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Model problem

I am on the beach and I want to take my boat
in minimal time :

- How do I choose

my trajectory 7 How do

I define my trajectory
when I ”swim and walk” ?

- How do I take into account
the sea when I am
on the beach and viceversa ?

Goal : To modellize optimal control problem with ”dif-
ferent dynamics and/or costs in different domains”



Our first result was : Infinite Horizon, 2-domains

\ wN

Dynamic : b, H, =0 in 4

Qi ={z eRY : zy >0}
Running cost : [, J min{H,, H,} < 0 "

. lmaX{Hl,Hz} >0 T

Dynamic : b,

Qy:={x e RY : zxy < 0}
Running cost : [, H, =0 in ,

We answerd to :

How to define the dynamic and running cost on

H:={xeRY : xxy =0}7
What is the Bellman problem
function(s) ?

satisfied by the value

What are the right viscosity inequalities to be satisfied

on H?



Same related works
— P. Dupuis : dimension 1, calculus of variations with
discontinuous integrand.

— Soravia, (Garavello and Soravia, De Zan and Soravia :
problems with discontinuities but with a a special struc-
ture of the discontinuities.

— Camilli and Siconolfi : L*-framework, but special
equations.

— Y. Achdou, F. Camilli, A. Cutri & N. Tchou and
C. Imbert, R. Monneau & H. Zidani : problems on
network. C. Imbert, R. Monneau : Nework in RY.

— Bressan and Hong, Wolenski , G. Barles and E. Chas-
seigne : optimal control problem on stratified domains.

—N. Forcadel, Z. Rao, A. Siconolfi, H. Zidani : same
problem with ”pure” control methods : they treat more
general junctions but with more restictive controllability
assumption and get less general stability result.



More general framework :

(H,) RN = Q, UQ, UH with Q; N Q, =0
and ‘H = 9Q; = 99, is a W>®-hypersurface in R ;

(Hj ?) Regularity and boundedness for b;,1; (¢ = 1,2);

(H2) For each ¢ = 1,2, z € Q,, and s € [0,T], the set
{(bi(z, 8, ), li(2, 8, ;) : o; € A;} is closed and convex.

(HZ) Controllability only in the normal direction :
There is a § > 0 such that for any + = 1,2, z € H and
s € [0,T]

Bi(z,s) - ni(z) D [—4, 4]

where B;(z, s) := {b;(z,s, ;) : a; € A;}.

Finite horizon control problems



Controlled trajectories :

Xou(+) = ((Xa:,t)la (Xat)2s e oo (Xw,t)N)(')
are Lipschitz continuous functions which are solutions of

the following differential inclusion
X,.(8) € B(X,4(s),t—s) for a.e. s € [0,t); X,.(0) ==z
where

B(z,s) = B;(z, s) if z € Q;,
777 |co(Bi(z,8) UBy(z,8)) ifzeH,

the notation co(F) referring to the convex closure of the
set E C RN.



Theorem : (true without the controllability assumption)

(i) For each x € RY, t € [0,T) there exists a Lipschitz
function X,; : [0,t] — RY which is a solution of the
differential inclusion.

(ii) For each solution X, ;(:) there exists a control

a() = (a()y @), () € A = L=(0, T]; As x 4> x [0, 1])
such that for a.e. s € (¢,T)
X,(s) = D bi(Xau(8)st — 8, 0u(s))1e,(8)+
 bu(Xaa(s),t — 5, a(s)) e, (s)
where
by(x,t —s,a) = puby(x,t — s, ;) + (1 — )b (x,t — s, z),

E:={s € (0,t) : X,4(s) € U} Ey:={s € (0,t): X,4(s) € H}
(iii) We have

by (X i(8),t — s,a(s)) - n;(X,4(s)) = 0for a.e. s € Ey



Running cost : Define

L(X.4(8),t — s,a(s)) Z Li(Xi(8),t — s, i(8))1g,(8)+

1=1,2

b (X i(8), t — 8,a(s))1g,(s) .

where

ly(z,t —s,a) := ply(z,t — s, 1) + (1 — p)la(x, t — 8, z) -

Cost : associated to (X,(:),a) € T, is

J(x,t; (Xpp,a)) := /Ot (X,i(8),t—s,a(s))ds+ g(X..(t))

with g € BUC(RY)



Regular and Singular dynamics on H the dynamic is :
bu(x,t —s,a) = pbi(x,t —s,1) + (1 — p)bs(x,t — s, z),
by(z,t — s,a) - n;(z) =0

The regular dynamics
("both pushes to be on H”)

bi(z, s, 1) *m(z) >0
by(2, 8, a2) - na(z) > 0

The singular dynamics
("both pull so we stay on H)

bi(z,s,a;) - m(z) <0,
b2(z,8,2) - n2(2) < 0.




Therefore two “natural” value functions can be defined
B = inf (X
U™ (x,1) (Xw,tlle)en,t J(z, t; (Xoy, @)
T..: : with regular and singular strategies on H
Ut(x,t) := inf J(x,t;: (X, .
(@) (Xm,tl,crnl)eﬁfig (@, (Xau, a))

T.: : without the singular strategies on H
NB : U~ < UT in RY x [0,T].

