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Model problem

I am on the beach and I want to take my boat
in minimal time :

- How do I choose
my trajectory ? How do
I define my trajectory
when I ”swim and walk” ?

- How do I take into account
the sea when I am
on the beach and viceversa ?

Goal : To modellize optimal control problem with ”dif-
ferent dynamics and/or costs in different domains”
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Our first result was : Infinite Horizon, 2-domains

6

-

xN

x′

Ω1 := {x ∈ RN : xN > 0}

Ω2 := {x ∈ RN : xN < 0}

Dynamic : b1

Running cost : l1

Dynamic : b2

Running cost : l2

H1 = 0 in Ω1

{
min{H1,H2} ≤ 0

max{H1,H2} ≥ 0
on H

H2 = 0 in Ω2

We answerd to :
How to define the dynamic and running cost on
H := {x ∈ RN : xN = 0} ?
What is the Bellman problem satisfied by the value
function(s) ?
What are the right viscosity inequalities to be satisfied
on H ?
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Same related works
– P. Dupuis : dimension 1, calculus of variations with
discontinuous integrand.

– Soravia, Garavello and Soravia, De Zan and Soravia :
problems with discontinuities but with a a special struc-
ture of the discontinuities.

– Camilli and Siconolfi : L∞-framework, but special
equations.

– Y. Achdou, F. Camilli, A. Cutri & N. Tchou and
C. Imbert, R. Monneau & H. Zidani : problems on
network. C. Imbert, R. Monneau : Nework in RN .

– Bressan and Hong, Wolenski , G. Barles and E. Chas-
seigne : optimal control problem on stratified domains.

–N. Forcadel, Z. Rao, A. Siconolfi, H. Zidani : same
problem with ”pure” control methods : they treat more
general junctions but with more restictive controllability
assumption and get less general stability result.
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More general framework :

(HΩ) RN = Ω1 ∪ Ω2 ∪H with Ω1 ∩ Ω2 = ∅
and H = ∂Ω1 = ∂Ω2 is a W 2,∞-hypersurface in RN ;

(H1−2
C ) Regularity and boundedness for bi, li (i = 1, 2) ;

(H3
C) For each i = 1, 2, z ∈ Ωi, and s ∈ [0, T ], the set{(
bi(z, s, αi), li(z, s, αi)

)
: αi ∈ Ai

}
is closed and convex.

(H4
C) Controllability only in the normal direction :

There is a δ > 0 such that for any i = 1, 2, z ∈ H and
s ∈ [0, T ]

Bi(z, s) · ni(z) ⊃ [−δ, δ]
where Bi(z, s) :=

{
bi(z, s, αi) : αi ∈ Ai

}
.

Finite horizon control problems
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Controlled trajectories :

Xx,t(·) =
(
(Xx,t)1, (Xx,t)2, . . . , (Xx,t)N

)
(·)

are Lipschitz continuous functions which are solutions of
the following differential inclusion

Ẋx,t(s) ∈ B(Xx,t(s), t−s) for a.e. s ∈ [0, t); Xx,t(0) = x

where

B(z, s) :=

{
Bi(z, s) if z ∈ Ωi ,

co
(
B1(z, s) ∪ B2(z, s)

)
if z ∈ H ,

the notation co(E) referring to the convex closure of the
set E ⊂ RN .
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Theorem : (true without the controllability assumption)

(i) For each x ∈ RN , t ∈ [0, T ) there exists a Lipschitz
function Xx,t : [0, t] → RN which is a solution of the
differential inclusion.
(ii) For each solution Xx,t(·) there exists a control

a(·) :=
(
α1(·), α2(·), µ(·)

)
∈ A = L∞([0, T ];A1×A2×[0, 1])

such that for a.e. s ∈ (t, T )

Ẋx,t(s) =
∑
i=1,2

bi
(
Xx,t(s), t− s, αi(s)

)
1Ei(s)+

bH
(
Xx,t(s), t− s, a(s)

)
1EH(s)

where

bH(x, t− s, a) = µb1(x, t− s, α1) + (1−µ)b2(x, t− s, α2),

Ei :=
{
s ∈ (0, t) : Xx,t(s) ∈ Ωi

}
EH :=

{
s ∈ (0, t) : Xx,t(s) ∈ H

}
(iii) We have

bH
(
Xx,t(s), t− s, a(s)

)
· ni

(
Xx,t(s)

)
= 0 for a.e. s ∈ EH
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Running cost : Define

`
(
Xx,t(s), t− s, a(s)

)
:=

∑
i=1,2

li
(
Xx,t(s), t− s, αi(s)

)
1Ei(s)+

lH
(
Xx,t(s), t− s, a(s)

)
1EH(s) .

where

lH(x, t− s, a) := µl1(x, t− s, α1) + (1−µ)l2(x, t− s, α2) .

