, = Z y,; Cy, for some a,, € A.

w, W/’

Thus we get
T, Crur = TypCoy + v *IT,C,
= Ty Titsryn Cor + v FO T Tigrpyn19Clyy
=Ty (Tesy—Ti D 0, Cosy + 0 "y Y a0, Cl,)

w EW wiEW'
- Z awiTyo-(té")”ﬂthi + U_L(t)Tyo Z Quw; (T(S’t)”flcwi - T(ts')"flcwi)'
By induction we see that

Z azwiTyOT(tsl)nfl thi 6 M

Lemma 5.3.4 implies that
T(s/t)nfl Cw - T(ts/)n—l Cw

is an A-linear combination of terms of the form T\ yymyCyy and Tiysym Cyyy, for some
tw' € J and m <n —2 (it is 0 if n = 1). Thus it follows by induction that

Ty, Z Quw; (T(S’t)”*low - T(tS’)"”CW) e M

as required. 0

PROPOSITION 5.3.6. For allu € U, uy < u and y € X, we have

P, T, isan Acy-linear combination of T,.

PROOF. Let u = tw’ € U, uy < v and y € X,,. One can see that we have either
u; € W' (then uy < w’) or there exists w € W’ such that u; = t.w and w < w'.
Assume that u; € W’. Then tu; > u; and we have (using (|38, Theorem 6.6])

Pul,u = Pul,tw’ = U_L(t)Ptul,tw’ € U_L(t)ASO-
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Furthermore, the degree of the polynomials occurring in the decomposition of 7,7,
in the standard basis is at most L(u;). Thus, since L(t) > L(wy) > L(uy), we get the
result in that case.

Assume that u; = t.w (w € W’). Then, since y € (R} N Xg)t, we see that y.u; and
T,T,, = Ty,,. The result follows. O

We are now ready to prove Theorem 5.3.1. Conditions 14 and I5 follow respectively
from Proposition 5.3.5 and 5.3.6. Applying Theorem 5.1.2 yields that

{zujvelUzeX ={weW|lw=yuw, yeR¥NXg, v ecW?}
is a left ideal of W. We obtain the following corollary.

COROLLARY 5.3.7. Let (W, S) be an arbitrary Coxeter system together with a weight
function L. Let W' C W be a finite standard parabolic subgroup with generating set
S" and longest element wy. If L(t) > L(wy) for allt € S— S’ then the left cells (resp.
two-sided cells) of W' with respect to the restriction of L to W' are left cells (resp.
two-sided cells) of W.

PRrROOF. For all t € S—5" we have L(t) > L(wp). Thus Theorem 5.3.1 yields that
U {weWlw=yw, ye RN Xg,w' e W}=W-W
teS—s’
is a left ideal of W. Furthermore, since it is stable by taking the inverse, it’s a two-
sided ideal. Thus W —W" is a union of cells and so is W’. Let y,w € W' be such that

y <; w in W. Then using Theorem 5.1.5, one gets that y <, w in W’. Similarly, if
y <gp w in W then y <g w in W’. The result follows. OJ

EXAMPLE 5.3.8. Let W be of type G with presentation as follows
W .= <81, S9, 83 | (5182)6 = 1, (5283)3 = 1, (5183)2 = 1>

and let L be a weight function on W. The longest element of the subgroup W’
generated by sg, 83 is wy = 98389 and L(wg) = 3L(sy). Thus if L(s1) > 3L(sy), we
can apply Theorem 5.3.1. We obtain that the following sets (which are the cells of
W’

{e} U{s2, 5352} U{s3, sas3} U {wo} (left cells)

{e} U{sa, s3, 8382, $283} U {wp} (two-sided cells).

are left cells (resp. two-sided cells) of W.



CHAPTER 6

The lowest two-sided cell of an affine Weyl group

Bremke and Xi (|9, 46]) determined the lowest two-sided cell for an irreducible affine
Weyl group with unequal parameters. In [9], it is shown that it consists of at most
|Wo! left cells where W is the associated Weyl group. We prove that this bound is
exact. Previously, this was known in the equal parameter case (|41, 42|) and when
the parameters are coming from a graph automorphism (|9]). Our argument works

uniformly for any choice of parameters.
Consider the set
o ={weW |w=zw\z, w,weW\eT}.

We will show that it is a two-sided cell, that it is the lowest (with respect to <pg)

and we will determine the left cells lying in cq.

In this chapter, (W, S) denotes an irreducible affine Weyl group together with a weight

function L.

6.1. Presentation of the lowest two-sided cell

We begin this section by giving an example.