We will prove later that both are continuous but without control-
lability assumptions we do not know that they are Lipschitz conti-
NUOUS.



The “natural” Hamilton-Jacobi-Bellman system
u; + H(x,t, Du) =0

A subsolution (a supersolution) is a bounded usc func-
tion u (a bounded lsc function v) which satisfies (¢ = 1, 2)

u + Hi(x,t, Du) <0 in Q; X (0,T)
us + min{H,(x,t, Du), Hy(x,t, Du)} <0 inH X (0,T)
vy + Hiy(xz,t, Dv) > 0 in 2; x (0,T)
vy + max{H,(x,t, Dv), Hy(x,t,Dv)} >0 in H X (0,T)

where H;(x,t,p) := sup,.c4, { —bi(z,t, ;) - p — li(z, t, ;) }

Theorem : The value functions U~ and U™ are both vis-
cosity solutions of u; + H(x,t, Du) = 0.



Two ”tangential Hamiltonians” : Hy, H,*

We consider the tangent bundle TH := U,y ({z} X T.H)
where T,H is the tangent space to H at z.

For ((x,p),t) € TH X [0, T] we define the Hamiltonians

HT(wata p) -— Sup { - <b7{($,t,a),p> T l?—t(wat7a)} ’

AO(ZII,t)

Ao(wat) = {a =S (0419 X2, ,UJ) . b?—t<m7t7 (ala o, /L))’Ill(él?) — 0} s

and

Hy#(z,t,p) := sup { — (bu(zx,t,a),p) — ly(z,t,a)},

Ag e (z,t)

AiB(z,t) := {a € Ao(x,t) : bi(z,t, ;) n;(z) >0, 1=1,2},

(We do not allow singular strategies).



Definition (same for H;*®) : A bounded usc function w :
H X [0,T] — R is a viscosity subsolution of

us(x,t) + Hr(x,t, Dyu) =0 on H X [0,T]

if, for any ¢ € C'(#H X [0,T]) and any maximum point
(xz,t) of (z,8) — u(z,s) — ¢(2z,s) in H X [0,T], one has

¢t(w9 t) + HT(wa tv D?—L¢(wv t)) S 0.

Note that if ¢ € C'(H), and x € H, we denote by
Dy, ¢(x) the gradient of ¢ at «, which belongs to T, .

Theorem : U~ is a subsolution of

us(x,t) + Hr(x,t, Dyu) =0 on H X [0,T]
while U™ is a subsolution of

u(xz,t) + H%(x,t,Dyu) =0 on H X [0,T]

Notation :

us + H (x,t, Du) = 0 (u; + H" (x, t, Du) = 0)

will denote system u; + H(x,t, Du) = 0 and condition
u; + Hyp(x,t, Dyu) < 0 (u; + Hp%(x, t, Dyu) < 0).



From the PDE point of view :

Properties of subsolutions :

If w is subsolution of u; + H(x,t, Du) = 0, then u is a
subsolution of u; + H" (x, t, Du) = 0.

This means that inequality wg(x,t) + Hp*(x,t, Dyu) < 0 is
encoded in the original problem and not an additional property

MAGIC LEMMA Properties of supersolutions :

Let v be a supersolution of v; + H(x,t, Dv) = 0. Let
¢ € C'(H x [0,T]) and (x,t) be a minimum point of
(z,s) — v(z,s) — ¢(z,s). Then, the following alternative
holds :

A) either there exist n > 0, i € {1,2} and a sequence z; € Q; converging to x
such that v(zx,t) — v(z,t) and, for each k, there exists a control a¥(-) such
that the corresponding trajectory Yafk,t(s) € Q; for all s € [0,1] and

n . .
v(xk,t) > / l; (Ym’k’t(s), t— s, af(s))ds + U(Y;k,t(n)’t — 77) ;
0

B) or there holds
¢¢(z,t) + Hr (337 t, Dy p(z, t)) > 0.



With the additional Hr < 0-inequality, we have a uni-
queness result for u; + H (x,t, Du) = 0

Theorem (Strong Comparison Result) :
1) Assume that u and v are respectively bounded usc
sub a bounded lIsc supersolution of w; + H(x,t, Dw) = 0
and that

wy(x,t) + Hr(x, t, Dyw(z,t)) <0 on H X (0,T)

If u(x,0) < v(x,0) in RY then u < v in RY x (0,T).
2) The value function U~ is continuous and the unique
solution of

u,+H (x,t, Du) = 0 in R¥x(0,T) u(x,0) = g(x) in RY .

3) U~ is the minimal supersolution of and U™ is the maxi-
mal subsolution of u; + H(x,t, Du) =0 .

Remark : 1) is based on a local comparison result.
3) is based on the fact that Ut verify an alternative property as for the superso-

lutions with H;eg instead of Hy.