Cost : associated to (Xx,t(·), a) ∈ Tx,t is

J(x, t; (Xx,t, a)) :=

∫ t

0

`
(
Xx,t(s), t− s, a(s)

)
ds+ g

(
Xx,t(t)

)
with g ∈ BUC(RN)
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Regular and Singular dynamics on H the dynamic is :

bH(x, t− s, a) = µb1(x, t− s, α1) + (1−µ)b2(x, t− s, α2),

bH
(
x, t− s, a

)
· ni(z) = 0

The regular dynamics
(”both pushes to be on H”)

b1(z, s, α1) · n1(z) ≥ 0
b2(z, s, α2) · n2(z) ≥ 0

The singular dynamics
(”both pull so we stay on H”)

b1(z, s, α1) · n1(z) < 0 ,
b2(z, s, α2) · n2(z) < 0 .
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Therefore two “natural” value functions can be defined

U−(x, t) := inf
(Xx,t,a)∈Tx,t

J
(
x, t; (Xx,t, a)

)
Tx,t : with regular and singular strategies on H

U+(x, t) := inf
(Xx,t,a)∈T reg

x,t

J
(
x, t; (Xx,t, a)

)
.

T reg
x,t : without the singular strategies on H

NB : U− ≤ U+ in RN × [0, T ].

We will prove later that both are continuous but without control-
lability assumptions we do not know that they are Lipschitz conti-
nuous.
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The “natural” Hamilton-Jacobi-Bellman system

ut +H(x, t,Du) = 0

A subsolution (a supersolution) is a bounded usc func-
tion u (a bounded lsc function v) which satisfies (i = 1, 2){
ut +Hi(x, t,Du) ≤ 0 in Ωi × (0, T )

ut + min{H1(x, t,Du),H2(x, t,Du)} ≤ 0 in H× (0, T )[{
vt +Hi(x, t,Dv) ≥ 0 in Ωi × (0, T )

vt + max{H1(x, t,Dv),H2(x, t,Dv)} ≥ 0 in H× (0, T )

]
.

whereHi(x, t, p) := supαi∈Ai
{−bi(x, t, αi) · p− li(x, t, αi)} .

Theorem : The value functions U− and U+ are both vis-
cosity solutions of ut +H(x, t,Du) = 0.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Two ”tangential Hamiltonians” : HT ,H
reg
T

We consider the tangent bundle TH := ∪z∈H
(
{z}×TzH

)
where TzH is the tangent space to H at z.

For ((x, p), t) ∈ TH× [0, T ] we define the Hamiltonians

HT(x, t, p) := sup
A0(x,t)

{
−
〈
bH(x, t, a), p

〉
− lH(x, t, a)

}
,

A0(x, t) :=
{
a = (α1, α2, µ) : bH

(
x, t, (α1, α2, µ)

)
·n1(x) = 0

}
,

and

Hreg
T (x, t, p) := sup

Areg
0 (x,t)

{
−
〈
bH(x, t, a), p

〉
− lH(x, t, a)

}
,

Areg
0 (x, t) :=

{
a ∈ A0(x, t) : bi(x, t, αi)·ni(z) ≥ 0, i = 1, 2

}
,

(We do not allow singular strategies).
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Definition (same for Hreg
T ) : A bounded usc function u :

H× [0, T ]→ R is a viscosity subsolution of

ut(x, t) +HT(x, t,DHu) = 0 on H× [0, T ]

if, for any φ ∈ C1(H × [0, T ]) and any maximum point
(x, t) of (z, s) 7→ u(z, s)− φ(z, s) in H× [0, T ], one has

φt(x, t) +HT

(
x, t,DHφ(x, t)

)
≤ 0 .

Note that if φ ∈ C1(H), and x ∈ H, we denote by
DHφ(x) the gradient of φ at x, which belongs to TxH.

