On positivity properties in Hecke algebras of arbitrary Coxeter groups

Thomas Gobet

University of Sydney

Journées du GDR TLAG, St-Etienne, 17-18th April 2018.
On positivity properties in Hecke algebras of arbitrary Coxeter groups

Thomas Gobet

Coxeter groups and Artin-Tits groups

Hecke algebras

Positivity properties and Soergel bimodules

Main results
Let \((W, S)\) be a Coxeter system, i.e., \(W\) is a group generated by \(S = \{s_1, \ldots, s_n\}\) with presentation...
Let \((W, S)\) be a **Coxeter system**, i.e., \(W\) is a group generated by \(S = \{s_1, \ldots, s_n\}\) with presentation

\[
W = \langle s_1, \ldots, s_n \mid s_i^2 = e, \quad s_is_j \cdots = s_js_i \cdots \text{ if } i \neq j \rangle,
\]

where \(m_{ij} = m_{ji} \in \{2, 3, \ldots\} \cup \{\infty\}\).
On positivity properties in Hecke algebras of arbitrary Coxeter groups

Thomas Gobet

Coxeter groups and Artin-Tits groups

Hecke algebras

Positivity properties and Soergel bimodules

Main results

Coxeter groups and their Artin-Tits groups

Let (W, S) be a Coxeter system, i.e., W is a group generated by $S = \{s_1, \ldots, s_n\}$ with presentation

$$W = \langle s_1, \ldots, s_n \mid s_i^2 = e, \, s_i s_j \cdots = s_j s_i \cdots \text{ if } i \neq j \rangle,$$

where $m_{ij} = m_{ji} \in \{2, 3, \ldots\} \cup \{\infty\}$.

Denote by $\ell : W \to \mathbb{Z}_{\geq 0}$ the length function, by $T = \bigcup_{w \in W} ws w^{-1}$ the set of reflections of W and by \leq the (strong) Bruhat order.
Coxeter groups and their Artin-Tits groups

Let \((W, S)\) be a **Coxeter system**, i.e., \(W\) is a group generated by \(S = \{s_1, \ldots, s_n\}\) with presentation

\[
W = \langle s_1, \ldots, s_n \mid s_i^2 = e, \quad s_is_j \cdots = s_js_i \cdots \quad \text{if } i \neq j \rangle,
\]

where \(m_{ij} = m_{ji} \in \{2, 3, \ldots\} \cup \{\infty\}\).

Denote by \(\ell : W \to \mathbb{Z}_{\geq 0}\) the length function, by \(T = \bigcup_{w \in W} wSw^{-1}\) the set of reflections of \(W\) and by \(\leq\) the (strong) Bruhat order.

Let \(B(W) = B(W, S)\) be the **Artin-Tits group** attached to \((W, S)\), that is, \(B(W)\) is generated by a copy \(\{s_1, \ldots, s_n\}\) of the elements of \(S\) and has a presentation
Let \((W, S)\) be a Coxeter system, i.e., \(W\) is a group generated by \(S = \{s_1, \ldots, s_n\}\) with presentation

\[
W = \langle s_1, \ldots, s_n \mid s_i^2 = e, \quad s_i s_j \cdots = s_j s_i \cdots \text{ if } i \neq j \rangle,
\]

where \(m_{ij} = m_{ji} \in \{2, 3, \ldots\} \cup \{\infty\}\).

Denote by \(\ell : W \to \mathbb{Z}_{\geq 0}\) the length function, by \(T = \bigcup_{w \in W} wS w^{-1}\) the set of reflections of \(W\) and by \(\leq\) the (strong) Bruhat order.

Let \(B(W) = B(W, S)\) be the Artin-Tits group attached to \((W, S)\), that is, \(B(W)\) is generated by a copy \(\{s_1, \ldots, s_n\}\) of the elements of \(S\) and has a presentation

\[
B(W) = \langle s_1, \ldots, s_n \mid s_i s_j \cdots = s_j s_i \cdots \rangle,
\]

where \(m_{ij} \text{ factors} \quad m_{ij} \text{ factors}\).
Coxeter groups and their Artin-Tits groups

Example
Example

- The symmetric group $W = \mathfrak{S}_n$, is a Coxeter group with
 $S = \{s_i = (i, i + 1) \mid i = 1, \ldots, n - 1\}$, $m_{ij} = 3$ if
 $|i - j| = 1$, $m_{ij} = 2$ if $|i - j| > 1$.
 $T = \{\text{transpositions}\}$.
Coxeter groups and their Artin-Tits groups

Example

► The symmetric group \(W = \mathfrak{S}_n \), is a Coxeter group with
\[S = \{ s_i = (i, i + 1) \mid i = 1, \ldots, n - 1 \}, \quad m_{ij} = 3 \text{ if } |i - j| = 1, \quad m_{ij} = 2 \text{ if } |i - j| > 1. \]
\[T = \{\text{transpositions}\}. \]

► The corresponding group \(B(W) \) is the Artin braid
\[B_n \]
group on \(n \) strands.
Coxeter groups and their Artin-Tits groups

Example

- The symmetric group \(W = S_n \), is a Coxeter group with \(S = \{ s_i = (i, i + 1) \mid i = 1, \ldots, n - 1 \} \), \(m_{ij} = 3 \) if \(|i - j| = 1 \), \(m_{ij} = 2 \) if \(|i - j| > 1 \).
 \(T = \{ \text{transpositions} \} \).