EXAMPLE 6.1.1. Let W be an affine Weyl group of type C,, with parameters as

follows

a b c

O—_C—=20

S1 So S3
By symmetry of the graph we may assume that a > ¢. In Example 3.3.6, we have
determined the set of special points in the case a > ¢ and a = ¢. In the next two

figures, the gray sets describe the lowest two-sided cell in those two cases.

93
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FIGURE 1. Lowest two-sided cell of C’g in the case a > c.
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FIGURE 2. Lowest two-sided cell of C’g in the case a

REMARK 6.1.2. In fact, using the classification of special points (see 3.3), we see that

if W is not of type C, (n > 2) or 1211, then the lowest two-sided cell is the same for

any choice of parameters.
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We can describe ¢ in terms of strips (see |3, 9]).

THEOREM 6.1.3. Let U be the set which consists of all maximal strips (of any direc-

tion) which contain Ay. We have
co:={weW |wA, ¢ U}.

REMARK 6.1.4. Compare the previous example and Example 3.4.4.

Finally, we have the following description; see [9, Theorem 6.13].

THEOREM 6.1.5. We have
co:={weW|alw)=r}

where v = L(wy) for any special point \.

6.2. The lowest two-sided cell

We recall some notation, definitions and facts from Chapter 3. Let T be the set of

special points and let A € T. We denote by

(1) Wy the stabilizer in W of the set of alcoves containing A in their closure;
(2) wy the longest element of Wj;
(3) Sy the subset of S defined by S, := 5N W,.

Note that we have

swy < wy for any s € S).

Let A € T and z € W be such that w,.z. We set
Ny.={weW|w=zwz 2/ € W}
PROPOSITION 6.2.1. Let A € T and z € W be such that wy.z. Then the set Ny, is

included in a left cell.

PROOF. We only sketch the proof here and refer to [9] for details.

Let y = 2’.wy.z € N, for some 2’ € W. Let x = 2 '.wy.z € N, .. Note that 2! = .

Using Proposition 2.2.2 we know that
(1T, T,) = 1(Ty—T,T,) = 7(T, T, T,-).
Furthermore, one can check that

T(TyflTmi> = fyfl’wal = fyfl,y@ and T(TmiTy71> = fy7m7y.



96 6. THE LOWEST TWO-SIDED CELL OF AN AFFINE WEYL GROUP

It can be shown that v="7(T,T,-1T,) has a non-zero constant term, thus the degree

of fy-1,. and f, ., in v is equal to . We have seen that (see Proposition 2.7.1)

(1) fg/v,y,z = fr,y,z + Zz’,z<z’ szzlfw,%z'
(2) h%y% = hm7yyz + Z"E’<ZE,y’<y le7xpy/7y ;’,y’,z

where @), .» € A-o. Since 7 is a bound for W, all the powers of v which appear in the
“big” sum above are stricly less than 7. It follows that v” appears with a non-zero
coefficient in hy ., and hy,-1,,. Hence y <; x and v <; y. In other words, any

y € N, . is ~p, equivalent to x and NN, ; is included in a left cell. O

Let
My ={z € W | wy.z, swyz & ¢y for all s € S)}.
Following 42|, we choose a set of representatives for the Q-orbits on 7" and denote it
by R. Then
co = U Ny

)\GR, ZEM)\

where the union is disjoint and is over |Wy| elements.

We are now ready to state the main results of this chapter.

THEOREM 6.2.2. Let A € R and z € M. The set N, , is a left ideal of W. In
particular it is a union of left cells.

The proof of this theorem will be given in the next section. We first discuss a number

of consequences of this result.

COROLLARY 6.2.3. Let A € T and z € M. The set Ny, is a left cell.

PROOF. The set N, . is a union of left cells (Theorem 6.2.2) which is included in
a left cell (Proposition 6.2.1). Hence it is a left cell. O

The next step is to prove the following.

PROPOSITION 6.2.4. The set ¢y s included in a two-sided cell.

PROOF. Recall that R = {\1,..., A\, } is a set of representatives for the Q-orbits
on T (see Example 3.3.6). Set

o, ={weW|w=72 w2 2z €W}

One can see that

i=n
Co — U Ch,
i=1



6.2. THE LOWEST TWO-SIDED CELL 97

and for 1 <7 < j <n we have ¢y, Ncy, # 0. Therefore to prove the proposition, it is

enough to show that each of the sets c,, is included in a two-sided cell.

Fix 1 <i <n. Let 2’.wy,.z € ¢,, and y'.wy,.y € ¢,,. Using Proposition 6.2.1, together

with its version for right cells, we obtain
/ /
ZWyxZ ~L Wh-Z YR WY YR YWY

The result follows. O

Finally, combining the previous results of Shi, Xi and Bremke with Theorem 6.2.2,

we obtain the following description of the lowest two-sided cell in complete generality.

