A Complete Guide to
Programming in C++

Ulla Kirch-Prinz
Peter Prinz

JONES AND BARTLETT PUBLISHERS

A Complete Guide to
Programming in C++

Ulla Kirch-Prinz

Peter Prinz

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts
OOOOOOOOOOOOOOOOOOOOOOOOOOOO

World Headquarters

Jones and Bartlett Publishers Jones and Bartlett Publishers Jones and Bartlett Publishers
40 Tall Pine Drive Canada International

Sudbury, MA 01776 2406 Nikanna Road Barb House, Barb Mews
978-443-5000 Mississauga, ON L5C 2W6 London W6 7PA
info@jbpub.com CANADA UK

www.jbpub.com

Copyright © 2002 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in
any form, electronic or mechanical, including photocopying, recording, or any information storage or retrieval
system, without written permission from the copyright owner.

Cover Image: Stones on shore-line and yellow leaf, Bjorkliden, Sweden, by Peter Lilja

Library of Congress Cataloging-in-Publication Data

Prinz, Peter.
[C++ Lernen und professionell anwenden. English]
A complete guide to programming in C++ / Peter Prinz, Ulla Kirch-Prinz; translated by lan Travis.
p. cm.
ISBN: 0-7637-1817-3
1. C++ (Computer program language) I. Kirch-Prinz, Ulla. II. Title.

QA76.73.C153 P73713 2001
005.13'3—dc21 2001029617
2090

Chief Executive Officer: Clayton Jones

Chief Operating Officer: Don W. Jones, Jr.
V.P., Managing Editor: Judith H. Hauck

V.P., Design and Production: Anne Spencer
V.P., Manufacturing and Inventory Control: Therese Briuer
Editor-in-Chief: Michael Stranz

Development and Product Manager: Amy Rose
Marketing Manager: Nathan Schultz
Production Assistant: Tara McCormick

Cover Design: Night & Day Design
Composition: Northeast Compositors

Text Design: Mary McKeon

Printing and Binding: Courier Westford

Cover printing: John Pow Company, Inc.

This book was typeset in QuarkXpress 4.11 on a Macintosh G4. The font families used were Goudy, Gill Sans,
Courier, Rubino Serif, and Seven Sans. The first printing was printed on 50 lb. Finch Opaque.

Printed in the United States of America

05 04 03 02 01 109876543121

www.jbpub.com

Dedicated to our children, Vivi and Jeany

This page intentionally left blank

preface

This book was written for readers interested in learning the C++ programming
language from scratch, and for both novice and advanced C++ programmers
wishing to enhance their knowledge of C++. It was our goal from the begin-
ning to design this text with the capabilities of serving dual markets, as a text-
book for students and as a holistic reference manual for professionals.

The C++ language definition is based on the American National Stan-
dards Institute ANSI Standard X3]J16. This standard also complies with ISO
norm 14882, which was ratified by the International Standardization Organi-
zation in 1998. The C++ programming language is thus platform-independent
in the main with a majority of C++ compilers providing ANSI support. New
elements of the C++ language, such as exception handling and templates, are
supported by most of the major compilers. Visit the Jones and Bartlett web site
at www.jbpub.com for a listing of compilers available for this text.

The chapters in this book are organized to guide the reader from elemen-
tary language concepts to professional software development, with in-depth
coverage of all the C++ language elements en route. The order in which these
elements are discussed reflects our goal of helping the reader to create useful
programs at every step of the way.

www.jbpub.com

vi

PREFACE

Each double-page spread in the book is organized to provide a description of the lan-
guage elements on the right-hand page while illustrating them by means of graphics and
sample programs on the left-hand page. This type of visual representation offered by each
spread will provide students and professionals with an unmatched guide throughout the
text. The sample programs were chosen to illustrate a typical application for each lan-
guage element. In addition, filter programs and case studies introduce the reader to a
wide range of application scenarios.

To gain command over a programming language, students need a lot of experience in
developing programs. Thus, each chapter includes exercises followed by sample solu-
tions, allowing the reader to test and enhance his or her performance and understanding
of C++.

The appendix provides further useful information, such as binary number representa-
tion, pre-processor directives, and operator precedence tables, making this book a well-
structured and intelligible reference guide for C++ programmers.

In order to test and expand your acquired knowledge, you can download sample pro-
grams and solutions to the exercises at:

http://completecpp.jbpub.com

Content Organization

Chapter 1 gives a thorough description of the fundamental characteristics of the object-
oriented C++ programming language. In addition, students are introduced to the steps
necessary for creating a fully functional C++ program. Many examples are provided to
help enforce these steps and to demonstrate the basic structure of a C++ program.

Chapter 2 provides a complete introduction to the basic types and objects used by
C++ programs. Integral types and constants, fundamental types, and Boolean constants
are just a few of the topics discussed.

Chapter 3 describes how to declare and call standard functions. This chapter also
teaches students to use standard classes, including standard header files. In addition, stu-
dents work with string variables for the first time in this chapter.

Chapter 4 explains the use of streams for input and output, with a focus on formatting
techniques. Formatting flags and manipulators are discussed, as are field width, fill char-
acters, and alignment.

Chapter 5 introduces operators needed for calculations and selections. Binary, unary,
relational, and logical operators are all examined in detail.

Chapter 6 describes the statements needed to control the flow of a program. These
include loops with while, do-while, and for; selections with if-else, switch, and the condi-
tional operator; and jumps with goto, continue, and break.

Chapter 7 provides a thorough introduction to the definition of symbolic constants
and macros, illustrating their significance and use. Furthermore, a comprehensive exami-
nation of standard macros for character handling is included.

Chapter 8 introduces implicit type conversions, which are performed in C++ when-
ever different arithmetic types occur in expressions. Additionally, the chapter explores
an operator for explicit type conversion.

http://completecpp.jbpub.com

PREFACE vii

Chapter 9 takes an in-depth look at the standard class string, which is used to repre-
sent strings. In addition to defining strings, the chapter looks at the various methods of
string manipulation. These include inserting and erasing, searching and replacing, com-
paring, and concatenating strings.

Chapter 10 describes how to write functions of your own. The basic rules are covered,
as are passing arguments, the definition of inline functions, overloading functions and
default arguments, and the principle of recursion.

Chapter 11 gives a thorough explanation of storage classes for objects and functions.
Object lifetime and scope are discussed, along with global, static, and auto objects.
Namespaces and external and static functions are also included in the discussion.

Chapter 12 explains how to define references and pointers and how to use them as
parameters and/or return values of functions. In this context, passing by reference and
read-only access to arguments are introduced.

Chapter 13 provides a complete description of how classes are defined and how
instances of classes, or objects, are used. In addition, structs and unions are introduced as
examples of special classes.

Chapter 14 describes how constructors and destructors are defined to create and
destroy objects. Also discussed are how inline methods, access methods, and read-only
methods can be used. Furthermore, the chapter explains the pointer this, which is avail-
able for all methods, and what you need to pay attention to when passing objects as argu-
ments or returning objects.

Chapter 15 gives a complete explanation of member objects and how they are initial-
ized, and of data members that are created only once for all the objects in a class. In addi-
tion, this chapter describes constant members and enumerated types.

Chapter 16 takes an in-depth look at how to define and use arrays. Of particular inter-
est are one-dimensional and multidimensional arrays, C strings, and class arrays.

Chapter 17 describes the relationship between pointers and arrays. This includes
pointer arithmetic, pointer versions of functions, pointers as return values and read-only
pointers, and pointer arrays. Students learn that operations that use C strings illustrate
how to use pointers for efficient programming, and that string access via the command
line of an application program is used to illustrate pointer arrays.

Chapter 18 explains sequential file access using file streams. Students will develop an
understanding of how file streams provide simple and portable file handling techniques.

Chapter 19 provides a complete description of the various uses of overloaded opera-
tors. Arithmetic operators, comparisons, the subscript operator, and the shift operators
for input and output are overloaded to illustrate the appropriate techniques. In addition,
the concept of friend functions, which is introduced in this context, is particularly
important for overloading operators. Students learn how overloading operators allows
them to apply existing operators to objects of class type.

Chapter 20 discusses how implicit type conversion occurs in C++ when an expression
cannot be compiled directly but can be compiled after applying a conversion rule. The
programmer can stipulate how the compiler will perform implicit type conversion for
classes by defining conversion constructors and functions. Finally, the chapter discusses
ambiguity that occurs due to type conversion and how to avoid it.

viii

PREFACE

Chapter 21 describes how a program can allocate and release memory dynamically in
line with current memory requirements. Dynamic memory allocation is an important fac-
tor in many C++ programs, and the following chapters contain several case studies to
help students review the subject.

Chapter 22 explains how to implement classes containing pointers to dynamically
allocated memory. These include your own copy constructor definition and overloading
the assignment operator. A class designed to represent arrays of any given length is used
as a sample application.

Chapter 23 provides a thorough description of how derived classes can be constructed
from existing classes by inheritance. In addition to defining derived classes, this chapter
discusses how members are redefined, how objects are constructed and destroyed, and
how access control to base classes can be realized.

Chapter 24 discusses implicit type conversion within class hierarchies, which occurs
in the context of assignments and function calls. Explicit type casting in class hierar-
chies is also described, paying particular attention to upcasting and downcasting.

Chapter 25 gives a complete explanation of how to develop and manage polymorphic
classes. In addition to defining virtual functions, dynamic downcasting in polymorphic
class hierarchies is introduced.

Chapter 26 describes how defining pure virtual methods can create abstract classes
and how you can use abstract classes at a polymorphic interface for derived classes. To
illustrate this, an inhomogeneous list, that is, a linked list whose elements can be of vari-
ous class types, is implemented.

Chapter 27 describes how new classes are created by multiple inheritance and
explains their uses. Besides introducing students to the creation and destruction of
objects in multiply-derived classes, virtual base classes are depicted to avoid ambiguity in
multiple inheritance.

Chapter 28 explains how a C++ program uses error-handling techniques to resolve
error conditions. In addition to throwing and catching exceptions, the chapter also
examines how exception specifications are declared and exception classes are defined. In
addition, the use of standard exception classes is discussed.

Chapter 29 examines random access to files based on file streams, and options for
querying file state. Exception handling for files is discussed as well. The chapter illus-
trates how to make objects in polymorphic classes persistent, that is, how to save them in
files. The applications introduced in this chapter include simple index files and hash
tables.

Chapter 30 provides a thorough explanation of the advanced uses of pointers. These
include pointers to pointers, functions with a variable number of arguments, and pointers
to functions. In addition, an application that defines a class used to represent dynamic
matrices is introduced.

Chapter 31 describes bitwise operators and how to use bit masks. The applications
included demonstrate calculations with parity bits, conversion of lowercase and capital
letters, and converting binary numbers. Finally, the definition of bit-fields is introduced.

Chapter 32 discusses how to define and use function and class templates. In addition,
special options, such as default arguments, specialization, and explicit instantiation, are

PREFACE ix

discussed. Students learn that templates allow the construction of functions and classes
based on types that have not yet been stated. Thus, templates are a powerful tool for
automating program code generation.

Chapter 33 explains standard class templates used to represent containers for more
efficient management of object collections. These include sequences, such as lists and
double ended queues; container adapters, such as stacks, queues, and priority queues;
associative containers, such as sets and maps; and bitsets. In addition to discussing how
to manage containers, the chapter also looks at sample applications, such as bitmaps for
raster images, and routing techniques.

Additional Features

Chapter Goals A concise chapter introduction, which contains a description of the
chapter’s contents, is presented at the beginning of each chapter. These summaries also
provide students with an idea of the key points to look for throughout the chapter.

Chapter Exercises Each chapter contains exercises, including programming problems,
designed to test students’ knowledge and understanding of the main ideas. The exercises
also provide reinforcement for key chapter concepts. Solutions are included to allow
students to check their work immediately and correct any possible mistakes.

(ase Studies Every chapter contains a number of case studies that were designed to
introduce the reader to a wide range of application scenarios.

Notes This feature provides students with helpful tips and information useful to learning
C++. Important concepts and rules are highlighted for additional emphasis and easy
access.

Hints These are informative suggestions for easier programming. Also included are
common mistakes and how to avoid making them.

Acknowledgements

Our thanks go out to everyone who helped produce this book, particularly to

Ian Travis, for his valuable contributions to the development of this book.

Alexa Doehring, who reviewed all samples and program listings, and gave many valuable
hints from the American perspective.

Michael Stranz and Amy Rose at Jones and Bartlett Publishers, who managed the pub-
lishing agreement and the production process so smoothly.

Our children, Vivi and Jeany, who left us in peace long enough to get things finished!
And now all that remains is to wish you, Dear Reader, lots of fun with C++!

Ulla Kirch-Prinz

Peter Prinz

This page intentionally left blank

contents

Chapter |

Chapter 2

Fundamentals |

Development and Properties of C++ 2
Object-Oriented Programming 4
Developing a C++ Program 6

A Beginner’s C++ Program 8
Structure of Simple C++ Programs 10
Exercises 12

Solutions 14

Fundamental Types, Constants, and Variables

Fundamental Types 16

Constants 22

Escape Sequences 26

Names 28

Variables 30

The Keywords const and volatile 32
Exercises 34

Solutions 36

15

Xi

Xii CONTENTS

Chapter 3 Using Functions and Classes 39

Declaring Functions 40
Function Calls 42

Type void for Functions 44
Header Files 46

Standard Header Files 48
Using Standard Classes 50
Exercises 52

Solutions 54

Chapter 4 Input and Output with Streams 57

Streams 58

Formatting and Manipulators 60

Formatted Output of Integers 62

Formatted Output of Floating-Point Numbers 64
Output in Fields 66

Output of Characters, Strings, and Boolean Values 68
Formatted Input 70

Formatted Input of Numbers 72

Unformatted Input/Output 74

Exercises 76

Solutions 78

Chapter 5 Operators for Fundamental Types 8l

Binary Arithmetic Operators 82
Unary Arithmetic Operators 84
Assignments 86

Relational Operators 88
Logical Operators 90
Exercises 92

Solutions 94

Chapter 6 Control Flow 95

The while Statement 96

The for Statement 98

The do-while Statement 102

Selections with if-else 104

Else-if Chains 106

Conditional Expressions 108

Selecting with switch 110

Jumps with break, continue, and goto 112

Exercises 114
Solutions 116

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

CONTENTS

Symbolic Constants and Macros 119
Macros 120

Macros with Parameters 122

Working with the #define Directive 124
Conditional Inclusion 126

Standard Macros for Character Manipulation 128
Redirecting Standard Input and Output 130
Exercises 132

Solutions 134

Converting Arithmetic Types 139

Implicit Type Conversions 140

Performing Usual Arithmetic Type Conversions 142
Implicit Type Conversions in Assignments 144
More Type Conversions 146

Exercises 148

Solutions 150

The Standard Class string 153

Defining and Assigning Strings 154
Concatenating Strings 156

Comparing Strings 158

Inserting and Erasing in Strings 160
Searching and Replacing in Strings 162
Accessing Characters in Strings 164
Exercises 166

Solutions 168

Functions 171

Significance of Functions in C++ 172
Defining Functions 174

Return Value of Functions 176
Passing Arguments 178

Inline Functions 180

Default Arguments 182

Overloading Functions 184

Recursive Functions 186

Exercises 188

Solutions 191

Storage Classes and Namespaces 197

Storage Classes of Objects 198
The Storage Class extern 200

xiii

Xiv

CONTENTS

Chapter 12

Chapter 13

Chapter 14

The Storage Class static 202

The Specifiers auto and register 204
The Storage Classes of Functions 206
Namespaces 208

The Keyword using 210

Exercises 212

Solutions 216

References and Pointers 221

Defining References 222

References as Parameters 224
References as Return Value 226
Expressions with Reference Type 228
Defining Pointers 230

The Indirection Operator 232
Pointers as Parameters 234

Exercises 236

Solutions 238

Defining Classes 243

The Class Concept 244
Defining Classes 246
Defining Methods 248
Defining Objects 250
Using Objects 252
Pointers to Objects 254
Structs 256

Unions 258

Exercise 260
Solution 262

Methods 265

Constructors 266

Constructor Calls 268
Destructors 270

Inline Methods 272

Access Methods 274

const Objects and Methods 276
Standard Methods 278

this Pointer 280

Passing Objects as Arguments 282
Returning Objects 284
Exercises 286

Solutions 290

Chapter 15

Chapter 16

Chapter 17

Chapter 18

CONTENTS

Member Objects and Static Members 297

Member Objects 298

Member Initializers 300

Constant Member Objects 302
Static Data Members 304
Accessing Static Data Members 306
Enumeration 308

Exercises 310

Solutions 314

Arrays 321

Defining Arrays 322
Initializing Arrays 324
Arrays 326

Class Arrays 328
Multidimensional Arrays 330
Member Arrays 332
Exercises 334

Solutions 338

Arrays and Pointers 349

Arrays and Pointers (1) 350
Arrays and Pointers (2) 352
Pointer Arithmetic 354

Arrays as Arguments 356
Pointer Versions of Functions 358
Read-Only Pointers 360
Returning Pointers 362

Arrays of Pointers 364
Command Line Arguments 366
Exercises 368

Solutions 372

Fundamentals of File Input and Output 379

Files 380

File Streams 382

Creating File Streams 384

Open Modes 386

Closing Files 388

Reading and Writing Blocks 390
Object Persistence 392
Exercises 394

Solutions 398

XV

Xvi

CONTENTS

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Overloading Operators 411

Generals 412

Operator Functions (1) 414
Operator Functions (2) 416

Using Overloaded Operators 418
Global Operator Functions 420
Friend Functions 422

Friend Classes 424

Overloading Subscript Operators 426
Overloading Shift-Operators for [/O 428
Exercises 430

Solutions 432

Type Conversion for Classes 441

Conversion Constructors 442
Conversion Functions 444
Ambiguities of Type Conversions 446
Exercise 448

Solution 450

Dynamic Memory Allocation 453

The Operator new 454
The Operator delete 456
Dynamic Storage Allocation for Classes

458

Dynamic Storage Allocation for Arrays 460

Application: Linked Lists 462
Representing a Linked List 464
Exercises 466

Solutions 468

Dynamic Members 477

Members of Varying Length 478
Classes with a Dynamic Member 480
Creating and Destroying Objects 482
Implementing Methods 484

Copy Constructor 486

Assignment 488

Exercises 490

Solutions 492

Inheritance 499

Concept of Inheritance 500
Derived Classes 502

Chapter 24

Chapter 25

Chapter 26

Chapter 27

CONTENTS

Members of Derived Classes 504

Member Access 506

Redefining Members 508

Constructing and Destroying Derived Classes 510
Objects of Derived Classes 512

Protected Members 514

Exercises 516

Solutions 520

Type Conversion in Class Hierarchies 529

Converting to Base Classes 530

Type Conversions and Assignments 532
Converting References and Pointers 534
Explicit Type Conversions 536
Exercises 538

Solutions 540

Polymorphism 543

Concept of Polymorphism 544

Virtual Methods 546

Destroying Dynamically Allocated Objects 548
Virtual Method Table 550

Dynamic Casts 552

Exercises 554

Solutions 558

Abstract Classes 565

Pure Virtual Methods 566

Abstract and Concrete Classes 568

Pointers and References to Abstract Classes 570
Virtual Assignment 572

Application: Inhomogeneous Lists 574
Implementing an Inhomogeneous List 576
Exercises 578

Solutions 580

Multiple Inheritance 587

Multiply-Derived Classes 588
Multiple Indirect Base Classes 590
Virtual Base Classes 592
Constructor Calls 594

Initializing Virtual Base Classes 596
Exercises 598

Solutions 602

xvii

xviii

CONTENTS

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

Exception Handling 607

Traditional Error Handling 608
Exception Handling 610

Exception Handlers 612

Throwing and Catching Exceptions 614
Nesting Exception Handling 616
Defining Your Own Error Classes 618
Standard Exception Classes 620
Exercises 622

Solutions 626

More About Files 637

Opening a File for Random Access 638
Positioning for Random Access 640
File State 644

Exception Handling for Files 646
Persistence of Polymorphic Objects 648
Application: Index Files 652
Implementing an Index File 654
Exercises 656

Solutions 660

More About Pointers 681

Pointer to Pointers 682

Variable Number of Arguments 684
Pointers to Functions 688

Complex Declarations 690
Defining Typenames 692
Application: Dynamic Matrices 694
Exercises 696

Solutions 698

Manipulating Bits 705

Bitwise Operators 706
Bitwise Shift Operators 708
Bit Masks 710

Using Bit Masks 712
Bit-Fields 714

Exercises 716

Solutions 718

Templates 721

Function and Class Templates 722
Defining Templates 724

Chapter 33

CONTENTS

Template Instantiation 726
Template Parameters 728

Template Arguments 730
Specialization 732

Default Arguments of Templates 734
Explicit Instantiation 736

Exercises 738

Solutions 742

Containers 749

Container Types 750
Sequences 752

[terators 754

Declaring Sequences 756
Inserting in Sequences 758
Accessing Objects 760
Length and Capacity 762
Deleting in Sequences 764
List Operations 766
Associative Containers 768
Sets and Multisets 770
Maps and Multimaps 772
Bitsets 774

Exercise 778

Solution 780

Appendix 783
Binary Numbers 784

Preprocessor Directives 787
Pre-Defined Standard Macros 792
Binding C Functions 793
Operators Overview 795
Operator Precedence Table 797
ASCII Code Table 798

Screen Control Sequences 800
Literature 801

Index 803

Xix

This page intentionally left blank

chapter

Fundamentals

This chapter describes the fundamental characteristics of the object-
oriented C++ programming language. In addition, you will be introduced
to the steps necessary for creating a fully functional C++ program.The
examples provided will help you retrace these steps and also

demonstrate the basic structure of a C++ program.

2 = CHAPTER | FUNDAMENTALS

® DEVELOPMENT AND PROPERTIES OF C++

Characteristics

C++

Cc

-universal

-efficient

-close to the machine
-portable

OOP

-data abstraction
-data hiding
-inheritance
-polymorphism

Extensions

-exception handling
-templates

DEVELOPMENT AND PROPERTIES OF C++ 3

[1 Historical Perspective

The C++ programming language was created by Bjarne Stroustrup and his team at Bell
Laboratories (AT&T, USA) to help implement simulation projects in an object-ori-
ented and efficient way. The earliest versions, which were originally referred to as “C
with classes,” date back to 1980. As the name C++ implies, C++ was derived from the C
programming language: ++ is the increment operator in C.

As early as 1989 an ANSI Committee (American National Standards Institute) was
founded to standardize the C++ programming language. The aim was to have as many
compiler vendors and software developers as possible agree on a unified description of
the language in order to avoid the confusion caused by a variety of dialects.

In 1998 the ISO (International Organization for Standardization) approved a stan-
dard for C++ (ISO/IEC 14882).

[1 Characteristics of C++

C++ is not a purely object-oriented language but a hybrid that contains the functionality

of the C programming language. This means that you have all the features that are avail-
able in C:

® universally usable modular programs
m efficient, close to the machine programming
m portable programs for various platforms.

The large quantities of existing C source code can also be used in C++ programs.
C++ supports the concepts of object-oriented programming (or OOP for short),
which are:

data abstraction, that is, the creation of classes to describe objects
data encapsulation for controlled access to object data
inheritance by creating derived classes (including multiple derived classes)

polymorphism (Greek for multiform), that is, the implementation of instructions
that can have varying effects during program execution.

Various language elements were added to C++, such as references, templates, and excep-
tion handling. Even though these elements of the language are not strictly object-ori-
ented programming features, they are important for efficient program implementation.

4 = CHAPTER | FUNDAMENTALS

m OBJECT-ORIENTED PROGRAMMING

Traditional concept

function1 \
/ -
function2
function3 /
IR
Object-oriented concept
object1 object2

Properties

Capacities

Properties

Capacities

OBJECT-ORIENTED PROGRAMMING 5

[Traditional Procedural Programming

In traditional, procedural programming, data and functions (subroutines, procedures) are
kept separate from the data they process. This has a significant effect on the way a pro-
gram handles data:

m the programmer must ensure that data are initialized with suitable values before
use and that suitable data are passed to a function when it is called

m if the data representation is changed, e.g. if a record is extended, the correspon-
ding functions must also be modified.

Both of these points can lead to errors and neither support low program maintenance
requirements.

[1 Objects

Object-oriented programming shifts the focus of attention to the objects, that is, to the
aspects on which the problem is centered. A program designed to maintain bank
accounts would work with data such as balances, credit limits, transfers, interest calcula-
tions, and so on. An object representing an account in a program will have properties
and capacities that are important for account management.

OOP objects combine data (properties) and functions (capacities). A class defines a
certain object type by defining both the properties and the capacities of the objects of
that type. Objects communicate by sending each other “messages,” which in turn acti-
vate another object’s capacities.

[1 Advantages of OOP

Object-oriented programming offers several major advantages to software development:

m reduced susceptibility to errors: an object controls access to its own data. More
specifically, an object can reject erroneous access attempts

m easy re-use: objects maintain themselves and can therefore be used as building
blocks for other programs

= low maintenance requirement: an object type can modify its own internal data
representation without requiring changes to the application.

6 = CHAPTER | FUNDAMENTALS

m DEVELOPING A C++ PROGRAM

Translating a C++ program

Editor l

Source file

Header file

|

file

Compiler
A
Object file
Standard
/ Iibrary
Linker
\ Other
libraries,
object files
\ 4
Executable

DEVELOPING A C++ PROGRAM 7

The following three steps are required to create and translate a C++ program:

1. First, a text editor is used to save the C++ program in a text file. In other words,
the source code is saved to a source file. In larger projects the programmer will nor-
mally use modular programming. This means that the source code will be stored in
several source files that are edited and translated separately.

2. The source file is put through a compiler for translation. If everything works as
planned, an object file made up of machine code is created. The object file is also
referred to as a module.

3. Finally, the linker combines the object file with other modules to form an exe-
cutable file. These further modules contain functions from standard libraries or
parts of the program that have been compiled previously.

It is important to use the correct file extension for the source file’s name. Although
the file extension depends on the compiler you use, the most commonly found file exten-
sions are . cpp and .cc.

Prior to compilation, header files, which are also referred to as include files, can be
copied to the source file. Header files are text files containing information needed by var-
ious source files, for example, type definitions or declarations of variables and functions.
Header files can have the file extension .h, but they may not have any file extension.

The C++ standard library contains predefined and standardized functions that are
available for any compiler.

Modern compilers normally offer an integrated software development environment, which
combines the steps mentioned previously into a single task. A graphical user interface is
available for editing, compiling, linking, and running the application. Moreover, addi-
tional tools, such as a debugger, can be launched.

If the source file contains just one syntax error, the compiler will report an error. Additional error
messages may be shown if the compiler attempts to continue despite having found an error. So when
you are troubleshooting a program, be sure to start with the first error shown.

In addition to error messages, the compiler will also issue warnings. A warning does
not indicate a syntax error but merely draws your attention to a possible error in the pro-
gram’s logic, such as the use of a non-initialized variable.

8

CHAPTER |

FUNDAMENTALS

m A BEGINNER’S C++ PROGRAM

Sample program

#include <iostream>
using namespace std;

int main()

{

cout << "Enjoy yourself with C++!" << endl;

return 0;

Screen output

Enjoy yourself with C++!

Structure of function main ()

Function name

Type of function —|int main()
Beginning of —»| {
function

What the program does

(statements) ~ Function block

End of function —| } -

A BEGINNER’S C++ PROGRAM 9

A C++ program is made up of objects with their accompanying member functions and
global functions, which do not belong to any single particular class. Each function fulfills
its own particular task and can also call other functions. You can create functions your-
self or use ready-made functions from the standard library. You will always need to write
the global function main () yourself since it has a special role to play; in fact it is the
main program.

The short programming example on the opposite page demonstrates two of the most
important elements of a C++ program. The program contains only the function main ()
and displays a message.

The first line begins with the number symbol, #, which indicates that the line is
intended for the preprocessor. The preprocessor is just one step in the first translation
phase and no object code is created at this time. You can type

#include <filename>

to have the preprocessor copy the quoted file to this position in the source code. This
allows the program access to all the information contained in the header file. The header
file iostream comprises conventions for input and output streams. The word stream
indicates that the information involved will be treated as a flow of data.

Predefined names in C++ are to be found in the std (standard) namespace. The
using directive allows direct access to the names of the std namespace.

Program execution begins with the first instruction in function main (), and this is
why each C++ program must have a main function. The structure of the function is
shown on the opposite page. Apart from the fact that the name cannot be changed, this
function’s structure is not different from that of any other C++ function.

In our example the function main () contains two statements. The first statement

cout << "Enjoy yourself with C++!" << endl;

outputs the text string Enjoy yourself with C++! on the screen. The name cout
(console output) designates an object responsible for output.

The two less-than symbols, <<, indicate that characters are being “pushed” to the out-
put stream. Finally endl (end of line) causes a line feed. The statement

return 0;

terminates the function main () and also the program, returning a value of 0 as an exit
code to the calling program. It is standard practice to use the exit code 0 to indicate that
a program has terminated correctly.

Note that statements are followed by a semicolon. By the way, the shortest statement
comprises only a semicolon and does nothing.

Administrator
a

Administrator
its own particular task and can also call other functions. You can create functions yourself
or use ready-made functions from the standard library. You

Administrator
or use ready-made functions from the standard library. You will always need to write
the global function

10

CHAPTER

| FUNDAMENTALS

® STRUCTURE OF SIMPLE C++ PROGRAMS

A C++ program with several functions

A program with some functions and comments

#include <iostream>
using namespace std;

void line(), message() ; // Prototypes

int main()
{
cout << "Hello! The program starts in main()."
<< endl;
line () ;
message () ;
line () ;
cout << "At the end of main()." << endl;

return 0;

}

void line () // To draw a line.

void message () // To display a message.

{
}

cout << "In function message()." << endl;

/**

**/

Screen output

Hello! The program starts in main() .

At the end of main().

STRUCTURE OF SIMPLE C++ PROGRAMS 11

The example on the opposite page shows the structure of a C++ program containing
multiple functions. In C++, functions do not need to be defined in any fixed order. For
example, you could define the function message () first, followed by the function
line (), and finally the main () function.

However, it is more common to start with the main () function as this function con-
trols the program flow. In other words, main () calls functions that have yet to be
defined. This is made possible by supplying the compiler with a function prototype that
includes all the information the compiler needs.

This example also introduces comments. Strings enclosed in /* . . . */ or start-
ing with // are interpreted as comments.

EXAMPLES:

/* 1 can cover
several lines */
// I can cover just one line

In single-line comments the compiler ignores any characters following the // signs up
to the end of the line. Comments that cover several lines are useful when troubleshoot-
ing, as you can use them to mask complete sections of your program. Both comment
types can be used to comment out the other type.

As to the layout of source files, the compiler parses each source file sequentially,
breaking the contents down into tokens, such as function names and operators. Tokens
can be separated by any number of whitespace characters, that is, by spaces, tabs, or
new line characters. The order of the source code is important but it is not important
to adhere to a specific layout, such as organizing your code in rows and columns. For
example

void message
(){ cout <<
"In function message()." <<
endl;}

might be difficult to read, but it is a correct definition of the function message ().
Preprocessor directives are one exception to the layout rule since they always occupy a
single line. The number sign, #, at the beginning of a line can be preceded only by a
space or a tab character.
To improve the legibility of your C++ programs you should adopt a consistent style,
using indentation and blank lines to reflect the structure of your program. In addition,
make generous use of comments.

I2 = CHAPTER | FUNDAMENTALS

= EXERCISES

Program listing of exercise 3

#include <iostream>
using namespace std;

void pause() ; // Prototype

int main ()

{

cout << endl << "Dear reader, "
<< endl << "have a ";

pause () ;

cout << "I" << endl;

return 0;

void pause ()

{

cout << "BREAK";

Exercise |

EXERCISES

Write a C++ program that outputs the following text on screen:

Oh what

a happy day!

Oh vyes,

what a happy day!

Use the manipulator endl where appropriate.

Exercise 2

The following program contains several errors:

*/ Now you should not forget your glasses //
#include <stream>

int main

{

cout
cout
cout
cout

<<

>>

<<

<<

<<

"If this text",
" appears on your display, ";

" endl;"
'you can pat yourself on '
" the back!" << endl.

return 0;

Resolve the errors and run the program to test your changes.

Exercise 3

What does the C++ program on the opposite page output on screen?

CHAPTER | FUNDAMENTALS

SOLUTIONS

Exercise |
// Let's go !

#include <iostream>
using namespace std;

solutions

int main()
{
cout << " Oh what " << endl;
cout << " a happy day! " << endl;
cout << " Oh yes, " << endl;
cout << " what a happy day! " << endl;
return O0;
}
Exercise 2

The corrected places are underlined.