- The corresponding group \(B(W) \) is the Artin braid group \(B_n \) on \(n \) strands.
Coxeter groups and their Artin-Tits groups

Example

- The symmetric group $W = \mathfrak{S}_n$, is a Coxeter group with $S = \{s_i = (i, i + 1) \mid i = 1, \ldots, n - 1\}$, $m_{ij} = 3$ if $|i - j| = 1$, $m_{ij} = 2$ if $|i - j| > 1$. $T = \{\text{transpositions}\}$.

- The corresponding group $B(W)$ is the Artin braid group B_n on n strands.

Given $w = s_1s_2 \cdots s_k$ with $\ell(w) = k$, the lift $s_1s_2 \cdots s_k$ in $B(W)$ is well-defined and denoted by w.
Hecke algebra of a Coxeter system
Let $A = \mathbb{Z}[v, v^{-1}]$. Let $\mathcal{H}(W) = \mathcal{H}(W, S)$ be the Hecke algebra attached to (W, S), that is, the associative unital A-algebra with a presentation

\[
\left\langle T_{s_1}, \ldots, T_{s_n}, s_i \in S \right\rangle \quad \begin{array}{l}
T_{s_i} T_{s_j} \cdots = T_{s_j} T_{s_i} \cdots \\
\quad \quad \quad \quad \quad m_{ij} \quad \quad \quad \quad m_{ij} \\
T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}
\end{array}
\]
Let $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$. Let $\mathcal{H}(W) = \mathcal{H}(W, S)$ be the Hecke algebra attached to (W, S), that is, the associative unital \mathcal{A}-algebra with a presentation

\[
\left\langle T_{s_1}, \ldots, T_{s_n}, s_i \in S \right| \begin{array}{c}
T_{s_i} T_{s_j} \cdots = T_{s_j} T_{s_i} \cdots \\
m_{ij} \quad m_{ij}
\end{array}
\right. \\
T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}
\]

Since the T_{s_i} satisfy the braid relations, there is a group homomorphism $a : B(W) \to \mathcal{H}(W)^\times$, $a(s_i) = T_{s_i}$.

On positivity properties in Hecke algebras of arbitrary Coxeter groups

Thomas Gobet

Coxeter groups and Artin groups

Hecke algebras

Positivity properties and Soergel bimodules

Main results
Let $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$. Let $\mathcal{H}(W) = \mathcal{H}(W, S)$ be the Hecke algebra attached to (W, S), that is, the associative unital \mathcal{A}-algebra with a presentation

$$\langle T_{s_1}, \ldots, T_{s_n}, s_i \in S \rangle \left| \begin{align*}
T_{s_i}T_{s_j} \cdots &= T_{s_j}T_{s_i} \cdots \\
&\text{ for all } i, j = 1, \ldots, n, m_{ij} \\
T_{s_i}^2 &= (v^{-2} - 1)T_{s_i} + v^{-2}
\end{align*} \right.$$

Since the T_{s_i} satisfy the braid relations, there is a group homomorphism $a : B(W) \to \mathcal{H}(W)^\times$, $a(s_i) = T_{s_i}$.

For $w \in W$, let $T_w := a(w)$. The set $\{T_w\}_{w \in W}$ is a basis of $\mathcal{H}(W)$ as an \mathcal{A}-module, called standard.
Let \(A = \mathbb{Z}[v, v^{-1}] \). Let \(\mathcal{H}(W) = \mathcal{H}(W, S) \) be the Hecke algebra attached to \((W, S)\), that is, the associative unital \(A \)-algebra with a presentation

\[
\left\langle T_{s_1}, \ldots, T_{s_n}, s_i \in S \right\vert \begin{array}{c}
T_{s_i} T_{s_j} \cdots = T_{s_j} T_{s_i} \cdots \\
m_{ij} \quad m_{ij} \\
T_{s_i}^2 = (v^{-2} - 1)T_{s_i} + v^{-2}
\end{array}\right\rangle
\]

Since the \(T_{s_i} \) satisfy the braid relations, there is a group homomorphism \(a : B(W) \to \mathcal{H}(W) \times \), \(a(s_i) = T_{s_i} \).

For \(w \in W \), let \(T_w := a(w) \). The set \(\{T_w\}_{w \in W} \) is a basis of \(\mathcal{H}(W) \) as an \(A \)-module, called standard.