THEOREM 6.2.5. Let W be an irreducible affine Weyl group with associated Weyl
group Wy. Let
co={weW|w=7wyz 2z eWeT}

where T is the set of special points. We have:

(1) ¢ is a two-sided cell.

(2) cq is the lowest two-sided cell with respect to the partial order on the two-sided
cell induced by the pre-order <pg.

(3) co contains exactly |Wy| left cells.

(4) The decomposition of co into left cells is as follows

Co — U N)\,z-

AER, zeM)

PROOF. We have seen that c¢q is included in a two-sided cell. Let w € ¢y and
y € W be such that y ~;r w. In particular we have y <, w. We may assume that
y <pwory<gw. Weknow that

co = U Ny .
AER, z€M,

Thus w € N, , for some A € R and z € M,. If y <; w then, using Theorem 6.2.2,
we see that y € N, and thus y € ¢o. If y <p w then using [38, §8.1], we have
y~t <; w™l. But ¢ is stable by taking the inverse, so as before, we see that y~! € ¢
and y € cp. This implies that ¢y is a two-sided cell and that it is the lowest one with

respect to <pp.

By [42], we know that

Co = U N)\,z

AER, zeM)y
is a disjoint union over |Wy| terms. By Corollary 6.2.3, (3) and (4) follow. O
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6.3. Proof of Theorem 6.2.1

Once and for all we fix A € R and 2z € M. We want to apply Theorem 5.1.2. We set
U ={wy.z} = {u} and X, = Xg, (the minimal coset representatives with respect to
W)). Conditions I1-13 are clearly satisfied. We have

LEMMA 6.3.1. The set
M= (T,C, |y € Xu)
is a left ideal of H.
PROOF. Since H is generated by T for s € S, it is enough to check that T,T,C, €

M for x € X,. According to Deodhar’s lemma, there are three cases to consider

(1) sz € X, and {(sx) > {(x). Then T,T,C, = T, C, € M as required.

(2) sz € X, and {(sx) < {(z). Then T,T,C, = T,,C, + (vs — v; )T, C, € M as
required.

(3) t :=x71tsx € S\. Then {(sx) = {(x) + 1 = {(tz). Now, since tv < v, we have

T.C, = v*® 0,
Thus, we see that
TSTLECU = TSLBCU = (EtCU = Tmﬂcv = UL(t)T:BCm

which is in M as required.

Thus condition 14 is satisfied.

We now have a look at condition I5.

LEMMA 6.3.2. Let y € X, and vy < u = wy.z. Then, P, /T, is an A-linear

combination of T, with coefficients in Ag.

PROOF. We can write u; = w.u/, where w € Wy and v'~' € Xg,. First, assume
that w = wy. In that case, we have y.u, and T, T,,, = T},,. Since P, , € A< the

result follows.

Next, assume that w < wy. Let w,, € W be such that w,, . w = wy. We know that
the Kazhdan-Lusztig polynomials satisfy the following relation

P, = U_L(S)Psm, where ¢ < sx and sw < w .



6.3. PROOF OF THEOREM 6.2.1 99
Therefore, one can see that

(1) Pu1,u S U_L(wul).A<o if wyu' < Uu,
(2) Puypu = v o) if wya! = u.

Thus, to prove the lemma, it is sufficient to show that the polynomials occuring in
T,T,, are of degree less than or equal to L(w,,) in the first case and L(w,,) — 1 in

the second case.

Using Theorem 3.5.1, we know that the degree of these polynomials is less than or

equal to ¢,,, (for the definition of ¢, ,,, see Section 3.5).

Let wy, = Sp...Spm41 and w = s,,...51 be reduced expressions, and let H; be the unique
hyperplane which separates s;_1...s1u' Ay and s;...s1u’Ay. Note that cy, = L(s;). Let
A" be the unique special point contained in the closure of ©’Ay and wyu’Ay. One can

see that yu; Ag lies in the quarter C with vertex A which contains uq Ag.

Let 1 <i < m. Let o; and k € Z be such that H; = H,, ;. Assume that £ > 0 (the
case k < 0 is similar). We have u; Ay € VI}:_ . Now, since )\ lies in the closure of u; Ay

and \' € H;, one can see that
k< (z,d;) <k+1forall z € uA,.
Moreover, yui Ay € C implies that
k < (x,q;) for all x € yu; A.

From there, we conclude that, if [ < k then H,,; ¢ H(u; Ao, yuiAp) and that none of
the hyperplanes H,,; with [ > k lie in H(Ag,u,Ap). Thus H; ¢ I, ,, and we have

Lyuy C{Hpmi1, s Hp b,
which implies
Cyur < Z Cyan (H3).
i=m-+1

Now, if W is not of type C, or A; then any two parallel hyperplanes have same weight

and we have

_ 0 if i & 1w,
Gy () = h
L(s;) otherwise.