/* Now you should not forget your glasses */
#include <iostreams>
using namespace std;
int main()
{
cout << " If this text ";
cout << " appears on your display, ";
cout << endl;

cout << " you can pat yourself on "
<< " the back!" << endl;
return 0O;
Exercise 3

The screen output begins on a new line:

Dear reader,
have a BREAK!

chapter

Fundamental Types,
Constants, and Variables

This chapter introduces you to the basic types and objects used by C++

programs.

16 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® FUNDAMENTAL TYPES

Overview"
For boolean values » bool
/ char
For characters
/ short
For integers > int

\ long
/ Frost
For floating-point > double

values \
long double

* without type void, which will be introduced later.

FUNDAMENTAL TYPES 17

A program can use several data to solve a given problem, for example, characters, inte-
gers, or floating-point numbers. Since a computer uses different methods for processing
and saving data, the data type must be known. The type defines

1. the internal representation of the data, and

2. the amount of memory to allocate.

A number such as -1000 can be stored in either 2 or 4 bytes. When accessing the
part of memory in which the number is stored, it is important to read the correct number
of bytes. Moreover, the memory content, that is the bit sequence being read, must be
interpreted correctly as a signed integer.

The C++ compiler recognizes the fundamental types, also referred to as built-in types,
shown on the opposite page, on which all other types (vectors, pointers, classes, ...) are

based.

[l The Type bool

The result of a comparison or a logical association using AND or OR is a boolean value,
which can be true or false. C++ uses the bool type to represent boolean values. An
expression of the type bool can either be true or false, where the internal value for
true will be represented as the numerical value 1 and false by a zero.

[The char and wchar t Types

These types are used for saving character codes. A character code is an integer associated
with each character. The letter A is represented by code 65, for example. The character
set defines which code represents a certain character. When displaying characters on
screen, the applicable character codes are transmitted and the “receiver,” that is the
screen, is responsible for correctly interpreting the codes.

The C++ language does not stipulate any particular characters set, although in gen-
eral a character set that contains the ASCII code (American Standard Code for Informa-
tion Interchange) is used. This 7-bit code contains definitions for 32 control characters
(codes 0 —31) and 96 printable characters (codes 32 — 127).

The char (character) type is used to store character codes in one byte (8 bits). This
amount of storage is sufficient for extended character sets, for example, the ANSI char-
acter set that contains the ASCII codes and additional characters such as German
umlauts.

The wchar t (wide character type) type comprises at least 2 bytes (16 bits) and is
thus capable of storing modern Unicode characters. Unicode is a 16-bit code also used in
Windows NT and containing codes for approximately 35,000 characters in 24 languages.

18 CHAPTER 2

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® FUNDAMENTAL TYPES (CONTINUED)
Integral types

Type Size Range of Values (decimal)
char 1 byte 428 to +127 or 0 to 255
unsigned char 1 byte 0 to 255
signed char 1 byte 128 to +127
int 2 byte resp. -32768 to +32767 resp.
4 byte 2147483648 to +2147483647
unsigned int 2 byte resp. 0 to 65535 resp.
4 byte 0 to 4294967295
short 2 byte -32768 to +32767
unsigned short 2 byte 0 to 65535
long 4 byte 2147483648 to +2147483647
unsigned long 4 byte 0 to 4294967295

Sample program

{

#include <iostream>
#include <climits>

using namespace std;

int main ()

€ M e m— o

cout <<
<< endl << endl;
cout << "Type
<< endl
<< endl;
cout << "int
cout << "unsigned int

return 0O;

// Definition of INT MIN,

"Range of types int and unsigned

Minimum

int"

Maximum"

L

n

<< INT MAX <<
<< n

<< UINT MAX <<

INT MIN << " "

FUNDAMENTAL TYPES (CONTINUED) 19

[Integral Types

The types short, int, and 1ong are available for operations with integers. These types
are distinguished by their ranges of values. The table on the opposite page shows the
integer types, which are also referred to as integral types, with their typical storage
requirements and ranges of values.

The int (integer) type is tailor-made for computers and adapts to the length of a reg-
ister on the computer. For 16-bit computers, int is thus equivalent to short, whereas
for 32-bit computers int will be equivalent to long.

C++ treats character codes just like normal integers. This means you can perform cal-
culations with variables belonging to the char or wchar t types in exactly the same
way as with int type variables. char is an integral type with a size of one byte. The
range of values is thus =128 to +127 or from O to 255, depending on whether the com-
piler interprets the char type as signed or unsigned. This can vary in C++.

The wchar t type is a further integral type and is normally defined as unsigned
short.

[l The signed and unsigned Modifiers

The short, int, and 1ong types are normally interpreted as signed with the highest bit
representing the sign. However, integral types can be preceded by the keyword
unsigned. The amount of memory required remains unaltered but the range of values
changes due to the highest bit no longer being required as a sign. The keyword
unsigned can be used as an abbreviation for unsigned int.

The char type is also normally interpreted as signed. Since this is merely a conven-
tion and not mandatory, the signed keyword is available. Thus three types are avail-
able: char, signed char,and unsigned char.

In ANSI C++ the size of integer types is not preset. However, the following order applies:

char <= short <= int <= long

Moreover, the short type comprises at least 2 bytes and the 1ong type at least 4 bytes.

The current value ranges are available in the climits header file. This file defines
constants such as CHAR MIN, CHAR MAX, INT MIN, and INT MAX, which represent
the smallest and greatest possible values. The program on the opposite page outputs the
value of these constants for the int and unsigned int types.

20 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® FUNDAMENTAL TYPES (CONTINUED)

Floating-point types

Type Size Range of Lowest Positive Accuracy
Values Value (decimal)
float 4 bytes —3.4E+38 1.2E—38 6 digits
double 8 bytes —1.7E+308 2.3E—308 15 digits
long double 10 bytes -1.1E+4932 3.4E—4932 19 digits

IEEE format (IEEE = Institute of Electrical and Electronic Engineers) is normally used to represent
floating-point types. The table above makes use of this representation.

Arithmetic types

Integral types
bool

char, signed char, unsigned char, wchar t
short, unsigned short

int, unsigned int

long, unsigned long

Floating-point types

float
double
long double

Arithmetic operators are defined for arithmetic types, i.e. you can perform calculations with variables of
this type.

FUNDAMENTAL TYPES (CONTINUED) 21

[1 Floating-Point Types

Numbers with a fraction part are indicated by a decimal point in C++ and are referred to
as floating-point numbers. In contrast to integers, floating-point numbers must be stored
to a preset accuracy. The following three types are available for calculations involving
floating-point numbers:

float for simple accuracy
double for double accuracy
long double for high accuracy

The value range and accuracy of a type are derived from the amount of memory allocated
and the internal representation of the type.

Accuracy is expressed in decimal places. This means that “six decimal places” allows a
programmer to store two floating-point numbers that differ within the first six decimal
places as separate numbers. In reverse, there is no guarantee that the figures 12.3456 and
12.34561 will be distinguished when working to a accuracy of six decimal places. And
remember, it is not a question of the position of the decimal point, but merely of the
numerical sequence.

If it is important for your program to display floating-point numbers with an accuracy
supported by a particular machine, you should refer to the values defined in the cfloat
header file.

Readers interested in additional material on this subject should refer to the Appendix,
which contains a section on the representation of binary numbers on computers for both
integers and floating-point numbers.

[] The sizeof Operator

The amount of memory needed to store an object of a certain type can be ascertained
using the sizeof operator:

sizeof (name)

yields the size of an object in bytes, and the parameter name indicates the object type or
the object itself. For example, sizeof (int) represents a value of 2 or 4 depending on
the machine. In contrast, sizeof (float) will always equal 4.

[] Classification

The fundamental types in C++ are integer types, floating-point types, and the void type.
The types used for integers and floating-point numbers are collectively referred to as
arithmetic types, as arithmetic operators are defined for them.

The void type is used for expressions that do not represent a value. A function call
can thus take a void type.

22 CHAPTER 2

m CONSTANTS

Examples for integral constants

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

Decimal Octal Hexadecimal Type

16 020 0x10 int

255 0377 OXff int

32767 077777 0x7FFF int

32768U 0100000U 0x8000U unsigned int

100000 0303240 0x186A0 int (32 bit-)
long (16 bit-

CPU)

10L 012L OxAL long

27UL 033UL Ox1bUL unsigned long

2147483648 020000000000 0x80000000 unsigned long

In each line of the above table, the same value is presented in a different way.

Sample program

//

// decimal integer literals.

#include <iostream>
using namespace std;

// To display hexadecimal integer literals and

int main()
// cout outputs integers as decimal integers:
cout << "Value of O0xFF = " << OxFF << " decimal"
<< endl; // Output: 255 decimal

// The manipulator hex changes output to hexadecimal

// format (dec changes to decimal format) :

cout << "Value of 27 = " << hex << 27 <<" hexadecimal"
<< endl; // Output: 1b hexadecimal

return O;

CONSTANTS 23

The boolean keywords true and false, a number, a character, or a character sequence
(string) are all constants, which are also referred to as a literals. Constants can thus be
subdivided into

boolean constants
numerical constants
character constants

string constants.

Every constant represents a value and thus a type—as does every expression in C++. The
type is defined by the way the constant is written.

[1 Boolean Constants

A boolean expression can have two values that are identified by the keywords true and
false. Both constants are of the bool type. They can be used, for example, to set flags
representing just two states.

[] Integral Constants

Integral numerical constants can be represented as simple decimal numbers, octals, or
hexadecimals:

m a decimal constant (base 10) begins with a decimal number other than zero, such
as 109 or 987650

m an octal constant (base 8) begins with a leading 0, for example 077 or 01234567

m a hexadecimal constant (base 16) begins with the character pair Ox or 0X, for
example 0x2A0 or 0X4b1C. Hexadecimal numbers can be capitalized or non-
capitalized.

Integral constants are normally of type int. If the value of the constant is too large
for the int type, a type capable of representing larger values will be applied. The ranking
for decimal constants is as follows:

int, long, unsigned long

You can designate the type of a constant by adding the letter L or 1 (for long), or U
or u (for unsigned). For example,

12L and 121 correspond to the type 1long
120 and 12u correspond to the type unsigned int
12UL and 12ul correspond to the type unsigned long

CHAPTER 2

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

m CONSTANTS (CONTINUED)

Examples for floating-point constants

5.19

0.519E1

0.0519e2

519.0E-2

12 0.75 0.00004

12.0 <75 0.4e-4
.12E+2 7.5e-1 .4E-4

12e0 75E-2 4E-5

Examples for character constants

Constant Character Constant Value
(ASCII code decimal)
'A’ Capital A 65
'a' Lowercase a 97
v Blank 32
050 Dot 46
‘0" Digit 0 48
'\0"' Terminating null character 0

Internal representation of a string literal

String literal: "Hello!"

Stored byte sequence:

'o! L I\OI

CONSTANTS (CONTINUED) 25

[] Floating-Point Constants

Floating-point numbers are always represented as decimals, a decimal point being used to
distinguish the fraction part from the integer part. However, exponential notation is also
permissible.

EXAMPLES: 27.1 1.8E-2 // Type: double

Here, 1.8E-2 represents a value of 1.8*1072. E can also be written with a small letter
e. A decimal point or E (e) must always be used to distinguish floating-point constants
from integer constants.

Floating-point constants are of type double by default. However, you can add F or £
to designate the f1loat type, or add L or 1 for the 1ong double type.

[] Character Constants

A character constant is a character enclosed in single quotes. Character constants take
the type char.

EXAMPLE: ' // Type: char

The numerical value is the character code representing the character. The constant 'A!

thus has a value of 65 in ASCII code.

[1 String Constants

You already know string constants, which were introduced for text output using the
cout stream. A string constant consists of a sequence of characters enclosed in double
quotes.

EXAMPLE: rToday is a beautiful day!"

A string constant is stored internally without the quotes but terminated with a null char-
acter, \ 0, represented by a byte with a numerical value of 0 — that is, all the bits in this
byte are set to 0. Thus, a string occupies one byte more in memory than the number of
characters it contains. An empty string, " ", therefore occupies a single byte.

The terminating null character \ 0 is not the same as the number zero and has a differ-
ent character code than zero. Thus, the string

EXAMPLE: o

comprises two bytes, the first byte containing the code for the character zero 0 (ASCII
code 48) and the second byte the value 0.

The terminating null character \0 is an example of an escape sequence. Escape
sequences are described in the following section.

26 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

m ESCAPE SEQUENCES

Overview
Single character Meaning ASCII code
(decimal)
\a alert (BEL) 7
\b backspace (BS) 8
\t horizontal tab (HT) 9
\n line feed (LF) 10
\v vertical tab (VT) 11
\f form feed (FF) 12
\r carriage return (CR) 13
\" " (double quote) 34
\' ' (single quote) 39
\? ? (question mark) 63
A\ \ (backslash) 92
\0 string terminating character 0
\ooo numerical value of a character 000 (octal!)
(up to 3 octal digits)
\xhh numerical value of a character hh (hexadecimall)
(hexadecimal digits)

Sample program

#include <iostream>
using namespace std;
int main()
{
cout << "\nThis is\t a string\n\t\t"
" with \"many\" escape sequences!\n";
return 0;

Program output:

This is a string
with "many" escape sequences!

ESCAPE SEQUENCES 27

[1 Using Control and Special Characters

Nongraphic characters can be expressed by means of escape sequences, for example \t,
which represents a tab.

The effect of an escape sequence will depend on the device concerned. The sequence
\t, for example, depends on the setting for the tab width, which defaults to eight blanks
but can be any value.

An escape sequence always begins with a \ (backslash) and represents a single charac-
ter. The table on the opposite page shows the standard escape sequences, their decimal
values, and effects.

You can use octal and hexadecimal escape sequences to create any character code.
Thus, the letter A (decimal 65) in ASCII code can also be expressed as \101 (three
octals) or \x41 (two hexadecimals). Traditionally, escape sequences are used only to
represent non-printable characters and special characters. The control sequences for
screen and printer drivers are, for example, initiated by the ESC character (decimal 27),
which can be represented as \ 33 or \x1b.

Escape sequences are used in character and string constants.

EXAMPLES: '\t' "\tHello\n\tMike!™

The characters ', ", and \ have no special significance when preceded by a backslash, i.e.
they can be represented as \ ', \ ", and \\ respectively.

When using octal numbers for escape sequences in strings, be sure to use three digits,
for example, \ 033 and not \33. This helps to avoid any subsequent numbers being eval-
uated as part of the escape sequence. There is no maximum number of digits in a hexa-
decimal escape sequence. The sequence of hex numbers automatically terminates with
the first character that is not a valid hex number.

The sample program on the opposite page demonstrates the use of escape sequences in
strings. The fact that a string can occupy two lines is another new feature. String
constants separated only by white spaces will be concatenated to form a single string.

To continue a string in the next line you can also use a backslash \ as the last
character in a line, and then press the Enter key to begin a new line, where you can
continue typing the string.

EXAMPLE: "I am a very, very \
long string"
Please note, however, that the leading spaces in the second line will be evaluated as part

of the string. It is thus generally preferable to use the first method, that is, to terminate
the string with " and reopen it with ".

28 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

m NAMES

Keywords in C++

asm do inline short typeid
auto double int signed typename
bool dynamic_cast | long sizeof union
break else mutable static unsigned
case enum namespace static_cast using
catch explicit new struct virtual
char extern operator switch void
class false private template volatile
const float protected this wchar_t
const_cast for public throw while
continue friend register true

default goto reinterpret_cast | try

delete if return typedef

Examples for names

valid:
a Uus us VOID
_var SetTextColor
B12 top_of window

a_very long namel23467890

invalid:
goto 586_cpu object-oriented
Uss true écu

NAMES 29

[] Valid Names

Within a program names are used to designate variables and functions. The following
rules apply when creating names, which are also known as identifiers:

B aname contains a series of letters, numbers, or underscore characters (_). Ger-
man umlauts and accented letters are invalid. C++ is case sensitive; that is,
upper- and lowercase letters are different.
the first character must be a letter or underscore
there are no restrictions on the length of a name and all the characters in the
name are significant

m C++ keywords are reserved and cannot be used as names.

The opposite page shows C++ keywords and some examples of valid and invalid names.
The C++ compiler uses internal names that begin with one or two underscores fol-
lowed by a capital letter. To avoid confusion with these names, avoid use of the under-
score at the beginning of a name.
Under normal circumstances the linker only evaluates a set number of characters, for
example, the first 8 characters of a name. For this reason names of global objects, such as
functions, should be chosen so that the first eight characters are significant.

[1 Conventions

In C++ it is standard practice to use small letters for the names of variables and func-
tions. The names of some variables tend to be associated with a specific use.

EXAMPLES:
c, ch for characters
i, j, k, 1, m, n for integers, in particular indices
X, vV, 2 for floating-point numbers

To improve the readability of your programs you should choose longer and more self-
explanatory names, such as start index or startIndex for the first index in a range
of index values.

In the case of software projects, naming conventions will normally apply. For exam-
ple, prefixes that indicate the type of the variable may be assigned when naming vari-

ables.

30 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

= VARIABLES

Sample program

// Definition and use of variables
#include <iostream>
using namespace std;

int gVarl; // Global wvariables,
int gvar2 = 2; // explicit initialization
int main()
{
char ch('A'); // Local variable being initialized

// or: char ch = 'A';

cout << "Value of gVarl: " << gVarl << endl;
cout << "Value of gVar2: " << gVar2 << endl;
cout << "Character in ch: " << ch << endl;

int sum, number = 3; // Local variables with

// and without initialization
sum = number + 5;
cout << "Value of sum: " << sum << endl;

return 0;

Both strings and all other values of fundamental types can be output with cout. Integers are printed in
decimal format by default.

Screen output

Value of gvVarl: O
Value of gvVar2: 2
Character in ch: A
Value of sum: 8

VARIABLES 31

Data such as numbers, characters, or even complete records are stored in wvariables to
enable their processing by a program. Variables are also referred to as objects, particularly
if they belong to a class.

[1 Defining Variables

A variable must be defined before you can use it in a program. When you define a vari-
able the type is specified and an appropriate amount of memory reserved. This memory
space is addressed by reference to the name of the variable. A simple definition has the
following syntax:

SYNTAX: typ namel [name2 ...];
This defines the names of the variables in the list name1 [, name2 ...] as variables
of the type type. The parentheses [... 1 in the syntax description indicate that this

part is optional and can be omitted. Thus, one or more variables can be stated within a
single definition.

EXAMPLES: char c;

int i, counter;
double x, y, size;

In a program, variables can be defined either within the program’s functions or out-
side of them. This has the following effect:

m a variable defined outside of each function is globdl, i.e. it can be used by all func-
tions

m a variable defined within a function is local, i.e. it can be used only in that func-
tion.

Local variables are normally defined immediately after the first brace—for example at
the beginning of a function. However, they can be defined wherever a statement is per-
mitted. This means that variables can be defined immediately before they are used by the
program.

L1 Initialization

A variable can be initialized, i.e. a value can be assigned to the variable, during its defini-
tion. Initialization is achieved by placing the following immediately after the name of
the variable:

® an equals sign (=) and an initial value for the variable or
m round brackets containing the value of the variable.

EXAMPLES: char ¢ = 'a';
float x(1.875);

Any global variables not explicitly initialized default to zero. In contrast, the initial
value for any local variables that you fail to initialize will have an undefined initial value.

32 CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

® THE KEYWORDS const AND volatile

Sample program

// Circumference and area of a circle with radius 2.5

#include <iostream>
using namespace std;

const double pi = 3.141593;
int main()
{

double area, circuit, radius = 1.5;

area = pi * radius * radius;
circuit = 2 * pi * radius;

cout << "\nTo Evaluate a Circle\n" << endl;

cout << "Radius: " << radius << endl
<< "Circumference: " << circuit << endl
<< "Area: " << area << endl;
return O;

By default cout outputs a floating-point number with a maximum of 6 decimal places without trailing
zeros.

Screen output
To Evaluate a Circle
Radius: 1.5

Circumference: 9.42478
Area: 7.06858

THE KEYWORDS CONST AND VOLATILE 33

A type can be modified using the const and volatile keywords.

[1 Constant Objects

The const keyword is used to create a “read only” object. As an object of this type is
constant, it cannot be modified at a later stage and must be initialized during its defini-
tion.

EXAMPLE: const double pi = 3.1415947;

Thus the value of pi cannot be modified by the program. Even a statement such as the
following will merely result in an error message:

pi = pi + 2.0; // invalid

[1 Volatile Objects

The keyword volatile, which is rarely used, creates variables that can be modified not
only by the program but also by other programs and external events. Events can be initi-
ated by interrupts or by a hardware clock, for example.

EXAMPLE: volatile unsigned long clock ticks;

Even if the program itself does not modify the variable, the compiler must assume that
the value of the variable has changed since it was last accessed. The compiler therefore
creates machine code to read the value of the variable whenever it is accessed instead of
repeatedly using a value that has been read at a prior stage.

It is also possible to combine the keywords const and volatile when declaring a
variable.

EXAMPLE: volatile const unsigned time to live;

Based on this declaration, the variable time to live cannot be modified by the pro-
gram but by external events.

34 = CHAPTER 2 FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

= EXERCISES

Screen output for exercise 2

n RUSH n
\TO\

For exercise 3

Defining and initializing variables:

int a(2.5); const long large;

int b = '?"'; char c('\'");

char z(500) ; unsigned char ch = '\201';
int big = 40000; unsigned size (40000) ;

double he's (1.2E+5) ; float val = 12345.12345;

EXERCISES 35

Exercise |

The sizeof operator can be used to determine the number of bytes occupied
in memory by a variable of a certain type. For example, sizeof (short) is
equivalent to 2.

Write a C++ program that displays the memory space required by each
fundamental type on screen.

Exercise 2

Write a C++ program to generate the screen output shown on the opposite
page.

Exercise 3

Which of the variable definitions shown on the opposite page is invalid or does
not make sense?

Exercise 4

Write a C++ program that two defines variables for floating-point numbers and
initializes them with the values

123.456 and 76.543

Then display the sum and the difference of these two numbers on screen.

36

CHAPTER 2

solutions

SOLUTIONS

Exercise |

#include <iostream>
using namespace std;

int main ()

{

cout

cout
cout
cout
cout
cout
cout
cout

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

<<

FUNDAMENTAL TYPES, CONSTANTS, AND VARIABLES

"\nSize of Fundamental Types\n"

" Type Number of Bytes\n"

B e — e —— - " << endl;
" char: " << gizeof (char) << endl;
" short: " << gizeof (short)<< endl;
" int: " << gizeof (int) << endl;
" long: " << gsizeof (long) << endl;
" float: " << gizeof (float)<< endl;
" double: " << gizeof (double) <<endl;
" long double: " << sizeof (long double)
endl;

return 0O;

}

Exercise 2

// Usage of escape sequences

#include <iostream>
using namespace std;

int main|()

{

cout

<<

"\n\n\t I"

"\n\n\t\t \"RUSH\""
"\n\n\t\t\t \\TO\\"
"\n\n\t\t AND"

"\n\n\t /FRO/" << endl;

return O0;

// Instead of tabs
// you can send the
// suited number

// of blanks to

// the output.

Exercise 3

Incorrect:

int a(2.5); //

const long large; //

char z(500) ; //
//

int big = 40000; //
//

double he's(1.2E+5) ; //
//

float val = 12345.12345; //
//

Exercise 4

// Defining and initializing

#include <iostream>
using namespace std;

int main ()

{

float x = 123.456F,
y = 76.543F,
sum;
sum = X + Y;
cout << "Total: "
<< X << "+ " << ¥ <<
cout << "Difference: "
<< X << " =" << ¥y <<
return 0;

SOLUTIONS

2.5 is not an integer value
Without initialization

The value 500 is too large
to fit in a byte

Attention! On 16-bit systems
32767

is not

int values are <=
The character '
allowed in names
The accuracy of float
is only 6 digits

variables

// or double

" = " << gum << endl;

"= " << (x — vy) << endl;

37

This page intentionally left blank

chapter

Using Functions and
Classes

This chapter describes how to

m declare and call standard functions and

m use standard classes.
This includes using standard header files. In addition, we will be working
with string variables, i.e. objects belonging to the standard class string
for the first time.

Functions and classes that you define on your own will not be

introduced until later in the book.

39

40 CHAPTER 3 USING FUNCTIONS AND CLASSES

m DECLARING FUNCTIONS

Example of a function prototype

Function name

long func (int, double);
Types of arguments

Function type
= type of return value

The prototype above yields the following information to the compiler:

® func is the function name

m the function is called with two arguments: the first argument is of type int, the
second of type double

m the return value of the function is of type 1ong.

Mathematical standard functions

double sin (double); // Sine

double cos (double); // Cosine

double tan (double); // Tangent

double atan (double); // Arc tangent

double cosh (double); // Hyperbolic Cosine
double sqgrt (double); // Square Root

double pow (double, double); // Power

double exp (double); // Exponential Function
double log (double); // Natural Logarithm

double logl0 (double); // Base-ten Logarithm

DECLARING FUNCTIONS 41

[Declarations

Each name (identifier) occurring in a program must be known to the compiler or it will
cause an error message. That means any names apart from keywords must be declared, i.e.
introduced to the compiler, before they are used.

Each time a variable or a function is defined it is also declared. But conversely, not
every declaration needs to be a definition. If you need to use a function that has already
been introduced in a library, you must declare the function but you do not need to rede-
fine it.

[1 Declaring Functions

A function has a name and a type, much like a variable. The function’s type is defined by
its return value, that is, the value the function passes back to the program. In addition,
the type of arguments required by a function is important. When a function is declared,
the compiler must therefore be provided with information on

m the name and type of the function and
m the type of each argument.

This is also referred to as the function prototype.

Examples: int toupper (int);

double pow(double, double) ;

This informs the compiler that the function toupper () is of type int, i.e. its return
value is of type int, and it expects an argument of type int. The second function
pow () is of type double and two arguments of type double must be passed to the
function when it is called. The types of the arguments may be followed by names, how-
ever, the names are viewed as a comment only.

Examples: int toupper (int c);

double pow (double base, double exponent) ;

From the compiler’s point of view, these prototypes are equivalent to the prototypes
in the previous example. Both junctions are standard junctions.

Standard function prototypes do not need to be declared, nor should they be, as they
have already been declared in standard header files. If the header file is included in the
program’s source code by means of the #include directive, the function can be used
immediately.

Example: #include <cmaths
Following this directive, the mathematical standard functions, such as sin (), cos (),

and pow (), are available. Additional details on header files can be found later in this
chapter.

42 CHAPTER 3 USING FUNCTIONS AND CLASSES

® FUNCTION CALLS

Sample program

// Calculating powers with
// the standard function pow ()

#include <iostreams> // Declaration of cout
#include <cmaths> // Prototype of pow(), thus:

// double pow(double, double) ;
using namespace std;

int main ()
{

double x = 2.5, vy;

// By means of a prototype, the compiler generates
// the correct call or an error message!

// Computes x raised to the power 3:

y = pow("x", 3.0); // Error! String is not a number
y = pow(x + 3.0); // Error! Just one argument

y = pow(x, 3.0); // ok!

y = pow(x, 3); // ok! The compiler converts the

// int value 3 to double.

cout << "2.5 raised to 3 yields: "
<< y << endl;

// Calculating with pow() is possible:
cout << "2 + (5 raised to the power 2.5) yields: "

<< 2.0 + pow(5.0, x) << endl;

return 0;

Screen output

2.5 raised to the power 3 yields: 15.625
2 + (5 raised to the power 2.5) yields: 57.9017

FUNCTION CALLS 43

[Function Calls

A function call is an expression of the same type as the function and whose value corre-
sponds to the return value. The return value is commonly passed to a suitable variable.

Example: y = pow(x, 3.0);

In this example the function pow () is first called using the arguments x and 3.0, and
the result, the power x, is assigned to y.

As the function call represents a value, other operations are also possible. Thus, the
function pow () can be used to perform calculations for double values.

Example: cout << 2.0 + pow(5.0, x);

This expression first adds the number 2.0 to the return value of pow (5.0, x), then
outputs the result using cout.

Any expression can be passed to a function as an argument, such as a constant or an
arithmetical expression. However, it is important that the types of the arguments corre-
spond to those expected by the function.

The compiler refers to the prototype to check that the function has been called cor-
rectly. If the argument type does not match exactly to the type defined in the prototype,
the compiler performs type conversion, if possible.

Example: vy = pow(x, 3); // also ok!

The value 3 of type int is passed to the function as a second argument. But since the
function expects a double value, the compiler will perform type conversion from int
to double.

If a function is called with the wrong number of arguments, or if type conversion
proves impossible, the compiler generates an error message. This allows you to recognize
and correct errors caused by calling functions at the development stage instead of causing
runtime errors.

Example: float x = pow (3.0 + 4.7); // Error!

The compiler recognizes that the number of arguments is incorrect. In addition, the
compiler will issue a warning, since a double, i.e. the return value of pow (), is assigned
to a float type variable.

44 CHAPTER 3 USING FUNCTIONS AND CLASSES

B TYPE void FOR FUNCTIONS

Sample program

// Outputs three random numbers

#include <iostream> // Declaration of cin and cout
#include <cstdlib> // Prototypes of srand(), rand():
// void srand(unsigned int seed);
// int rand(void) ;
using namespace std;
int main ()
{
unsigned int seed;
int zl, z2, z3;

cout << " --- Random Numbers --- \n" << endl;

cout << "To initialize the random number generator, "
<< "\n please enter an integer value: ";

cin >> seed; // Input an integer

srand(seed) ; // and use it as argument for a
// new sequence of random numbers.

z1l = rand() ; // Compute three random numbers.
z2 = rand() ;
z3 = rand() ;

cout << "\nThree random numbers: "
<< zl1 << " " << z22 << " " << z3 << endl;

return 0;

The statement cin >> seed; reads an integer from the keyboard, because seed is of the
unsigned int type.

Sample screen output

--- Random Numbers ---

To initialize the random number generator,
please enter an integer value: 7777

Three random numbers: 25435 6908 14579

TYPE VOID FOR FUNCTIONS 45

[Functions without Return Value

You can also write functions that perform a certain action but do not return a value to
the function that called them. The type void is available for functions of this type,
which are also referred to as procedures in other programming languages.

Example: void srand(unsigned int seed);

The standard function srand () initializes an algorithm that generates random num-
bers. Since the function does not return a value, it is of type void. An unsigned value
is passed to the function as an argument to seed the random number generator. The
value is used to create a series of random numbers.

[1 Functions without Arguments

If a function does not expect an argument, the function prototype must be declared as
void or the braces following the function name must be left empty.

Example: int rand(void); // or int rand() ;

The standard function rand () is called without any arguments and returns a random
number between 0 and 32767. A series of random numbers can be generated by repeating
the function call.

L] Usage of srand () and rand ()

The function prototypes for srand () and rand () can be found in both the cstdlib
and stdlib.h header files.

Calling the function rand () without previously having called srand () creates the
same sequence of numbers as if the following statement would have been proceeded:

srand (1) ;

If you want to avoid generating the same sequence of random numbers whenever the
program is executed, you must call srand () with a different value for the argument
whenever the program is run.

It is common to use the current time to initialize a random number generator. See
Chapter 6 for an example of this technique.

46 CHAPTER 3 USING FUNCTIONS AND CLASSES

m HEADER FILES

Using header files

v

int main()

{
int a;

cin >> a;

return 0;

#include "myheader.h" |«

cout << myfunc (a);

Header file Header file
iostream myheader.h
// Declaration // Declaration
// of cin, cout, // of self-defined
/! . . // functions
// and classes
long myfunc(int);
Source file
application.cpp
Copy
#include <iostream> Copy

HEADER FILES 47

[1 Using Header Files

Header files are text files containing declarations and macros. By using an #include
directive these declarations and macros can be made available to any other source file,
even in other header files.

Pay attention to the following points when using header files:

m header files should generally be included at the start of a program before any
other declarations

® you can only name one header file per #include directive

m the file name must be enclosed in angled brackets < ... > or double quotes

[1 Searching for Header Files

The header files that accompany your compiler will tend to be stored in a folder of their
own—normally called include. If the name of the header file is enclosed by angled
brackets < ... >, itis common to search for header files in the include folder only.
The current directory is not searched to increase the speed when searching for header
files.

C++ programmers commonly write their own header files and store them in the cur-
rent project folder. To enable the compiler to find these header files, the #include
directive must state the name of the header files in double quotes.

Example: #include "project.h"

The compiler will then also search the current folder. The file suffix .h is normally used
for user-defined header files.

[Standard Class Definitions

In addition to standard function prototypes, the header files also contain standard class
definitions. When a header file is included, the classes defined and any objects declared
in the file are available to the program.

Example: #include <iostreams>
using namespace std;

Following these directives, the classes istream and ostream can be used with the cin
and cout streams. cin is an object of the istream class and cout an object of the
ostream class.