Each \(T_w \) is invertible and \(\{T_{w^{-1}}\}_{w \in W} \) is also a basis of \(\mathcal{H}(W) \), called costandard.
Kazhdan-Lusztig canonical bases

On positivity properties in Hecke algebras of arbitrary Coxeter groups

Thomas Gobet

Coxeter groups and Artin groups

Hecke algebras

Positivity properties and Soergel bimodules

Main results
Kazhdan-Lusztig canonical bases

There is an involution $^\sim : \mathcal{H}(W) \to \mathcal{H}(W)$ s.t. $\bar{v} = v^{-1}$, $T_w = (T_{w^{-1}})^{-1}$. For $w \in W$, set $H_w := v^{\ell(w)} T_w$.
Theorem (Kazhdan-Lusztig, 1979)

There is an involution $\overline{\cdot} : \mathcal{H}(W) \to \mathcal{H}(W)$ s.t. $\overline{v} = v^{-1}$, $\overline{T_w} = (T_w^{-1})^{-1}$. For $w \in W$, set $H_w := v^{\ell(w)}T_w$.
Kazhdan-Lusztig canonical bases

- There is an involution $\overline{-} : \mathcal{H}(W) \to \mathcal{H}(W)$ s.t. $\overline{v} = v^{-1}$, $\overline{T_w} = (T_{w^{-1}})^{-1}$. For $w \in W$, set $H_w := v^{\ell(w)} T_w$.

Theorem (Kazhdan-Lusztig, 1979)

- For any $w \in W$, there is a unique $C'_w \in \mathcal{H}(W)$ such that $\overline{C'_w} = C'_w$ and $C'_w \in H_w + \sum_{y < w} v \mathbb{Z}[v] H_y$.
Kazhdan-Lusztig canonical bases

- There is an involution $\overline{\cdot} : \mathcal{H}(W) \to \mathcal{H}(W)$ s.t. $\overline{v} = v^{-1}$, $\overline{T_w} = (T_{w^{-1}})^{-1}$. For $w \in W$, set $H_w := v^{\ell(w)} T_w$.

Theorem (Kazhdan-Lusztig, 1979)

- For any $w \in W$, there is a unique $C'_w \in \mathcal{H}(W)$ such that $\overline{C'_w} = C'_w$ and $C'_w \in H_w + \sum_{y < w} v\mathbb{Z}[v]H_y$.
- For any $w \in W$, there is a unique $C_w \in \mathcal{H}(W)$ such that $\overline{C_w} = C_w$ and $C_w \in H_w + \sum_{y < w} v^{-1}\mathbb{Z}[v^{-1}]H_y$.
Kazhdan-Lusztig canonical bases

There is an involution \(\overline{\cdot} : \mathcal{H}(W) \to \mathcal{H}(W) \) s.t. \(\overline{v} = v^{-1} \), \(\overline{T_w} = (T_{w^{-1}})^{-1} \). For \(w \in W \), set \(H_w := v^{\ell(w)} T_w \).

Theorem (Kazhdan-Lusztig, 1979)

For any \(w \in W \), there is a unique \(C'_w \in \mathcal{H}(W) \) such that \(\overline{C'_w} = C'_w \) and \(C'_w \in H_w + \sum_{y < w} v \mathbb{Z}[v] H_y \).

For any \(w \in W \), there is a unique \(C_w \in \mathcal{H}(W) \) such that \(\overline{C_w} = C_w \) and \(C_w \in H_w + \sum_{y < w} v^{-1} \mathbb{Z}[v^{-1}] H_y \).

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)

Let \(C'_w = \sum_{y \leq w} h_{y,w} T_y \). Then \(h_{y,w} \in \mathbb{Z}_{\geq 0}[v] \).
Kazhdan-Lusztig canonical bases

There is an involution $\overline{\cdot} : \mathcal{H}(W) \to \mathcal{H}(W)$ s.t. $\overline{v} = v^{-1}$, $\overline{T_w} = (T_{w^{-1}})^{-1}$. For $w \in W$, set $H_w := v^\ell(w) T_w$.

Theorem (Kazhdan-Lusztig, 1979)

- For any $w \in W$, there is a unique $C'_w \in \mathcal{H}(W)$ such that $\overline{C'_w} = C'_w$ and $C'_w \in H_w + \sum_{y < w} v \mathbb{Z}[v] H_y$.
- For any $w \in W$, there is a unique $C_w \in \mathcal{H}(W)$ such that $\overline{C_w} = C_w$ and $C_w \in H_w + \sum_{y < w} v^{-1} \mathbb{Z}[v^{-1}] H_y$.

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)

Let $C'_w = \sum_{y \leq w} h_{y,w} T_y$. Then $h_{y,w} \in \mathbb{Z}_{\geq 0}[v]$.

- Proven for (finite and affine) Weyl groups by KL in 1980;
Kazhdan-Lusztig canonical bases

- There is an involution $\overline{\cdot} : \mathcal{H}(W) \to \mathcal{H}(W)$ s.t. $\overline{v} = v^{-1}$, $\overline{T_w} = (T_{w^{-1}})^{-1}$. For $w \in W$, set $H_w := v^\ell(w)T_w$.

Theorem (Kazhdan-Lusztig, 1979)

- For any $w \in W$, there is a unique $C'_w \in \mathcal{H}(W)$ such that $\overline{C'_w} = C'_w$ and $C'_w \in H_w + \sum_{y < w} v\mathbb{Z}[v]H_y$.

- For any $w \in W$, there is a unique $C_w \in \mathcal{H}(W)$ such that $\overline{C_w} = C_w$ and $C_w \in H_w + \sum_{y < w} v^{-1}\mathbb{Z}[v^{-1}]H_y$.