Stability Results

Theorem. Fix € > 0, let H (¢ = 1,2) and H; be defi-
ned trought b%, b5, 15, I5 satysfing [(Hg ?)] uniformly with

19 Yss
respect to . If

(b5, b5,15,15) — (b1, b2, 11, 15) locally uniformly

then :
(i) if, for all € > 0, v, is a Isc supersolution of

u; + H_ (x,t, Du) = 0 in RY x (0,T), (1)
then v = lim inf, v, is a Isc supersolution of
u; + H (x,t, Du) = 0 in RY x (0,T), (2)

(ii) If, for € > 0, u. is an usc subsolution of (1) and
if b;, b, satisfy the normal controllability assumption
[(Hg)] then @ = lim sup” u. is a subsolution of (2).

iii) Moreover, U- — U~ and Uf — U™.
(iii) . :



Based on :

A fundamental Lemma. For any (z,t), (2/,t') € H X [0, T]
and for each control a € Ay(z,t) (A (z,t)), there exists
a control a’ € Ay(2',t") (Ay™(z,t)) such that,

by (z,t,a) — by (2, t',a")| < C|(z,t) — (2/,t)]
lu(z,t, a)=lxu(2', ¥, a"))| < C|(2,1)— (2, ') |[+mu(|(2, 1) — (2, t)]
This implies the Lipschitz regularity of the tangential

Hamiltonians Hy(x,t,p) and Hp*(x,t,p) with respect
x € H and p € RY.



Theorem (convergence of trajectories).

Fix e > 0, let (X<, a%) € T,
i) There exists a subsequence (X°, a*"), — (X,a) € T,,.
More precisely, X** — X uniformly in [0, T] and

J(x,t; (X", a*")) — J(=x,t,(X,a)) uniformly in [0,T].

ii) If, moreover the trajectories (X°¢, a®) € 7°, are regular
for any € > 0 then we have a subsequence for which
the limit trajectory is also regular.
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Extensions and open problems

A regularly time dependent (2,.
An additional control problem on H.
Infinite horizon control problems.

Triple junctions or chessboard : stratified!!

(G.Barles- E. Chasseigne :

”(Almost) everything you always wanted to know
about deterministic control problems

in stratified domains”.)

Almost because “only” U~.

The characterization of U™ on stratified domains.
More general interface.

Viscosity approximation.

Second order, etc..etc...



An homogeneisation result : the infinite horizon problem

‘ x
Au(x) + Hi(x,—, Du) =0 in e,
€

x

Au(x) + Hy(x, —y Du) = 0 in €9,
\ €
with tangential condition

Au(x) + HT(:I:, s Dyu) <0 in eH

or
Au(x) + Hreg(m, s Dyu) < 0 in eH.

We define

+oo X

U~ +—  inf (X, (t), —=(t —Yk
c (wO) (Xwolalc;l)en,t /O ( 0( )’ 1 ( ), a)e
N —+00 Xa: v

U — inf (X, (t °(t —Atdt
- (o) (Xm}geﬁ;g/ (Xeo(t), —(t), a)e



Assumption : the Q,; are Z" periodic.

The result for U
Comparison and stability and ”classical” tools :

Theorem : The sequence (U ).-¢ converges locally uni-
formly in RY to a function U which is the unique solution
of

ANU(z) + H (x,DU) =0 in RV,

where H~ : RY x RV — R is defined as follows :

for any xz,p € RY, there exist a unique constant A\ =
H~(x,p) such that the following cell problem has a Lip-
schitz continuous, Z"-periodic viscosity solution v

H™ (z,y, Dv + p) = X in RY .

The result for U
Since we do not have a comparison result but only ”half”’
(U is the maximal subsolution) the result is ”half” based
on the control formulation of the problem.



The cell problem. For any =, p € RY, there exists a unique
constant H*(x,p) € R such that there exists a Lipschitz
continuous, periodic function VT satisfying,

for any 7 > 0 and y, € RY

Vi) = int L[ (i p Vi (t), a(0) + B () it

(Yyp:0) €Ty ?
V(Y (7))}
where
i(a:,p, Yy (1), a(t)) = Lz, Yy, (t), a(t)) +b(z, Y, (), a(t)) -p
Moreover VT is a viscosity subsolution of
HY(x,y, DVT + p) = H'(x,p) in R".

Finally, for all y, € RY we have

H*(2,p) = lim (— inf_ = [0 / {(z,p, Y, (t>,a<t>>dt})

totoo | (Ya)eTyy?  E



The convergence result for U

The sequence (U)..o converges locally uniformly in RN
to a continuous function U™, which is the unique viscosity
solution of

Au(z) + HY (x, Du(x)) = 0 in R".

U™ is a supersolution. Complete PDE argument.

U™ is a subsolution. Follows closely the PDE ideas but
perform all the arguments on the control formulas.

A real technical difficulty appears due to the x depen-
dence on the dynamics. This is solved by an approxima-
tion of the cell problem as in :

G. Barles, F. Da Lio, P.L. Lions, P. Souganidis ”Ergodic problems and perio-
dic homogenization for fully non linear equation in half-space time domanis with

Neumann boundary conditions. ” 2008



eeeeeeeegrazie per l'attenzione.