48 CHAPTER 3 USING FUNCTIONS AND CLASSES

m STANDARD HEADER FILES

Header files of the C++ standard library

algorithm ios map stack
bitset iosfwd memory stdexcept
complex iostream new streambuf
dequeue istream numeric string
exception iterator ostream typeinfo
fstream limits queue utility
functional list set valarray
iomanip locale sstream vector

Some IDFE’s put the old-fashioned iostream.h and iomanip.h header files at your disposal. Within
these header files the identifiers of iostream and iomanip are not contained in the std namespace
but are declared globally.

Header files of the C standard library

assert.h limits.h stdarg.h time.h
ctype.h locale.h stddef.h wchar.h
errno.h math.h stdio.h wctype.h
float.h setjmp.h stdlib.h

iso0646.h signal.h string.h

STANDARD HEADER FILES 49

The C++ standard library header files are shown opposite. They are not indicated by the
file extension .h and contain all the declarations in their own namespace, std. Name-
spaces will be introduced in a later chapter. For now, it is sufficient to know that identi-
fiers from other namespaces cannot be referred to directly. If you merely stipulate the
directive

Example: #include <iostreams>

the compiler would not be aware of the cin and cout streams. In order to use the iden-
tifiers of the std namespace globally, you must add a using directive.

Example: #include <iostreams>
#include <string>
using namespace std;

You can then use cin and cout without any additional syntax. The header file
string has also been included. This makes the string class available and allows user-
friendly string manipulations in C++. The following pages contain further details on this
topic.

[1 Header Files in the C Programming Language

The header files standardized for the C programming language were adopted for the C++
standard and, thus, the complete functionality of the standard C libraries is available to
C++ programs.

Example: #include <math.hs>

Mathematical functions are made available by this statement.

The identifiers declared in C header files are globally visible. This can cause name
conflicts in large programs. For this reason each C header file, for example name . h, is
accompanied in C++ by a second header file, cname, which declares the same identifiers
in the std namespace. Including the file math.h is thus equivalent to

Example: #include <cmath>

using namespace std;

The string.h or cstring files must be included in programs that use standard func-
tions to manipulate C strings. These header files grant access to the functionality of the
C string library and are to be distinguished from the string header file that defines the
string class.

Each compiler offers additional header files for platform dependent functionalities.
These may be graphics libraries or database interfaces.

50 CHAPTER 3 USING FUNCTIONS AND CLASSES

B USING STANDARD CLASSES

Sample program using class string

// To use strings.

#include <iostreams> // Declaration of cin, cout
#include <strings> // Declaration of class string
using namespace std;

int main ()

// Defines four strings:

string prompt ("What is your name: "),
name, // An empty
line(40, '-'), // string with 40 '-'
total = "Hello "; // 1s possible!
cout << prompt; // Request for input.
getline(cin, name) ; // Inputs a name in one line
total = total + name; // Concatenates and

// assigns strings.

cout << line << endl // Outputs line and name
<< total << endl;
cout << " Your name is " // Outputs length
<< name.length() << " characters long!" << endl;
cout << line << endl;
return O;
}
Both the operators + and += for concatenation and the relational operators <, <=, >, >=, ==, and

! = are defined for objects of class st ring. Strings can be printed with cout and the operator <<.
The class string will be introduced in detail later on.

Sample screen output

What is your name: Rose Summer
Hello Rose Summer
Your name is 11 characters long!

USING STANDARD CLASSES 51

Several classes are defined in the C++ standard library. These include stream classes for
input and output, but also classes for representing strings or handling error conditions.

Each class is a type with certain properties and capacities. As previously mentioned,
the properties of a class are defined by its data members and the class’s capacities are
defined by its methods. Methods are functions that belong to a class and cooperate with
the members to perform certain operations. Methods are also referred to as member func-
tions.

[1 Creating Objects

An object is a variable of a class type, also referred to as an instance of the class. When an
object is created, memory is allocated to the data members and initialized with suitable
values.

Example: string s("I am a string");

In this example the object s, an instance of the standard class string (or simply a
string), is defined and initialized with the string constant that follows. Objects of the
string class manage the memory space required for the string themselves.

In general, there are several ways of initializing an object of a class. A string can thus
be initialized with a certain number of identical characters, as the example on the oppo-
site page illustrates.

[1 Calling Methods

All the methods defined as public within the corresponding class can be called for an
object. In contrast to calling a global function, a method is always called for one particular
object. The name of the object precedes the method and is separated from the method by
a period.

Example: s.length(); // object.method () ;

The method 1ength () supplies the length of a string, i.e. the number of characters in a
string. This results in a value of 13 for the string s defined above.

[] Classes and Global Functions

Globally defined functions exist for some standard classes. These functions perform certain
operations for objects passed as arguments. The global function getline (), for exam-
ple, stores a line of keyboard input in a string.

Example: getline(cin, s);

The keyboard input is terminated by pressing the return key to create a new-line charac-
ter, '\n"', which is not stored in the string.

52 © CHAPTER 3 USING FUNCTIONS AND CLASSES

= EXERCISES

Screen output for exercise |

Number Square Root
4 2

12.25 3.5
0.0121 0.11

Listing for exercise 2

// A program containing errors!
include <iostream>, <string>
include <stdlib>

void srand(seed) ;

int main ()

string message "\nLearn from your mistakes!";
cout << message << endl;

int len = length(message) ;
cout << "Length of the string: " << len << endl;

// And a random number in addition:

int a, b;

a = srand(12.5);

b = rand(a);

cout << "\nRandom number: " << b << endl;

return O;

EXERCISES 53

Exercise |
Create a program to calculate the square roots of the numbers

4 12.25 0.0121

and output them as shown opposite. Then read a number from the keyboard and
output the square root of this number.

To calculate the square root, use the function sqrt (), which is defined by the
following prototype in the math.h (or cmath) header file:

double sqgrt(double x);
The return value of the sqrt () function is the square root of x.

Exercise 2

The program on the opposite page contains several errors! Correct the errors
and ensure that the program can be executed.

Exercise 3

Create a C++ program that defines a string containing the following character
sequence:

I have learned something new again!
and displays the length of the string on screen.

Read two lines of text from the keyboard. Concatenate the strings using " * "
to separate the two parts of the string. Output the new string on screen.

CHAPTER 3 USING FUNCTIONS AND CLASSES

SOLUTIONS

Exercise |

// Compute square roots

#include <iostream>
#include <cmath>
using namespace std;

int main ()
{

double x1 = 4.0, x2 = 12.25, x3 = 0.0121;

cout << "\n Number \t Square Root" << endl;

solutions

cout << "\n "< x1 << " \t " << sqgrt(xl)
<< "\n "o<< X2 << " \t " << sqgrt(x2)
<< "\n " << xX3 << " \t " << sqgrt(x3) << endl;

cout << "\nType a number whose square root is to be"
" computed. ";
cin >> x1;

cout << "\n Number \t Square Root" << endl;

cout << "\n " << x1 << "\t " << sgrt(xl) << endl;
return 0O;
Exercise 2

// The corrected program:

#include <iostreams // Just one header file in a line
#include <strings>

#include <cstdlib»> // Prototypes of functions
// void srand(unsigned int seed) ;
// int rand(void) ;

// or:

// #include <stdlib.h>

using namespace std; // Introduces all names of namespace
// std into the global scope.

int main()

{

string message = "\nLearn from your mistakes!";...// =
cout << message << endl;

SOLUTIONS

int len = message.length() ;
// instead of: length(message) ;
cout << "Length of the string: " << len << endl;

// And another random number:

int b; // Variable a is not needed.
srand (12) ; // instead of: a = srand(12.5);
b = rand () ; // instead of: b = rand(a);
cout << "\nRandom number: " << b << endl;
return 0O;

1

Exercise 3

#include <iostreams // Declaration of cin, cout

#include <strings> // Declaration of class string

using namespace std;

int main()
string message ("I have learned something new again!\n"),
prompt ("Please input two lines of text:"),
strl, str2, sum;

cout << message << endl; // Outputs the message

cout << prompt << endl; // Request for input

getline(cin, strl); // Reads the first

getline(cin, str2); // and the second line of text
sum = strl + " * " 4 str2; // Concatenates, assigns
cout << sum << endl; // and outputs strings.
return 0;

55

This page intentionally left blank

chapter

Input and Qutput with
Streams

This chapter describes the use of streams for input and output, focusing

on formatting techniques.

57

58 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

m STREAMS

Stream classes for input and output

ios
istream ostream
iostream
The four standard streams
® cin Object of class istream to control standard input
® cout Object of class ostream to control standard output
m cerr Object of class ostream to control unbuffered error output
m clog Object of class ostream to control buffered error output

STREAMS 59

L] 1/0 Stream Classes

During the development of C++ a new class-based input/output system was imple-
mented. This gave rise to the I/O stream classes, which are now available in a library of
their own, the so-called iostream library.

The diagram on the opposite page shows how a so-called class hierarchy develops due
to inheritance. The class 10s is the base class of all other stream classes. It contains the
attributes and abilities common to all streams. Effectively, the ios class

B manages the connection to the physical data stream that writes your program’s
data to a file or outputs the data on screen

m contains the basic functions needed for formatting data. A number of flags that
determine how character input is interpreted have been defined for this purpose.

The istream and ostream classes derived from ios form a user-friendly interface
for stream manipulation. The istream class is used for reading streams and the
ostream class is used for writing to streams. The operator >> is defined in istream
and << is defined in ostream, for example.

The iostream class is derived by multiple inheritance from istream and ostream
and thus offers the functionality of both classes.

Further stream classes, a file management class, for example, are derived from the
classes mentioned above. This allows the developer to use the techniques described for
file manipulation. These classes, which also contain methods for opening and closing
files, will be discussed in a later chapter.

[] Standard Streams

The streams cin and cout, which were mentioned earlier, are instances of the
istream or ostream classes. When a program is launched these objects are automati-
cally created to read standard input or write to standard output.

Standard input is normally the keyboard and standard output the screen. However,
standard input and output can be redirected to files. In this case, data is not read from
the keyboard but from a file, or data is not displayed on screen but written to a file.

The other two standard streams cerr and clog are used to display messages when
errors occur. Error messages are displayed on screen even if standard output has been
redirected to a file.

60 CHAPTER 4

INPUT AND OUTPUT WITH STREAMS

® FORMATTING AND MANIPULATORS

Example: Calling a manipulator

Here the manipulator showpos is called.

l

cout << showpos << 123; // Output: +123
The above statement is equivalent to

cout.setf (ios::showpos) ;
cout << 123;

The other positive numbers are printed with their sign as well:
cout << 22; // Output: +22

The output of a positive sign can be canceled by the manipulator
noshowpos:

cout << noshowpos << 123; // Output: 123
The last statement is equivalent to

cout.unsetf (ios::showpos) ;
cout << 123;

m The operators >> and << format the input and/or output according to how the flags in the base class
ios are set

B The manipulator showpos is a function that calls the method cout . setf (ios: : showpos) ;,
ios: : showpos being the flag showpos belonging to the ios class

m Using manipulators is easier than directly accessing flags. For this reason, manipulators are described in
the following section, whereas the methods setf () and unsetf () are used only under exceptional
circumstances.

m Old compilers only supply some of the manipulators. In this case, you have to use the methods setf ()
and unsetf ().

FORMATTING AND MANIPULATORS 61

[] Formatting

When reading keyboard input, a valid input format must be used to determine how input
is to be interpreted. Similarly, screen output adheres to set of rules governing how, for
example, floating-point numbers are displayed.

The stream classes 1stream and ostream offer various options for performing these
tasks. For example, you can display a table of numeric values in a simple way.

In previous chapters we have looked at the cin and cout streams in statements such
as:

cout << "Please enter a number: ";
cin >> X;

The following sections systematically describe the abilities of the stream classes. This
includes:

m the >> and << operators for formatted input and output. These operators are
defined for expressions with fundamental types—that is, for characters, boolean
values, numbers and strings.

® manipulators, which can be inserted into the input or output stream. Manipula-
tors can be used to generate formats for subsequent input/output. One manipula-
tor that you are already familiar with is end1, which generates a line feed at the
end of a line.

m other methods for determining or modifying the state of a stream and unformat-
ted input and output.

[] Flags and Manipulators

Formatting flags defined in the parent class ios determine how characters are input or
output. In general, flags are represented by individual bits within a special integral vari-
able. For example, depending on whether a bit is set or not, a positive number can be
output with or without a plus sign.

Each flag has a default setting. For example, integral numbers are output as decimals by
default, and positive numbers are output without a plus sign.

It is possible to modify individual formatting flags. The methods setf () and
unsetf () can be used for this purpose. However, the same effect can be achieved sim-
ply by using so-called manipulators, which are defined for all important flags. Manipula-
tors are functions that can be inserted into the input or output stream and thus be called.

62

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED OUTPUT OF INTEGERS

Manipulators formatting integers

Manipulator Effects
oct Octal base
hex Hexadecimal base
dec Decimal base (by default)
showpos Generates a + sign in non-negative numeric
output.
noshowpos Generates non-negative numeric output

without a + sign (by default).

uppercase Generates capital letters in hexadecimal
output.
nouppercase Generates lowercase letters in hexadecimal

output (by default).

Sample program

{

// Reads integral decimal values and
// generates octal, decimal, and hexadecimal output.

#include <iostreams> // Declarations of cin, cout and
using namespace std; // manipulators oct, hex,

int main ()

int number;
cout << "Please enter an integer: ";
cin >> number;

cout << uppercase // for hex-digits
<< " octal \t decimal \t hexadecimal\n "
<< oct << number << " \t "
<< dec << number << " \t "
<< hex << number << endl;

return 0;

FORMATTED OUTPUT OF INTEGERS 63

[1 Formatting Options

The << operator can output values of type short, int, long or a corresponding
unsigned type. The following formatting options are available:

m define the numeric system in which to display the number: decimal, octal, or
hexadecimal

m use capitals instead of small letters for hexadecimals

m display a sign for positive numbers.

In addition, the field width can be defined for the above types. The field width can
also be defined for characters, strings, and floating-point numbers, and will be discussed
in the following sections.

[Numeric System

Integral numbers are displayed as decimals by default. The manipulators oct, hex, and
dec can be used for switching from and to decimal display mode.

Example: cout << hex << 11; // Output: b

Hexadecimals are displayed in small letters by default, that is, using a, b, ..., £. The
manipulator uppercase allows you to use capitals.

Example: cout << hex << uppercase << 11; //Output: B

The manipulator nouppercase returns the output format to small letters.

[] Negative Numbers

When negative numbers are output as decimals, the output will always include a sign.
You can use the showpos manipulator to output signed positive numbers.

Example: cout << dec << showpos << 11; //Output: +11
You can use noshowpos to revert to the original display mode.

When octal or hexadecimal numbers are output, the bits of the number to be output are
always interpreted as unsigned! In other words, the output shows the bit pattern of a
number in octal or hexadecimal format.

Exannﬂe: cout << dec << -1 << " " << hex << -1;

This statement causes the following output on a 32-bit system:

-1 fEEEFFFE

64 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED OUTPUT OF FLOATING-POINT NUMBERS

Manipulators formatting floating-point numbers

Manipulator Effects

showpoint Generates a decimal point character
shown in floating-point output. The
number of digits after the decimal point
corresponds to the used precision.

noshowpoint Trailing zeroes after the decimal point
are not printed.

If there are no digits after the decimal
point, the decimal point is not printed

(by default).
fixed Output in fixed point notation
scientific Output in scientific notation
setprecision (int n) Sets the precisionto n.
Methods for precision
Manipulator Effects
int precision (int n); Sets the precision to n.
int precision() const; Returns the used precision.

The key word const within the prototype of precision () signifies that the method performs only
read operations.

Sample program

#include <iostream>
using namespace std;

int main ()

{
double x = 12.0;
cout.precision(2) ; // Precision 2
cout << " By default: " << X << endl;
cout << " showpoint: " << showpoint << x << endl;
cout << " fixed: " << fixed << X << endl;
cout << " scientific: " << scientific << x << endl;
return 0O;

FORMATTED OUTPUT OF FLOATING-POINT NUMBERS 65

[1 Standard Settings

Floating-points are displayed to six digits by default. Decimals are separated from the
integral part of the number by a decimal point. Trailing zeroes behind the decimal point
are not printed. If there are no digits after the decimal point, the decimal point is not
printed (by default).

Examples: cout << 1.0; // Output: 1
cout << 1.234; // Output: 1.234
cout << 1.234567; // Output: 1.23457

The last statement shows that the seventh digit is not simply truncated but rounded.
Very large and very small numbers are displayed in exponential notation.

Example: cout << 1234567.8; // Output: 1.23457e+06

[Formatting
The standard settings can be modified in several ways. You can
m change the precision, i.e. the number of digits to be output

m force output of the decimal point and trailing zeroes
m stipulate the display mode (fixed point or exponential).

Both the manipulator setprecision () and the method precision () can be used to
redefine precision to be used.

Example: cout << setprecision(3); // Precision: 3
// or: cout.precision(3);
cout << 12.34; // Output: 12.3

Note that the header file iomanip must be included when using the manipulator set -
precision (). This also applies to all standard manipulators called with at least one
argument.

The manipulator showpoint outputs the decimal point and trailing zeroes. The
number of digits being output (e.g. 6) equals the current precision.

Example: cout << showpoint << 1.0; // Output: 1.00000

However, fixed point output with a predetermined number of decimal places is often more
useful. In this case, you can use the fixed manipulator with the precision defining the
number of decimal places. The default value of 6 is assumed in the following example.

Example: cout << fixed << 66.0; // Output: 66.000000

In contrast, you can use the scientific manipulator to specify that floating-point
numbers are output as exponential expressions.

66 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® OUTPUT IN FIELDS

Element functions for output in fields

Method Effects
int width() const; Returns the minimum field width used
int width(int n); Sets the minimum field width to n
int f£ill() const; Returns the fill character used
int fill(int ch); Sets the fill character to ch

Manipulators for output in fields

Manipulator Effects
setw(int n) Sets the minimum field width to n
setfill(int ch) Sets the fill character to ch
left Left-aligns output in fields
right Right-aligns output in fields
internal Left-aligns output of the sign and

right-aligns output of the numeric
value

The manipulators setw () and set£ill () are declared in the header file iomanip .

Examples
#include <iostream> // Obligatory
#include <iomanip> // declarations

using namespace std;

1st Example: cout << '|' << setw(6) << 'X' << '|';
Output: | X| // Field width 6
2nd Example: cout << fixed << setprecision(2)
<< setw(10) << 123.4 << endl
<< "1234567890" << endl;
Output: 123.40 // Field width 10
1234567890

OUTPUT IN FIELDS 67

The << operator can be used to generate formatted output in fields. You can

m specify the field width
m set the alignment of the output to right- or left-justified
m specify a fill-character with which to fill the field.

[1 Field Width

The field width is the number of characters that can be written to a field. If the output

string is larger than the field width, the output is not truncated but the field is extended.

The output will always contain at least the number of digits specified as the field width.
You can either use the width () method or the setw () manipulator to define field

width.
Example: cout.width(s6); // or: cout << setw(6);

One special attribute of the field width is the fact that this value is non-permanent:
the field width specified applies to the next output only, as is illustrated by the examples
on the opposite page. The first example outputs the character 'X' to a field with width
of 6, but does not output the ' | ' character.

The default field width is 0. You can also use the width () method to get the current
field width. To do so, call width () without any other arguments.

Example: int fieldwidth = cout.width();

L1 Fill Characters and Alignment

If a field is larger than the string you need to output, blanks are used by default to fill the
field. You can either use the £i11 () method or the set£fi11 () manipulator to specify
another fill character.

Example: cout << setfill('*') << setw(5) << 12;
// Output: ***12

The fill character applies until another character is defined.

As the previous example shows, output to fields is normally right-aligned. The other
options available are left-aligned and internal, which can be set by using the manipula-
tors left and internal. The manipulator internal left-justifies the sign and right-
justifies the number within a field.

Example: cout.width(6); cout.fill('0');
cout << internal << -123; // Output: -00123

68 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® OUTPUT OF CHARACTERS, STRINGS, AND BOOLEAN VALUES

Sample program

// Enters a character and outputs its
// octal, decimal, and hexadecimal code.

#include <iostream> // Declaration of cin, cout

#include <iomanip> // For manipulators being called
// with arguments.

#include <strings

using namespace std;

int main()

{

int number = ' ';

cout << "The white space code is as follows: "
<< number << endl;

char ch;
string prompt =
"\nPlease enter a character followed by "
" <return>: ";

cout << prompt;

cin >> ch; // Read a character
number = ch;

cout << "The character " << ch
<< " has code" << number << endl;

cout << uppercase // For hex-digits
<< " octal decimal hexadecimal\n "
<< oct << setw(8) << number
<< dec << setw(8) << number
<< hex << setw(8) << number << endl;

return 0O;

OUTPUT OF CHARACTERS, STRINGS, AND BOOLEAN VALUES 69

[] Outputting Characters and Character Codes

The >> operator interprets a number of type char as the character code and outputs the
corresponding character:

Example: char ch = '0';
cout << ch << ' ' << 'A';
// Outputs three characters: 0 A

[t is also possible to output the character code for a character. In this case the character
code is stored in an int variable and the variable is then output.

Example: int code = '0';
cout << code; // Output: 48

The '0' character is represented by ASCII Code 48. The program on the opposite page
contains further examples.

[] Outputting Strings
You can use the >> operator both to output string literals, such as "Hello", and string

variables, as was illustrated in previous examples. As in the case of other types, strings
can be positioned within output fields.

Example: string s("spring flowers ") ;
cout << left // Left-aligned
<< setfill('?") // Fill character ?
<< setw(20) << s ; // Field width 20

This example outputs the string "spring flowers??????". The manipulator
right can be used to right-justify the output within the field.

[1 Outputting Boolean Values

By default the << operator outputs boolean values as integers, with the value 0 represent-
ing false and 1 true. If you need to output the strings true or false instead, the
flag ios: :boolalpha must be set. To do so, use either the setf () method or the
manipulator boolalpha.

Example: bool ok = true;
cout << ok << endl // 1

<< boolalpha << ok << endl; // true

You can revert this setting using the noboolalpha manipulator.

70 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED INPUT

Sample program

// Inputs an article label and a price

#include <iostream> // Declarations of cin, cout, ...
#include <iomanips> // Manipulator setw()

#include <strings>

using namespace std;

int main()

{
string label;
double price;

cout << "\nPlease enter an article label: ";

// Input the label (15 characters maximum) :
cin >> setw(16) ; // or: cin.width(16) ;
cin >> label;

cin.sync() ; // Clears the buffer and resets
cin.clear() ; // any error flags that may be set

cout << "\nEnter the price of the article: ";
cin >> price; // Input the price

// Controlling output:
cout << fixed << setprecision(2)
<< "\nArticle:"

<< "\n Label: " << label

<< "\n Price: " << price << endl;
// ... The program to be continued
return 0;

The input buffer is cleared and error flags are reset by calling the sync () and clear () methods. This
ensures that the program will wait for new input for the price, even if more than |5 characters have
been entered for the label.

FORMATTED INPUT 71

The >> operator, which belongs to the istream class, takes the current number base
and field width flags into account when reading input:

m the number base specifies whether an integer will be read as a decimal, octal, or
hexadecimal

m the field width specifies the maximum number of characters to be read for a
string.

When reading from standard input, cin is buffered by lines. Keyboard input is thus
not read until confirmed by pressing the <Return> key. This allows the user to press the
backspace key and correct any input errors, provided the return key has not been pressed.
Input is displayed on screen by default.

[1 Input Fields

The >> operator will normally read the next input field, convert the input by reference to
the type of the supplied variable, and write the result to the variable. Any white space
characters (such as blanks, tabs, and new lines) are ignored by default.

Example: char ch;
cin >> ch; // Enter a character

When the following keys are pressed
<return> <tab> <blank> <X> <returns

the character ' X' is stored in the variable ch.
An input field is terminated by the first white space character or by the first character
that cannot be processed.

Example: int i;
cin >> 1i;

Typing 123FF<Returns stores the decimal value 123 in the variable i. However, the
characters that follow, FF and the newline character, remain in the input buffer and will
be read first during the next read operation.

When reading strings, only one word is read since the first white space character will
begin a new input field.

Example: string city;
cin >> city; // To read just one word!

If Lao Kai is input, only Lao will be written to the city string. The number of charac-
ters to be read can also be limited by specifying the field width. For a given field width of
n, a maximum of n—-1 characters will be read, as one byte is required for the null charac-
ter. Any initial white space will be ignored. The program on the opposite page illustrates
this point and also shows how to clear the input buffer.

72 CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® FORMATTED INPUT OF NUMBERS

Sample program

// Enter hexadecimal digits and a floating-point number

//

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
{

int number = 0;

cout << "\nEnter a hexadecimal number: "

<< endl;
cin >> hex >> number; // Input hex-number
cout << "Your decimal input: " << number << endl;

// If an invalid input occurred:

cin.sync() ; // Clears the buffer
cin.clear () ; // Reset error flags
double x1 = 0.0, x2 = 0.0;

cout << "\nNow enter two floating-point values: "
<< endl;

cout << "1. number: ";

cin >> x1; // Read first number
cout << "2. number: ";
cin >> x2; // Read second number

cout << fixed << setprecision(2)
<< "\nThe sum of both numbers: n
<< setw(10) << x1 + x2 << endl;

cout << "\nThe product of both numbers: "
<< setw(1l0) << x1 * X2 << endl;

return 0;

FORMATTED INPUT OF NUMBERS 73

[] Inputting Integers

You can use the hex, oct, and dec manipulators to stipulate that any character
sequence input is to processed as a hexadecimal, octal, or decimal number.

Example: int n;
cin >> oct >> n;

An input value of 10 will be interpreted as an octal, which corresponds to a decimal
value of 8.

Example: cin >> hex >> n;

Here, any input will be interpreted as a hexadecimal, enabling input such as f0a or -F7.

[] Inputting Floating-Point Numbers

The >> operator interprets any input as a decimal floating-point number if the variable is
a floating-point type, i.e. float, double, or long double. The floating-point num-
ber can be entered in fixed point or exponential notation.

Example: double x;
cin >> x;

The character input is converted to a double value in this case. Input, such as 123,
-22.0, or 3e10 is valid.

[1 Input Errors
But what happens if the input does not match the type of variable defined?

Example: int i, j; cin >> i >> j;

Given input of 1A5 the digit 1 will be stored in the variable i. The next input field
begins with A. But since a decimal input type is required, the input sequence will not be
processed beyond the letter A. If, as in our example, no type conversion is performed, the
variable is not written to and an internal error flag is raised.

It normally makes more sense to read numerical values individually, and clear the
input buffer and any error flags that may have been set after each entry.

Chapter 6, “Control Flow,” and Chapter 28, “Exception Handling,” show how a pro-
gram can react to input errors.

74

2. The sample program requires that at least one word and a following white space are entered.

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

® UNFORMATTED INPUT/OUTPUT

Sample program

// Reads a text with the operator >>
// and the function getline() .

#include <iostream>
#include <strings
using namespace std;

string header =
" --- Demonstrates Unformatted Input ---";

int main ()

{

string word, rest;
cout << header

<< "\n\nPress <return> to go on" << endl;
cin.get () ; // Read the new line

// without saving.

cout << "\nPlease enter a sentence with several words!"
<< "\nEnd with <!> and <return>."

<< endl;
cin >> word; // Read the first word
getline(cin, rest, '!'); // and the remaining text
// up to the character !
cout << "\nThe first word: " << word
<< "\nRemaining text: " << rest << endl;
return 0;

A text of more than one line can be entered.

UNFORMATTED INPUT/OUTPUT 75

Unformatted input and output does not use fields, and any formatting flags that have
been set are ignored. The bytes read from a stream are passed to the program “as is.”
More specifically, you should be aware that any white space characters preceding the
input will be processed.

[] Reading and Writing Characters

You can use the methods get () and put () to read or write single characters. The
get () method reads the next character from a stream and stores it in the given char
variable.

Example: char ch;
cin.get (ch) ;

If the character is a white space character, such as a newline, it will still be stored in the
ch variable. To prevent this from happening you can use

cin >> ch;

to read the first non-white space character.
The get () method can also be called without any arguments. In this case, get ()
returns the character code of type int.

Example: int c¢ = cin.get();

The put () method can be used for unformatted output of a character. The character to
be output is passed to put () as an argument.

Example: cout.put('a');

This statement is equivalent to cout << 'A'; , where the field width is undefined or
has been set to 1.

[1 Reading a Line

The >> operator can only be used to read one word into a string. If you need to read a
whole line of text, you can use the global function getline (), which was introduced
earlier in this chapter.

Example: getline(cin, text);

This statement reads characters from cin and stores them in the string variable text
until a new line character occurs. However, you can specify a different delimiting charac-
ter by passing the character to the get1line () function as a third argument.

Example: getline(cin, s, '.');

The delimiting character is read, but not stored in the string. Any characters subsequent
to the first period will remain in the input buffer of the stream.

76 = CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

= EXERCISES

Screen output for exercise 3

Article Number Number of Pieces Price per piece
................... Dollar

Program listing for exercise 5

// A program with resistant mistakes

#include <iostream>
using namespace std;

int main()

{

char ch;
string word;

cin >> "Let's go! Press the return key: " >> ch;

cout << "Enter a word containing
three characters at most: ";

cin >> setprecision(3) >> word;
cout >> "Your input: " >> ch >> endl;

return 0;

EXERCISES 77

Exercise |

What output is generated by the program on the page entitled “Formatted output
of floating-point numbers” in this chapter?

Exercise 2
Formulate statements to perform the following:

a. Left-justify the number 0.123456 in an output field with a width of 15.

Output the number 23.987 as a fixed point number rounded to two dec-
imal places, right-justifying the output in a field with a width of 12.

c. Output the number —123.456 as an exponential and with four decimal
spaces. How useful is a field width of 10?

Exercise 3

Write a C++ program that reads an article number, a quantity, and a unit price
from the keyboard and outputs the data on screen as displayed on the opposite

page.

Exercise 4

Write a C++ program that reads any given character code (a positive integer)
from the keyboard and displays the corresponding character and the character
code as a decimal, an octal, and a hexadecimal on screen.

TIP

The variable type defines whether a character or a number is to be read or output.

Why do you think the character P is output when the number 336 is entered?

Exercise 5

Correct the mistakes in the program on the opposite page.

78

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

solutions

SOLUTIONS

Exercise |
Output of a sample program formatting floating-point numbers:

By default: 12
showpoint: 12.
fixed: 12.00
scientific: 1.20e+001

Exercise 2

#include <iostream>
#include <iomanip> // For setw() and setprecision|()
using namespace std;

int main()
{
double x1 = 0.123456, x2 = 23.987, x3 = -123.456;
// a)
cout << left << setw(1l5) << x1 << endl;
// b)

cout << fixed << setprecision(2) << right << setw(12)
<< X2 << endl;
// e)
cout << scientific << setprecision(4) << x3 << endl;
// Output: -1.2346e+002
// A field width of 12 or more would be convenient!

return 0;

}

Exercise 3

// Input and formatted output of article characteristics.
#include <iostreams
#include <iomanip>
using namespace std;
int main()
{
long number = 0;
int count = 0;
double price = 0.0;

// Input:
cout << "\nPlease enter article characteristics.\n";
cout << "Article number: ",
cin >> number;

}

SOLUTIONS

cout << "Number of pieces: ",
cin >> count;

cout << "Price per piece: ",
cin >> price;

// Output:

cout <<
"\n\tArticle Number Quantity Price per piece ";
cout << "\n\t"

<< setw(8) << number

<< setw(1l6) << count

<< fixed << setprecision(2)

<< setw(1l6) << price << " Dollar" << endl;

return 0O;

Exercise 4

#include <iostream>
#include <iomanip> // Manipulator setw/()
using namespace std;

int main ()

{

unsigned char ¢ = 0;
unsigned int code = 0;

cout << "\nPlease enter a decimal character code: ";
cin >> code;

c = code; // Save for output
cout << "\nThe corresponding character: " << ¢ << endl;
code = c; // Character code. Is only

// necessary, if input is > 255.
cout << "\nCharacter codes"

<< "\n decimal: " << sgsetw(3) << dec << code
<< "\n octal: " << setw(3) << oct << code
<< "\n hexadecimal: " << setw(3) << hex << code
<< endl;

return O;

79

80

CHAPTER 4 INPUT AND OUTPUT WITH STREAMS

When entering 336, the value 80 is stored in the low byte of variable code
(336 = 256 + 80).Thus after the assignment, the variable c contains the value
80, representing the character P.

Exercise 5

The corrected program:

// Corrections are commented.