Theorem : U− is a subsolution of

ut(x, t) +HT(x, t,DHu) = 0 on H× [0, T ]

while U+ is a subsolution of

ut(x, t) +Hreg
T (x, t,DHu) = 0 on H× [0, T ]

Notation :
ut + H−(x, t,Du) = 0 (ut + H+(x, t,Du) = 0)
will denote system ut +H(x, t,Du) = 0 and condition
ut +HT(x, t,DHu) ≤ 0 (ut +Hreg

T (x, t,DHu) ≤ 0).
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From the PDE point of view :
Properties of subsolutions :
If u is subsolution of ut + H(x, t,Du) = 0, then u is a
subsolution of ut + H+(x, t,Du) = 0.
This means that inequality ut(x, t) + Hreg

T (x, t,DHu) ≤ 0 is
encoded in the original problem and not an additional property

MAGIC LEMMA Properties of supersolutions :
Let v be a supersolution of vt + H(x, t,Dv) = 0. Let
φ ∈ C1

(
H × [0, T ]

)
and (x, t) be a minimum point of

(z, s) 7→ v(z, s)−φ(z, s). Then, the following alternative
holds :
A) either there exist η > 0, i ∈ {1, 2} and a sequence xk ∈ Ωi converging to x

such that v(xk, t)→ v(x, t) and, for each k, there exists a control αki (·) such

that the corresponding trajectory Y i
xk,t

(s) ∈ Ωi for all s ∈ [0, η] and

v(xk, t) ≥
∫ η

0

li
(
Y i
xk,t

(s), t− s, αki (s)
)
ds+ v

(
Y i
xk,t

(η), t− η
)

;

B) or there holds
φt(x, t) +HT

(
x, t,DHφ(x, t)

)
≥ 0.
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With the additional HT ≤ 0-inequality, we have a uni-
queness result for ut + H−(x, t,Du) = 0

Theorem (Strong Comparison Result) :
1) Assume that u and v are respectively bounded usc
sub a bounded lsc supersolution of wt +H(x, t,Dw) = 0
and that

wt(x, t) +HT

(
x, t,DHw(x, t)

)
≤ 0 on H× (0, T )

If u(x, 0) ≤ v(x, 0) in RN then u ≤ v in RN × (0, T ).
2) The value function U− is continuous and the unique

solution of

ut+H−(x, t,Du) = 0 in RN×(0, T ) u(x, 0) = g(x) in RN .

3) U− is the minimal supersolution of and U+ is the maxi-
mal subsolution of ut +H(x, t,Du) = 0 .

Remark : 1) is based on a local comparison result.

3) is based on the fact that U+ verify an alternative property as for the superso-

lutions with H
reg
T instead of HT .
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Stability Results

Theorem. Fix ε > 0, let Hε
i (i = 1, 2) and Hε

T be defi-
ned trought bε1, b

ε
2, l

ε
1, l

ε
2 satysfing [(H1−2

C )] uniformly with
respect to ε. If

(bε1, b
ε
2, l

ε
1, l

ε
2)→ (b1, b2, l1, l2) locally uniformly

then :
(i) if, for all ε > 0, vε is a lsc supersolution of

ut + H−ε (x, t,Du) = 0 in RN × (0, T ), (1)

then v = lim inf∗ vε is a lsc supersolution of

ut + H−(x, t,Du) = 0 in RN × (0, T ), (2)

(ii) If, for ε > 0, uε is an usc subsolution of (1) and
if b1, b2 satisfy the normal controllability assumption
[(H4

C)] then ū = lim sup∗ uε is a subsolution of (2).

(iii) Moreover, U−ε → U− and U+
ε → U+.
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Based on :

A fundamental Lemma. For any (z, t), (z′, t′) ∈ H×[0, T ]
and for each control a ∈ A0(z, t) (Areg

0 (z, t)), there exists
a control a′ ∈ A0(z

′, t′) (Areg
0 (z, t)) such that,

|bH(z, t, a)− bH(z′, t′, a′))| ≤ C|(z, t)− (z′, t′)|

|lH(z, t, a)−lH(z′, t′, a′))| ≤ C|(z, t)−(z′, t′)|+ml(|(z, t)−(z′, t′)|)

This implies the Lipschitz regularity of the tangential
Hamiltonians HT(x, t, p) and Hreg

T (x, t, p) with respect
x ∈ H and p ∈ RN.
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Theorem (convergence of trajectories).