Theorem (Kazhdan-Lusztig positivity conjecture, 1979)

Let $C'_w = \sum_{y \leq w} h_{y,w}T_y$. Then $h_{y,w} \in \mathbb{Z}_{\geq 0}[v]$.

- Proven for (finite and affine) Weyl groups by KL in 1980; recently (2014) Elias and Williamson proved Soergel’s conjecture, which solves the general case.
Other positivity statements
Other positivity statements

Conjecture (Dyer, 1987)
Other positivity statements

Conjecture (Dyer, 1987)

(D1) For all $w, y \in W$, $C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]T_x$.
On positivity properties in Hecke algebras of arbitrary Coxeter groups

Other positivity statements

Conjecture (Dyer, 1987)

(D1) For all \(w, y \in W \), \(C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0} [v^{\pm 1}] T_x \).

(D2) For all \(x, y \in W \), \(T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0} [v^{\pm 1}] C_w \).
(D1) For all \(w, y \in W \), \(C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0} [v^{\pm 1}] T_x \).

(D2) For all \(x, y \in W \), \(T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0} [v^{\pm 1}] C_w \).

\((D1) \) for \(y = 1 \) is KL positivity conjecture.
Other positivity statements

Conjecture (Dyer, 1987)

(D1) For all \(w, y \in W \), \(C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0} [v^{\pm 1}] T_x \).

(D2) For all \(x, y \in W \), \(T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0} [v^{\pm 1}] C_w \).

- (D1) for \(y = 1 \) is KL positivity conjecture.
- Dyer (1987): combinatorial proof of (D1) – (D2) for universal Coxeter systems.
Other positivity statements

Conjecture (Dyer, 1987)

(D1) For all $w, y \in W$, $C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]T_x$.

(D2) For all $x, y \in W$, $T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]C_w$.

- (D1) for $y = 1$ is KL positivity conjecture.
- Dyer (1987): combinatorial proof of (D1) — (D2) for universal Coxeter systems.
- Dyer and Lehrer (1990): geometric proof of (D1) for finite Weyl groups. Combinatorial proof that (D1) \iff (D2) for finite Coxeter groups.
Other positivity statements

Conjecture (Dyer, 1987)

(D1) For all \(w, y \in W \), \(C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] T_x \).

(D2) For all \(x, y \in W \), \(T_x T_y^{-1} \in \sum_{w \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] C_w \).

- (D1) for \(y = 1 \) is KL positivity conjecture.
- Dyer (1987): combinatorial proof of (D1) – (D2) for universal Coxeter systems.
- Dyer and Lehrer (1990): geometric proof of (D1) for finite Weyl groups. Combinatorial proof that (D1) \(\Leftrightarrow \) (D2) for finite Coxeter groups.
- Grojnowski and Haiman (2004): geometric proof of (D1) for affine Weyl groups.
About proof of KL positivity: Soergel bimodules
Soergel (1992) described the (equivariant) intersection cohomology of Schubert varieties using a remarkable family of graded bimodules over a polynomial algebra. He then generalized these bimodules to arbitrary Coxeter systems and linked them to KL positivity.
About proof of KL positivity: Soergel bimodules

- Soergel (1992) described the (equivariant) intersection cohomology of Schubert varieties using a remarkable family of graded bimodules over a polynomial algebra. He then generalized these bimodules to arbitrary Coxeter systems and linked them to KL positivity.

- Let V be a real reflection faithful representation of (W, S). Let $R = \mathcal{O}(V) \cong S(V^*)$.
Soergel (1992) described the (equivariant) intersection cohomology of Schubert varieties using a remarkable family of graded bimodules over a polynomial algebra. He then generalized these bimodules to arbitrary Coxeter systems and linked them to KL positivity.

Let V be a real reflection faithful representation of (W, S). Let $R = \mathcal{O}(V) \cong S(V^\ast)$. It is graded (we set $\deg(V^\ast) = 2$) and W acts degreewise on R.
Soergel (1992) described the (equivariant) intersection cohomology of Schubert varieties using a remarkable family of graded bimodules over a polynomial algebra. He then generalized these bimodules to arbitrary Coxeter systems and linked them to KL positivity.

Let V be a real reflection faithful representation of (W, S). Let $R = \mathcal{O}(V) \cong S(V^*)$. It is graded (we set $\deg(V^*) = 2$) and W acts degreewise on R. For every $s \in S$, set

$$B_s := R \otimes_{R^s} R(1).$$

It is an (indecomposable) graded R-bimodule.
Soergel (1992) described the (equivariant) intersection cohomology of Schubert varieties using a remarkable family of graded bimodules over a polynomial algebra. He then generalized these bimodules to arbitrary Coxeter systems and linked them to KL positivity.