//

#include <iostream>

#include <iomanip> // Manipulator setw ()
#include <strings> // Class string
using namespace std;

int main ()

{

string word; // To read a word.
// char ch; is not needed.

// cout << ...instead of cin >>
cout << "Let's go! Press the return key: ";

cin.get () ; // Input newline character

cout << " Enter a word " // "
"containing three characters at the most: ";// "

cin >> setw(3) >> word; // setw(3) instead of

// setprecision (3)

cout << "Your input: " // <<
<< word << endl; // instead of >> ch

return 0O;

chapter

Operators for
Fundamental Types

In this chapter, operators needed for calculations and selections are
introduced. Overloading and other operators, such as those needed for

bit manipulations, are introduced in later chapters.

81

82 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

= BINARY ARITHMETIC OPERATORS

Binary operator and operands

Operator

v

a + b

Left operand —T T— Right operand

The binary arithmetic operators

Operator Significance

+ Addition

= Subraction
& Multiplication
Division
Remainder

Sample program

#include <iostream>
using namespace std;
int main ()
{
double x, y;
cout << "\nEnter two floating-point values: ";
cin >> x >> y;
cout << "The average of the two numbers is: "
<< (x + y)/2.0 << endl;
return 0;
}

Sample output for the program

Enter two floating-point values: 4.75 12.3456
The average of the two numbers is: 8.5478

BINARY ARITHMETIC OPERATORS 83

If a program is to be able to process the data input it receives, you must define the opera-
tions to be performed for that data. The operations being executed will depend on the
type of data — you could add, multiply, or compare numbers, for example. However, it
would make no sense at all to multiply strings.

The following sections introduce you to the most important operators that can be
used for arithmetic types. A distinction is made between unary and binary operators. A
unary operator has only one operand, whereas a binary operator has two.

[1 Binary Arithmetic Operators

Arithmetic operators are used to perform calculations. The opposite page shows an
overview. You should be aware of the following:

m Divisions performed with integral operands will produce integral results; for exam-
ple, 7/2 computes to 3. If at least one of the operands is a floating-point number,
the result will also be a floating-point number; e.g., the division 7. 0/2 produces
an exact result of 3. 5.

m Remainder division is only applicable to integral operands and returns the remain-
der of an integral division. For example, 7%2 computes to 1.

[1 Expressions

In its simplest form an expression consists of only one constant, one variable, or one
function call. Expressions can be used as the operands of operators to form more complex
expressions. An expression will generally tend to be a combination of operators and
operands.

Each expression that is not a void type returns a value. In the case of arithmetic
expressions, the operands define the type of the expression.

Examples: int a(4); double x(7.9);

a * 512 // Type int
1.0 + sin(x) // Type double
x - 3 // Type double, since one

// operand is of type double
An expression can be used as an operand in another expression.
Example: 2 + 7 * 3 // Adds 2 and 21

Normal mathematical rules (multiplication before addition) apply when evaluating an
expression, i.e. the *, /, % operators have higher precedence than + and -. In our exam-
ple, 7*3 is first calculated before adding 2. However, you can use parentheses to apply a
different precedence order.

Example: (2 + 7) * 3 // Multiplies 9 by 3.

84 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

® UNARY ARITHMETIC OPERATORS

The unary arithmetic operators

Operator Significance
+ = Unary sign operators
++ Increment operator
- Decrement operator

Precedence of arithmetic operators

Precedence Operator Grouping
High ++ —— (postfix) left to right
++ —— (prefix) right to left
+ - (sign)
@ / % left to right
Low + (addition) left to right
— (subtraction)

Effects of prefix and postfix notation

#include <iostream>
using namespace std;
int main()

{
int 1(2), j(8);
cout << 1++ << endl; // Output: 2
cout << i << endl; // Output: 3
cout << j-- << endl; // Output: 8
cout << --j << endl; // Output: 6
return O;

UNARY ARITHMETIC OPERATORS 85

There are four unary arithmetic operators: the sign operators + and -, the increment
operator ++, and the decrement operator - -.

[1 Sign Operators

The sign operator - returns the value of the operand but inverts the sign.
Example: int n = -5; cout << -n; // Output: 5

The sign operator + performs no useful operation, simply returning the value of its
operand.

[J Increment / Decrement Operators

The increment operator ++ modifies the operand by adding 1 to its value and cannot be
used with constants for this reason.

Given that i is a variable, both i++ (postfix notation) and ++1i (prefix notation) raise
the value of i by 1. In both cases the operation 1 = i + 1 is performed.

However, prefix ++ and postfix ++ are two different operators. The difference
becomes apparent when you look at the value of the expression; ++i means that the
value of i has already been incremented by 1, whereas the expression i++ retains the
original value of i. This is an important difference if ++1i or i++ forms part of a more
complex expression:

++1 i is incremented first and the new value of i is then applied,
i+ the original value of i is applied before i is incremented.
The decrement operator -- modifies the operand by reducing the value of the

operand by 1. As the sample program opposite shows, prefix or postfix notation can be
used with --.

[] Precedence

How is an expression with multiple operators evaluated?
Example: float val(5.0); cout << val++ - 7.0/2.0;

Operator precedence determines the order of evaluation, i.e. how operators and
operands are grouped. As you can see from the table opposite, ++ has the highest prece-
dence and / has a higher precedence than -. The example is evaluated as follows:
(val++) — (7.0/2.0). Theresultis 1.5, as val is incremented later.

If two operators have equal precedence, the expression will be evaluated as shown in
column three of the table.

Example: 3 * 5 % 2 is equivalent to (3 * 5) %2

86 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

m ASSIGNMENTS

Sample program

// Demonstration of compound assignments

#include <iostreams>
#include <iomanip>
using namespace std;

int main ()

{

float x, vy;

cout << "\n Please enter a starting value: ",
cin >> X;

cout << "\n Please enter the increment value: ";
cin >> vy;

cout << "\n And now multiplication! ";
cout << "\n Please enter a factor: "

cout << "\n Finally division.";
cout << "\n Please supply a divisor: ";
cin >> vy;

x /=v;

cout << "\n And this is "
<< "your current lucky number: "
// without digits after
// the decimal point:
<< fixed << setprecision(0)
<< X << endl;

return 0;

ASSIGNMENTS 87

[1 Simple Assignments
A simple assignment uses the assignment operator = to assign the value of a variable to an

expression. In expressions of this type the variable must be placed on the left and the
assigned value on the right of the assignment operator.

Examples: z 7.5;
Yy = Z;
X 2.0 + 4.2 * z;

The assignment operator has low precedence. In the case of the last example, the right
side of the expression is first evaluated and the result is assigned to the variable on the
left.

Each assignment is an expression in its own right, and its value is the value assigned.
Example: sin(x = 2.5);
In this assignment the number 2. 5 is assigned to x and then passed to the function as an
argument.

Multiple assignments, which are always evaluated from right to left, are also possible.
Example: i = j = 9;
In this case the value 9 is first assigned to j and then to 1.

[1 Compound Assignments

In addition to simple assignment operators there are also compound assignment opera-
tors that simultaneously perform an arithmetic operation and an assignment, for exam-
ple.

Examples. i += 3; is equivalent to i =
i *= j + 2; isequivalentto i

[
S

The second example shows that compound assignments are implicitly placed in paren-
theses, as is demonstrated by the fact that the precedence of the compound assignment is
just as low as that of the simple assignment.

Compound assignment operators can be composed from any binary arithmetic opera-
tor (and, as we will see later, with bit operators). The following compound operators are
thus available: +=, -=, *=, /=, and %=.

You can modify a variable when evaluating a complex expression by means of an
assignment or the ++, - - operators. This technique is referred to as a side effect. Avoid
use of side effects if possible, as they often lead to errors and can impair the readability of
your programs.

88 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

m RELATIONAL OPERATORS

The relational operators

Operator Significance
< less than
S= less than or equal to
> greater than
>= geater than or equal to
== equal
1= unequal

Precedence of relational operators

Precedence Operator
High arithmetic operators
< <= > >=
== =]
Low assignment operators

Examples for comparisons:

Comparison Result

5 >= 6 false
1.7 < 1.8 true
4 + 2 == false
2 * 4 1=7 true

RELATIONAL OPERATORS 89

[] The Result of Comparisons

Each comparison in C++ is a bool type expression with a value of true or false,
where true means that the comparison is correct and false means that the compari-
son is incorrect.

Example: length == circuit // false or true

If the variables length and circuit contain the same number, the comparison is
true and the value of the relational expression is true. But if the expressions contain
different values, the value of the expression will be false.

When individual characters are compared, the character codes are compared. The
result therefore depends on the character set you are using. The following expression
results in the value true when ASCII code is used.

Example: 'a' < 'a // true, since 65 < 97

[] Precedence of Relational Operators

Relational operators have lower precedence than arithmetic operators but higher prece-
dence than assignment operators.

Example: bool flag = index < max - 1;

In our example, max — 1 is evaluated first, then the result is compared to index, and the
value of the relational expression (false or true) is assigned to the flag variable.
Similarly, in the following

Example: int result;
result = length + 1 == limit;

length + 1 is evaluated first, then the result is compared to 1imit, and the value of
the relational expression is assigned to the result variable. Since result is an int
type, a numerical value is assigned instead of false or true, i.e. 0 for false and 1 for
true.

It is quite common to assign a value before performing a comparison, and parentheses
must be used in this case.

Example: (result = length + 1) == limit

Our example stores the result of length + 1 in the variable result and then compares
this expression with 1imit.

You cannot use the assignment operator = to compare two expressions. The compiler will not generate
an error message if the value on the left is a variable. This mistake has caused headaches for lots of
beginners when troubleshooting their programs.

90 CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

m LOGICAL OPERATORS

“Truth” table for logical operators

A B A && B A ||l B
true true true true
true false false true
false true false true
false false false false

A 1A
true false
false true

Examples for logical expressions
X y Logical Expression Result
1 -1 x <=y || y >=0 false
0 0 X > -2 && y == 0 true
-1 0 X && ly true
0 1 1(x+1) || y-1>0 false

A numeric value, such as x or x+1, is interpreted as “false” if its value is 0. Any value other than 0 is

interpreted as “true.”

LOGICAL OPERATORS 91

The logical operators comprise the boolean operators && (AND), | | (OR), and ! (NOT).
They can be used to create compound conditions and perform conditional execution of a
program depending on multiple conditions.

A logical expression results in a value false or true, depending on whether the log-
ical expression is correct or incorrect, just like a relational expression.

[1 Operands and Order of Evaluation

The operands for boolean type operators are of the bool type. However, operands of any
type that can be converted to bool can also be used, including any arithmetic types. In
this case the operand is interpreted as false, or converted to false, if it has a value of
0. Any other value than 0 is interpreted as t rue.

The OR operator | | will return true only if at least one operand is true, so the value
of the expression

Example: (length < 0.2) || (length > 9.8)

is true if length is less than 0.2 or greater than 9. 8.
The AND operator && will return true only if both operands are true, so the logical
expression

Example: (index < max) && (cin >> number)

is true, provided index is less than max and a number is successfully input. If the con-
dition index < max is not met, the program will not attempt to read a number! One
important feature of the logical operators && and | | is the fact that there is a fixed order
of evaluation. The left operand is evaluated first and if a result has already been ascer-
tained, the right operand will not be evaluated!

The NOT operator ! will return true only if its operand is false. If the variable f1ag
contains the value false (or the value 0), ! £1ag returns the boolean value true.

[1 Precedence of Boolean Operators

The && operator has higher precedence than | |. The precedence of both these operators
is higher than the precedence of an assignment operator, but lower than the precedence
of all previously used operators. This is why it was permissible to omit the parentheses in
the examples earlier on in this chapter.

The ! operator is a unary operator and thus has higher precedence. Refer to the table
of precedence in the Appendix for further details.

92 = CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

= EXERCISES

Program listing for exercise 4

// Evaluating operands in logical expressions.

#include <iostream>
using namespace std;
int main/()
{
cout << boolalpha; // Outputs boolean values
// as true or false
bool res = false;

int y = 5;

res = 7 || (y = 0);

cout << "Result of (7 || (y = 0)): " << res
<< endl;

cout << "Value of y: " << y << endl;

int a, b, c¢;

a=Db=c¢c=0;

res = ++a || ++b && ++c;
cout << '\n'
<< " res =" << res
<< ", a =" << a
<< ", b="<<b
<< ", c =" << c << endl;

a=Db=c¢c=0;

res = ++a && ++b || ++c;
cout << " res = " << res
<< ", a =" << a
<< ", b ="+<<Db
<< ", c =" << ¢ << endl;

return 0;

EXERCISES 93

Exercise |
What values do the following arithmetic expressions have?

a. 3/10 b. 1134 c. 15/2.0
d 3 +4 %5 e. 3 * 7 % 4 f. 7 %4 * 3
Exercise 2

a. How are operands and operators in the following expression associated?
X = -4 * i++ - 6 % 4;

Insert parentheses to form equivalent expressions.
b. What value will be assigned in part a to the variable x if the variable i has a
value of -2?

Exercise 3

The int variable x contains the number 7. Calculate the value of the following
logical expressions:

a. X < 10 && x >= -1
b. !x && x >= 3

C. X++ == 8 || x == 7

Exercise 4

What screen output does the program on the opposite page generate!

94 = CHAPTER 5 OPERATORS FOR FUNDAMENTAL TYPES

® SOLUTIONS

Exercise |
a. o0 b. 3 c. 7.5
d 7 e. 1 f. o
Exercise 2
A x = (((-4) * (i++)) - (6 % 4))

b. The value 6 will be assigned to the variable x.

Exercise 3

a. true
b. false
c. false

Exercise 4

Result of (7 || (y = 0)): true
Value of y: 5

true, a =1, b =0, c =0
true, a =1, b =1, c =0

res
res

chapter

Control Flow

This chapter introduces the statements needed to control the flow of a
program. These are

m loops with while, do-while, and for

m selections with if-else, switch, and the conditional operator

B jumps with goto, continue, and break.

95

96

CHAPTER 6 CONTROL FLOW

B THE while STATEMENT

Structogram for while

As long as the expression is true

statement

Sample program

// average.cpp
// Computing the average of numbers

#include <iostream>
using namespace std;

int main ()
int x, count = 0;
float sum = 0.0;

cout << "Please enter some integers
" (Break with any letter)"
<< endl;
while(cin >> x)
{
sum += X;
++count;

}

<< sum / count << endl;
return 0;

cout << "The average of the numbers:

\n"

Sample output from the above program

Please enter some integers:

(Break with any letter)

9 10 12g

The average of the numbers: 10.3333

THE WHILE STATEMENT 97

Loops are used to perform a set of instructions repeatedly. The set of instructions to be
iterated is called the loop body. C++ offers three language elements to formulate iteration
statements: while, do-while, and for. The number of times a loop is repeated is
defined by a controlling expression. In the case of while and for statements this expres-
sion is verified before the loop body is executed, whereas a do-while loop is performed
once before testing.

The while statement takes the following format:

Syntax: while(expression)
statement // loop body

When entering the loop, the controlling expression is verified, i.e. the expression is
evaluated. If this value is true, the loop body is then executed before the controlling
expression is evaluated once more.

If the controlling expression is false, i.e. expression evaluates to false, the pro-
gram goes on to execute the statement following the while loop.

[t is common practice to place the loop body in a new line of the source code and to
indent the statement to improve the readability of the program.

Example: int count = 0;
while(count < 10)
cout << ++count << endl;

As this example illustrates, the controlling expression is normally a boolean expression.
However, the controlling expression might be any expression that can be converted to
the bool type including any arithmetic expressions. As we already learned from the sec-
tion on boolean operators, the value 0 converts to false and all other values convert to
true.

[] Building Blocks

If you need to repeat more than one statement in a program loop, you must place the
statements in a block marked by parentheses { }. A block is syntactically equivalent to a
statement, so you can use a block wherever the syntax requires a statement.

The program on the opposite page calculates the average of a sequence of integers
input via the keyboard. Since the loops contains two statements, the statements must be
placed in a block.

The controlling expression cin >> x is true provided the user inputs an integer.
The result of converting the expression cin >> x to a bool type will be true for any
valid input and false in any other case. Invalid input, if the user types a letter instead
of an integer, for example, terminates the loop and executes the next statement.

98

CHAPTER 6 CONTROL FLOW

B THE for STATEMENT

Structogram for for

expressionl

As long as expression2 is true

statement
expression3
Sample program

// Eurol.cpp

#include <iostream>

#include <iomanip>

using namespace std;

int main()

double rate = 1.15; // Exchange rate:

// one Euro to one Dollar

cout << fixed << setprecision(2);

cout << "\tEuro \tDollar\n";
for(int euro = 1; euro <= 5; ++euro)
cout << "\t " << euro
<< "\t " << euro*rate << endl;
return 0;

Screen output

Euro
1

(62 B VNI \V]

Dollar
0.95

B W N R

.90
.85
.80
.75

THE FOR STATEMENT 99

[Initializing and Reinitializing
A typical loop uses a counter that is initialized, tested by the controlling expression and
reinitialized at the end of the loop.

Example: int count = 1; // Initialization
while(count <= 10) // Controlling
{ // expression
cout << count
<< ". loop" << endl;
++count; // Reinitialization

}

In the case of a for statement the elements that control the loop can be found in the
loop header. The above example can also be expressed as a for loop:

Example: int count;
for(count = 1; count <= 10; ++count)
cout << count
<< ". loop" << endl;

Any expression can be used to initialize and reinitialize the loop. Thus, a for loop has
the following form:

Syntax: for(expressionl; expression2; expression3)
statement

expressioni is executed first and only once to initialize the loop. expression2 is
the controlling expression, which is always evaluated prior to executing the loop body:

m if expression2 is false, the loop is terminated
m if expression2 is true, the loop body is executed. Subsequently, the loop is
reinitialized by executing expression3 and expression?2 is re-tested.

You can also define the loop counter in expressionl. Doing so means that the
counter can be used within the loop, but not after leaving the loop.

Example: for(int 1 = 0; i < 10; cout << i++)

As this example illustrates, the loop body can be an empty statement. This is always the
case if the loop header contains all necessary statements. However, to improve readabil-
ity, even the empty statement should occupy a line of its own.

100

CHAPTER 6

CONTROL FLOW

B THE for STATEMENT (CONTINUED)

Sample program

// EuroDoll.cpp
// Outputs a table of exchange: Euro and US-$

#include <iostream>
#include <iomanip>
using namespace std;

int main ()
long euro, maxEuro; // Amount in Euros
double rate; // Exchange rate Euro <-> $

cout << "\n* * * TABLE OF EXCHANGE "
<< " Euro - US-$ * * *\n\n";

cout << "\nPlease give the rate of exchange: "
" one Euro in US-S$: ";

cin >> rate;

cout << "\nPlease enter the maximum euro: ";

cin >> maxEuro;

// --- Outputs the table ---
// Titles of columns:
cout << '\n'
<< setw(l2) << "Euro" << setw(20) << "US-g"
<< "\t\tRate: " << rate << endl;

// Formatting US-$:
cout << fixed << setprecision(2) << endl;

long lower, upper, // Lower and upper limit
step; // Step width

// The outer loop determines the actual
// lower limit and the step width:
for(lower=1, step=1l; lower <= maxEuro;
step*= 10, lower = 2*step)
// The inner loop outputs a "block":
for(euro = lower, upper = step*10;
euro <= upper && euro <= maxEuro; euro+=step)
cout << setw(1l2) << euro
<< setw(20) << euro*rate << endl;
return O;

THE FOR STATEMENT (CONTINUED) 101

Any of the three expressions in a for statement can be omitted, however, you must type
at least two semicolons. The shortest loop header is therefore:

Example: for(;;)

This statement causes an infinite loop, since the controlling expression is assumed to be
true if expression2 is missing. In the following

Example: for(; expression;)

the loop header is equivalent to while (expression). The loop body is executed as
long as the test expression is true.

[1 The Comma Operator

You can use the comma operator to include several expressions where a single expression
is syntactically correct. For example, several variables can be initialized in the loop
header of a for statement. The following syntax applies for the comma operator

Syntax: expressionl, expression2 [, expression3 ...]
The expressions separated by commas are evaluated from left to right.

Example: int x, i, limit;
for(i=0, 1limit=8; i < limit; 1 += 2)
x =1 * i, cout << setw(1l0) << X;

The comma operator separates the assignments for the variables i and 1imit and is
then used to calculate and output the value of x in a single statement.

The comma operator has the lowest precedence of all operators — even lower than
the assignment operators. This means you can leave out the parentheses in the above
example.

Like any other C++ expression, an expression containing the comma operator has a
value and belongs to a certain type. The type and value are defined by the last expression
in a statement separated by commas.

Example: x = (a =3, b =5, a * b);

In this example the statements in brackets are executed before the value of the product
ofa * b isassigned to x.

102

CHAPTER 6 CONTROL FLOW

B THE do-while STATEMENT

Structogram for do-while

statement

As long as the expression is true

Sample program

// tone.cpp
#include <iostream>

using namespace std;

const long delay = 10000000L;

int main ()

int tic;
cin >> tic;
do

i

cout << "Now the tone!\a"

}

while(--tic > 0);

return 0;

cout << "\nHow often should the tone be output? ";

for(long i = 0; i < delay; ++1i)

<< endl;

cout << "End of the acoustic interlude!\n";

THE DO-WHILE STATEMENT 103

In contrast to while and for loops, which are controlled by their headers, the do-
while loop is controlled by its footer, i.e. the controlling expression is evaluated after
executing the first loop. This results in the loop body being performed at least once.

Syntax: do
statement
while(expression) ;

When a do-while loop is executed, the loop body is processed first. Only then is the
controlling expression evaluated. The loop body is iterated again if the result is
true, otherwise the loop is terminated.

The do-while loop must be followed by a semicolon.

[1 Nesting Loops

Loops can be nested, that is, the loop body can also contain a loop. The ANSI standard
stipulates a maximum depth of 256 nested loops.

The program on the opposite page outputs a number of tones with the number being
defined by user input.

The program contains two loops — one of which is nested in the other. Each time the
outer do-while loop is repeated a short break occurs. The break is caused by the inner
for loop where the variable i is incremented from 0 to the value of delay.

Text and a tone are subsequently output. The tone is generated by outputting the
control character BELL (ASCII code 7), which is represented by the escape sequence
\a.

Since a do-while statement is used, the program outputs a tone even if the user
types 0 or a negative number.

104

CHAPTER 6 CONTROL FLOW

m SELECTIONS WITH if-else

Structogram for the if-else statement

if (expression)

true false

statementl statement2

Sample program

// 1f else.cpp
// Demonstrates the use of if-else statements

#include <iostream>
using namespace std;
int main()

{

float x, y, min;

cout << "Enter two different numbers:\n";
if(cin >> x && cin >> y) // If both inputs are

{ // valid, compute
if(x <y) // the lesser.
min = x;
else
min = vy;
cout << "\nThe smaller number is: " << min << endl;
}
else

cout << "\nInvalid Input!" << endl;

return 0;

Sample output for this program

Enter two different numbers:
7.5 5.7
The smaller number is: 5.7

SELECTIONS WITH IF-ELSE 105

The if-else statement can be used to choose between two conditional statements.

Syntax: if (expression)
statementl
[else

statement2]

When the program is run, expression is first evaluated and the program control
branches accordingly. If the result is true, statement1 is executed and statement2
is executed in all other cases, provided an else branch exists. If there is no else and
expression is false, the control jumps to the statement following the i f statement.

[] Nested if-else Statements

As the program opposite illustrates, multiple if-else statements can be nested. But
not every if statement has an else branch. To solve the resulting problem, an else
branch is always associated with the nearest preceding if statement that does not have
an else branch.

Example: if(n > 0)
if(n%2 == 1)
cout << " Positive odd number ";
else
cout << "Positive even number";

In this example, the else branch belongs to the second if, as is indicated by the fact
that the statement has been indented. However, you can use a code block to redefine the
association of an else branch.

Example: if(n > 0)
{ 41f(n%2 == 1)
cout << " Positive odd number \n";
else
cout << " Negative number or zero\n";

[1 Defining Variables in if Statements

You can define and initialize a variable within an if statement. The expression is true if
converting the variable’s value to a bool type yields true. In this case the variable is
available within the 1 f statement.

Example: if(int x = func())
. . .3 // Here to work with x.

The return value of the function, func (), is used to initialize the variable x. If this
value is not 0, the statements in the next block are executed. The variable x no longer
exists after leaving the if statement.

106

CHAPTER 6 CONTROL FLOW

B Else-if CHAINS

Structogram for an else-if chain

if (expression)
true false
statementl if (expression)
true false
statement2

if (expression)

true false

statement (n)| statement (n+1)

Sample program

// speed.cpp
// Output the fine for driving too fast.

#include <iostream>
using namespace std;

int main()

{
float limit, speed, toofast;
cout << "\nSpeed limit: ";
cin >> limit;
cout << "\nSpeed: ";
cin >> speed;

if((toofast = speed - limit) < 10)
cout << "You were lucky!" << endl;
else if (toofast < 20)

cout << "Fine payable: 40,-. Dollars" << endl;
else if(toofast < 30)

cout << "Fine payable: 80,-. Dollars" << endl;
else

cout << "Hand over your driver's license!" << endl;
return 0;

ELSE-IF CHAINS 107

[1 Layout and Program Flow

You can use an else-1if chain to selectively execute one of several options. An else-
if chain implies a series of embedded if-else statements whose layout is normally as
follows:

if (expressionl)
statementl

else if(expression2)
statement2

else 1if(expression(n))
statement (n)
[else statement (n+1)]

When the else-if chain is executed, expressionl, expression2, ... are
evaluated in the order in which they occur. If one of the expressions proves to be true,
the corresponding statement is executed and this terminates the else-1f chain.

If none of the expressions are true, the else branch of the last i f statement is exe-
cuted. If this else branch is omitted, the program executes the statement following the
else-if chain.

[1 The Sample Program

The program opposite uses an else-1if chain to evaluate the penalty for driving too fast
and outputs the fine on screen.

The speed limit and the actual speed are read from the keyboard. If the user types 60
as the speed limit and 97.5 as the actual speed, the first three expressions are not true,
and the last else branch is executed. This outputs the message "Hand over your
driver's license!" onanew line.

108

CHAPTER 6 CONTROL FLOW

= CONDITIONAL EXPRESSIONS

Structogram for a conditional expression

expression

true false

expressionl expression2

Sample program

// greater.cpp
#include <iostream>
using namespace std;

int main ()
{

float x, vy;

cout << "Type two different numbers:\n";

if(! (cin >> x && cin >> y)) // If the input was
{ // invalid.
cout << "\nInvalid input!" << endl;
!
else

{
cout << "\nThe greater value is: "
<< (x >y ? x :vy) << endl;

}

return 0;

Sample output for this program

Type two different numbers:
173.2
216.7
The greater value is: 216.7

CONDITIONAL EXPRESSIONS 109

[1 Conditional Operator

The conditional operator ?: is used to form an expression that produces either of two
values, depending on the value of some condition. Because the value produced by such
an expression depends on the value of a condition, it is called conditional expression.

In contrast to the if-else statement the selection mechanism is based on expres-
sions: one of two possible expressions is selected. Thus, a conditional expression is often
a concise alternative to an if-else statement.

Syntax: expression ? expressionl : expression2

expression is evaluated first. If the result is t rue, expressioni is evaluated; if not
expression2 is executed. The value of the conditional expression is therefore either
the value of expressionl or expression2.

Example: z = (a >= 0) ? a : -a;

This statement assigns the absolute value of a to the variable z. If a has a positive value
of 12, the number 12 is assigned to z. But if a has a negative value, for example -8, the
number 8 is assigned to z.

Since this sample program stores the value of the conditional expression in the vari-
able z, the statement is equivalent to

if(a > 0)
zZ = aj;
else

z = -a;

1 Precedence

The conditional operator is the only C++ operator with three operands. Its precedence is
higher than that of the comma and assignment operators but lower than all other opera-
tors. In other words, you could omit the brackets in the first example.

You can use the result of a conditional evaluation without assigning it, as the sample
program on the opposite page shows. In this example, x is printed on screen if x is
greater than y, and vy is printed otherwise.

However, you should assign the result of complex expressions to a variable explicitly
to improve the readability of your program.

110 CHAPTER 6 CONTROL FLOW

B SELECTING WITH switch

Structogram for the switch statement

switch (expression)
case Constl: \\\\\\\\\\\“\\\\\\\\\\\\\\\

case Const2: \\\\\\\\\\\\\
o o o default:
statements statements statements
break break break
Example
// Evaluates given input.
int command = menu/() ; // The function menu() reads
// a command.
switch(command) // Evaluate command.
case 'a':
case 'A':
actionl () ; // Carry out 1lst action.
break;
case 'b':
case 'B':
action2 () ; // Carry out 2nd action.
break;
default:
cout << '\a' << flush; // Beep on
} // invalid input

SELECTING WITH SWITCH 11

[l The switch Statement

Just like the else-1if chain, the switch statement allows you to choose between mul-
tiple alternatives. The switch statement compares the value of one expression with
multiple constants.

switch(expression)

{

case constl: [statement]

[break;]
case const2: [statement]
[break;]

[default: statement]

First, the expression in the switch statement is evaluated. It must be an integral
type. The result is then compared to the constants, const1, const2, ..., in the case
labels. The constants must be different and can only be integral types (boolean values
and character constants are also integral types).

If the value of an expression matches one of the case constants, the program
branches to the appropriate case label. The program then continues and the case labels
lose their significance.

You can use break to leave the switch statement unconditionally. The statement is
necessary to avoid executing the statements contained in any case labels that follow.

If the value of the expression does not match any of the case constants, the program
branches to the default label, if available. If you do not define a default label, noth-
ing happens. The default does not need to be the last label; it can be followed by addi-
tional case labels.

[] Differences between switch and else-if Chains

The else-if chain is more versatile than the switch statement. Every selection can
be programmed using an else-if chain. But you will frequently need to compare the
value of an integral expression with a series of possible values. In this case (and only this
case), you can use a switch statement.

As the example opposite shows, a switch statement is more easily read than an
equivalent else-1if chain, so use the switch statement whenever possible.

112 CHAPTER 6 CONTROL FLOW

®m JUMPS WITH break, continue, AND goto

Structogram for break within a while statement

As long as expression is true

— break;

statement, which follows the loop.

Sample program containing a break statement

// ascii.cpp : To output an ASCII Code Table

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{
int ac = 32; // To begin with ASCII Code 32

// without control characters.
while (true)
{ cout << "\nCharacter Decimal Hexadecimal\n\n";
int upper;

for(upper =ac + 20; ac < upper && ac < 256; ++ac)
cout << " " << (char)ac // as character
<< setw(10) << dec << ac
<< getw(10) << hex << ac << endl;
if (upper >= 256) break;
cout <<"\nGo on -> <returns>,Stop -> <g>+<returns";
char answer;
cin.get (answer) ;
'gq' || answer == 'Q')

if (answer ==
break;
cin.sync () ; // Clear input buffer
}
return O;

The expression (char) ac yields the value ac of type char.

JUMPS WITH BREAK, CONTINUE, AND GOTO 113

[] break

The break statement exits from a switch or loop immediately. You can use the break
keyword to jump to the first statement that follows the switch or loop.

The program on the opposite page, which outputs a group of 20 ASCII characters and
their corresponding codes, uses the break keyword in two places. The first break exits
from an infinite while (true) { ... } loop when a maximum value of 256 has been
reached. But the user can also opt to continue or terminate the program. The second
break statement is used to terminate the while loop and hence the program.

[] continue

The continue statement can be used in loops and has the opposite effect to break,
that is, the next loop is begun immediately. In the case of a while or do-while loop
the program jumps to the test expression, whereas a for loop is reinitialized.

Example: for(int i = 0; i < 100; i++)
{
// Processes all integers.
if(i %2 == 1)
continue;
// Process even
// numbers only.

[] goto and Labels

C++ also offers a goto statement and labels. This allows you to jump to any given point
marked by a label within a function. For example, you can exit from a deeply embedded
loop construction immediately.

Example: for(. . .)
for(. . .)
if (error) goto errorcheck;

errorcheck: . . . // Error handling
A label is a name followed by a colon. Labels can precede any statement.

Any program can do without goto statements. If you need to use a goto statement,
do so to exit from a code block, but avoid entering code blocks by this method.

114 CHAPTER 6 CONTROL FLOW

EXERCISES

Screen output for exercise 2

D
v
w sxxxss MULTIPLICATION TABLE #xxxxx
o ==
U 1 2 3 4 5 6 7 8 9 10
(G 1 10
2 2 20
v 3
4
X ;
QJ 6
7
8
9
10 | 10 20 30 : 100

Note on exercise 4

Use the function time () to initialize the random number generator:

#include <time.h> // Prototype of time ()
#include <stdlib.hs> // Prototypes of srand()
// and rand()
long sec;
time (&sec); // Take the number of seconds and

srand ((unsigned)sec); // use it to initialize.