Thus -
Cyun < Z L(SZ) = L(wul>7

i=m+1
as required in the first case.
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Assume that W is of type C, or A;. Then, one can see that, since X is a special

point, we have for all 1 <4 <n, cy, = c; = L(s;). Thus we can argue as above.

Assume that we are in case 2. We have u; = w.au' < wyu' = v and u = wy.z (where

z € M,). Recall that
My ={z €W |wy.z, swyz & ¢ for all s € S)}

thus u; = w.u' ¢ c¢o. The elements of ¢ are characterized by the fact that they
don’t lie in any strip of maximal weight which contains the identity. Thus, since
uy & co, ugAg lies in a strip of maximal weight which contains Ag. Let 1 < i < m. By
definition, H; separates Ay and u; Ay and since X' is a special point, ¢y, = cg;- Thus,
the maximal strip which contains Ay and u; Ay has to be a strip of direction Hj, with
k> m.

If W is not of type C, or Ay, then our strips and the strip as defined in [9] are the
same. Therefore, since Ay and w; Ay lie in the same strip of direction Hj, we have

Hy ¢ 1,,, and

i=n
Cyuy < Z Cyuy (H:) Z L(s;) < L(w,,),

i=m+1 i=m+1

itk itk
as required.
Assume that W is of type C, or A;. First, if all the hyperplanes with direction Hy
have same weight then we have Hy ¢ I,,, and we can conclude as before. Assume
not, then we must have cy, = cg- (since \' € Hj) and there is no hyperplane with

direction Hj, and maximal weight which separates Ay and u; Ay. Therefore

i=n
Cy,ur < Z C%“l Z Z C%“l +CH < Z L wu1)

i=m+1 i=m+1 i=m+1
i#£k

as required. O

We have checked that conditions I1-I5 are satisfied. Thus Theorem 6.2.2 is a conse-

quence of the generalized induction theorem.



CHAPTER 7

Decomposition of G,

Let W be an affine Weyl group of type Go with diagram and weight function given
by

S1 S2 53

where a, b are positive integers.

The main aim of this chapter is to find the decomposition of W into left cells and
two-sided cells for any weight function L such that a/b > 4. Furthermore we will
determine the partial left (resp. two-sided) order on the left (resp. two-sided) cells (see
Section 7.2.4). In the final section, we introduce a conjecture of Bonnafé concerning
the behaviour of Kazhdan-Lusztig cells when the parameters are varying. We then
discuss the decomposition of Gy for other values of the parameters and show that it

agrees with the conjecture.

In Figure 1, we present a partition of W using the geometric realization as defined in
Chapter 3, where the pieces are formed by the alcoves lying in the same connected
component after removing the thick lines. Using the same methods as in Chapter 4,
Section 4.4, one can show that each of these pieces are included in a left cell for any
weight function L such that a/b > 4. Thus in order to show that this is the actual
decomposition of W into left cells, it is enough to show that each of these pieces are

included in a union of left cells.

REMARK 7.0.3. Note that we have changed the notation of the sets A;, B; and C;
(see Chapter 4). The notation here are more convenient to describe the partial left

order on the left cells.

We now consider the union of all subsets of W whose name contains a fixed capital

letter; we denote this union by that capital letter. For instance
6 6
A= A; Ab).
(V) U (04
The decomposition of W into two-sided cells is as follows

W=AUBUCUDUEUF U/ e}
101
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REMARK 7.0.4. In this section we need to compute some Kazhdan-Lusztig polyno-
mials P,, (z,y € W) for a whole class of weight functions. This is done using

Proposition 4.1.6. In particular, this involved some computation with GAP ([39]).

For any subset J C {1,2,3}, let

(1) R7:={w e W | {s;lj € J} S R(w)};
(2) W; be the subgroup of W generated by {s;;j € J};
(3) Xj:={w € W| w has minimal length in wW;}.

For details of the computations, see [20].

FIGURE 1. Decomposition of Gy into left cells in the case a > 4b
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7.1. Preliminaries

In this section (W,S) denotes an arbitrary Coxeter system and L a positive weight

function on W. We give a number of lemmas which will be needed later on.
LEMMA 7.1.1. Let S’ C S be such that

(1) for all s, s5 € S’, we have L(s}) = L(s}),
(2) forallt € S—S" and s' € S we have L(t) > L(s').

Let y,w € W and s’ € S’ be such that s'y <y < w < s'w. Then if M;lw £ 0, we have
either L(w) C L(y) or there exists s € S’ such that w = sy, in which case Mys/w =1.