Let V be a real reflection faithful representation of (W, S). Let $R = \mathcal{O}(V) \cong S(V^*)$. It is graded (we set $\deg(V^*) = 2$) and W acts degreewise on R. For every $s \in S$, set

$$B_s := R \otimes_{R^s} R(1).$$

It is an (indecomposable) graded R-bimodule. The category of graded R-bimodules is Krull-Schmidt.
Theorem (Soergel, 2007)
Theorem (Soergel, 2007)

1. Let \(w = s_1 s_2 \cdots s_k \in W, k = \ell(w) \). There is a unique indecomposable summand \(B_w \) of \(B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k} \) which does not occur as a summand of a smaller product.
Soergel bimodules, II

Theorem (Soergel, 2007)

1. Let $w = s_1 s_2 \cdots s_k \in W$, $k = \ell(w)$. There is a unique indecomposable summand B_w of $B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k}$ which does not occur as a summand of a smaller product.

2. Let \mathcal{B} be the Karoubian envelope of the category generated by (shifts of) products of the B_s. The indecomposables in \mathcal{B} are (up to iso) given by the $B_w(i)$, $w \in W$, $i \in \mathbb{Z}$.
Soergel bimodules, II

Theorem (Soergel, 2007)

1. Let \(w = s_1 s_2 \cdots s_k \in W, \ k = \ell(w) \). There is a unique indecomposable summand \(B_w \) of \(B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k} \) which does not occur as a summand of a smaller product.

2. Let \(\mathcal{B} \) be the Karoubian envelope of the category generated by (shifts of) products of the \(B_s \). The indecomposables in \(\mathcal{B} \) are (up to iso) given by the \(B_w(i), w \in W, i \in \mathbb{Z} \).

3. There is an isomorphism of rings \(\mathcal{E} : \mathcal{H}(W) \rightarrow \langle \mathcal{B}, \otimes_R \rangle \), \(\mathcal{E}(C'_s) = \langle B_s \rangle \), \(\mathcal{E}(v) = \langle R(1) \rangle \).
Soergel bimodules, II

Theorem (Soergel, 2007)

1. Let \(w = s_1 s_2 \cdots s_k \in W \), \(k = \ell(w) \). There is a unique indecomposable summand \(B_w \) of \(B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k} \) which does not occur as a summand of a smaller product.

2. Let \(\mathcal{B} \) be the Karoubian envelope of the category generated by (shifts of) products of the \(B_s \). The indecomposables in \(\mathcal{B} \) are (up to iso) given by the \(B_w(i), w \in W, i \in \mathbb{Z} \).

3. There is an isomorphism of rings \(\mathcal{E} : \mathcal{H}(W) \to \langle \mathcal{B}, \otimes_R \rangle \), \(\mathcal{E}(C'_s) = \langle B_s \rangle \), \(\mathcal{E}(v) = \langle R(1) \rangle \). Its inverse is given by \(\text{ch}(\langle B \in \mathcal{B} \rangle) = \sum_{x \in W} \sum_{i \in \mathbb{Z}} [B : R_x(i - \ell(x))] v^{i+\ell(x)} T_x \).
Soergel bimodules, II

Theorem (Soergel, 2007)

1. Let $w = s_1 s_2 \cdots s_k \in W$, $k = \ell(w)$. There is a unique indecomposable summand B_w of $B_{s_1} \otimes_R B_{s_2} \otimes_R \cdots \otimes_R B_{s_k}$ which does not occur as a summand of a smaller product.

2. Let \mathcal{B} be the Karoubian envelope of the category generated by (shifts of) products of the B_s. The indecomposables in \mathcal{B} are (up to iso) given by the $B_w(i)$, $w \in W$, $i \in \mathbb{Z}$.

3. There is an isomorphism of rings $\mathcal{E} : \mathcal{H}(W) \longrightarrow \langle \mathcal{B}, \otimes_R \rangle$, $\mathcal{E}(C'_s) = \langle B_s \rangle$, $\mathcal{E}(v) = \langle R(1) \rangle$. Its inverse is given by $\text{ch}(\langle B \in \mathcal{B} \rangle) = \sum_{x \in W} \sum_{i \in \mathbb{Z}} [B : R_x(i - \ell(x))] v^{i + \ell(x)} T_x$.

Conjecture (Soergel 2007; proven by Elias and Williamson 2014)

$\mathcal{E}(C'_w) = \langle B_w \rangle$ for all $w \in W$.
Standard filtrations of Soergel bimodules
Standard filtrations of Soergel bimodules

- Soergel’s conjecture implies KL positivity for all W.
Standard filtrations of Soergel bimodules

- Soergel’s conjecture implies KL positivity for all W.
- The coefficients of the KL polynomials are interpreted as graded multiplicities; more precisely
Standard filtrations of Soergel bimodules

- Soergel’s conjecture implies KL positivity for all W.
- The coefficients of the KL polynomials are interpreted as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let $w_0 = e, w_1, w_2, \ldots$ be an enumeration of W refining \leq. For $x \in W$,
Standard filtrations of Soergel bimodules

- Soergel’s conjecture implies KL positivity for all W.
- The coefficients of the KL polynomials are interpreted as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let $w_0 = e, w_1, w_2, \ldots$ be an enumeration of W refining \leq. For $x \in W$, let R_x be the graded bimodule R with right operation twisted by x.