EXERCISES 115

Exercise |

Rewrite the EuroDoll.cpp program in this chapter to replace both the for
loops with while loops.

Exercise 2

Write a C++ program that outputs a complete multiplication table (as shown
opposite) on screen.

Exercise 3

Write a C++ program that reads an integer between 0 and 65535 from the
keyboard and uses it to seed a random number generator.Then output 20
random numbers between | and 100 on screen.

Exercise 4

Write a program for the following numerical game:

The computer stores a random number between | and |5 and the player
(user) attempts to guess it. The player has a total of three attempts. After each
wrong guess, the computer tells the user if the number was too high or too low.
If the third attempt is also wrong, the number is output on screen.

The player wins if he or she can guess the number within three attempts.
The player is allowed to repeat the game as often as he or she wants.

Use the system time to seed the random number generator as shown opposite. The time () function
returns the number of seconds since 1/1/1970, 0:0. The 1ong value of the sec variable is converted to
unsigned by unsigned (sec) and then passed to the srand () function.

116

CHAPTER 6 CONTROL FLOW

solutions

SOLUTIONS

Exercise |

The for loops of program EuroDoll . cpp are equivalent to the following while
loops:

// The outer loop sets the lower
// limit and the step width used:
lower=1, step=1;
while(lower <= maxEuro)
{
// The inner loop outputs a block:
euro = lower;
upper = step*10;
while(euro <= upper && euro <= maxEuro)

cout << setw(1l2) << euro
<< setw(20) << euro*rate << endl;
euro += step;

step *= 10, lower = 2*step;

}

Exercise 2

// MultTable.cpp
// Outputs a multiplication table.

#include <iostreams>
#include <iomanip>
using namespace std;
int main()

{

int factorl, factor2;

cout << "\n\n n
<< " *xxkx*x MULTIPLICATION TABLE ***%%%n
<< endl;

// Outputs the first and second line:
cout << "\n\n\n ", // 1. line
for(factor2 = 1 ; factor2 <= 10 ; ++factor2)

cout << setw(5) << factor2;

cout << "\n n // 2. line
<< L L n
<< endl;

cout << "\n\n\n"; // To shift up the table
return 0;

}

Exercise 3

SOLUTIONS

// Outputs the remaining lines of the table:

for(factorl = 1 ; factorl <= 10 ; ++factorl)
cout << setw(6) << factorl << " |";
for(factor2 = 1 ; factor2 <= 10 ; ++factor2)
cout << setw(5) << factorl * factor2;
cout << endl;

}

// random.cpp
// Outputs 20 random numbers from 1 to 100.

#include <stdlib.hs> // Prototypes of srand() and rand()

#include <iostream>
#include <iomanip>

using namespace std;

int main ()

{

unsigned int i, seed;

cout << "\nPlease type an integer between "
"0 and 65535: ";

cin >> seed; // Reads an integer.

srand (seed) ; // Seeds the random
// number generator.

cout << "\n\n "

Wk k& & & RANDOM NUMBERS **x*xxxx\n\n";

for(i =1 ; i <= 20 ; ++1i)
cout << setw(20) << 1 << ". random number = "

<< setw(3) << (rand() % 100 + 1) << endl;

return 0O;

117

118

CHAPTER 6 CONTROL FLOW
Exercise 4
// NumGame.cpp : A numerical game against the computer
#include <cstdlib> // Prototypes of srand() and rand()
#include <ctimes> // Prototype of time()

#include <iostream>
using namespace std;
int main ()

{

int numbe
char wb =
long sec;
time (&sec
srand ((uns

r, attempt;
'r'; // Repeat or finish.

) i // Get the time in seconds.
igned) sec) ; // Seeds the random
// number generator

cout << "\n\n n
<< M o kEkkkkkk A NUMERICAL GAME *Frkxkkxkk oo endl;
cout << "\n\nRules of the game:" << endl;
while(wb == 'r'")
{
cout << "I have a number between 1 and 15 in mind \n"
<< "You have three chances to guess correctly!\n"
<< endl;
number = (rand() % 15) + 1;
bool found = false; int count = 0;
while(!found && count < 3)
{
cin.sync () ; // Clear input buffer
cin.clear () ;
cout << ++count << ". attempt: ",
cin >> attempt;
if (attempt < number) cout << "too small!'"<< endl;
else if (attempt > number) cout <<"too big!'"<< endl;
else found = true;
!
if (!found)
cout << "\nI won!"
<< " The number in question was: "
<< number << endl;
else
cout << "\nCongratulations! You won!" << endl;
cout << "Repeat —> <r> Finish — <f>\n";
do
cin.get (wb) ;
while(wb != 'r' && wb != '"f');

}

return 0O;

chapter

Symbolic Constants and
Macros

This chapter introduces you to the definition of symbolic constants and
macros illustrating their significance and use. In addition, standard macros

for character handling are introduced.

119

120 CHAPTER 7 SYMBOLIC CONSTANTS AND MACROS

® MACROS

Sample program

// sintab.cpp
// Creates a sine function table

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

#define PI 3.1415926536

#define START 0.0 // Lower limit
#define END (2.0 * PI) // Upper limit
#define STEP (PI / 8.0) // Step width
#define HEADER (cout << \

" x%x%%% Sine Function Table ***xx\n\n")

int main()
{
HEADER; // Title
// Table Head:

cout << setw(l6) << "x" << setw(20) << "sin(x)\n"
n n

<<
<< fixed << endl;

double x;
for(x = START; x < END + STEP/2; x += STEP)
cout << setw(20) << X << setw(1l6) << sin(x)
<< endl;

cout << endl << endl;
return O;

Screen output

%*x Table for the Sine Function *x*%%%*

X sin (x)
0.000000 0.000000
0.392699 0.382683

0.785398 0.707107

MACROS 121

C++ has a simple mechanism for naming constants or sequences of commands, that is for
defining macros. You simply use the preprocessor’s #define directive.

Syntax: #define name substitutetext

This defines a macro called name. The preprocessor replaces name with substitute-
text throughout the subsequent program. For example, in the program on the opposite
page, the name PT is replaced by the number 3.1415926536 throughout the program
in the first phase of compilation.

There is one exception to this general rule: substitution does not take place within
strings. For example, the statement

cout << "PI";

outputs only PT and not the numerical value of PT.

[1 Symbolic Constants

Macros that are replaced by constants, such as the PT macro, are also known as symbolic
constants. You should note that neither an equals sign nor a semicolon is used, as these
would become part of the substitute text.

You can use any macros you have previously defined in subsequent #define direc-
tives. The program opposite uses the symbolic constant PT to define other constants.

[1 More about Working with Macros

Any preprocessor directive, and this includes the #define directive, must be placed in a
line of its own. If the substitute text is longer than one line, you can terminate the line
with a backslash \ and continue the substitute text in the next line, as is illustrated by
the macro HEADER on the opposite page.

The rules that apply to naming variables also apply to naming macros. However, it is
standard practice to capitalize symbolic constants to distinguish them from the names of
variables in a program.

Using macros makes a C++ program more transparent and flexible. There are two
main advantages:

1. good readability: You can name a macro to indicate the use of the macro

2. easy to modify: If you need to change the value of a constant throughout a pro-
gram, you simply change the value of the symbolic constant in the #define
directive.

122

CHAPTER 7 SYMBOLIC CONSTANTS AND MACROS

® MACROS WITH PARAMETERS

Sample program

// balll.cpp

// Simulates a bouncing ball

/] mm
#include <iostream>

#include <string>

using namespace std;

#define DELAY 10000000L // Output delay

#define CLS (cout << "\033[2J") // Clear screen

#define LOCATE(z,s) (cout <<"\033["<< 2z <<';'<< 8 <<'H'")
// Position the cursor in row z and column s

void main ()

{
int x = 2, vy =3, dx = 1, speed = 0;
string floor (79, '-'),

header = "****x JUMPING BALL ***x*xm".
CLS;
LOCATE (1,25); cout << header;
LOCATE (25,1); cout << floor;
while (true) // Let the ball "always" bounce
{ // Terminate by interrupt key (*C)
LOCATE (y,X); cout << 'o' << endl; // Show the ball
for(long wait = 0; wait < DELAY; ++wait)
if(x == 1 || x == 79) dx = -dx; // Bounce off
// a wall?
if(y == 24) // On the floor?
{
speed = - speed;
if(speed == 0) speed = -7; // Restart
speed += 1; // Acceleration = 1
LOCATE (y,x); cout << ' '; // Clear output
y += speed; x += dx; // New Position

MACROS WITH PARAMETERS 123

It is possible to call macros with arguments. To do so, you must supply the appropriate
parameters when defining the macro. The parameters are replaced by valid arguments at
run time.

Example: #define SQUARE (a) ((a) * (a))

This defines a macro called SQUARE () with a parameter a. The name of the macro must
be followed immediately by a left bracket. When the macro is called, for example

Example: z = SQUARE (x+1) ;

the preprocessor inserts the substitute text with the current arguments, which will be
expanded as follows, in this case

z = ((x+1) * (x+1));

This example also shows that you must be careful when using brackets to indicate param-
eters for macros. Omitting the brackets in the previous example, SQUARE, would cause
the expression to be expanded as follows z = x + 1 * x + 1.

The outer brackets in the definition ensure that even when the macro is used in a
complex expression, the square is calculated before the result can be used for any further
calculations.

[1 Macros for Screen Control

The program opposite uses macros to change the appearance of the screen. Peripheral
devices, such as the screen or printers, can be controlled by special character sequences
that normally begin with the ESC character (decimal 27, octal 033) and are thus known
as escape sequences. A number of ANSI standard escape sequences exists for screen con-
trol.! See the appendix on Escape Sequences for Screen Control for an overview of the
most important sequences.

CLS is a macro without any parameters that uses the escape sequence \033 [2J to
clear the screen. LOCATE is just one example of a macro with two parameters. LOCATE
uses the escape sequence \033 [z;sH to place the cursor at the position of the next
screen output. The values z for the line and s for the column require decimal input with
z=1,s = 1 representing the top left corner of the screen or window.

The ball is “thrown in” at the coordinates x = 2,y = 3 and bounces off the “floor”
and the “walls.” In direction x (horizontally) the ball has a constant speed of dx = 1 or
-1. In direction y (vertically) the ball is subject to a constant acceleration of 1,
expressed as speed += 1.

IThese escape sequences are valid for all standard UNIX terminals. The driver ansi . sys must be
loaded for DOS or a DOS box in Win95 or Win98. For Win NT and Win 2000, corresponding

functions based on system calls are offered for download.

124 CHAPTER 7 SYMBOLIC CONSTANTS AND MACROS

® WORKING WITH THE #define DIRECTIVE

Using macros in different source files

Header file proj.h

Macros

Classes
and other type
definitions

Prototypes of
global functions

Source Source Source
file 1 file 2 file n

#include "proj.h" #include "proj.h" #include "proj.h"

WORKING WITH THE #DEFINE DIRECTIVE 125

You can place the #define directive in any line of a program as long as it is placed prior
to using the macro. However, it is recommended to place all definitions at the beginning
of the source file for ease of location and modification.

If you need to use the same macros in different source files, it makes sense to create a
header file. You can then include the header file in your source files. This method also
lends itself to large-scale software projects. The programmers working on the project
then have access to the same set of macro definitions and other declarations. This con-
cept is illustrated opposite using the header file proj . h as an example.

Macros with parameters can be called just like functions. You should note the follow-
ing important differences, however:

®m Macros: A macro definition must be wvisible to the compiler. The substitute text is
inserted and re-compiled each time the macro is called. For this reason, a macro
should contain only a few statements to avoid inflating the object file each time
the macro is called. The speed of program execution will, however, improve since
the program does not need to branch to sub-routines in contrast to normal func-
tion calls. This can become apparent when macros are used within loops, for
example.

Side effects of macros are possible if the substitute text contains multiple
instances of a parameter. The statement SQUARE (++x) expands to ((++x)
* (+4+x)), for example. The variable x is incremented twice and the product
does not represent the square of the incremented number.

m Functions: Functions are compiled independently. The linker then links them
into the executable file. The program branches to the function whenever it is
called, and this can reduce the speed of execution in comparison to a macro.
However, the executable file will be shorter as it contains only one instance of
the function code.

The compiler checks the argument types, and the side effects seen with
macros cannot occur.

Inline functions, which are introduced in the chapter on functions, are an alterna-
tive to macros.

126 CHAPTER 7 SYMBOLIC CONSTANTS AND MACROS

m CONDITIONAL INCLUSION

Multiple inclusions of header files

Header file
basis.h

#ifndef BASIS H
#define BASIS H

//content of basis,
//ex.

#define BSIZE 1000

#endif
Header file Header file
statist.h raph.h
4 A 4 grap
#include <iostream> #include <iostream>
#include "basis.h" #include "basis.h"
Source file
application.cpp
» #include "statist.h"

A

#include "graph.h"

int main()

{

return 0;

CONDITIONAL INCLUSION 127

[] Redefining Macros

A macro cannot simply be redefined. A macro definition is valid until it is removed by
using an #undef directive. However, you do not need to supply the parameter list of a
macro with parameters.

Example: #define MIN(a,b) ((a)<(b)? (a) : (b))
. // Here MIN can be called
#undef MIN

The macro MIN cannot be used after this point, but it can be defined again, possibly with
a different meaning, using the #define directive.

[1 Conditional Inclusion

You can use the preprocessor directives #ifdef and #ifndef to allow the compiler to
check whether a macro has been defined.

Syntax: #ifdef name
// Block, which will be compiled
// 1f name is defined.
#endif

In the case of the #i fndef directive, the code block is compiled up to the next #endif
only if the macro name has not been previously defined.

On conditional inclusion else branching and nesting is also permissible. See Pre-
processor Directives in the appendix for further information.

A macro definition does not need to include a substitute text to be valid.

Example: #define MYHEADER

A symbol without a substitute text is often used to identify header files and avoid multi-
ple inclusion.

If you have a header file named "article.h", you can identify the header by defin-
ing a symbol, such as ARTICLE , within that file.

Example: #ifndef ARTICLE

#define ARTICLE_
. // Content of the header file
#endif

If you have already included the header, ARTICLE will already be defined, and the
contents of the header file need not be compiled. This technique is also employed by
standard header files.

128 CHAPTER 7 SYMBOLIC CONSTANTS AND MACROS

m STANDARD MACROS FOR CHARACTER MANIPULATION

Sample program

// ‘toupper.cpp: A filter that converts to capitals.
A L EE T T
#include <iostreams>

#include <cctype>

using namespace std;

int main()

{

char c;
long nChar = 0, // Counts all characters
nConv = 0; // and converted characters
while (cin.get(c)) // As long as a character
{ ++nChar; // can be read, to increment.
if (islower(c)) // Lowercase letter?
{ ¢ = toupper(c); // Converts the character
++nConv; // and counts it.
}
cout .put (c) ; // Outputs the character.
!
clog << "\nTotal of characters: " << nChar
<< "\nTotal of converted characters: " << nConv
<< endl;
return 0;

The program reads characters from a file until end-of-file. When reading keyboard input, end-of-file is
simulated by Ctrl+Z (DOS) or Ctrl+D (UNIX).

Macros for character classification

Macro Return value true means:

isalpha(c) c is aletter

islower(c) c is asmall letter
isupper(c) c is a capital letter
isdigit(c) c is a decimal digit
isalnum(c) c is a letter or a digit
isspace(c) c is a space letter
isprint(c) c is a printable letter

STANDARD MACROS FOR CHARACTER MANIPULATION 129

The following section introduces macros that classify or convert single characters. The
macros are defined in the header files ctype .h and cctype.

[1 Case Conversion

You can use the macro toupper to convert lowercase letters to uppercase. If c1 and c2
are variables of type char or int where c1 contains the code for a lowercase letter, you
can use the following statement

Example: c2 = toupper(cl);

to assign the corresponding uppercase letter to the variable c2. However if c1 is not a
lowercase letter, toupper (c1) returns the character “as is.”

The sample program on the opposite page reads standard input, converts any letters
from lower- to uppercase, and displays the letters. As toupper only converts the letters
of the English alphabet by default, any national characters, such as accentuated charac-
ters in other languages, must be dealt with individually. A program of this type is known
as a filter and can be applied to files. Refer to the next section for details.

The macro tolower is available for converting uppercase letters to lowercase.

[] Testing Characters

A number of macros, all of which begin with is. . ., are available for classifying charac-
ters. For example, the macro islower (c) checks whether ¢ contains a lowercase letter
returning the value true, in this case, and false in all other cases.

Example: char c; cin >> c; // Reads and
// classifies
if (!isdigit(c)) // a character.

cout << "The character is no digit \n";

The following usage of islower () shows a possible definition of the toupper ()
macro:

Example: #define toupper(c) \
(islower(c) ? ((c)-'a'+'A') : (<))

This example makes use of the fact that the codes of lower- and uppercase letters differ
by a constant, as is the case for all commonly used character sets such as ASCII and
EBCDIC.

The opposite page contains an overview of macros commonly used to classify char-
acters.

130

CHAPTER 7

SYMBOLIC CONSTANTS AND MACROS

® REDIRECTING STANDARD INPUT AND OUTPUT

Sample program

{

// lines.cpp
// A filter that numbers lines.

#include <iostreams>
#include <iomanip>
#include <string>
using namespace std;

int main ()

string line;

int number = 0;
while(getline(cin, line)) // As long as a line
{ // can be read.

}

return 0;

cout << setw(5) << ++number << ": "
<< line << endl;

How to call the program

1. Redirecting the standard input:

lines < text.dat | more

This outputs the text file text.dat with line numbers. In addition, the data
stream is sent to the standard filter more, which pauses screen output if the page
is full.

. Redirecting the standard output:

lines > new.dat

Here the program reads from the keyboard and adds the output to the new file
new.dat. Please note, if the file already exists, it will be overwritten!
You can use

lines >> text.dat

to append program output to the file text .dat. If the file text .dat does not
already exist, it will be created.

Type Ctrl+Z (DOS) or Ctrl+D (UNIX) to terminate keyboard input.

REDIRECTING STANDARD INPUT AND OUTPUT 131

L1 Filter Programs

The previous program, toupper . cpp, reads characters from standard input, processes
them, and sends them to standard output. Programs of this type are known as filters.
In the program toupper . cpp, the loop

while(cin.get(c)) { ... }

is repeated while the test expression cin.get (c) yields the value true, that is, as long
as a valid character can be read for the variable c. The loop is terminated by end-of-file
or if an error occurs since the test expression cin.get (c) will then be false.

The program on the opposite page, 1ines. cpp, is also a filter that reads a text and
outputs the same text with line numbers. But in this case standard input is read line by
line.

while(getline(cin,line)) { ... }

The test expression getline (cin, 1ine) is true while a line can be read.

[] Using Filter Programs

Filter programs are extremely useful since various operating systems, such as DOS,
Win**, WinNT, and UNIX are capable of redirecting standard input and output. This
allows easy data manipulation.

For example, if you need to output text .dat with line numbers on screen, you can
execute the program 1ines by typing the following command:

Example: 1lines < text.dat

This syntax causes the program to read data from a file instead of from the keyboard. In
other words, the standard input is redirected.

The opposite page contains additional examples. You can redirect input and output
simultaneously:

Example: 1lines < text.dat > new.dat

In this example the contents of text .dat and the line numbers are stored in new. dat.
The program does not generate any screen output.

These examples assume that the compiled program 1ines.exe is either in the current directory or in
a directory defined in your system’s PATH variable.

132

exercises

CHAPTER 7 SYMBOLIC CONSTANTS AND MACROS

EXERCISES

Hints for Exercise 2

You can use the function kbhit () to test whether the user has pressed a key. If
so, the function getch () can be used to read the character.This avoids
interrupting the program when reading from the keyboard.

These functions have not been standardized by ANSI but are available on
almost every system. Both functions use operating system routines and are
declared in the header file conio.h.

The function kbhit ()

Prototype: int kbhit () ;
Returns: 0, if no key was pressed, otherwise != 0.

When a key has been pressed, the corresponding character can be read by
getch().

The function getch ()

Prototype: int getch() ;
Returns: ~ The character code.There is no special return value on reaching
end-of-file or if an error occurs.

In contrast to cin.get (), getch () does not use an input buffer when
reading characters, that is, when a character is entered, it is passed directly to
the program and not printed on screen. Additionally, control characters, such as
return (= 13), Ctrl+Z (= 26),and Esc (= 27), are passed to the program “as is.”

Example: int c;

if (kbhit () != 0) // Key was pressed?
{
¢ = getch() ; // Yes -> Get character
if(¢ == 27) // character == Esc?
//
}
NOTE
When a function key, such as Fl, F2, ..., Ins, Del, etc. was pressed, the function

getch () initially returns 0. A second call yields the key number.

EXERCISES 133

Exercise |
Please write

a. the macro ABS, which returns the absolute value of a number,
b. the macro Max, which determines the greater of two numbers.

In both cases use the conditional operator 2 : .

Add these macros and other macros from this chapter to the header file
myMacros.h and then test the macros.

If your system supports screen control macros, also add some screen control
macros to the header. For example, you could write a macro named
COLOR (£, b) to define the foreground and background colors for the following
output.

Exercise 2
Modify the program balll.cpp to

a. display a white ball on a blue background,
b. terminate the program when the Esc key is pressed,

c. increase the speed of the ball with the + key and decrease the speed
with the — key.

You will need the functions kbhit () and getch () (shown opposite) to solve
parts b and c of this problem.

Exercise 3

Write a filter program to display the text contained in any given file.The
program should filter any control characters out of the input with the exception
of the characters \n (end-of-line) and \t (tabulator), which are to be treated as
normal characters for the purpose of this exercise. Control characters are
defined by codes 0 to 31.

A sequence of control characters is to be represented by a single space
character.

A single character, that is, a character appearing between two control
characters, is not to be output!

Since the program must not immediately output a single character following a control character, you will
need to store the predecessor of this character. You may want to use two counters to count the
number of characters and control characters in the current string.

134

CHAPTER 7 SYMBOLIC CONSTANTS AND MACROS

solutions

SOLUTIONS

Exercise |

// myMacros.h

// Header file contains the Macros

// ABS, MIN, MAX, CLS, LOCATE, COLOR, NORMAL,
// and symbolic constants for colors.

[/ e

#ifndef MYMACROS
#define MYMACROS

#include <iostream>
using namespace std;

[/ =

// Macro ABS

// Call: ABS(val)

// Returns the absolute value of wval
#define ABS(a) ((a) >= 0 ? (a) : -(a))

B CEEEEEEREEEEERREE

// Macro MIN

// Call: MIN(x,y)

// Returns the minimum of x and y

#define MIN(a,b) ((a) <= (b) ? (a) : (b))

[=

// Macro MAX

// Call: MAX(x,y)

// Returns the maximum of x and y

#define MAX (a,b) ((a) >= (b) ? (a) : (b))

[/ =mmmm e

// Macros for controlling the screen

T

// Macro CLS

// Call: CLS;

// Clears the screen

#define CLS (cout << "\033[2J")

[/ =

// Macro LOCATE

// Call: LOCATE (row, column) ;

// Positions the cursor to (row,column).

// (1,1) is the upper left corner.

#define LOCATE (r,c) (cout <<"\033["<< (r) <<'

;'<<(c)<<'H")

SOLUTIONS

T
// Macro COLOR
// Call: COLOR (foreground, background) ;
// Sets the foreground and background color
// for the following output.
#define COLOR(£, b) (cout << "\033[1;3"<< (£f) \
<<";4"<< (b) <<'m' << flush)
// 1: light foreground
// 3x: foreground x
// 4x: background x

// Color values for the macro COLOR
// To call ex.: COLOR(WHITE,BLUE) ;
#define BLACK 0
#define RED
#define GREEN
#fdefine YELLOW
#define BLUE
#define MAGENTA
#define CYAN
#define WHITE

<N oUW N

T SRS
// Macro INVERS

// Call: INVERS;

// The following output is inverted.

#define INVERS (cout << "\033[7m")

A —— H Z Q
// Macro NORMAL

// Call: NORMAL;

// Sets the screen attributes on default values.

#define NORMAL (cout << "\033[0m")

#endif // _MYMACROS

Exercise 2

f e e
// ball2.cpp
// Simulates a bouncing ball

T EEECEEEEEEEEEREES

#include <iostreams>

#include <string>

using namespace std;

#include <conio.h> // For kbhit () and getch()
#include "myMacros.h"

135

136

CHAPTER 7

SYMBOLIC CONSTANTS AND MACROS

#define ESC 27 // ESC terminates the program
unsigned long delay = 5000000; // Delay for output
int main()

{

int x = 2, vy =2, dx = 1, speed = 0;
bool end = false;
string floor (80, '-'),
header " xx*x BOUNCING BALL ****1
commands "[Esc] = Terminate "
"[+] = Speed up [-] = Slow down";

COLOR (WHITE, BLUE) ; CLS;
LOCATE(1,25); cout << header;
LOCATE(24,1); cout << floor;
LOCATE (25,10) ; cout << commands;

while(!end) // As long as the flag is not set
{
LOCATE (y,x); cout << 'o'; // Show the ball
for(long wait = 0; wait < delay; ++wait)
if(x == 1 || x == 79) dx = -dx; // Bounce off a wall?
if(y == 23) // On the floor?
{
speed = - speed;
if(speed == 0) speed = -7; // Kick
}
speed += 1; // Speed up = 1
LOCATE (y,x); cout << ' '; // Clear screen
y += speed; x += dXx; // New position
if(kbhit () != 0) // Key pressed?
{
switch (getch()) // Yes
{
case '+': delay -= delay/5; // Speed up
break;
case '-': delay += delay/5; // Slow down
break;
case ESC: end = true; // Terminate
!
}
}
NORMAL; CLS;
return 0O;

Exercise 3

[/ mmmmm e
// NoCtrl.cpp

// Filter to ignore control characters
// To call e.g.: NoCtrl < file

[=

#include <iostream>
using namespace std;

SOLUTIONS 137

#define isCtrl (c) (c >=0 && c <= 31 \
&& ¢ != '\n' && c != '"\t')
int main{()
{
char ¢, prec = 0; // Character and predecessor

long nCtrl = 0, nChar = 0; // Number of the following
// control characters or
// other characters

while(cin.get(c))

{

if(isCtrl(c)) // Control characters
{
++nCtrl;
nChar = 0;
}
else // Normal character

{

if (nCtrl > 0)

{
cout.put (' ');
nCtrl = 0;
!
switch(++nChar)
{
case 1: break;
case 2: cout.put (prec) ;
default: cout.put(c);
!
prec = c;
}
}

return 0;

// Predecessor and
// current character

This page intentionally left blank

chapter

Converting Arithmetic
Types

This chapter introduces implicit type conversions, which are performed in
C++ whenever different arithmetic types occur in expressions.

Additionally, an operator for explicit type conversion is introduced.

139

140 CHAPTER 8 CONVERTING ARITHMETIC TYPES

= IMPLICIT TYPE CONVERSIONS

Integer promotions

bool
char, signed char, unsigned char — int

short

int if int equals long
unsigned short

unsigned int if int equals short

Type hierarchy

long double

?

double

?

float

f

unsigned long

?

long

?

not-existent, if int

unsigned int equals long
int
Example
short size(512); double res, x = 1.5;
res = size / 10 * x; // short -> int -> double
%—I

int

IMPLICIT TYPE CONVERSIONS 141

C++ allows you to mix arithmetic types in a single expression — in other words, the
operands of an operator can belong to different types. The compiler automatically per-
forms implicit type conversion, where a common type, which allows the operation in ques-
tion to be performed, is assigned for the values of both operands. You can generally
assume that the “smaller” type will be converted to the “larger” type. The assignment
operator is an exception to this rule and will be discussed separately.

The result of an arithmetic operation belongs to the common type used to perform
the calculation. However, comparison expressions will be bool types no matter what
type of operands are involved.

[] Integer Promotion

Integer promotion is first performed for any expression:

B bool, char, signed char, unsigned char, and short are converted to
int

® unsigned short is also converted to int if the int type is greater than
short, and to unsigned int in all other cases.

This type conversion is performed so as to preserve the original values. The boolean
value false is converted to 0 and true is converted to 1.

Thus, C++ will always use int type values or greater when performing calculations.
Given a char wvariable c, the values of c and 'a' in the expression

Example: c < 'a

will be converted to int before being compared.

[1 Usual Arithmetic Type Conversions

If operands of different arithmetic types still occur after integer promotion, further
implicit type conversions along the lines of the hierarchy on the opposite page will be
necessary. In this case, the type of the operand with the highest rank in the hierarchy is
applied. These type conversions and integer promotions are collectively known as usual
arithmetic type conversions.

In our example, size/10 * x, the value of size is first promoted to int before an
integer division size/10 is performed. The interim result 50 is then converted to dou-
ble and multiplied by x.

Usual arithmetic type conversions are performed for all binary operators and the con-
ditional operator ? : provided the operands belong to an arithmetic type, the only excep-
tions being the assignment operator and the logical operators && and | |.

142 CHAPTER 8 CONVERTING ARITHMETIC TYPES

® PERFORMING USUAL ARITHMETIC TYPE CONVERSIONS

Converting signed integers

a) Converting a positive number

Sign bit(= 0 <> not negative)

Binary representaion of the integer 10 ‘L 26 25 24 23 p2 o 20
as value of type signed char (8 bits): olololol1lol1]o

Extension to int (here 16 bit)
The value 10 is preserved.

o

ofojojfofojofojfofojojo|1jyoft1ty|o

T214213....2827.....2120

Sign bit(= 0 < not negative)

b) Converting a negative number

The bit pattern of =10 is computed by starting with the bit pattern of 10 and generat-
ing the binary complement (see Binary Representation of Numbers in the appendix).

Sign bit(= 1 <> negative)

Binary representaion of the integer —10 ‘L 26 25 24 28 22 ot 0
as value of type signed char (8 bits): 11111 11lol1l1]o0

Extension to int (here 16 bit)
The value —10 is preserved.

Tyt {1{1 1]t 1tj1{1+]1]1|11(0]1[1]0

T214213....2827.....2120

Sign bit(= 1 <> negative)

The value of a negative number changes if the bit pattern is interpreted as unsigned. The bit pattern
I'111 0110 of -0, for example, corresponds to the unsigned char value

246 == 0%20+ 2! + [%22 + (%23 + [#2% + |25 + %26 + |*27

PERFORMING USUAL ARITHMETIC TYPE CONVERSIONS 143

Usual arithmetic type conversions retain the value of a number provided it can be repre-
sented by the new type. The procedure for type conversion depends on the types
involved:

1. Conversion of an unsigned type to a larger integral type

Examples: unsigned char to int or unsigned int

Zero extension is performed first. During this process, the bit pattern of the num-
ber to be converted is expanded to match the length of the new type by adding
zeros from the left.

2. Conversion of a signed type to a larger integral type

m The new type is also signed
Examples: char to int, short to long

Signed integers are represented by generating the binary complement. The
value is retained by performing sign extension. As shown in the example on the
opposite page, the original bit pattern is expanded to match the length of the
new type by padding the sign bit from the left.

m The new type is unsigned

Examples: char tounsigned int, long tounsigned long

In this case the value of negative numbers is not retained. If the new type is of
the same length, the bit pattern is retained. However, the bit pattern will be
interpreted differently. The sign bit loses its significance (see the note oppo-
site).

If the new type is longer, sign extension is performed first and the new bit
pattern is then interpreted as unsigned.

3. Conversion of an integral type to a floating-point type

Examples: int to double,unsigned long to float

The number is converted to an exponential floating-point type and the value
retained. When converting from long or unsigned long to float, some
rounding may occur.

4. Conversion of a floating-point type to a larger floating-point type

Examples: float to double, double to long double

The value is retained during this type conversion.

144 CHAPTER 8 CONVERTING ARITHMETIC TYPES

m IMPLICIT TYPE CONVERSIONS IN ASSIGNMENTS

Example 1:

int 1 = 100;

long 1g = 1 + 50; // Result of type int is

// converted to long.

Example 2:

long 1lg = 0x654321; short st;

st = 1g; //0x4321 is assigned to st.
Example 3:

int 1 = -2; wunsigned int ui = 2;

i =1 * ui;

// First the value contained in i1 is converted to
// unsigned int (preserving the bit pattern) and
// multiplied by 2 (overflow!).

// While assigning the bit pattern the result

// 1is interpreted as an int value again,

// i.e. -4 1is stored in 1i.

Example 4:
double db = -4.567;
int i; wunsigned int ui;

i = db; // Assigning -4.

i =db - 0.5; // Assigning -5.

ui = db; // -4 is incompatible with ui.
Example 5:

double d = 1.23456789012345;

float f;

f = 4d; // 1.234568 is assigned to f.