PROOF. We proceed by induction on ¢(w)—¢(y). Assume first that {(w)—£((y) = 1.
Since s’y < y and s'w > w one can see that there exist s € S such that s # s' and

w = sy. In that case we have (see |28, Proposition 5|)

, 0, if L(s) > L(s'),
M, =
1, if L(s) = L(s).

Thus if Mj/w # 0 we must have s € §'.
Assume that £(w) —£(y) > 1 and that £L(w) € L(y). Let s € S be such that s € L(w)
and s ¢ L(y). We have
M;w + Z Pyszzs,,w — Ve lyw € A<0-

zy<z<w,s'z<z
Thus in order to show that Mys/w = 0 it is enough to show that

> PM, —vyP. € A

zy<z<w,s'z<z

Let z € W be such that Mj’w # 0. By induction we have either M = 1 or

zZ,Ww

L(w) C L(2). In the first case we have PWMj:w € A.o. Assume that we are in the

second case (then s € L£(z)). By (|38, proof of Theorem 6.6]) we know that
P,.=v'P,,. € A

Furthermore the degree in v of M¢, is at most L(s') —1 ([38, Proposition 6.4]). Since
s' € S we have L(s) > L(s’) and

Py,zMj,w € A<0-

Similarly vy P, ., € Ao (since £(w) — £(y) > 1). Thus if £L(w) € L(y) we must have

! .
M, = 0, as required.
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O

LEMMA 7.1.2. Let B C W be a left ideal of W. Let s € S and B, (resp. Bs) be the
subset of B which consists of all w € B such that ws > w (resp. ws < w). Assume
that there exists a left ideal A of W such that, for all w' € B, we have
CuCs = Curs + Y AC..
zeA
Then AU B, UB.s is a left ideal of W. Furthermore, B'.s is a union of left cells.

PROOF. Let w € AU B, UB..s. Let y € W be such that y <, w. We need to
show that y € AU B, U B.s.
If w e A then y € A, since A is a left ideal.
If w € B, then y € B. Note that since

y < w= R(w) € R(y)

we have s € R(y) and y € B,. This shows that B, is a left ideal.
Finally, assume that w € B’.s and let w' € B’ be such that w's = w. We may
assume that there exists ¢t € S such that C, appears with a non-zero coefficient in the

expression of C;C,, in the Kazhdan-Lusztig basis. We have
Ctow = Cth’s
= Cy(CwCy + Y AC)

zeA

= () _AC.)C,+> " AC.

z€B zeA

= ) AC.+ ) AC.+ ) AC..

2€Bs 2€B5 zeA

Thus we see that y € AU B, U B..s as desired. Now, since 2 and B, are unions of

left cells, we obtain that B’s is a union of left cells. O

LEMMA 7.1.3. Let T be a union of left cells which is stable by taking the inverse. Let
T=UT,; (1<i<N)be the decomposition of T into left cells. Assume that for all
i,7 €{1,..., N} we have

70T, A0 (+)

Then T is included in a two-sided cell.

PROOF. Let y,w € T"and i,j € {1,..., N} be such that y € T; and w € T}. Using
(%), there exist yy,y, € T} such that y;* € T; and y, ' € T;. We have

-1 -1
Y~LYyr~LYa2 = Y~LY, ~RYy; ~LW
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as required. O

7.2. Decomposition of G, in the “asymptotic case”

Let W be an affine Weyl group of type Go. Let L be a weight function on W such
that a/b > 4. We keep the notation of Figure 1 (i.e. B;, C;...).

7.2.1. The sets C;. In this section we want to prove that C; is a left cell (for all
1 <1 <6) and that C' = UC; is a two-sided cell.

For 1 <i: <6, let

(1) u; € C; be the element of minimal length in C;;
(2) v; € A; be the element of minimal length in A;;
(3) v € Al be the element of minimal length in A’.

For instance, we have
Uy = 5152515251,
V1 = §152515251852;
Ui — 5951525152535152515251.
We set U := {u;,v;, v, | 1 <i <6}, X, = Xy =Xy forall 1 <i<6and
Xui = {Z eWw ‘ Z.U; € CZ}

We want to apply Corollary 5.1.3. One can check that conditions I1-13 of Theorem
5.1.2 hold. We now have a look at condition I4.

LEMMA 7.2.1. The set
M =(T,C, |uelUuzeX,)

is a left ideal of 'H.