Standard filtrations of Soergel bimodules

- Soergel’s conjecture implies KL positivity for all W.
- The coefficients of the KL polynomials are interpreted as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let $w_0 = e, w_1, w_2, \ldots$ be an enumeration of W refining \leq. For $x \in W$, let R_x be the graded bimodule R with right operation twisted by x. Each $B \in \mathcal{B}$ has a unique filtration

$$0 = B^0 \subset B^1 \subset B^2 \subset \cdots \subset B^k = B$$

with $B^i / B^{i-1} \cong \bigoplus_p R_{w_i}(n_p)$.
Standard filtrations of Soergel bimodules

- Soergel’s conjecture implies KL positivity for all W.
- The coefficients of the KL polynomials are interpreted as graded multiplicities; more precisely

Proposition (Soergel, 2007)

Let $w_0 = e, w_1, w_2, \ldots$ be an enumeration of W refining \leq. For $x \in W$, let R_x be the graded bimodule R with right operation twisted by x. Each $B \in \mathcal{B}$ has a unique filtration

$$0 = B^0 \subset B^1 \subset B^2 \subset \cdots \subset B^k = B$$

with $B^i/B^{i-1} \cong \bigoplus_p R_{w_i}(n_p)$. Moreover, the multiplicities $[B : R_x(j)]$ are independent of the enumeration of W which we chose.
Standard filtrations of Soergel bimodules

- Soergel’s conjecture implies KL positivity for all W.
- The coefficients of the KL polynomials are interpreted as graded multiplicities; more precisely

Proposition (Soergel, 2007)

*Let $w_0 = e, w_1, w_2, \ldots$ be an enumeration of W refining \leq. For $x \in W$, let R_x be the graded bimodule R with right operation twisted by x. Each $B \in B$ has a unique filtration

$$0 = B^0 \subseteq B^1 \subseteq B^2 \subseteq \cdots \subseteq B^k = B$$

with $B^i / B^{i-1} \cong \bigoplus_p R_{w_i}(n_p)$. Moreover, the multiplicities $[B : R_x(j)]$ are independent of the enumeration of W which we chose.*

- It follows from Soergel’s conjecture that these multiplicities categorify the KL polynomials when $B = B_w$.
Back to Dyer’s conjectures
Back to Dyer’s conjectures

Rewrite

(D1) For all \(w, y \in W \), \(C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]T_x \).
Rewrite

\((D1)\) For all \(w, y \in W\), \(C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]T_x\).

as

\((D1')\) For all \(w, y \in W\), \(C'_w \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}]T_x T_y^{-1}\).
Back to Dyer’s conjectures

Rewrite

(D1) For all $w, y \in W$, $C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] T_x$.

as

(D1′) For all $w, y \in W$, $C'_w \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] T_x T^{-1}_y$.

This suggests to interpret the coefficients in (D1) as graded multiplicities of alternative filtrations of Soergel bimodules B_w.
On positivity properties in Hecke algebras of arbitrary Coxeter groups

Thomas Gobet

Coxeter groups and Artin groups

Hecke algebras

Positivity properties and Soergel bimodules

Main results

Back to Dyer’s conjectures

Rewrite

\[(D1) \text{ For all } w, y \in W, C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] T_x.\]

as

\[(D1') \text{ For all } w, y \in W, C'_w \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^{\pm 1}] T_x T_y^{-1}.\]

This suggests to interpret the coefficients in \((D1)\) as graded multiplicities of alternative filtrations of Soergel bimodules \(B_w\). What can we try to modify in Soergel’s approach to get alternative filtrations?
Back to Dyer’s conjectures

Rewrite

\[(D1)\] For all \(w, y \in W\), \(C'_w T_y \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^\pm 1]T_x.\]

as

\[(D1')\] For all \(w, y \in W\), \(C'_w \in \sum_{x \in W} \mathbb{Z}_{\geq 0}[v^\pm 1]T_x T_y^{-1}.\]

This suggests to interpret the coefficients in \((D1)\) as graded multiplicities of alternative filtrations of Soergel bimodules \(B_w\). What can we try to modify in Soergel’s approach to get alternative filtrations? Twist the Bruhat order by \(y\): define

\[u \leq_y v \iff uy \leq vy.\]
Theorem (G., 2016)

- \((D1')\) holds for arbitrary \(W\).
- \((D2)\) holds for arbitrary \(W\).

(In particular \((D1) - (D2)\) hold for arbitrary Coxeter groups).
Results

Theorem (G., 2016)

- $(D1')$ holds for arbitrary W.
- $(D2)$ holds for arbitrary W.

(In particular $(D1) - (D2)$ hold for arbitrary Coxeter groups).

- The orders \leq_y are nice enough to ensure the existence of Soergel filtrations (key point: they satisfy Deodhar's Z-property).
Results

Theorem (G., 2016)

◮ \((D1')\) holds for arbitrary \(W\).
◮ \((D2)\) holds for arbitrary \(W\).

(In particular \((D1) - (D2)\) hold for arbitrary Coxeter groups).