IMPLICIT TYPE CONVERSIONS IN ASSIGNMENTS 145

Arithmetic types can also be mixed in assignments. The compiler adjusts the type of the
value on the right of the assignment operator to match the type of the variable on the

left.

In the case of compound assignments, calculations using normal arithmetic type con-
versions are performed first before type conversion is performed following the rule for
simple assignments.

Two different cases can occur during type conversion in assignments:

1. If the type of the variable is larger than the type of the value to be assigned, the
type of the value must be promoted. The rules for usual arithmetic type conver-
sions are applied in this case (see Example 1).

2. If the type of the value to be assigned is larger, this type must be “demoted.” The
following procedures are followed depending on individual circumstances:

a.

Conversion of an integral type to a smaller type:

m the type is converted to a smaller type by removing the most significant
byte(s). The bit pattern that remains will be interpreted as unsigned, if the
new type is also unsigned, and as signed in all other cases. The value can
only be retained if it can be represented by the new type (see Example 2).

®m when converting an unsigned type to a signed type of the same scale,
the bit pattern is retained and will be interpreted as signed (see Example

3).

Conversion of a floating-point type to an integral type

The decimal part of the floating-point number is removed. For example, 1.9
converts to the integer 1. Rounding can be achieved by adding 0. 5 to a posi-
tive floating-point number or subtracting 0.5 from a negative floating-point
number. This would allow for converting (1.9 + 0.5) to 2.

If the resulting integer is too large or too small for the new type, the result
is unpredictable. This particularly applies to converting negative floating-
point numbers to unsigned integers (see Example 4).

Conversion of a floating-point type to a smaller type

If the floating-point number falls within the range of the new type, the value
will be retained, although the accuracy may be compromised. If the value is
too large to be represented by the new type, the result is unpredictable (see
Example 5).

146

CHAPTER 8 CONVERTING ARITHMETIC TYPES

® MORE TYPE CONVERSIONS

Sample program

// Ellipse.cpp

// The program draws an ellipse.

// The points (x,y) on an ellipse with center (0,0)
// and axes A and B satisfy:

// X = A*cos(t), y = B*sint(t) for 0 <= t <= 2*PI

#include <iostream>
#include <cmaths> // Prototypes of sin() and cos()
using namespace std;

#define CLS (cout << "\033[2J")
#define LOCATE (z,s) (cout <<"\033["<<(z)<<';'<<(8)<<'H'")
#define DOT (x,Vy) (LOCATE (y,x) << '*')

#define PI 3.1416

#define Mx 40 // The point (Mx, My) is the
#define My 12 // center of the ellipse.
#define A 25 // Length of main axis
#define B 10 // Length of subsidiary axis

int main()

{
int x, y; // Screen coordinates.
CLS;
// 0 <= t <= PI/2 is a 1/4-circle:

for(double £t = 0.0 ; t <= PI/2 ; t 4= 0.03)
{

x = (int) (A * cos(t) + 0.5);

y = (int) (B * sin(t) + 0.5);

DOT(x+Mx, y+My) ;

DOT (x+Mx, -y+My) ;

DOT (-x+Mx, y+My) ;

DOT (-x+Mx, -y+My) ;
}
LOCATE (24,0) ;
return 0;

MORE TYPE CONVERSIONS 147

[1 Implicit Type Conversions in Function Calls

In the case of function calls, arguments with arithmetic types are converted to the types of
the corresponding parameters, similarly to conversions in assignments.

Example: void func(short, double); // Prototype
int size = 1000;
//
func(size, 77); // Call

The function func () has two parameters belonging to the short and double types.
However, the function is called using two int arguments. This leads to implicit conver-
sion of the value of size to short and the integer 77 to double.

When an int is converted to short the compiler issues a warning, since some data
loss may occur. You can use explicit type conversion to avoid warnings during type con-
version.

[1 Explicit Type Conversion

It is possible to convert the type of an expression explicitly using the cast operator
(type).

Syntax: (type) expression

This converts the value of an expression to the given type. Explicit type conversion is
also known as casting.

The cast operator (type) is a unary operator and thus has a higher precedence than
the arithmetic operators.

Example: int a = 1, b = 4;
double x;
x = (double)a/b;

In this example the value of a is explicitly converted to a double. Following the con-
ventions of usual implicit type conversion, b is also converted to double and a floating-
point division is performed. The exact result, 0.25, is assigned to the variable x.
Without casting, an integer division with a result of 0 would have occurred.

C++ has additional operators for explicit type conversion—the cast operator
dynamic_cast<>, for example. These operators, which are described in later chapters,
are required for special circumstances, for example, to perform type checking at runtime
when converting classes.

148 CHAPTER 8 CONVERTING ARITHMETIC TYPES

EXERCISES
@ Program listing for exercise 3
m // Convert.cpp —> Demonstrates type conversions.
w #include <iostreams>
#include <iomanip>
o G using namespace std;
U int main()
{
B char v_char = 'A';
cout << "v_char: " << setw(10) << v_char
<< setw(10) << (int)v_char
b << endl;
short v _short = -2;
x cout << "v_short: " << dec << setw(10) << v_short
<< hex << setw(10) << v_short
m << endl;
unsigned short v_ushort = v_short;
cout << "v_ushort: " << dec << setw(10) << v_ushort
<< hex << setw(10) << v_ushort
<< endl;
unsigned long v_ulong = v_short;
cout << "v_ulong: " << hex << setw(20) << v_ulong
<< endl;
float v_float = -1.99F;
cout << "v_float: " << setw(10) << v_float << endl;
cout << "(int)v_float: " << setw(10)
<< dec << (int)v_float << endl;
return 0;
}

Graphic for exercise 4

-1 kkkkkkk

A sin(x)

-+ l * Kk kk ok ok ok

-+ * ok k * Kk

-+ * %k * K

-+ * *

4+ * % * %k

4+ * *

4 k% * %

T* * 2PI x
" | | e | | e

-+ * *

-+ * K * %k

4+ * *

4+ * % * %

4+ * *

-+ * k * %k

-+ * k Kk * ok k

EXERCISES
Exercise |

A function has the following prototype

void func(unsigned int n);

What happens when the function is called with -1 as an argument?

Exercise 2
How often is the following loop executed?

unsigned int limit = 1000;

for (int 1 = -1; i < limit; i++)
//

Exercise 3

What is output when the program opposite is executed?

Exercise 4

Write a C++ program to output the sine curve on screen as in the graphic

shown on the opposite page.

149

I. Plot one point of the curve in columns 10, 10+1, ..., 10+64 respectively. This leads to a
step value of 2*P1/64 for x.

2. Use the following extended ASCII code characters to draw the axes:

Character

+
A

>

Example:

Decimal Octal
196 304
197 305
16 020
30 036
cout << '\020'; // up arrowhead

150 CHAPTER 8 CONVERTING ARITHMETIC TYPES

SOLUTIONS

Exercise |

When called, the value -1 is converted to parameter n,i.e.to unsigned int.
The pattern of -1 is interpreted as unsigned, which yields the greatest unsigned
value.

On a 32-bit system, -1 has the bit pattern 0xFFFFFFFF, which, when
interpreted as unsigned, corresponds to the decimal value 4 294 967 295.

Exercise 2

The statement within the loop is not executed at all! In the expression
i < limit

the value of variable i, -1,is implicitly converted to unsigned int and thus it
represents the greatest unsigned value (see Exercise).

solutions

Exercise 3
The screen output of the program

v_char: A 65

v_short: -2 fffe

v_ushort: 65534 fffe

v_ulong: fffffffe

v_float: -1.99

(int)v_float: -1

Exercise 4

f] e

// sinCurve.cpp
// Outputs a sine curve

T L EEEEE RS

#include <iostream>
#include <cmaths> // Prototypes of sin()
using namespace std;

#define CLS (cout << "\033[2J")

#define LOCATE (z,s) (cout <<"\033["<<(z)<<';'<<(s)<<'H'")
#define PI 3.1415926536

#define START 0.0 // Lower limit

#define END (2.0 * PI) // Upper limit

SOLUTIONS

#define PNT 64 // Number of points on the curve
#define STEP ((END-START) /PNT)

#define xA 14 // Row of x-axis
#define vyA 10 // Column of y-axis

int main ()

{

int row, column;

CLS;

LOCATE (2,25) ;

cout << "------- The Sine Function ------- "
// --- Draws the coordinate system: ---

LOCATE (xA, 1) ;

; // x-axis
for(column = 1 ; column < 78 ; ++column)

{
cout << ((column - yA) % 8 2 '\304' : '\305');

1
cout << '\020'; // top
LOCATE (xA-1, yA+64); cout << "2PI x";
for(row = 5 ; row < 24 ; ++row) // y-axis
{

LOCATE (row, yA); cout << '\305';
}
LOCATE(4, yA); cout << "\036 sin(x)"; // top
LOCATE (xA-8, yA+1l); cout << "™ 1";
LOCATE (xA+8, VyA+1); cout << " -1";
// --- Displays the sine function: ---

int begpt = vA,
endpt = begpt + PNT;

for(column = begpt ; column <= endpt ; ++column)
{

double x = (column-yA) * STEP;

row = (int) (xA - 8 * gin(x) + 0.5);

LOCATE (row, column); cout << '*';
!
LOCATE (25,1) ; // Cursor to the last row
return 0;

151

This page intentionally left blank

chapter

The Standard Class

string

This chapter introduces the standard class string, which is used to
represent strings. Besides defining strings we will also look at the various
methods of string manipulation. These include inserting and erasing,

searching and replacing, comparing, and concatenating strings.

153

154 CHAPTER 9 THE STANDARD CLASS STRING

® DEFINING AND ASSIGNING STRINGS
Initializing

string message = "Good Morning!";

String message in memory:

S.tring G o' o' d' v ™' | o' I n' i n' gl "y
literal:

Length:

Objects of class string do not necessarily contain the string terminating character '\0', as is the case
with C strings.

Sample program

// stringl.cpp: Using strings
#include <iostream>

#include <strings

using namespace std;

string prompt ("Enter a line of text: "), // Global
line(50, '*'); // strings
int main ()
string text; // Empty string
cout << line << endl << prompt << endl;
getline(cin, text); // Reads a line of text
cout << line << endl
<< "Your text is " << text.size()
<< " characters long!" << endl;
// Two new strings:
string copy (text), // a copy and the
start (text,0,10) ; // first 10 characters

// starting with
// position 0.
cout << "Your text:\n" << copy << endl;
text = "1234567890"; // Assignment
cout << line << endl
<< "The first 10 characters:\n" << start << endl
<< text << endl;
return 0;

DEFINING AND ASSIGNING STRINGS 155

C++ uses the standard class string to represent and manipulate strings allowing for
comfortable and safe string handling. During string operations the required memory
space is automatically reserved or modified. The programmer does not need to concern
himself or herself with internal memory allocation.

The string class is defined in the string header file and was mentioned in Chap-
ter 3 as an example for the use of classes. Several operators are overloaded for strings,
that is, they were also defined for the string class. This allows for easy copying, con-
catenation, and comparison. Additionally, various methods for string manipulation such
as insertion, erasing, searching, and replacing are available.

[Initializing Strings
A string, that is, an object belonging to the string class, can be initialized when you
define it using

m a predefined string constant
® a certain number of characters
m a predefined string or part of a string.

If a string is not initialized explicitly, an empty string with a length of 0 is created.
The length of a string, that is, the current number of characters in the string, is stored
internally and can be accessed using the 1ength () method or its equivalent size ().

Example: string message ("Good morning!") ;
cout << message.length() ; // Output: 13

[] String Assignments

When you assign a value to a string, the current contents are replaced by a new character
sequence. You can assign the following to a string object:

® another string
B a string constant or
® asingle character.

The memory space required is adjusted automatically.

The program on the opposite page uses the function getline (), which was intro-
duced in an earlier chapter, to store a line of text from the keyboard in a string. In con-
trast, the >> operator reads only one word, ignoring any leading white space. In both
cases the original content of the string is lost.

156

CHAPTER 9 THE STANDARD CLASS STRING

B CONCATENATING STRINGS

Sample program

// string2.cpp: Reads several lines of text and

// outputs in reverse order.

#include <iostreams

#include <string>

using namespace std;

string prompt ("Please enter some text!\n"),

line(50, '-');

int main()

{
prompt+="Terminate the input with an empty line.\n ";
cout << line << '\n' << prompt << line << endl;
string text, line; // Empty strings
while(true)

{

getline(cin, line); // Reads a line of text
if(line.length() == 0) // Empty line?

break; // Yes ->end of the loop
text = line + '\n' + text; // Inserts a new

// line at the beginning.

// Output:
cout << line << '"\n'
<< "Your lines of text in reverse order:"
<< '\n' << line << endl;
cout << text << endl;
return O;

Sample output for this program

Please enter some text!
Terminate the input with an empty line.

Babara, Bobby, and Susan
will go to the movies today

will go to the movies today
Babara, Bobby, and Susan

CONCATENATING STRINGS 157

Within the string class the operators + and += are defined for concatenating, and the
operators ==, !=, <, <=, >, and >= are defined for comparing strings. Although these
operators are being applied to strings, the well-known rules apply: the + has precedence
over the comparative operators, and these in turn have higher precedence than the
assignment operators = and +=.

[] Using + to Concatenate Strings
You can use the + operator to concatenate strings, that is, to join those strings together.

Example: string sum, sl("sun"), s2("flower");
sum = s2 + 83;

This example concatenates the strings s1 and s2. The result, "sunflower" is then
assigned to sum.

Two strings concatenated using the + operator will form an expression of the string
type. This expression can in turn be used as an operand in a more complex expression.

Example: string s1("sun"),s2("flower"),s3 ("seed");
cout << sl + s2 + 83;

Since the + operator has precedence over the << operator, the strings are concatenated
before the “sum” is output. Concatenation takes place from left to right. String constants
and single characters are also valid as operands in expressions containing strings:

Example: string s("Good morning ") ;
cout << s + "mister X" + 'I';

At least one operand must be a string class object. The expression "Good morning " +
"mister X" would be invalid!

[] Using += to Concatenate Strings

Strings can also be concatenated by first performing concatenation and then assigning
the result.

Example: string s1("Good "),s2("luck!");
sl = sl + s2; // To concatenate s2 and sl

This example creates a temporary object as a result of s1 + s2 and then assigns the
result to s1. However, you can obtain the same result using the assignment operator +=,
which is far more efficient.

Example: s1 += s2; // To concatenate s2 and sl.
sl += "luck!"; // Also possible

This adds the content of the second string directly to s1. Thus, the += operator is prefer-
able to a combination of the + and = operators.

158 CHAPTER 9 THE STANDARD CLASS STRING

m COMPARING STRINGS

Sample program

// string3.cpp: Inputs and compares lines of text.
#include <iostreams>
#include <string>
using namespace std;
string prompt = "Please enter two lines of text!\n",
line(30, '-');
int main()
{
string linel, line2, key = "y";
while(key == "y" || key == "Y")

{

cout << line << '\n' << prompt << line << endl;

getline(cin, linel); // Read the first
getline(cin, line2); // and second line.
if(linel == line2)

cout << " Both lines are the same!" << endl;
else

{

cout << "The smaller line is:\n\t";
cout << (linel < line2 ? linel : line2)
<< endl;
int lenl = linel.length(),
len2 = line2.length() ;

if(lenl == len2)
cout << "Both lines have the same length! \n";
else
{ cout << "The shorter line is:\n\t";
cout << (lenl < len2 ? linel : line2)
<< endl;

}
}

cout << "\nRepeat? (y/n) ";

do
getline(cin, key);
while(key != llyll && key != IIY"
&& key != "n" && key != "N");
}
return 0;

The relational operators yield the desired result for strings only if at least one operand is an object of
class string. See Chapter |7, Pointers and Arrays, for more information.

COMPARING STRINGS 159

The comparative operators
== 1= < <= > >=

were overloaded in the string class to allow easy comparison of strings. This also
allows you to use strings to formulate the conditions for branches and loops.

Example: // strl and str2 are objects of type string
if(strl < str2) // strl is less than str2?

[J Results of Comparisons

Strings are compared lexicographically, that is character by character, beginning at the
first character. To decide whether a single character is smaller, greater, or identical to
another character, the character codes of the character set are compared. Thus, if you are
using the ASCII character set, the letter 'A' (ASCII code 65) is smaller than the letter
ra' (ASCII code 97) .

A comparison results in a bool type value. Given two strings s1 and s2:

sl == s2 is true only if both strings are identical; this requires that both strings
are exactly the same length.

sl < s2 is true only if the first character in s1 that differs from the correspon-
ding character in s2 is smaller than the corresponding character in s2,
or if 2 is simply an extension of s1.

All other comparative operations can be deduced from the above rules. For example, the
expression s1 > s2is true onlyif s2 < sl isalso true.

In an expression comparing strings, one operand can again be a string constant or a
single character.

Example: while(key == 'y') { . . .}

This example compares the string key with the single character 'y '. This is an alterna-
tive method of expressing the comparison key == "y".
String comparisons can also be combined to form more complex expressions.

Example: while(key == "y" || key == "Y")

o)

The controlling expression is valid if the string key contains only the letter "Y' or 'y"'.
Due to the higher precedence of the comparative operator versus the | | operator, no
parentheses are required in this example.

160

CHAPTER 9

® INSERTING AND ERASING IN STRINGS

[1 Inserting a string

string sl ("Miss Summer") ;

sl.insert (5,

Effect of the statement:

"Ashley ") ;

THE STANDARD CLASS STRING

// Insert at position: 5

Position: 0 2 3 7 8 9 10
String s1 mlme e |
lAI Vhl VII
Erasing a substring
string s ("The summer-time") ;
s.erase(4,7); // Start position: 4, Quantity: 7
Effect of the statement:
Position: 0 1 4 9 10 11 12 13 14
String s e [PO I () I (R
before T ['h 5 r'] - t i"|'m'|['e
String s o || o o] aw
afterwards T|'h t

INSERTING AND ERASING IN STRINGS 161

The string class contains numerous methods for performing string manipulations. A
method exists for each operation, such as inserting, erasing, searching, and replacing.
These methods generally allow passing a string constant instead of a second string. A sin-
gle character can also be used wherever appropriate.

[Insertion

The method insert () inserts a string at a certain position of another string. The posi-
tion is passed as the first argument and defines the character before which to insert the
string. The first character in a string occupies position 0, the second character position 1,
and so on.

Example: string sl ("Miss Summer") ;
sl.insert (5, "Ashley ");

The string "Ashley " is inserted into the string s1 at position 5, that is in front of the
'S character in "Summer". Following this, the string "Miss Ashley Summer" is
assigned to s1.

If you need to insert only part of a string into another string, you can pass two addi-
tional arguments to the insert () method, the starting position and the length of the
string.

Example: string s1("Ashley is a devil"),
s2 (" sweetheart") ;
sl.insert (12, s2, 0, 12);

This example inserts the first 12 characters from the string s2 at position 13 in string s1.
String s1 then contains the string “Ashley is a sweetheart".

[1 Erasing

You can use the erase () method to delete a given number of characters from a string.
The starting position is supplied as the first argument and the number of characters to be
erased is the second argument.

Example: string s("The summer-time");
s.erase(4,6) ; // Result: "The time"

This statement deletes 7 characters from string s starting at position 4. The erase ()
method can also be called without specifying a length and will then delete all the charac-
ters in the string up to the end of the string.

Example: string s("winter-story");
s.erase (6) ; // s now contains "winter"

You can also call erase () without any arguments to delete all the characters in a
string.

162 CHAPTER 9 THE STANDARD CLASS STRING

® SEARCHING AND REPLACING IN STRINGS

[] Replacing substrings
a. Example “Bob and Bill”

string sl ("There they go again!"),

s2 ("Bob and Bill") ;
sl.replace(6, 4, s2);

Effect of the statement:

012 3 45 6 7 8 9 1011121314 1516171819

si elhe et e el e th e -yu v vgu ol e ng- e fenn e

s2 B'lo''p'l " A a B]

b. Example “my love”

string sl ("Here comes Mike!"), s2("my love?");
sl.replace (11, 4, s2, 0, 7);

Effect of the statement:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s1 Hlel'r e " |'elo!m|el's|" " ['M]|"'"'|['k]|'e]|"T

SEARCHING AND REPLACING IN STRINGS 163

[1 Searching

You can search strings to find the first or last instance of a substring. If the string con-
tains the required substring, the position of the substring found by the search is returned.
If not, a pseudo-position npos, or -1, is returned. Since the npos constant is defined in
the string class, you can reference it as string: :npos.

The find () method returns the position at which a substring was first found in the
string. The method requires the substring to be located as an argument.

Example: string youth("Bill is so young, so young");
int first = youth.find("young") ;

The variable first has a value of 11 in this example.
You can use the “right find” method rfind () to locate the last occurrence of a sub-
string in a string. This initializes the variable 1ast with a value of 21 in our example.

Example: int last = youth.rfind("young") ;

[] Replacing

When replacing in strings, a string overwrites a substring. The string lengths need not be
identical.

You can use the replace () method to perform this operation. The first two argu-
ments supply the starting position and the length of the substring to be replaced. The
third argument contains the replacement string.

Example: string sl ("There they go again!"),
s2 ("Bob and Bill")

int pos = sl.find("they"); // pos == 6
)
)

’

if(pos != string::npos
sl.replace(pos, 2, s2

I

This example uses the string s2 to replace 4 characters, "they", starting at position 6 in
s1. After this operation s1 contains the string "There Bob and Bill go
again!".

If you only need to insert part of a string, you can use the fourth argument to define
the starting position and the fifth to define the length of the substring.

Example: string sl ("Here comes Mike!"),
s2 ("my love?");
sl.replace (11, 4, s2, 0, 7);

The string s1 is changed to "Here comes my love!".

164

CHAPTER 9 THE STANDARD CLASS STRING

m ACCESSING CHARACTERS IN STRINGS

Sample program

// string4.cpp

// The program counts words and white space characters.
// (A word is the maximum sequence of characters

// containing no white space characters.)

#include <iostream>

#include <string>

#include <cctypes // Macro isspace ()
using namespace std;

int main ()
{
string header (" **** Counts words *xxx\n") ,
prompt ("Enter a text and terminate"
" with a period and return:"),
line(60, '-'),
text; // Empty string

cout << header << endl << prompt << endl
<< line << endl;
getline(cin, text, '.'); // Reads a text up to
// the first '.!

// Counts words and white space characters

int i, // Index
nSpace = 0, // Number of white spaces
nWord = 0; // Number of words

bool fSpace true; // Flag for white space

for(i = 0; i < text.length(); ++1)

{

if (isspace(text[i])) // white space?

++nSpace; fSpace = true;

}

else if(fSpace) // At the beginning of a word?
{
++nWord; fSpace = false;
}
}
cout << line // Outputs the result.
<< "\nYour text contains (without periods)"
<< "\n characters: " << text.length()
<< "\n words: " << nWord
<< "\n white spaces: " << nSpace
<< endl;

return 0O;

ACCESSING CHARACTERS IN STRINGS 165

When manipulating strings it is often important to access the individual characters that
form the string. C++ has the operator [] and the method at () for this purpose. An
individual character is always identified by its index, also referred to as subscript, that is,
its position in the string. The first character will always have an index value of 0, the
second an index of 1, and so on.

[Subscript Operator

The easiest way to access a single character in the string is to use the subscript operator
[1. If you define a string as follows,

Example: string s = "Let";
the individual characters in the string are:
s[0] == 'L', s[l] == 'e', s[2] == 't!

The last character in a string always has an index of s.length() - 1. You can use
the subscript operator to read any character in a string and also to overwrite a character,
provided the string was not defined as a constant.

Example: char ¢ = s[0];

This statement copies the first character from s to the variable c. In contrast

Example: s[s.length() -1] = 'g';

overwrites the last character in the string s. Following this, s will contain the string

n Leg ",

(1 Invalid Indices

Any integral expression can be used as an index. However, no error message occurs if the
boundaries of a valid index are overstepped.

Example: cout << s[5]; // Error

Your program’s reaction to an invalid index is undefined; this requires careful atten-
tion by the programmer! You can call the at () method if you need to perform range

checks.

[0 The at () method

You can also use the at () method to access a single character.
Example: s.at(i) = 'x'; is equivalentto s[i] = 'X';

In contrast to the subscript operator, the at () method performs range checking. If an
invalid index is found an exception occurs and the program will normally be terminated at
this point. However, you can specify how a program should react to an exception.

166 CHAPTER 9

exercises

THE STANDARD CLASS STRING

EXERCISES

For exercise 3

// timeStr.cpp
// Demonstrates operations on a string containing
// the present time.

#include <iostream>

#include <strings

#include <ctime> // For time (), ctime(),
using namespace std;

int main()

{

long sec;
time (&sec) ; // Reads the present time
// (in seconds) into sec.
string tm = ctime(&sec); // Converts the
// seconds to a string.
cout << "Date and time: " << tm << endl;
string hr(tm, 11, 2); // Substring of tm starting at

// position 11, 2 characters long.
string greeting("Have a wonderful ");

if(hr < "10") // Compares strings
greeting += "Morning!";

else if(hr < "17")
greeting += "Day!";

else
greeting += "Evening!";

cout << greeting << endl;

return 0;

EXERCISES 167

Exercise |
Write a C++ program to

m initialize a string s1 with the string "As time by ..." and a second
string s2 with the string "goes™",
insert string s2 in front of "by" in string s1,

m erase the remainder of string s1 after the substring "by",
replace the substring "time" in s1 with "Bil1".

In each case, your program should determine the position of the substring.
Output string s1 on screen at the beginning of the program and after every
modification.

Exercise 2

Write a C++ program that reads a word from the keyboard, stores it in a string,
and checks whether the word is a palindrome. A palindrome reads the same
from left to right as from right to left. The following are examples of
palindromes:“OTTO, ” “deed, ” and “level”

Use the subscript operator [].Modify the program to continually read and
check words.

Exercise 3

Write down the screen output for the program on the opposite page.

The function time () returns the current time as the number of seconds since I/1/1970, 0:0. The
number of seconds is stored in the variable sec, whose address was supplied as &sec when the
function was called.

The function ctime () converts the number of seconds to a string with a date and time and returns
this string. The string comprises exactly 26 characters including the null character \ 0 and has the
following format:

Weekday Month Day Hr:Min:Sec Year\n\O

Example:

Wed Jan 05 02:03:55 2000\n\0

168 CHAPTER 9 THE STANDARD CLASS STRING

SOLUTIONS

Exercise |
[e -

// strDemo.cpp: Insert, search, and replace in strings.

J)
#include <iostream>

#include <string>

using namespace std;

string header = "Demonstrating the use of strings\n",
sl = "As time by ...",
s2 = "goes ";

int main ()

{

solutions

int pos = 0;

cout << header << endl;
cout << "sl : " << sl << endl;

// To insert:
cout << "\nInserting in string \"" << s2 <<"\"'"<< endl;

pos = sl.find("by");

if(pos != string::npos)
sl.insert (pos,s2);
cout << "sl : " << sl << endl; // Result

// To erase:
cout << "\nTo erase remaining characters behind \"by\":"
<< endl;

pos = sl.find("by");

if(pos != string::npos)
sl.erase(pos + 3);
cout << "sl : " << sl << endl; // Result

// To replace:
cout << "\nTo replace \"time\" by \"Bill\":"
<< endl;

pos = sl.find("time") ;
if (pos != string::npos)
sl.replace(pos, 4, "Bill");
cout << "sl : " << sl << endl; // Result
return O;

SOLUTIONS

Exercise 2
A et T

// palindrome.cpp: Reads and compares lines of text.

#include <iostream>
#include <string>
using namespace std;

string header = " * * * Testing palindromes * * * ",
prompt = "Enter a word: ",
line(50, '-');

int main ()

{
string word; // Empty string
char key = 'y';

cout << "\n\t" << header << endl;
while(key == 'y' || key == 'Y"')
{
cout << '\n' << line << '\n'
<< prompt;

cin >> word;

// Compares the first and last character,
// the second and the second to last etc.

int 1 = 0, j = word.length() - 1;
for(; i <=3 ; ++1i, --3)
if(word[i] != wordI[j])
break;
if(i > 3) // All characters equal?
cout << "\nThe word " << word
<< " 1saPALINDROME !" << endl;
else
cout << "\nThe word " << word
<< " is not a palindrome" << endl;

cout << "\nRepeat? (y/n) ";
do
cin.get (key) ;
while (key != 'y' && key != 'Y
&& key != 'n' && key != 'N');
cin.sync() ;

}

return 0O;

169

170 CHAPTER 9 THE STANDARD CLASS STRING

Exercise 3
The program outputs the date and time first. Then a greeting is printed

according the time of day. For example:

Date and time: Thu Nov 28 09:01:37 2001

Have a wonderful morning!

chapter

Functions

This chapter describes how to write functions of your own. Besides the
basic rules, the following topics are discussed:

® passing arguments

m definition of inline functions

overloading functions and default arguments

the principle of recursion.

171

|72 = CHAPTER I0 FUNCTIONS

m SIGNIFICANCE OF FUNCTIONS IN C++

Elements of a C++ program

C++ program

Core elements of
C++
(built-in types,
operators,
control structures)

Functions and
classes of the
standard library

Self-defined
functions and
classes and
other libraries

SIGNIFICANCE OF FUNCTIONS IN C++ 173

C++ supports efficient software development on the lines of the top-down principle. If
you are looking to provide a solution for a more complex problem, it will help to divide
the problem into smaller units. After identifying objects you will need to define classes
that describe these objects. You can use available classes and functions to do so. In addi-
tion, you can make use of inheritance to create specialized classes without needing to
change any existing classes.

When implementing a class you must define the capacities of those objects, that is,
the member functions, in your program. However, not every function is a member func-
tion.

Functions can be defined globally, such as the function main () for example. Func-
tions of this type do not belong to any particular class but normally represent algorithms
of a more general nature, such as the search or sort functions of the standard library.

(] Libraries

You will not need to program each “building block” yourself. Many useful global func-
tions and classes are available from the C++ standard library. In addition, you can use
other libraries for special purposes. Often a compiler package will offer commercial class
libraries or graphical user interfaces. Thus, a C++ program will be made up of

m language elements of the C++ core
m global functions and classes from the C++ standard library

m functions and classes you have programmed yourself and other libraries.

Classes and functions that belong together are normally compounded to form separate
source files, which can be compiled and tested independently. Using software compo-
nents that you have already tested makes programming a complex solution much easier
and improves the reliability of your programs. You can enhance the reusability of your
source code by compiling your own libraries, but be sure to include comments for ease of
readability.

Compiled source files, also known as modules, are compounded by the linker to an
executable file by reference to the libraries you include. If you modify a source file, you
may also need to recompile other files. In large scale projects it is recommended to use
the MAKE utility for module management. An integrated developer environment will
offer the functionality of this utility when you create a new project. This includes your
own source files, the libraries used, and the compiler/linker settings for program com-
pilation.

174 = CHAPTER I0 FUNCTIONS

®m DEFINING FUNCTIONS

Example of a function definition

// funcl.cpp
#include <iostream>
using namespace std;

return 0;

}

void test (int argl,

{

void test (int, double);

int main ()
cout << "\nNow function test ()
test(10, -7.5);

double arg?2

will be called.\n";

cout << "\nAnd back again in main() ."

)

<< argl
<< arg2 << endl;

cout << "\nIn function test()."
<< "\n 1. argument: "
<< "\n 2. argument: "

// Prototype

// Call
<< endl;

// Definition

General form of a function

[type] name([declaration list])

What will be done

//
/7

//

//

Function header
Beginning

Function block

End

DEFINING FUNCTIONS 175

The following section describes how to program global functions. Chapter 13, Defining
Classes, describes the steps for defining member functions.

[] Definition

Functions can be defined in any order, however, the first function is normally main.
This makes the program easier to understand, since you start reading at the point where
the program starts to execute.

The function test () is shown opposite as an example and followed by the general
form of a function. The example can be read as follows:

type is the function type, that is, the type of the return value.

name is the function name, which is formed like a variable name
and should indicate the purpose of the function.

declaration list contains the names of the parameters and declares their
types. The list can be empty, as for the function main (),
for example. A list of declarations that contains only the
word void is equivalent to an empty list.

The parameters declared in a list are no more than local variables. They are created
when the function is called and initialized by the values of the arguments.

Example: When test (10, -7.5); is called, the parameter
argl is initialized with a value of 10 and arg2 with -7.5.

The left curved bracket indicates the start of a function block, which contains the state-
ments defining what the function does.

[1 Prototype and Definition

In a function definition the function header is similar in form to the prototype of a func-
tion. The only difference when a function is defined is that the name and declaration list
are not followed by a semicolon but by a function code block.

The prototype is the declaration of the function and thus describes only the formal
interface of that function. This means you can omit parameter names from the proto-
type, whereas compiling a function definition will produce machine code.