Fix ε > 0, let (Xε, aε) ∈ T ε
x,t,

i) There exists a subsequence (Xεn, aεn)n → (X, a) ∈ Tx,t.
More precisely, Xεn → X uniformly in [0, T ] and

J(x, t; (Xεn, aεn))→ J(x, t, (X, a)) uniformly in [0, T ] .

ii) If, moreover the trajectories (Xε, aε) ∈ T ε
x,t are regular

for any ε > 0 then we have a subsequence for which
the limit trajectory is also regular.
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Extensions and open problems

A regularly time dependent Ωi.

An additional control problem on H.

Infinite horizon control problems.

Triple junctions or chessboard : stratified ! !

(G.Barles- E. Chasseigne :
”(Almost) everything you always wanted to know
about deterministic control problems
in stratified domains”.)
Almost because ”only” U−.

The characterization of U+ on stratified domains.
More general interface.
Viscosity approximation.
Second order, etc..etc...
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An homogeneisation result : the infinite horizon problem
λu(x) +H1(x,

x

ε
,Du) = 0 in εΩ1 ,

λu(x) +H2(x,
x

ε
,Du) = 0 in εΩ2 ,

with tangential condition

λu(x) +HT(x,
x

ε
,DHu) ≤ 0 in εH

or
λu(x) +Hreg

T (x,
x

ε
,DHu) ≤ 0 in εH.

We define

U−ε (x0) := inf
(Xx0,a)∈Tx,t

∫ +∞

0

`
(
Xx0

(t),
Xx0

ε
(t), a

)
e−λtdt

U+
ε (x0) := inf

(Xx0,a)∈T reg
x,t

∫ +∞

0

`
(
Xx0

(t),
Xx0

ε
(t), a

)
e−λtdt
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Assumption : the Ωi are ZN periodic.

The result for U−ε

Comparison and stability and ”classical” tools :

Theorem : The sequence (U−ε )ε>0 converges locally uni-
formly in RN to a function U which is the unique solution
of

λU(x) + H̄−(x,DU) = 0 in RN .

where H̄− : RN × RN → R is defined as follows :
for any x, p ∈ RN , there exist a unique constant λ =
H̄−(x, p) such that the following cell problem has a Lip-
schitz continuous, ZN-periodic viscosity solution v

H−(x, y,Dv + p) = λ in RN .

The result for U+
ε

Since we do not have a comparison result but only ”half”
(U+

ε is the maximal subsolution) the result is ”half” based
on the control formulation of the problem.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

The cell problem. For any x, p ∈ RN , there exists a unique
constant H̄+(x, p) ∈ R such that there exists a Lipschitz
continuous, periodic function V + satisfying,
for any τ ≥ 0 and y0 ∈ RN

V +(y0) = inf
(Yy0,a)∈T reg

y0

{∫ τ

0

(
l̃
(
x, p, Yy0(t), a(t)

)
+ H̄+(x, p)

)
dt+

V +(Yy0(τ ))
}

where

l̃
(
x, p, Yy0(t), a(t)

)
= l

(
x, Yy0(t), a(t)

)
+b
(
x, Yy0(t), a(t)

)
·p.

Moreover V + is a viscosity subsolution of

H+(x, y,DV + + p) = H̄+(x, p) in RN .

Finally, for all y0 ∈ RN we have

H̄+(x, p) = lim
t→+∞

(
− inf

(Yy0,a)∈T reg
y0

{1

t

∫ t

0

l̃
(
x, p, Yy0(t), a(t)

)
dt
})
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The convergence result for U+
ε

The sequence (U+
ε )ε>0 converges locally uniformly in RN

to a continuous function U+, which is the unique viscosity
solution of

λu(x) + H̄+(x,Du(x)) = 0 in RN .

U+ is a supersolution. Complete PDE argument.

U+ is a subsolution. Follows closely the PDE ideas but
perform all the arguments on the control formulas.
A real technical difficulty appears due to the x depen-
dence on the dynamics. This is solved by an approxima-
tion of the cell problem as in :
G. Barles, F. Da Lio, P.L. Lions, P. Souganidis ”Ergodic problems and perio-

dic homogenization for fully non linear equation in half-space time domanis with

Neumann boundary conditions. ” 2008
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.........grazie per l’attenzione.