◮ The orders \(\leq_y\) are nice enough to ensure the existence of Soergel filtrations (key point: they satisfy Deodhar’s \(Z\)-property). Mimicking Soergel’s approach one then interprets the coefficients as graded multiplicities in a filtration of \(B_w\) by the \(\{R_x\}_{x \in W}\) in a total order compatible with \(\leq_y\).
Results

Theorem (G., 2016)

\[(D1') \text{ holds for arbitrary } W. \]
\[(D2) \text{ holds for arbitrary } W. \]

(In particular \((D1) - (D2)\) hold for arbitrary Coxeter groups).

- The orders \(\leq_y\) are nice enough to ensure the existence of Soergel filtrations (key point: they satisfy Deodhar’s \(Z\)-property). Mimicking Soergel’s approach one then interprets the coefficients as graded multiplicities in a filtration of \(B_w\) by the \(\{R_x\}_{x \in W}\) in a total order compatible with \(\leq_y \Rightarrow (D1')\) holds for arbitrary \(W\).
About the proof of $(D2)$: categorification of Artin groups
About the proof of $(D2)$: categorification of Artin groups

Let $K^b(B)$ be the bounded homotopy category of B.
About the proof of $(D2)$: categorification of Artin groups

Let $K^b(B)$ be the bounded homotopy category of B. It is a triangulated category and as such, it has a Grothendieck group $\langle K^b(B) \rangle_\Delta$.

On positivity properties in Hecke algebras of arbitrary Coxeter groups

Thomas Gobet

Coxeter groups and Artin groups

Hecke algebras

Positivity properties and Soergel bimodules

Main results
Let $K^b\mathcal{B}$ be the bounded homotopy category of \mathcal{B}. It is a triangulated category and as such, it has a Grothendieck group $\langle K^b\mathcal{B} \rangle_\Delta$. It is a general fact for an additive category \mathcal{C} that $\langle \mathcal{C} \rangle \cong \langle K^b\mathcal{C} \rangle_\Delta$ (as abelian groups).
About the proof of (D2): categorification of Artin groups

Let $K^b(B)$ be the bounded homotopy category of B. It is a triangulated category and as such, it has a Grothendieck group $\langle K^b(B) \rangle_\Delta$. It is a general fact for an additive category C that $\langle C \rangle \cong \langle K^b(C) \rangle_\Delta$ (as abelian groups). Here \otimes_R induces a total tensor product of complexes \otimes_R^{tot} compatible with this isomorphism. Hence $\langle K^b(B) \rangle_\Delta \cong \langle B \rangle$ (as A-algebras).
Let $K^b(B)$ be the bounded homotopy category of B. It is a triangulated category and as such, it has a Grothendieck group $\langle K^b(B) \rangle_\Delta$. It is a general fact for an additive category C that $\langle C \rangle \cong \langle K^b(C) \rangle_\Delta$ (as abelian groups). Here \otimes_R induces a total tensor product of complexes \otimes^tot_R compatible with this isomorphism. Hence $\langle K^b(B) \rangle_\Delta \cong \langle B \rangle$ (as A-algebras).

Rouquier showed that the complexes $F_s := 0 \to B_s \to R(1) \to 0$, $s \in S$ (with B_s in cohom. degree zero) admit an inverse E_s for \otimes^tot_R in $K^b(B)$ and that they satisfy the braid relations of W.
About the proof of \((D2)\): categorification of Artin groups

Let \(K^{b}(\mathcal{B})\) be the bounded homotopy category of \(\mathcal{B}\). It is a triangulated category and as such, it has a Grothendieck group \(\langle K^{b}(\mathcal{B}) \rangle_{\Delta}\). It is a general fact for an additive category \(\mathcal{C}\) that \(\langle \mathcal{C} \rangle \cong \langle K^{b}(\mathcal{C}) \rangle_{\Delta}\) (as abelian groups). Here \(\otimes_{R}\) induces a total tensor product of complexes \(\otimes^{\text{tot}}_{R}\) compatible with this isomorphism. Hence \(\langle K^{b}(\mathcal{B}) \rangle_{\Delta} \cong \langle \mathcal{B} \rangle\) (as \(\mathcal{A}\)-algebras).

Rouquier showed that the complexes \(F_{s} := 0 \to B_{s} \to R(1) \to 0\), \(s \in S\) (with \(B_{s}\) in cohom. degree zero) admit an inverse \(E_{s}\) for \(\otimes^{\text{tot}}_{R}\) in \(K^{b}(\mathcal{B})\) and that they satisfy the braid relations of \(W\). In fact, viewed as functors on \(K^{b}(\mathcal{B})\) via \(F_{s} \otimes^{\text{tot}}_{R} \), they provide a categorical action of \(B(W)\) on \(K^{b}(\mathcal{B})\). This action is conjecturally faithful (proven for finite \(W\)).
Categorifications of Mikado braids
In particular, we get complexes of Soergel bimodules categorifying every element $\beta \in B(W)$ (defined only up to homotopy).
Categorifications of Mikado braids

- In particular, we get complexes of Soergel bimodules categorifying every element $\beta \in B(W)$ (defined only up to homotopy).