176

CHAPTER 10 FUNCTIONS

® RETURN VALUE OF FUNCTIONS

Defining and calling the function area ()

// area.cpp
// Example for a simple function returning a value.

/] == m e
#include <iostream>
#include <iomanip>
using namespace std;
double area (double, double) ; // Prototype
int main()
double x = 3.5, y = 7.2, res;
res = area(x, y+1); // Call
// To output to two decimal places:

cout << fixed << setprecision(2);
cout << "\n The area of a rectangle "

<< "\n with width " << setw(5) << x
<< "\n and length " << setw(5) << y+1
<< "\n is " << setw(5) << res
<< endl;

return O;

}

// Defining the function area() :
// Computes the area of a rectangle.
double area(double width, double len)

{
}

return (width * len) ; // Returns the result.

Screen output:

The area of a rectangle
with width 3.50
and length 8.20
is 28.70

RETURN VALUE OF FUNCTIONS 177

The program opposite shows how the function area () is defined and called. As previ-
ously mentioned, you must declare a function before calling it. The prototype provides
the compiler with all the information it needs to perform the following actions when a
function is called:

m check the number and type of the arguments
m correctly process the return value of the function.

A function declaration can be omitted only if the function is defined within the same
source file immediately before it is called. Even though simple examples often define and
call a function within a single source file, this tends to be an exception. Normally the
compiler will not see a function definition as it is stored in a different source file.

When a function is called, an argument of the same type as the parameter must be
passed to the function for each parameter. The arguments can be any kind of expressions,
as the example opposite with the argument y+1 shows. The value of the expression is
always copied to the corresponding parameter.

(] Return Statement

When the program flow reaches a return statement or the end of a function code block, it
branches back to the function that called it. If the function is any type other than void,
the return statement will also cause the function to return a value to the function that
called it.

Syntax: return [expression]

If expression is supplied, the value of the expression will be the return value. If the
type of this value does not correspond to the function type, the function type is con-
verted, where possible. However, functions should always be written with the return
value matching the function type.

The function area () makes use of the fact that the return statement can contain
any expression. The return expression is normally placed in parentheses if it contains
operators.

If the expression in the return statement, or the return statement itself, is miss-
ing, the return value of the function is undefined and the function type must be void.
Functions of the void type, such as the standard function srand (), will perform an
action but not return any value.

|78 = CHAPTER I0 FUNCTIONS

m PASSING ARGUMENTS

Calling function and called function

long func2 (int, double) ; // Prototype
//
void funcl ()
{
int x = 1.1;
double vy;
long a = func2(x,vy); // Call of func2().
A
} // Pass by value

long func2(int a, double b) // Definition

double x = 2.2;

long result;
// Here the result
// is computed.

return result;

}
TN
Stack content after calling a function
On call On return
“push” “pop”

A

further local objects

return address

first parameter

last parameter

Stack

PASSING ARGUMENTS 179

[1 Passing by Value

Passing values to a function when the function is called is referred to as passing by value.
Of course the called function cannot change the values of the arguments in the calling
function, as it uses copies of the arguments.

However, function arguments can also be passed by reference. In this case, the function
is passed a reference to an object as an argument and can therefore access the object
directly and modify it.

An example of passing by reference was provided in the example containing the func-
tion time (). When time (&sek) ; is called, the address of the variable sek is passed
as an argument, allowing the function to store the result in the variable. We will see how
to create functions of this type later.

Passing by value does, however, offer some important advantages:

function arguments can be any kind of expression, even constants, for example

m the called function cannot cause accidental modifications of the arguments in
the calling function

m the parameters are available as suitable variables within the functions. Additional
indirect memory access is unnecessary.

However, the fact that copying larger objects is difficult can be a major disadvantage,
and for this reason vectors are passed by reference to their starting address.

[1 Local Objects

The scope of function parameters and the objects defined within a function applies only
to the function block. That is, they are valid within the function only and not related to
any objects or parameters of the same name in any other functions.

For example, the program structure opposite contains a variable a in the function
funcl () and in the function func2 (). The variables do not collide because they refer-
ence different memory addresses. This also applies to the variables x in func1 () and
func2 ().

A function’s local objects are placed on the stack—the parameters of the function are
placed first and in reverse order. The stack is an area of memory that is managed accord-
ing to the LIFO (last in first out) principle. A stack of plates is a good analogy. The last
plate you put on the stack has to be taken off first. The LIFO principle ensures that the
last local object to be created is destroyed first.

180 CHAPTER 10 FUNCTIONS

m INLINE FUNCTIONS

Call to a function not defined as inline

Program Function

Branching void func()

/18t Call — {
I

/1 2" Call :
v

FUNC () j ““@rmmmrrrmmmmmnemeaieneeeennanaaennnaes] -}

func();

The executable file only contains one instance of the function’s machine code.

Call to an inline function

Program Inline function

/1%t Call Copy

inline void func()
func(); {

‘_

}
/12" Call
func();

The machine code of the function is stored in the executable file wherever the function is called.

INLINE FUNCTIONS 181

[] Jumping to Sub-Routines

When a function is called, the program jumps to a sub-routine, which is executed as fol-
lows:

m the function parameters are placed on the stack and initialized with appropriate
arguments

m the so-called return address, that is, the place where the function was called, is
stored on the stack and the program flow branches to the function

m after executing the function the program uses the return address it stored previ-
ously to return to the calling function. The part of the stack occupied by the
function is then released.

All this jumping back and forth can affect the run time of your program, especially if the
function contains only a few instructions and is called quite often. The time taken to
branch to a small function can be greater than the time needed to execute the function
itself. However, you can define inline functions to avoid this problem.

[1 Inline Definition

The compiler inserts the code of an inline function at the address where the function is
called and thus avoids jumping to a sub-routine. The definition of an inline function is
introduced by the inline keyword in the function header.

Example: inline int max(int x, int y)
{ return (x>=y ? x : vy); }

The program code will expand each time an inline function is called. This is why
inline functions should contain no more than one or two instructions. If an inline
function contains too many instructions, the compiler may ignore the inline keyword
and issue a warning.

An inline function must be defined in the source file in which it is called. You can-
not simply supply a prototype of the function. The code containing the instructions must
also be available to the compiler. It therefore makes sense to define inline functions in
header files, in contrast to “normal” functions. This means the function will be available
in several source files.

(] Inline Functions and Macros

Inline functions are an alternative to macros with parameters. When a macro is called,
the preprocessor simply replaces a block of text. In contrast, an inline function
behaves like a normal function, although the program flow is not interrupted by the
function branching. The compiler performs a type check, for example.

182 CHAPTER 10 FUNCTIONS

® DEFAULT ARGUMENTS

Defining the function capital()

// Computes the final capital with interest and

// compound interest.

// Formula: capital = k0 * (1.0 + p/100)™

// where kO = start capital, p = rate, n = run time

/] mm
#include <math.h>

double capital(double kO, double p, double n)

{
}

return (k0 * pow(1l.0+p/100, n));

Possible calls

// Function capital () with two default arguments
// Prototype:
double capital(double kO, double p=3.5, double n=1.0);

double endcap;

endcap = capital(100.0, 3.5, 2.5); // ok

endcap = capital(2222.20, 4.8); // ok
endcap = capital(3030.00); // ok
endcap = capital(); // not ok
// The first argument has no default value.
endcap = capital(100.0, , 3.0); // not ok
// No gap!

endcap = capital(, 5.0); // not ok

// No gap either.

A function defined with default arguments is always called with the full number of arguments. For
reasons of efficiency it may be useful to define several versions of the same function.

DEFAULT ARGUMENTS 183

So-called default arguments can be defined for functions. This allows you to omit some
arguments when calling the function. The compiler simply uses the default values for any
missing arguments.

[] Defining Default Arguments

The default values of a function’s arguments must be known when the function is called.
In other words, you need to supply them when you declare the function.

Example: void moveTo(int x = 0, int y = 0);

Parameter names can be omitted, as usual.

Example: void moveTo(int = 0, int = 0);

The function moveTo () can then be called with or without one or two arguments.
Example: moveTo (); moveTo (24); moveTo (24, 50);

The first two calls are equivalent to moveTo (0, 0) ; or moveTo (24,0) ; .
It is also possible to define default arguments for only some of the parameters. The fol-
lowing general rules apply:

m the default arguments are defined in the function prototype. They can also be
supplied when the function is defined, if the definition occurs in the same source
file and before the function is called

m if you define a default argument for a parameter, all following parameters must
have default arguments

m default arguments must not be redefined within the prototype scope (the next
chapter gives more details on this topic).

[] Possible Calls

When calling a function with default arguments you should pay attention to the follow-
ing points:

® you must first supply any arguments that do not have default values
® you can supply arguments to replace the defaults
m if you omit an argument, you must also omit any following arguments.

You can use default arguments to call a function with a different number of arguments
without having to write a new version of the function.

184

CHAPTER 10 FUNCTIONS

® OVERLOADING FUNCTIONS

Sample program

// random.cpp
// To generate and output random numbers.

#include <iostream>

#include <iomanip>

#include <cstdlibs> // For rand(), srand()
#include <ctimes> // For time ()

using namespace std;

bool setrand = false;
inline void init random() // Initializes the random
{ // number generator with the
// present time.
if (!setrand)
{ srand ((unsigned int)time (NULL)) ;
setrand = true;

}

}

inline double myRandom () // Returns random number x
{ // with 0.0 <= x <= 1.0
init random() ;
return (double)rand() / (double)RAND MAX;
}
inline int myRandom(int start, int end) // Returns the
{ // random number n with
init random() ; // start <= n <= end
return (rand() % (end+1l - start) + start);

}

// Testing myRandom() and myRandom (int,int) :
int main ()

{

int i;

cout << "5 random numbers between 0.0 and 1.0 :"
<< endl;

for(i = 0; 1 < 5; ++1)

cout << setw(1l0) << myRandom() ;
cout << endl;
cout << "\nAnd now 5 integer random numbers "

"between -100 and +100 :" << endl;

for(i = 0; i < 5; ++1)

cout << setw(1l0) << myRandom(-100, +100);
cout << endl;
return O;

OVERLOADING FUNCTIONS 185

Functions in traditional programming languages, such as C, which perform the same task
but have different arguments, must have different names. To define a function that cal-
culated the maximum value of two integers and two floating-point numbers, you would
need to program two functions with different names.

Example: int int max(int x, int y);
double dbl max(double x, double y);

Of course this is detrimental to efficient naming and the readability of your program—
but luckily, this restriction does not apply to C++.

[1 Overloading

C++ allows you to overload functions, that is, different functions can have the same
name.

Example: int max (int x, int vy);
double max(double x, double vy);

In our example two different function share the same name, max. The function max ()
was overloaded for int and double types. The compiler uses a function’s signature to
differentiate between overloaded functions.

[1 Function Signatures

A function signature comprises the number and type of parameters. When a function is
called, the compiler compares the arguments to the signature of the overloaded functions
and simply calls the appropriate function.

Example: double maxvalue, value = 7.9;
maxvalue = max(1.0, value);

In this case the double version of the function max () is called.
When overloaded functions are called, implicit type conversion takes place. However,
this can lead to ambiguities, which in turn cause a compiler error to be issued.

Example: maxvalue = max(1, value); // Error!

The signature does not contain the function type, since you cannot deduce the type by
calling a function. It is therefore impossible to differentiate between overloaded func-
tions by type.

Example: int search (string key) ;
string search(string name) ;

Both functions have the same signature and cannot be overloaded.

186 CHAPTER 10 FUNCTIONS

® RECURSIVE FUNCTIONS

Using a recursive function

// recursive.cpp

// Demonstrates the principle of recursion by a

// function, which reads a line from the keyboard

// and outputs it in reverse order.

/] = e
#include <iostreams

using namespace std;

void getput (void) ;

int main ()

{
cout << "Please enter a line of text:\n";
getput () ;
cout << "\nBye bye!" << endl;
return 0;

}

void getput ()
char c;
if(cin.get(c) && ¢ != '"\n')

getput () ;

cout .put (c) ;

Program flow after typing ok<return>

I st Execution 2nd Execution 3rd Execution
maln() //////>getPUt //////PgetPUt() //////>getput0
// c = 'o! /] ¢ = // ¢ = "\n'
getput (getput (getput (// No call of

// getput ()
} cout put (c cout put (¢ cout.put (c) ;

RECURSIVE FUNCTIONS 187

[Recursion

A function that calls itself is said to be recursive. This process can also be performed indi-
rectly if the function first calls another function or multiple functions before it is called
once more. But a break criterion is always necessary to avoid having the function call
itself infinitely.

The concept of local objects makes it possible to define recursive functions in C++.
Recursion requires local objects to be created each time the function is called, and these
objects must not have access to any other local objects from other function calls. What
effectively happens is that the local objects are placed on the stack, and thus the object
created last is destroyed first.

[1 A Sample Program

Let’s look at the principle of recursion by referring to the sample program opposite. The
program contains the recursive function getput () that reads a line of text from the
keyboard and outputs it in reverse order.

The function getput () is first called by main () and reads a character from the key-
board, storing it in the local variable c. If the character is not '\n', the function get -
put () calls itself again and thus reads a further character from the keyboard before
storing it in the local variable c.

The chain of recursive function calls is terminated by the user pressing the Return
key. The last character to be read, '\n' (line feed), is output and the program flow
branches to the previous getput () instance. This outputs the second to last character,
and so on. When the first character to have been read has finally been output, the pro-
gram flow is handed back to main ().

[1 Practical Usage

The logic of various solutions to common problems results in a recursive structure, for
example, browsing directory trees, using binary trees for data management, or some sort-
ing algorithms, such as the quick sort algorithm. Recursive functions allow you to formu-
late this kind of logic in an efficient and elegant manner. However, always make sure
that sufficient memory is available for the stack.

188 CHAPTER 10 FUNCTIONS

EXERCISES

Hint for exercise |
Working with several source files:

Within an integrated development environment a project, containing all source
files of the program, first has to be created.This ensures that all the source files
will be compiled and linked automatically.

However, when calling the compiler/linker from the command line, it is
sufficient to declare the source files, for example:

exercises

cc sum _t.cpp sum.cpp

Screen output for exercise 3

n Factorial of n
0 1
1 1
2 2
3 6
4 24
5 120
6 720
7 5040
19 121645100408832000
20 2432902008176640000

EXERCISES 189

Exercise |

a. Write the function sum () with four parameters that calculates the argu-
ments provided and returns their sum.

Parameters: Four variables of type long.
Returns: The sum of type long.

Use the default argument 0 to declare the last two parameter of the
function sum () . Test the function sum () by calling it by all three possible
methods. Use random integers as arguments.

b. Now restructure your program to store the functions main () and
sum () in individual source files, for example, sum_t.cpp and sum.cpp .

Exercise 2

a. Write an inline function,Max (double x, double y),which returns
the maximum value of x and y. (Use Max instead of max to avoid a colli-
sion with other definitions of max.) Test the function by reading values
from the keyboard.

Can the function Max () also be called using arguments of the types
char, int, or long?

b. Now overload Max () by adding a further inline function Max (char x,
char y) for arguments of type char .

Can the function Max () still be called with two arguments of type
int?

Exercise 3
The factorial n! of a positive integer n is defined as

n!

Where 0!

Write a function to calculate the factorial of a number.

1*2*3 . . . * (n-1) * n
1

Argument: A number n of type unsigned int.
Returns: The factorial n! of type long double.

Formulate two versions of the function, where the factorial is

a. calculated using a loop
b. calculated recursively

Test both functions by outputting the factorials of the numbers 0 to 20 as shown
opposite on screen.

190 CHAPTER 10 FUNCTIONS

Exercise 4

Write a function pow (double base, int exp) to calculate integral powers of
floating-point numbers.

Arguments: The base of type double and the exponent of type int.

Returns: The power base®*® of type double.

For example, calling pow (2.5, 3) returns the value
2.5° = 2.5 * 2.5 * 2.5 = 15.625

This definition of the function pow () means overloading the standard function
pow (), which is called with two double values.

Test your function by reading one value each for the base and the exponent
from the keyboard. Compare the result of your function with the result of the
standard function.

I. The power x° is defined as 1.0 for a given number x.
2. The power x* is defined as (1/x) ® for a negative exponent n.

3. The power 0® where n > 0 will always yield 0.0 .

The power 07 is not defined for n < 0. In this case, your function should return the
value HUGE VAL. This constant is defined in math.h and represents a large double
value. Mathematical functions return HUGE_VAL when the result is too large for a
double.

solutions

SOLUTIONS 191

SOLUTIONS

Exercise |

[/ mm e e
// sum_t.cpp
// Calls function sum() with default arguments.

[=

#include <iostream>
#include <iomanip>
#include <ctime>
#include <cstdlib>
using namespace std;

long sum(long al, long a2, long a3=0, long a4=0);

int main() // Several calls to function sum()
cout << " *x** Computing sums *x**\n"
<< endl;

srand ((unsigned int)time (NULL)); // Initializes the
// random number generator.

long res, a = rand()/10, b rand() /10,

¢ = rand() /10, 4 = rand()/10;
res = sum(a,b);
cout << a << " + " << b << " =" << res << endl;
res = sum(a,b,c);
cout << a << " + " << b << " + " << C
<< " = " << res << endl;

res = sum(a,b,c,d);

cout << a << " + " << b << "+ " << << " + " << d
<< " = " << res << endl;
return 0;
[/ = e
// sum.cpp
// Defines the function sum()
/] e oo

long sum(long al, long a2, long a3, long a4)

{
}

return (al + a2 + a3 + a4);

192 CHAPTER 10 FUNCTIONS

Exercise 2

// max.cpp
// Defines and calls the overloaded functions Max() .

// As long as just one function Max() is defined, it can
// be called with any arguments that can be converted to
// double, i.e. with values of type char, int or long.

// After overloading no clear conversion will be possible.

#include <iostream>
#include <strings>

using namespace std;

inline double Max(double x, double y)

{
}

inline char Max(char x, char vy)

{
}

return (x <y ? vy : X);

return (x <y ? y : X);

string header (
"To use the overloaded function Max () .\n"),
line(50,'-");

int main() // Several different calls to function Max ()

{

double x1 = 0.0, x2 = 0.0;

line += '\n';
cout << line << header << line << endl;

cout << "Enter two floating-point numbers:"
<< endl;
if(cin >> x1 && cin >> x2)

{

cout << "The greater number is " << Max(x1l,x2)
<< endl;
else
cout << "Invalid input!" << endl;
cin.sync(); cin.clear(); // Invalid input

// was entered.

SOLUTIONS

cout << line
<< "And once more with characters!"
<< endl;

cout << "Enter two characters:"
<< endl;

char cl, c2;
if(cin >> cl && cin >> c2)

{

cout << "The greater character is " << Max(cl,c2)
<< endl;

else

cout << "Invalid input!" << endl;
cout << "Testing with int arguments." << endl;
int a = 30, b = 50;
cout << Max(a,b) << endl; // Error! Which

// function Max()?
return 0;
Exercise 3

e

// factorial.cpp
// Computes the factorial of an integer iteratively,
// i.e. using a loop, and recursively.

/] e

#include <iostream>
#include <iomanip>
using namespace std;

#define N MAX 20

long double factl (unsigned int n); // Iterative solution
long double fact2 (unsigned int n); // Recursive solution
int main ()

{

unsigned int n;

// Outputs floating-point values without
// decimal places:
cout << fixed << setprecision(0) ;

193

194 CHAPTER 10 FUNCTIONS

// --- Iterative computation of factorial ---

cout << setw(10) << "n" << setw(30) << "Factorial of n"
<< " (Iterative solution) \n"
<< I e e e e e e e e e e e n
<< endl;

for(n = 0; n <= N _MAX; ++n)
cout << setw(1l0) << n << setw(30) << factl(n)
<< endl;

cout << "\nGo on with <returns>";
cin.get () ;

// --- Recursive computation of factorial ----

cout << setw(10) << "n" << setw(30) << "Factorial of n"
<< " (Recursive solution)\n"
<< N e e e e e e e e e e e e e n
<< endl;

for(n = 0; n <= N _MAX; ++n)
cout << setw(1l0) << n << setw(30) << fact2(n)

<< endl;

cout << endl;

return O;
1
long double factl (unsigned int n) // Iterative
{ // solution.
long double result = 1.0;
for(unsigned int i = 2; 1 <= n; ++1i)

result *= 1i;

return result;

long double fact2 (unsigned int n) // Recursive
{ // solution.
if(n <= 1)
return 1.0;
else
return fact2(n-1) * n;

SOLUTIONS

Exercise 4

// power.cpp

// Defines and calls the function pow() to

// compute integer powers of a floating-point number.
// Overloads the standard function pow() .

#include <iostream>
#include <cmath>

using namespace std;

double pow(double base, int exp);

int main () // Tests the self-defined function pow ()
double base = 0.0;
int exponent = 0;
cout << " **** Computing Integer Powers ****\n"
<< endl;

cout << "Enter test values.\n"
<< "Base (floating-point): "; cin >> base;
cout << "Exponent (integer): "; cin >> exponent;

cout << "Result of " << base << " to the power of "
<< exponent << " = " << pow(base, exponent)
<< endl;

cout << "Computing with the standard function: "
<< pow(base, (double)exponent) << endl;
return 0O;

}

double pow(double base, int exp)

{

if (exp == 0) return 1.0;
if (base == 0.0)
if(exp > 0) return 0.0;

else return HUGE VAL;
if (exp < 0)
base = 1.0 / base;
exp = -exp;
double power = 1.0;
for(int n = 1; n <= exp; ++n)
power *= base;
return power;

195

This page intentionally left blank

chapter

Storage Classes and
Namespaces

This chapter begins by describing storage classes for objects and
functions. The storage class is responsible for defining those parts of a
program where an object or function can be used. Namespaces can be

used to avoid conflicts when naming global identifiers.

197

198 CHAPTER Il STORAGE CLASSES AND NAMESPACES

m STORAGE CLASSES OF OBJECTS

[J Availability of Objects
C++ program

program scope
Module 1
file scope
Function
block scope
Function
block scope
Module 2
file scope
Function
block scope

[1 Storage Class Specifiers

The storage class of an object is determined by

m the position of its declaration in the source file
m the storage class specifier, which can be supplied optionally.

The following storage class specifiers can be used

extern static auto register

STORAGE CLASSES OF OBJECTS 199

When an object is declared, not only are the object’s type and name defined but also its
storage class. The storage class specifies the lifetime of the object, that is, the period of
time from the construction of the object until its destruction. In addition, the storage
class delimits the part of the program in which the object can be accessed directly by its
name, the so-called object scope.

Essentially, an object is only available after you have declared it within a translation
unit. A translation unit, also referred to as module, comprises the source file you are com-
piling and any header files you have included.

As a programmer, you can define an object with:

m block scope The object is only available in the code block in which it was
defined. The object is no longer visible once you have left
the code block.

m file scope The object can be used within a single module. Only the

functions within this module can reference the object. Other
modules cannot access the object directly.

B program scope The object is available throughout the program, providing a
common space in memory that can be referenced by any pro-
gram function. For this reason, these objects are often
referred to as global.

Access to an object as defined by the object’s storage class is independent of any
access controls for the elements of a class. Namespaces that subdivide program scope and
classes will be introduced at a later stage.

[] Lifetime

Objects with block scope are normally created automatically within the code block that
defines them. Such objects can only be accessed by statements within that block and are
called local to that block. The memory used for these objects is freed after leaving the
code block. In this case, the lifetime of the objects is said to be automatic.

However, it is possible to define objects with block scope that are available through-
out the runtime of a program. The lifetime of these objects is said to be static. When the
program flow re-enters a code block, any pre-existing conditions will apply.

Objects with program and file scope are always static. These objects are created when
a program is launched and are available until the program is terminated.

Four storage classes are available for creating objects with the scope and lifetime you
need. These storage classes will be discussed individually in the following sections.

200 CHAPTER Il STORAGE CLASSES AND NAMESPACES

B THE STORAGE CLASS extern

Source file |

// Cutlinel.cpp

// A filter to remove white-space characters

// at the ends of lines.

[/ = e
#include <iostream>

#include <strings>

using namespace std;

void cutline(void); // Prototype
string line; // Global string
int main()
{
while(getline(cin, line)) // As long as a line
// can be read.
cutline () ; // Shorten the line.
cout << line << endl; // Output the line.
!
return 0;

Source file 2

// Cutline2.cpp

// Containing the function cutline(), which removes

// tabulator characters at the end of the string line.
// The string line has to be globally defined in another
// source file.

J ==

#include <string>
using namespace std;

extern string line; // extern declaration

void cutline ()

{

int 1 = line.size(); // Position after the
// last character.
while(i-- >= 0)
1f(line[i] != ' ! // If no blank and
&& line[i] != '"\t') // no tab ->
break; // stop the loop.
line.resize (++1) ; // Fix new length.

THE STORAGE CLASS extern 201

[1 Defining Global Objects

If an object is not defined within a function, it belongs to the extern storage class.
Objects in this storage class have program scope and can be read and, provided they have
not been defined as const, modified at any place in the program. External objects thus
allow you to exchange information between any functions without passing any argu-
ments. To demonstrate this point, the program on the opposite page has been divided
into two separate source files. The string 1ine, which has a global definition, is used to
exchange data.

Global objects that are not explicitly initialized during definition receive an initial
value of 0 (that is, all bits = 0) by default. This also applies to objects belonging to class
types, if not otherwise stipulated by the class.

[1 Using Global Objects

An object belonging to the extern storage class is initially only available in the source
file where it was defined. If you need to use an object before defining it or in another
module, you must first declare the object. If you do not declare the object, the compiler
issues a message stating that the object is unknown. The declaration makes the name and
type of the object known to the compiler.

In contrast to a definition, the storage class identifier extern precedes the object
name in a declaration.

Example: extern long position; // Declaration

This statement declares position as an external object of type 1ong. The extern
declaration thus allows you to “import” an object from another source file.

A global object must be defined once, and once only, in a program. However, it can
be declared as often as needed and at any position in the program. You will normally
declare the object before the first function in a source file or in a header file that you can
include when needed. This makes the object available to any functions in the file.
Remember, if you declare the object within a code block, the object can only be used
within the same block.

An extern declaration only refers to an object and should therefore not be used to
initialize the object. If you do initialize the object, you are defining that object!

Global objects affect the whole program and should be used sparingly. Large programs in particular
should contain no more than a few central objects defined as extern.

202 CHAPTER Il STORAGE CLASSES AND NAMESPACES

®m THE STORAGE CLASS static

// Passwl.cpp

// The functions getPassword() and timediff ()

// to read and examine a password.

/] ==
#include <iostream>

#include <iomanip>

#include <strings

#include <ctime>

using namespace std;

long timediff (void) ; // Prototype
static string secret = "ISUS"; // Password
static long maxcount = 3, maxtime = 60; // Limits
bool getPassword () // Enters and checks a password.
{ // Return value: true, if password is ok.

bool ok flag = false; // For return value

string word; // For input

int count = 0, time = 0;

timediff () ; // To start the stop watch

while(ok _flag != true &&

++count <= maxcount) // Number of attempts

{

cout << "\n\nInput the password: ";

cin.sync () ; // Clear input buffer
cin >> setw(20) >> word;

time += timediff () ;

if(time >= maxtime) // Within time limit?
break; // No!
if (word != secret)
cout << "Invalid password!" << endl;
else
ok flag = true; // Give permission
}
return ok flag; // Result
}
long timediff () // Returns the number of
{ // seconds after the last call.
static long sec = 0; // Time of last call.
long oldsec = sec; // Saves previous time.
time (&sec) ; // Reads new time.
return (sec - oldsec); // Returns the difference.

THE STORAGE CLASS static 203

[] Static Objects

If an object definition is preceded by the static keyword, the object belongs to the
static storage class.

Example: static int count;

The most important characteristic of static objects is their static (or permanent) lifetime.
Static objects are not placed on the stack, but are stored in the data area of a program
just like external objects.

However, in contrast to external objects, access to static objects is restricted. Two
conditions apply, depending on where the object is defined:

1. Definition external to all program functions

In this case, the object is external static, that is, the object can be designated using
its name within the module only, but will not collide with any objects using the
same name in other modules.

In contrast to objects with an extern definition, the name of an external static object is unknown to
the linker and thus retains its private nature within a module.

2. Definition within a code block

This means that the object is internal static, that is, the object is only visible
within a single block. However, the object is created only once and is not
destroyed on leaving the block. On re-entering the block, you can continue to
work with the original object.

The same rules apply to initializing static objects as they do to external objects. If the
object is not initialized explicitly, a default value of 0 applies.

[] Notes on the Sample Programs Opposite

The function getPassword () checks a password that is entered. Permission is refused
following three unsuccessful attempts or when 60 seconds have elapsed. You could use
the following instructions to call the function in another source file:

Example: if(!getPassword())
cout << "No authorization!\n"; exit (1) ;

The string secret and the thresholds maxcount and maxtime are external static,
whereas the variable sec in the function timediff () is internal static. Its value is zero
only when the function is first called.

It makes sense to add a further function to these source files providing for password
changes.

204 CHAPTER 1|1

STORAGE CLASSES AND NAMESPACES

m THE SPECIFIERS auto AND register

Sample function with a register variable

{

// StrToL.cpp

// The function strToLong() converts a string containing
// a leading integer into an integer of type long.

// Argument : A string.

// Return value: An integer of type long.

/] = oo

// The digits are interpreted with base 10. White spaces
// and a sign can precede the sequence of digits.

// The conversion terminates when the end of the string is
// reached or when a character that cannot be converted is
// reached.
A EEEEEEEEEE
#include <strings> // Type string

#include <cctypes> // isspace () and isdigit ()

using namespace std;

long strToLong(string str)

register int i = 0; // Index
long vz = 1, num = 0; // Sign and number

// Ignore leading white spaces.
for(i=0; 1 < str.size() && isspace(str[i]l); ++1)

7

// Is there a sign?

if(i < str.size())

{
if(str[i] == '+') { vz = 1; ++i; }
if(str[i] == '-') { vz = ---1; ++i; }

}

// Sequence of digits -> convert to integer
for(; i < str.size() && isdigit(str[i]); ++1i)
num = num * 10 + (str[i] - '0'");

return vz * num;

THE SPECIFIERS auto AND register 205

[] auto Objects

The storage class auto (automatic) includes all those objects defined within a function
but without the static keyword. The parameters of a function are also auto objects.
You can use the auto keyword during a definition.

Example: auto float radius; // Equivalent to:
// float radius;

When the program flow reaches the definition, the object is created on the stack, but in
contrast to a static type object, the object is destroyed on leaving the block.

auto objects have no specific initial value if they are not initialized explicitly. How-
ever, objects belonging to a class type are normally initialized with default values, which
can be specified in the class definition.

[1 Using CPU Registers

To increase the speed of a program, commonly used auto variables can be stored in
CPU registers instead of on the stack. In this case, the register keyword is used to
declare the object.

A register is normally the size of an int variable. In other words, it only makes sense
to define register variables if the variable is not too large, as in the case of types such
as char, short, int or pointers. If you omit the type when defining a register variable,
an int is assumed.

However, the compiler can ignore the register keyword. The number of registers
available for register variables depends on your hardware, although two registers are nor-
mally available. If a program defines too many register variables in a code block, the
superfluous variables are placed in the auto storage class.

[1 Sample Function

The function strToLong () illustrates an algorithm that converts a sequence of digits
to a binary number. This is useful if you need to perform calculations with a number con-
tained in a string.

The algorithm using the string "37" and the 1ong variable num:

Step O: num = 0;

Step 1: Ist character '3' — number 3 = ('3'-'0")
num = num * 10 + 3; //=3

Step 2: 2nd character '7" — number 7 = ('7'-'0")
num = num * 10+ 75 /=37

This pattern is followed for every number in a longer string.

206 = CHAPTER Il STORAGE CLASSES AND NAMESPACES

® THE STORAGE CLASSES OF FUNCTIONS

[1 Example of a Program Structure
Source file |

extern bool getPassword (void) ; // Prototype
int main()
// The function permission(),

// but not the function timediff ()
// can be called here.

}
B T
Source file 2
static long timediff (void) ; // Prototype
bool getPassword (void) // Definition

// timediff () can be called here.

}

static long timediff (void) // Definition

{

THE STORAGE CLASSES OF FUNCTIONS 207

Only two storage classes are available for functions: extern and static. Functions
with block scope are invalid: you cannot define a function within another function.

The storage class of a function defines access to the function, as it does for an object.
External functions have program scope, whereas static functions have file scope.

[1 External Functions

If the keyword static is not used when defining a function, the function must belong
to the extern storage class.

In a similar manner to external objects, external functions can be used at any position
in a program. If you need to call a function before defining it, or in another source file,
you will need to declare that function.