PrROOF. We know that, for all 1 <i < 6, the sets

<Tm Cvi

x € X172> and <Tva£ | T € X1’2>

are left ideals of H; see Lemma 6.3.1. Thus, in order to show that M is a left ideal
of 'H, it is enough to prove that 7,C,, € M for all 1 < i < 6 and all z € W. We
proceed by induction on ¢(z). If ¢(x) = 0 it’s clear. Assume that ¢(xz) > 0. We
may assume that x ¢ X,,. Then, one can see that we have either z = xy.s5 or

T = X1.5251525152583. Now, doing explicit computations, one can show that 7,C,, is
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an A-linear combination of C, with u € U. For example, we have
TyyCoy = Cpy —v 20,
and
T,,Cy, = C,, —v 20, 4 C,,.
Thus, by induction, 7,C,, = 1,,7,C,, € M as required.

Similarly, one can show that T%,s,s,s;s0s5Cu; 1S an A-linear combination of terms of
the form T,C, where u € U, z € X, and {(z) < £($25152515253). For example we have
T32$132513233Cu1 = Cvi + AT3152315233Cu1 + AT32513233Cu1 + AT313233Cu1

+ AT,.,Cy, + AT, C, + AC,, + AC,,.

Thus by induction, we obtain 7,C,, € M as required. O

We now have a look at condition I5. Let u € U, ' < u and y € X,,. We need to
show that

Py .1, Ty is an A_p-linear combination of 77,.
For u = v; or u = v}, it is proved in Lemma 6.3.2. In order to prove it for u = u; we
proceed as follows. We determine an upper bound for the degree of the polynomials
occurring in the expression of 7,1, (where y € C;, v’ < w;) in the standard basis using
either Theorem 3.5.1 or explicit computations. Then we compute the polynomials

P, and we can check that the condition is satisfied.
We can now apply Corollary 5.1.3. We need to find the equivalence classes on U with
respect to <. Using the fact that (T,C,, | * € X') and (T.Cy | z € X') are left
ideals of H for all 1 < ¢ < 6 and the relations computed in the previous proof, one
can check that

{{uiH{vi}, {vi} [ 1 <i<6}
is the decomposition of U into equivalence classes. Hence by Corollary 5.1.3, the set
Xy, .u; = C; is a union of left cells for all 1 <14 < 6. Since C is included in a left cell,
we obtain that C; is a left cell, for all 1 <17 < 6.
More precisely, the following sets are left ideals of W

CiUA;UA, fori=1,2,3,6
CyUA U AU A,,
Cs U As UALU A

PROPOSITION 7.2.2. The set C is a two-sided cell.
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PROOF. Applying Theorem 5.1.2 to the set U yields that AU C' is a left ideal of
W. One can check that AU C' is stable by taking the inverse, thus it is a two-sided
ideal and A U C' is a union of two-sided cells. Since A is a two-sided cell, we see
that C is a union of two-sided cells. Now one can check that C = UC; satisfies the
requirement of Lemma 7.1.3 thus C' is included in a two-sided cell. It follows that C'

is a two-sided cell. O

7.2.2. The sets B;. We want to prove that B; (for all 1 < i < 6) is a left cell
and that the set B is a two-sided cell.

CrLAIM 7.2.3. The set By is a left cell.

PROOF. The set R?? is a left ideal of W (see Example 2.5.6). Furthermore, we

have
R2’3 = {828382} U B4 U A4 U A5.
Since Az, Ag and {sgs3so} are left cells (for {sgs3s0} see Example 5.3.8), it follows

that By is a left cell. O

REMARK 7.2.4. We have seen in Example 5.3.8 that W — Wy 3 is a left ideal of WW.
Thus
R2’3 N (W — W2,3) = B, U A4 U A5

is a left ideal of W.

CLAIM 7.2.5. By is a left cell.

PROOF. The set R'3 is a left ideal of W. Since we have
Rl’?’:BQUA;),UAgUAQUCg

it follows that Bs is a left cell. O

CLAIM 7.2.6. Bs is a left cell.

PROOF. Let w € RY and w’ € W be such that w = w'.s;s3. We have wsy > w
and

CuwCs, = Cys, + Z Ui?z’;cz-

zeEW,z80<2
Applying Lemma 7.1.1 (in its right version), if M2 # 0 we have either {sy, 59, 53} C
R(z) which is impossible or there exists w” € W such that

w=w".5553 and z=w"ss.
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Since w = w”.s983 = w's;83 we must have w € As, which, in turn, implies that z € A,
(recall that A; is a left ideal). Thus applying Lemma 7.1.2 to 24 = A; and B = R"3
yields that

R'Y¥.saUA; = A UA;UALU AgUCs U By

is a left ideal of W. In particular Bs is a left cell. O

CrAaiMm 7.2.7. The set Bj is a left cell.