- Every complex C^\bullet in $K^b(B)$ admits a minimal complex C^\bullet,min, that is, with no contractible summand of the form $0 \to M \xrightarrow{\text{isom.}} M' \to 0$.
In particular, we get complexes of Soergel bimodules categorifying every element $\beta \in B(W)$ (defined only up to homotopy).

Every complex C^\bullet in $K^b(B)$ admits a *minimal complex* C^\bullet,min, that is, with no contractible summand of the form $0 \to M \xrightarrow{\text{isom.}} M' \to 0$. This complex is unique up to isomorphism of complexes.
Categorifications of Mikado braids

- In particular, we get complexes of Soergel bimodules categorifying every element $\beta \in B(W)$ (defined only up to homotopy).

- Every complex C^\bullet in $K^b(B)$ admits a minimal complex C^\bullet,min, that is, with no contractible summand of the form $0 \rightarrow M \xrightarrow{\text{isom.}} M' \rightarrow 0$. This complex is unique up to isomorphism of complexes.

Theorem (G., 2016)

Let $x, y \in W$, $\beta(x, y) := xy^{-1}$, $T_x T_y^{-1} = \sum_{w \in W} q_{x,w}^y C_w$.

Categorifications of Mikado braids

▷ In particular, we get complexes of Soergel bimodules categorifying every element $\beta \in B(W)$ (defined only up to homotopy).

▷ Every complex C^\bullet in $K^b(B)$ admits a \textit{minimal complex} C^\bullet,min, that is, with no contractible summand of the form $0 \to M \overset{\text{isom.}}{\longrightarrow} M' \to 0$. This complex is unique up to isomorphism of complexes.

Theorem (G., 2016)

\[
\text{Let } x, y \in W, \beta(x, y) := xy^{-1}, T_x T_y^{-1} = \sum_{w \in W} q_{x,w}^y C_w.
\]

1. Let $w \in W$. The bimodule B_w appears as a direct summand in $C_{\beta(x,y)}^\bullet,\text{min}$ either only in odd cohomological degrees or only in even degrees.
Categorifications of Mikado braids

- In particular, we get complexes of Soergel bimodules categorifying every element $\beta \in B(W)$ (defined only up to homotopy).

- Every complex C^\bullet in $K^b(B)$ admits a **minimal complex** $C^\bullet,_{\text{min}}$, that is, with no contractible summand of the form $0 \to M \xrightarrow{\text{isom.}} M' \to 0$. This complex is unique up to isomorphism of complexes.

Theorem (G., 2016)

Let $x, y \in W$, $\beta(x, y) := xy^{-1}$, $T_x T_y^{-1} = \sum_{w \in W} q_{x,w}^y C_w$.

1. Let $w \in W$. The bimodule B_w appears as a direct summand in $C^\bullet,_{\text{min}}^{\beta(x,y)}$ either only in odd cohomological degrees or only in even degrees.

2. The coefficient $q_{x,w}^y$ gives the multiplicity of B_w in all cohom. degrees of $C^\bullet,_{\text{min}}^{\beta(x,y)}$ together.
Categorifications of Mikado braids

In particular, we get complexes of Soergel bimodules categorifying every element $\beta \in B(W)$ (defined only up to homotopy).

Every complex C^\bullet in $K^b(B)$ admits a *minimal complex* C^\bullet,min, that is, with no contractible summand of the form $0 \to M \xrightarrow{\text{isom.}} M' \to 0$. This complex is unique up to isomorphism of complexes.

Theorem (G., 2016)

Let $x, y \in W$, $\beta(x, y) := xy^{-1}$, $T_x T_y^{-1} = \sum_{w \in W} q^y_{x, w} C_w$.

1. Let $w \in W$. The bimodule B_w appears as a direct summand in $C^\bullet,\text{min}_{\beta(x, y)}$ either only in odd cohomological degrees or only in even degrees.

2. The coefficient $q^y_{x, w}$ gives the multiplicity of B_w in all cohom. degrees of $C^\bullet,\text{min}_{\beta(x, y)}$ together. $\Rightarrow q^A_{x, w} \in \mathbb{Z}_{\geq 0}[v^{\pm 1}]$.

Linearity of complexes
Linearity of complexes

A key point in the proof of the theorem above is to show that the complex $C_{x,y}^{\bullet, \text{min}}$ is linear, that is, that every indecomposable summand in cohomological degree i has graduation shift equal to i.
A key point in the proof of the theorem above is to show that the complex $C^{\bullet, \min}_{\beta(x,y)}$ is \textit{linear}, that is, that every indecomposable summand in cohomological degree i has graduation shift equal to i. It precisely means that $C^{\bullet, \min}_{\beta(x,y)}$ lies in the heart of the canonical t-structure on $K^b(B)$.
Linearity of complexes

A key point in the proof of the theorem above is to show that the complex $C_{\beta(x,y)}^{\bullet, \min}$ is linear, that is, that every indecomposable summand in cohomological degree i has graduation shift equal to i. It precisely means that $C_{\beta(x,y)}^{\bullet, \min}$ lies in the heart of the canonical t-structure on $K^b(\mathcal{B})$.

Open problem: Understand the perverse cohomology groups of the Rouquier complexes $C_{\beta(x,y)}^{\bullet, \min}$.

Thank you!