PROOF. Set u = 51535951 and
Xy, ={z€ W | z.51835251 € B1}.
Recall that
Uy = 8152515251,
U1 = 515251525159,
Ui = 5152515251525352515251,
Uz = 5152515251535251,
Vg = 525152515251535251,
’Ué — 5985152515253515251592515352S51
Vg = 52515251525153,
and
Xy, ={z€eW | zu; € Cy},
Xy =Xy = X2

for 1 <7 < 6. Using similar arguments as in Lemma 7.2.1 and the results in Section
7.2.1, one can check that we can apply Theorem 5.1.2 to U := {u, uy, v1, v}, ug, ve, vh, v3}.
We obtain that

{x.ui | u; € J,SL’ EXHZ} :AQUAIQUCQUBlLJAlUA,lUClUAg
is a left ideal. In particular, Bj is a left cell. O
CLAIM 7.2.8. The set Bg is a left cell.

PROOF. Applying Lemma 7.1.2 (in a similar way as in Claim 7.2.6) to
B=AUA,UC,UBUA UAUC, U A3
and A = A; we obtain that

AJUATUCI U AgU AgU C U A5 U Bg
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is a left ideal. Thus Bg is a left cell. In fact since R' is a left ideal and (C;UA})NR! =
(), we see that
AU AgU A5 UCs U A5 U Bg

is a left ideal of W. O

CLAIM 7.2.9. The set Bs is a left cell.

PROOF. One could use Lemma 7.1.2 to show that Bs is a left cell. However, later
on we will need a more precise result in order to determine the left order on the left
cells. To this end, we need to go through the proof of Theorem 5.1.2.

We use the notation of the previous section (u;, X,, etc...). Let v = s15359515283 and
X, ={z€W|zwv € B3} Y, :={y € Xyu|ly = yo-525152}.

We want to apply Theorem 5.1.2 to the set U = {v,uy, vy, v}, v3, 09,05} and the
corresponding X,. Arguing as before, one can show that conditions 11-14 hold.
However, condition I5 does not hold if (and only if) v; = s159815253 < v and y € Y,,.

Indeed, in this case we have P, , = v 13) and

— L(s2) _ ,,—L(s2)
Ty0T525132TU1 - Tyo (Tslszslszslss + (U v )T81828182818283)'

Note that 1g.515251525153 and 1/g.51525152515283. However, we can certainly construct
the elements C, , such that

é’m,u :a forallu € U and = € X,,.

Now one can check that

(1) Cow=Cpyforalluel — {v} and = € X,,.

2) Cpo = C,oify € X, — Y,

Let y € Y,. We have

Cyv = TZ/CU_I_ Z p;u,vaxCu

uelU,ze Xy,
rulyv

= Tycv + Zp;v,vaxCU + Z p;u,val‘Cu

<y uelU,ze Xy,

uFv

= T,0y+ > 04 0 T2Co mod Hg

<y
= T,C, mod Hg
= T,T,+T,(Py,,T,) mod Hg

= TyTU + TyoT81823132818283 mod H<0
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Thus since C’;U is stable under the involution ~, it follows that
Cyo = Cyo + Cyg 515815918255
Furthermore, since 1g.51525152515283 € A3z, we obtain that
My ={(T,C,lueUxe X,) = (CruJueUzeX,)
is a left ideal of H. It follows that
B3 UC,UA UA, U A3 U Ay U As
is a left ideal of W. U

PROPOSITION 7.2.10. The set B = UB; is a two-sided cell.

PROOF. By the previous proofs, we see that AUCUB is a left ideal of W. Arguing
as in the proof of Proposition 7.2.2, we obtain that B is a two-sided cell. U

7.2.3. Finite cells. We know that E;, Fy and F' are left cells and that E; U Es
and I are two-sided cells (see Example 5.3.8). Thus
W—AUBUOUF:DlLJDQUDgU{e}

is a union of left and two-sided cells. The set {e} is clearly a left cell and a two-sided
cell. Now if w € D; then R(w) = {s;}, thus each of the D;’s is a left cell. Now one
can easily see that

Dy U Dy U Dy

is a two-sided cell.
7.2.4. Left and two-sided order.

THEOREM 7.2.11. The partial order induced by < on the left cells can be described
by the following Hasse diagram
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PROOF. Most of the relations can be deduced using the fact that for s € S and
w € W, if sw > w then sw <, w. For instance, for all 1 <17 < 6 we have A; <, C;
and A, <, C;.
Some of the relations require some explicit computations, we refer to [20] for details.
The fact that there is no other links comes from the last two sections, where we have
determined many left ideals of W.

O

THEOREM 7.2.12. LetT'= D or T = F. The partial order induced by <pr on the

two-sided cell is as follows
A<C<B<T<E<{e}

and D and F are not comparable.

PROOF. This is easily checked. O
Using the explicit decomposition of G in our case, we can check some of Lusztig
conjectures (|38, Chapl4]). For instance

P14. For any z € W, we have z ~pp 27}
is certainly true. The following statement can be deduced from P4 and P9
r<py and x~pry = T~pY.

In our case, it follows from the partial left order on the left cells. Indeed, there is no

relation between two left cells lying in the same two-sided cell.

7.3. Other parameters

In the next two sections we work in the following setting. Let (W)S) be a Coxeter

group. Let I, J be two non-empty subsets of S such that

e S =T1UJ (disjoint union);

e if s€ ] and t € J then s and t are not conjugate.

7.3.1. Parameters equal to 0. Let L be a weight function on W such that
L(s) =0for all s € I. Set

J = {wtw™fw € Wy, t € J}.
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Let W be the subgroup of W generated by J. Then it can be shown that (WW,.J) is

a Coxeter group (see [6, Theorem 1| and the references there) and
W=W;xW.

Let i € J. We denote by v(f) the unique element of .J which is conjugate to . Then
the function L : J — N defined by L(f) = L(v(f)) is a weight function on W; see
[6]. Let H,; be the Hecke algebra associated to the Coxeter group W and the weight
function L. The group W; acts on W and stabilize J, thus it acts naturally on Hy

and we can form the semi direct product
W] X HW

It turns out (see |5, Corollary 5.14]) that the left cells of W with respect to the weight
function L are of the form W;.C' where C is a left cell of W with respect to L. In
particular W7 is a left cell of WW.

EXAMPLE 7.3.1. Let W be an affine Weyl group of type G with diagram and weight

function given by

a b b
===—->0
S1 S2 53

where a,b € N. Assume that b = 0 and a > 0. Then we have
W = Wg,g X W

where W is of type /12 and is generated by J= {51, $2512, S352515253}. Since we know
the decomposition of Ay into left cells (see [30]) one can easily find the decomposition

of W into left cells in that case (see Figure 2).

Assume that a = 0 and b > 0. Then we have
W=W xW

where W is of type /12 and is generated by J = {89, $3, 518251 }. As before, one can

easily find the decomposition of W into left cells in that case (see Figure 10).

7.3.2. Semicontinuity. Recently, Bonnafé has conjectured that the Kazhdan-
Lusztig cells should satisfy some “semicontinuity” properties (see [5]) when the pa-
rameters are varying. We describe briefly this conjecture in the two parameter case

and we refer to [5] for a more general setting.
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Let L, (a,b € N) be the weight function which takes the value a on I and b on J.
Let 7 = a/b (weset r = 0ifa =0and b > 0 and r = co if a > 0 and b = 0).
The decomposition of W into cells only depends on r. We denote by L,(W) the

decomposition into left cells associated to r.
Bonnafé has conjectured the following.

CONJECTURE 7.3.2. There exists an integer m and some rational numbers 0 < r; <
e < T (we set g =0 and 11 = 00) which depends on W such that for all 0,0 € Q

we have

(1) if r; < 0,0 <riyq for some 0 <i < m, then Lo(W) = Lo(W');

(2) ifrice <0 <1 <O <rigq for somel < i < m, then the left cells of L,.,(W)
are the smallest subsets of W which are at the same time unions of left cells
of Lo(W) and unions of left cells of Lo/(W).

(3) if 0 < 0 <1y then the left cells of Lo(W) are the smallest subsets of W which
are at the same time unions of left cells of Lo(W) and stable by multiplication
on the left by W7.

(4) if rm < 0 then the left cells of Loo(W) are the smallest subsets of W which
are at the same time unions of left cells of Lo(W') and stable by multiplication
on the left by W .

In the finite case, the existence of the rational numbers 0 < r; < ... < r,, is clear. In

the case, G, it is proved in Chapter 4.

REMARK 7.3.3. We have seen that Wy is a left cell of £Lo(W). Thus the conjecture
implies that, for § small enough, W; should be a union of left cells of L4(1¥). In the

case where W7 is finite, it has been proved in Corollary 5.3.7.

REMARK 7.3.4. One can easily state similar conjectures for right and two-sided cells.

7.3.3. Semicontinuity in G,. Let W be an affine Weyl group of type G, with
diagram and weight function as defined in Example 7.3.1. We denote by r the ratio
a/b (weset r =0if a=0and b >0 and r = oo if a > 0 and b = 0). The following
figures present some conjectural decompositions of W into left cells for different values
of r. In each case, using our GAP3 program, we can show that the decomposition is
included in the left cell decomposition. One can check that these computations agree

with the “semicontinuity conjecture”.

REMARK 7.3.5. The decomposition in the case r = oo and r = 0 are the actual left
cell decomposition (see Example 7.3.1). The decomposition in the equal parameter

case (r = 1) has been proved by Lusztig in [30].
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