Example: extern bool getPassword(void); // Prototype

As previously seen, you can omit the extern keyword, since functions belong to the
extern storage class by default.

[] Static Functions

To define a static function, simply place the keyword static before the function

header.

Example: static long timediff ()

O

Functions in the static storage class have “private” character: they have file scope,
just like external static objects. They can only be called in the source file that defines
them. The name of a static function will not collide with objects and functions of the
same name in other modules.

If you need to call a static function before defining it, you must first declare the
function in the source file.

Example: static long timediff(void);

The program structure opposite takes up the example with the functions
getPassword () and timediff () once more. The function timediff () is an aux-
iliary function and not designed to be called externally. The function is declared as
static for this reason.

208 CHAPTER Il STORAGE CLASSES AND NAMESPACES

m NAMESPACES

Defining namespaces

// namespl.cpp

// Defines and tests namespaces.

/] == e

#include <strings> // Class string defined within
// namespace std

namespace MySpace

{

std::string mess = "Within namespace MySpace";
int count = 0; // Definition: MySpace: :count
double f(double) ; // Prototype: MySpace: : f ()

}

namespace YourSpace

{

std::string mess = "Within namespace YourSpace";

void f£() // Definition of

{ // YourSpace::f ()
mess += '!';

}
}
namespace MySpace // Back in MySpace.

{

int g(void) ; // Prototype of MySpace::g()
double f(double y) // Definition of
{ // MySpace::f ()

return y / 10.0;
}
}
int MySpace::g() // Separate definition

// of MySpace::g()
return ++count;

}

#include <iostreams> // cout, ... within namespace std
int main ()
std::cout << "Testing namespaces!\n\n"
<< MySpace::mess << std::endl;

MySpace: :g() ;

std::cout << "\nReturn value g(): " << MySpace::g()
<< "\nReturn value f£(): " << MySpace::f(1.2)
<< "\DQ-----mmmmm oo " << std::endl;

YourSpace: :f () ;
std::cout << YourSpace::mess << std::endl;
return 0;

NAMESPACES 209

Using global names in large-scale software projects can lead to conflicts, especially when
multiple class libraries are in operation.

C++ provides for the use of namespaces in order to avoid naming conflicts with global
identifiers. Within a namespace, you can use identifiers without needing to check
whether they have been defined previously in an area outside of the namespace. Thus,
the global scope is subdivided into isolated parts.

A normal namespace is identified by a name preceded by the namespace keyword.
The elements that belong to the namespace are then declared within braces.

Example: namespace myLib
{
int count;
double calculate (double, int) ;

//

This example defines the namespace myLib that contains the variable count and the
function calculate ().

Elements belonging to a namespace can be referenced directly by name within the
namespace. If you need to reference an element from outside of the namespace, you must
additionally supply the namespace. To do so, place the scope resolution operator, : :,
before the element name.

Example: myLib::count = 7; // Outside of myLib

This allows you to distinguish between identical names in different namespaces. You can
also use the scope resolution operator :: to reference global names, that is, names
declared outside of any namespaces. To do so, simply omit the name of the namespace.
This technique is useful when you need to access a global name that is hidden by an
identical name defined in the current namespace.

Example: ::demo(); // Not belonging to any namespace
Be aware of the following when using namespaces:

m namespaces do not need to be defined contiguously. You can reopen and expand
a namespace you defined previously at any point in the program

® namespaces can be nested, that is, you can define a namespace within another
namespace.

Global identifiers belonging to the C++ standard library automatically belong to the
standard namespace std.

210 CHAPTER 11 STORAGE CLASSES AND NAMESPACES

® THE KEYWORD using

Sample program

// namesp2.cpp
// Demonstrates the use of using-declarations and
// using-directives.

/] == e
#include <iostreams> // Namespace std
void message () // Global function ::message ()

{
}

namespace A

{

std::cout << "Within function ::message()\n";

using namespace std; // Names of std are visible here
void message () // Function A::message ()

{

cout << "Within function A::message()\n";

}
}

namespace B

{
using std::cout; // Declaring cout of std.
void message (void) ; // Function B::message ()

}

void B::message (void) // Defining B::message ()

{
}

int main ()

{

cout << "Within function B::message()\n";

using namespace std; // Names of namespace std

using B::message; // Function name without
// braces!

cout << "Testing namespaces!\n";

cout << "\nCall of A::message()" << endl;
A::message () ;

cout << "\nCall of B::message()" << endl;

message () ; // ::message() is hidden because

// of the using-declaration.
cout << "\nCall of::message()" << endl;
::message () ; // Global function
return 0;

THE KEYWORD using 211

You can simplify access to the elements of a namespace by means of a using declaration or
using directive. In this case, you do not need to repeatedly quote the namespace. Just like
normal declarations, using declarations and using directives can occur at any part of
the program.

[] using Declarations

A using declaration makes an identifier from a namespace visible in the current scope.
Example: using myLib::calculate; // Declaration

You can then call the function calculate () from the myLib namespace.

double erg = calculate(3.7, 5);

This assumes that you have not previously used the name calculate in the same
scope.

[using Directive

The using directive allows you to import all the identifiers in a namespace.
Example: using namespace myLib;

This statement allows you to reference the identifiers in the myLib namespace directly.
If myLib contains an additional namespace and a using directive, this namespace is
also imported.

If identical identifiers occur in the current namespace and an imported namespace,
the using directive does not automatically result in a conflict. However, referencing an
identifier can lead to ambiguities. In this case, you should use the scope resolution opera-
tor to resolve the situation.

C++ header files without file extensions are used to declare the global identifiers in
the standard namespace std. The using directive was used in previous examples to
import any required identifiers to the global scope:

Example: #include <strings>
using namespace std;

When developing large-scale programs or libraries, it is useful to declare the elements of
any proprietary namespaces in header files. Normal source files are used to define these
elements.

212 = CHAPTER Il STORAGE CLASSES AND NAMESPACES

= EXERCISES

Program listing for exercise |

// scope.cpp
// Accessing objects with equal names

/] e s
#include <iostream>

#include <iomanip>

using namespace std;

int var = 0;

namespace Special { int var = 100; }

int main/()

int var = 10;
cout << setw(1l0) << var; // 1.

{

int var = 20;

cout << setw(1l0) << var << endl; // 2.
++var;
cout << setw(1l0) << var; // 3.
cout << setw(10) << ++ ::var; // 4.
cout << setw(10) << Special::var * 2 // 5.
<< endl;
cout << setw(1l0) << var - ::var; // 6.
cout << setw(10) << var << endl; // 7.

return 0;

EXERCISES 213

Exercise |

In general, you should use different names for different objects. However, if you
define a name for an object within a code block and the name is also valid for
another object, you will reference only the new object within the code block.
The new declaration hides any object using the same name outside of the block.
When you leave the code block, the original object once more becomes visible.

The program on the opposite page uses identical variable names in different
blocks.What does the program output on screen?

Exercise 2

You are developing a large-scale program and intend to use two commercial

libraries, tool1 and tool2.The names of types, functions, macros, and so on are

declared in the header files tool1l.h and tool2.h for users of these libraries.
Unfortunately, the libraries use the same global names in part. In order to use

both libraries, you will need to define namespaces.

Write the following program to simulate this situation:

m Define an inline function called calculate () that returns the sum of two
numbers for the header file tool1.h.The function interface is as follows:

double calculate (double numl, double num2) ;

m Define an inline function called calculate () that returns the product of
two numbers for a second header file too12.h.This function has the
same interface as the function in tooll.h.

m Then write a source file containing a main function that calls both func-
tions with test values and outputs the results.

To resolve potential naming conflicts, define the namespaces TooL1 and
TOOL2 that include the relevant header files.

214

CHAPTER

11 STORAGE CLASSES AND NAMESPACES

Program listing for exercise 3

// static.cpp
// Tests an internal static variable

T LSRR
#include <iostream>

#include <iomanip>

using namespace std;

double x = 0.5,
fun (void) ;

int main()

{
while(x < 10.0)
{
x += fun() ;
cout << " Within main(): "
<< setw(5) << x << endl;
!
return 0;

}

double fun/()

{

static double x = 0;

cout << " Within fun() :"
<< setw(5) << X++;
return x;

EXERCISES 215

Exercise 3

Test your knowledge of external and static variables by reference to the
program on the opposite page.What screen output does the program generate!?

Exercise 4

a.

The function getPassword (), which checks password input, was intro-
duced previously as an example of the use of static variables. Modify the
source file Passw1 . cpp, which contains the function getPassword (), by
adding the function changePassword ().This function allows the user to
change his or her password. Save the modified source file as
Passw2.cpp.

A large-scale program with several users is used to perform bookings.
Only authorized users, that is, users that have access to the password, are
allowed to perform bookings.

In the initial stages of program development, you need to test the
functionality of the source file, Passw2 . cpp.To do so, create a new
source file with a main function that contains only the following menu
items in its main loop:

B
E

Booking

End of program

When B is typed, the password is first checked. If the user enters the
correct password, he or she can change the password.The program does
not need to perform any real bookings.

The modified password is only available during runtime as it is not stored permanently.

216 CHAPTER 11 STORAGE CLASSES AND NAMESPACES

SOLUTIONS

Exercise |
Screen output of the program

10 20
21 1 200
20 10

Exercise 2
A L
// tooll.h

// Defining first function calculate() inline.

L

#ifndef TOOL1 H
#define TOOL1 H

solutions

inline double calculate(double numl, double num2)

{
}

#endif // End of TOOL1l H

return numl + num2;

J e
// tool2.h
// Defining second function calculate() inline.

#ifndef TOOL2 H
#define TOOL2 H

inline double calculate(double numl, double num2)

{
}

#endif // End of TOOL2 H

return numl * num2;

SOLUTIONS 217

J]
// tool 1 2.cpp
// Uses two "libraries" and tests name lookup conflicts.

A R
#include <iostream>

namespace TOOL1

{

#include "tooll.h"

}

namespace TOOL2

{

#include "tool2.h"

}

#include <iostream>
int main ()

using namespace std;
double x = 0.5, y = 10.5, res = 0.0;
cout << "Calling function of Tooll!" << endl;
res = TOOLl::calculate(x, Vy);
cout << "Result: " << res
<< M\N--mm e " << endl;
cout << "Calling function of Tool2!" << endl;
res = TOOL2::calculate(x, Vy);
cout << "Result: " << res << endl;
return O0;

Exercise 3
Screen output of the program

In fun() 0 In main() 1.5
In fun() 1 In main() : 3.5
In fun() 2 In main() : 6.5
In fun() 3 In main() 10.5

218

CHAPTER 11 STORAGE CLASSES AND NAMESPACES

Exercise 4

/] mmmmm e
// Passw2.cpp

// Defines the functions getPassword(), timediff () and
// changePassword() to examine and change a password.

#include <iostreams>
#include <iomanip>
#include <strings>
#include <ctime>
using namespace std;

static long timediff (void) ; // Prototype
static string secret = "guest"; // Password
static long maxcount = 3, maxtime = 60; // Limits
bool getPassword() // Read and verify a password.

{

// As before.

//
!
// Auxiliary function timediff () --> defining static
static long timediff () // Returns the number of seconds
{ // since the last call.
// As before.
//
!
bool changePassword () // Changes password.
{ // Returns: true, if the
// password has been changed
string wordl,word2; // For input

// To read a new password

cout <<"\nEnter a new password (2 - 20 characters): ";
cin.sync () ; // Discards former input
cin >> setw(20) >> wordl;

SOLUTIONS

if (wordl.size() > 1)
{
cout << "\nEnter the password once more: ";
cin >> setw(20) >> word2;
if (wordl == word2) // Password confirmed?
{ // Yes!
secret = wordl;
return true;
}
}

return false; // No new password

// Password.cpp
// Testing the functions getPassword() and
// changePassword() .

// After entering the password correctly (max. three
// attempts within 60 seconds), the user can change it.

#include <iostreams
#include <iomanip>
#include <string>
#include <cctypes>
using namespace std;

bool getPassword (void) ; // Read a password.
bool changePassword (void) ; // Change a password.
// Inline functions:

inline void cls() { cout << "\033[2J"; }

inline void go_on()

{
cout << "\n\nGo on with return! ";
cin.sync(); cin.clear(); // Only new input
while(cin.get() != '\n')

!

inline char getYesOrNo() // Read character Y or N.

{

char ¢ = 0;
cin.sync(); cin.clear(); // Just new input
do
{
cin.get(c) ;
¢ = toupper(c); // Permitting lower case letters also.

while(¢ != 'Y!' && ¢ = 'N');
return c;

219

220 CHAPTER Il STORAGE CLASSES AND NAMESPACES

static string header =
"\n\n x*%%x Tegt password handling ****\n\n";

static string menu

"\n\n B = Booking "
"\n\n E = End of program"
"\n\n Your choice: "
int main()
{
char choice = 0;
while(choice != 'E')
{
cls(); cout << header << menu; // Header and Menu
cin.get (choice) ; choice = toupper (choice) ;
cls(); cout << header << endl; // Header

switch(choice)
{
case 'B': // Booking
if (!getPassword())
{
cout << "Access denied!" << endl;
go_on() ;
}
else
{ cout << "Welcome!\n\n"
<< "Do you want to change the password? (y/n)";
if (getYesOrNo() == 'Y')
{
if (changePassword())
cout << "Password changed!" << endl;
else
cout << "Password unchanged!" << endl;
go_on() ;

}

// Place statements for booking here.
}
break;
case 'E':
cls(); cout << "\n Bye Bye!" << endl;
break;
}
} // End of while
return 0;

chapter

References and Pointers

This chapter describes how to define references and pointers and how
to use them as parameters and/or return values of functions. In this

context, passing by reference and read-only access to arguments are

introduced.

221

12 REFERENCES AND POINTERS

®m DEFINING REFERENCES

Example

float x = 10.7, &YX = X;

Object names: The object in
memory
T~
X, X 10.7
/\/
Sample program

// Refl.cpp
// Demonstrates the definition and use of references.
/] =

#include <iostream>
#include <string>
using namespace std;

float x = 10.7F; // Global
int main()
float &rx = x; // Local reference to x
// double &ref = x; // Error: different type!
rx *= 2;
cout << " X = " << x << endl // x = 21.4
<< " rx = " << rx << endl; // rx = 21.4
const float& cref = x; // Read-only reference
cout << "cref = " << cref << endl; // ok!
// ++cref; // Error: read-only!
const string str = "I am a constant string!";
// str = "That doesn't work!"; // Error: str constant!
// string& text = str; // Error: str constant!
const string& text = str; // ok!
cout << text << endl; // ok! Just reading.
return O;

DEFINING REFERENCES 223

A reference is another name, or alias, for an object that already exists. Defining a refer-
ence does not occupy additional memory. Any operations defined for the reference are
performed with the object to which it refers. References are particularly useful as parame-
ters and return values of functions.

[] Definition

The ampersand character, &, is used to define a reference. Given that T is a type, T&
denotes a reference to T.

Example: float x = 10.7;
float& rx = x; // or: float &rx = Xx;

rx is thus a different way of expressing the variable x and belongs to the type “reference
to float”. Operations with rx, such as

Example: --rx; // equivalent to --Xx;

will automatically affect the variable x. The & character, which indicates a reference,
only occurs in declarations and is not related to the address operator &! The address
operator returns the address of an object. If you apply this operator to a reference, it
returns the address of the referenced object.

Example: srx // Address of x, thus is equal to &x

A reference must be initialized when it is declared, and cannot be modified subse-
quently. In other words, you cannot use the reference to address a different variable at a
later stage.

[1 Read-Only References

A reference that addresses a constant object must be a constant itself, that is, it must be
defined using the const keyword to avoid modifying the object by reference. However,
it is conversely possible to use a reference to a constant to address a non-constant object.

Example: int a; const int& cref = a; // ok!

The reference cref can be used for read-only access to the variable a, and is said to be a
read-only identifier.

A read-only identifier can be initialized by a constant, in contrast to a normal refer-
ence:

Example: const doubles pi = 3.1415927;

Since the constant does not take up any memory space, the compiler creates a
temporary object which is then referenced.

12 REFERENCES AND POINTERS

® REFERENCES AS PARAMETERS

Sample program

// Ref2.cpp
// Demonstrating functions with parameters

// of reference type.

J /== e

#include <iostream>
#include <string>
using namespace std;
// Prototypes:
bool getClient (string& name, long& nr) ;
void putClient (const string& name, const long& nr) ;

int main ()

{

string clientName;
long clientNr;

cout << "\nTo input and output client data \n"

<< endl;
if (getClient (clientName, clientNr)) // Calls
putClient (clientName, clientNr) ;
else
cout << "Invalid input!" << endl;
return O;
}
bool getClient(string& name, long& nr) // Definition

{

cout << "\nTo input client data!\n"
<< " Name: "

if (!getline(cin, name)) return false;
cout << " Number: ";
if(!'(cin >> nr)) return false;

return true;

// Definition
void putClient (const string& name, const long& nr)

{ // name and nr can only be read!
cout << "\n-------- Client Data --------- \n"
<< "\n Name: ", cout << name
<< "\n Number: "; cout << nr << endl;

REFERENCES AS PARAMETERS 225

[1 Passing by Reference

A pass by reference can be programmed using references or pointers as function parame-
ters. It is syntactically simpler to use references, although not always permissible.

A parameter of a reference type is an alias for an argument. When a function is called,
a reference parameter is initialized with the object supplied as an argument. The function
can thus directly manipulate the argument passed to it.

Example: void test(int& a) { ++a; }
Based on this definition, the statement
test (var) ; // For an int variable var

increments the variable var. Within the function, any access to the reference a auto-
matically accesses the supplied variable, var.

If an object is passed as an argument when passing by reference, the object is not
copied. Instead, the address of the object is passed to the function internally, allowing
the function to access the object with which it was called.

[1 Comparison to Passing by Value

In contrast to a normal pass by value an expression, such as a+b, cannot be used as an
argument. The argument must have an address in memory and be of the correct type.
Using references as parameters offers the following benefits:

® arguments are not copied. In contrast to passing by value, the run time of a pro-
gram should improve, especially if the arguments occupy large amounts of mem-
ory

m a function can use the reference parameter to return multiple values to the calling
function. Passing by value allows only one result as a return value, unless you
resort to using global variables.

If you need to read arguments, but not copy them, you can define a read-only reference
as a parameter.

Example: void display(const string& str);

The function display () contains a string as an argument. However, it does not gener-
ate a new string to which the argument string is copied. Instead, str is simply a refer-
ence to the argument. The caller can rest assured that the argument is not modified
within the function, as str is declared as a const.

226 CHAPTER 12 REFERENCES AND POINTERS

® REFERENCES AS RETURN VALUE

Sample program

// Ref3.cpp
// Demonstrates the use of return values with
// reference type.

e ECCEEEEEEEEES

#include <iostream>
#include <strings
using namespace std;
// Returns a
double& refMin(double&, double&) ; // reference to
// the minimum.
int main ()

{

double x1 = 1.1, x2 =x1 + 0.5, vy;

y = refMin(x1, x2); // Assigns the minimum to y.
cout << "x1 = " << x1 << " "
<< "X2 = " << X2 << endl;
cout << "Minimum: " << y << endl;
++refMin(x1, x2); // ++x1, as x1 is minimal
cout << "x1 = " << x1 << " " // x1 = 2.1
<< "x2 = " << x2 << endl; // x2 = 1.6
++refMin(x1, x2); // ++x2, because x2 is
// the minimum.
cout << "x1 = " << x1 << " " // x1 = 2.1
<< "X2 = " << x2 << endl; // X2 = 2.6
refMin(x1, x2) = 10.1; // x1 = 10.1, because

// x1 is the minimum.
n

cout << "x1 = " << x1 << " // x1 = 10.1
<< "x2 = " << x2 << endl; // X2 = 2.6
refMin(x1, x2) += 5.0; // x2 += 5.0, because
// x2 1is the minimum.
cout << "x1 = " << x1 << " " // x1 = 10.1
<< "x2 = " << X2 << endl; // x2 = 7.6
return O;

}

double& refMin(double& a, double& b) // Returns a

{ // reference to
return a <= b ? a : b; // the minimum.

}

The expression refMin (x1,x2) represents either the object x1 or the object x2, that is, the object
containing the smaller value.

REFERENCES AS RETURN VALUE 227

[1 Returning References

The return type of a function can also be a reference type. The function call then repre-
sents an object, and can be used just like an object.

Example: strings message () // Reference!
static string str = "Today only cold cuts!";
return str;

}

This function returns a reference to a static string, str. Pay attention to the following
point when returning references and pointers:

The object referenced by the return value must exist after leaving the function.

It would be a critical error to declare the string str as a normal auto variable in the
function message (). This would destroy the string on leaving the function and the ref-
erence would point to an object that no longer existed.

[1 Calling a Reference Type Function

The function message () (mentioned earlier in this section) is of type “reference to
string.” Thus, calling

message ()

represents a string type object, and the following statements are valid:

message () = "Let's go to the beer garden!";
message () += " Cheers!";
cout << "Length: " << message () .length();

In these examples, a new value is first assigned to the object referenced by the function
call. Then a new string is appended before the length of the referenced string is output in
the third statement.

If you want to avoid modifying the referenced object, you can define the function type
as a read-only reference.

Example: const strings message () ; // Read-only!

References are commonly used as return types when overloading operators. The oper-
ations that an operator has to perform for a user-defined type are always implemented by
an appropriate function. Refer to the chapters on overloading operators later in this book
for more details. However, examples with operators from standard classes can be pro-
vided at this point.

228 CHAPTER 12 REFERENCES AND POINTERS

m EXPRESSIONS WITH REFERENCE TYPE

Example: Operator << of class ostream

cout << "Good morning" << '!';

cout << "Good morning"

A J

Reference to cout <<'1';

Sample assignments of class string

// Ref4.cpp
// Expressions with reference type exemplified by

// string assignments.

/e

#include <iostream>
#include <strings

#include <cctype> // For toupper ()
using namespace std;

void strToUpper (string&) ; // Prototype
int main()

{

string text ("Test with assignments \n");

strToUpper (text) ;
cout << text << endl;

strToUpper (text = "Flowers");
cout << text << endl;

strToUpper (text += " cheer you up!\n") ;

cout << text << endl;

return O;
void strToUpper (string& str) // Converts the content
{ // of str to uppercase.

int len = str.length();
for(int i=0; i < len; ++1)
str[i] = toupper(str[il);

EXPRESSIONS WITH REFERENCE TYPE 229

Every C++ expression belongs to a certain type and also has a value, if the type is not
void. Reference types are also valid for expressions.

[] The Stream Class Shift Operators

The << and >> operators used for stream input and output are examples of expressions
that return a reference to an object.

Example: cout << " Good morning "

This expression is not a void type but a reference to the object cout, that is, it repre-
sents the object cout. This allows you to repeatedly use the << on the expression:

cout << "Good morning" << '!!'
The expression is then equivalent to
(cout << " Good morning ") << '!!

Expressions using the << operator are composed from left to right, as you can see from
the table of precedence contained in the appendix.

Similarly, the expression cin >> variable represents the stream cin. This allows
repeated use of the >> operator.

Example: int a; double x;
cin >> a >> x; // (cin >> a) >> x;

[] Other Reference Type Operators

Other commonly used reference type operators include the simple assignment operator =
and compound assignments, such as += and *=. These operators return a reference to the
operand on the left. In an expression such as

a=Db or a += b

a must therefore be an object. In turn, the expression itself represents the object a. This
also applies when the operators refer to objects belonging to class types. However, the
class definition stipulates the available operators. For example, the assignment operators
= and += are available in the standard class string.

Example: string name ("Jonny ") ;
name += "Depp"; //Reference to name

Since an expression of this type represents an object, the expression can be passed as
an argument to a function that is called by reference. This point is illustrated by the
example on the opposite page.

230 CHAPTER 12 REFERENCES AND POINTERS

®m DEFINING POINTERS

Sample program

// pointerl.cpp

// Prints the values and addresses of variables.
T
#include <iostream>

using namespace std;

int var, *ptr; // Definition of variables var and ptr
int main() // Outputs the values and addresses
{ // of the variables var and ptr.

var = 100;

ptr = &var;

cout << " Value of var: " << wvar
<< " Address of var: " << &var
<< endl;

cout << " Value of ptr: " << ptr
<< " Address of ptr: " << &ptr
<< endl;

return 0;

Sample screen output

Value of var: 100 Address of var: 00456FD4
Value of ptr: 00456FD4 Address of ptr: 00456FDO

The variables var and ptr in memory

Variable Value of the Variable Address
(hexadecimal)
’_\/’
var 100 456FD4
ptr 456FD4 456FDO
’\/

DEFINING POINTERS 231

Efficient program logic often requires access to the memory addresses used by a program’s
data, rather than manipulation of the data itself. Linked lists or trees whose elements are
generated dynamically at runtime are typical examples.

[] Pointers

A pointer is an expression that represents both the address and type of another object.
Using the address operator, &, for a given object creates a pointer to that object. Given
that var is an int variable,

Example: &var // BAddress of the object var

is the address of the int object in memory and thus a pointer to var. A pointer points
to a memory address and simultaneously indicates by its type how the memory address
can be read or written to. Thus, depending on the type, we refer to pointers to char, point-
ers to int, and so on, or use an abbreviation, such as char pointer, int pointer, and so on.

[1 Pointer Variables

An expression such as &var is a constant pointer; however, C++ allows you to define
pointer variables, that is, variables that can store the address of another object.

Example: int *ptr; // or: int* ptr;

This statement defines the variable ptr, which is an int* type (in other words, a pointer
to int). ptr can thus store the address of an int variable. In a declaration, the star char-
acter * always means “pointer to.”

Pointer types are derived types. The general form is T*, where T can be any given type.
In the above example T is an int type.

Objects of the same base type T can be declared together.
Example: int a, *p, &r = a; // Definition of a, p, r

After declaring a pointer variable, you must point the pointer at a memory address. The
program on the opposite page does this using the statement

ptr = &var;.

[References and Pointers

References are similar to pointers: both refer to an object in memory. However, a pointer
is not merely an alias but an individual object that has an identity separate from the
object it references. A pointer has its own memory address and can be manipulated by
pointing it at a new memory address and thus referencing a different object.

232

CHAPTER 12 REFERENCES AND POINTERS

= THE INDIRECTION OPERATOR

Using the indirection operator

double x, vy, *px;

pPX = &X; // Let px point to x.

*px = 12.3; // Assign the value 12.3 to x
*px += 4.5; // Increment x by 4.5.

y = sin(*px) ; // To assign sine of x to y.

Address and value of the variables x and px

px X
Address Address of x Value of x
of px = value of px
&px &X X
px *pPx

Notes on addresses in a program

m Each pointer variable occupies the same amount of space, independent of the
type of object it references. That is, it occupies as much space as is necessary to
store an address. On a 32-bit computer, such as a PC, this is four bytes.

m The addresses visible in a program are normally logic addresses that are allocated
and mapped to physical addresses by the system. This allows for efficient storage
management and the swapping of currently unused memory blocks to the hard
disk.

m C++ guarantees that any valid address will not be equal to 0. Thus, the special
value O is used to indicate an error. For pointers, the symbolic constant NULL is
defined as O in standard header files. A pointer containing the value NULL is
also called NULL pointer.

THE INDIRECTION OPERATOR 233

[1 Using Pointers to Access Objects

The indirection operator * is used to access an object referenced by a pointer:

Given a pointer, ptr, *ptr is the object referenced by ptr.

As a programmer, you must always distinguish between the pointer ptr and the
addressed object *ptr.

Example: long a = 10, b, // Definition of a, b
*ptr; // and pointer ptr.
ptr = &a; // Let ptr point to a.
b = *ptr;

This assigns the value of a to b, since ptr points to a. The assighment b = a; would
return the same result. The expression *ptr represents the object a, and can be used
wherever a could be used.

The star character * used for defining pointer variables is not an operator but merely
imitates the later use of the pointer in expressions. Thus, the definition

long *ptr;

has the following meaning: ptr is a long* (pointer to 1ong) type and *ptr is a long
type.

The indirection operator * has high precedence, just like the address operator &. Both
operators are unary, that is, they have only one operand. This also helps distinguish the
redirection operator from the binary multiplication operator *, which always takes two
operands.

(] L-values

An expression that identifies an object in memory is known as an L-value in C++. The
term L-value occurs commonly in compiler error messages and is derived from the assign-
ment. The left operand of the = operator must always designate a memory address.
Expressions other than an L-value are often referred to as R-values.

A variable name is the simplest example of an L-value. However, a constant or an
expression, such as x + 1, is an R-value. The indirection operator is one example of an
operator that yields L-values. Given a pointer variable p, both p and *p are L-values, as
*p designates the object to which p points.

234 CHAPTER 12 REFERENCES AND POINTERS

= POINTERS AS PARAMETERS

Sample function

// pointer2.cpp

// Definition and call of function swap() .

// Demonstrates the use of pointers as parameters.

/] =
#include <iostream>

using namespace std;

void swap(float *, float *); // Prototype of swap()

int main ()

{

float x = 11.1F;
float y = 22.2F;

swap (&x, &y);

} ' // pl = &x

void swap(float *pl, float *p2)

{

float temp; // Temporary variable
temp = *pl; // At the above call pl points
*pl = *p2; // to x and p2 to y.

*p2 = temp;

POINTERS AS PARAMETERS 235

[1 Objects as Arguments

If an object is passed as an argument to a function, two possible situations occur:

m the parameter in question is the same type as the object passed to it. The func-
tion that is called is then passed a copy of the object (passing by value)

m the parameter in question is a reference. The parameter is then an alias for the
argument, that is, the function that is called manipulates the object passed by the
calling function (passing by reference).

In the first case, the argument passed to the function cannot be manipulated by the
function. This is not true for passing by reference. However, there is a third way of pass-
ing by reference—passing pointers to the function.

[1 Pointers as Arguments

How do you declare a function parameter to allow an address to be passed to the function
as an argument?! The answer is quite simple: The parameter must be declared as a pointer
variable.

If, for example, the function func () requires the address of an int value as an argu-
ment, you can use the following statement

Example: 1long func(int *iPtr)

{

// Function block

to declare the parameter iPtr as an int pointer. If a function knows the address of an
object, it can of course use the indirection operator to access and manipulate the object.

In the program on the opposite page, the function swap () swaps the values of the
variables x and y in the calling function. The function swap () is able to access the vari-
ables since the addresses of these variables, that is &x and &y, are passed to it as argu-
ments.

The parameters p1 and p2 in swap () are thus declared as float pointers. The
statement

swap (&x, &y);
initializes the pointers p1 and p2 with the addresses of x or y. When the function

manipulates the expressions *p1 and *p2, it really accesses the variables x and y in the
calling function and exchanges their values.

236

CHAPTER 12 REFERENCES AND POINTERS

exercises

EXERCISES

Listing for exercise 3

// A version of swap() with incorrect logic.
// Find the error!

void swap(float *pl, float *p2)

{
float *temp; // Temporary variable
temp = pl;
pl = p2;
p2 = temp;
}

Solutions of quadratic equations

The quadratic equation: a*x? + b*x + c = 0 has real solutions:
X, = (-b + V(b? - 4ac)) / 2a

if the discriminant satisfies:b? -4ac >= 0
If the value of (b2 - 4ac) is negative, no real solution exists.

Test values

Quadratic Equation Solutions

2x? - 2x - 1.5 =0 x, = 1.5, x, = -0.5
x* - 6x+9=0 X, = 3.0, x,=3.0

2x% + 2 =0 none

EXERCISES 237

Exercise |

What happens if the parameter in the sample function strToUpper () is
declared as a strings instead of a string?

Exercise 2

Write a void type function called circle () to calculate the circumference and
area of a circle.The radius and two variables are passed to the function, which
therefore has three parameters:

Parameters: A read-only reference to double for the radius and two
references to double that the function uses to store the area
and circumference of the circle.

Given a circle with radius r:

Area =t * r * r and circumference = 2 * 1t * r where ©t = 3.1415926536

Test the function circle () by outputting a table containing the radius, the
circumference, and the area for the radiio.5,1.0,1.5,. . .,10.0.

Exercise 3

a. The version of the function swap () opposite can be compiled without
producing any error messages. However, the function will not swap the
values of x and y when swap (&x, &y) ; is called.-What is wrong?

b. Test the correct pointer version of the function swap () found in this
chapter.Then write and test a version of the function swap () that uses
references instead of pointers.

Exercise 4

Create a function quadEquation () that calculates the solutions to quadratic
equations. The formula for calculating quadratic equations is shown opposite.
Arguments: The coefficients a, b, c and two pointers to both solutions.
Returns: false,if no real solution is available, otherwise true.

Test the function by outputting the quadratic equations on the opposite page
and their solutions.

238 CHAPTER 12 REFERENCES AND POINTERS

SOLUTIONS

Exercise |

The call to function strToUpper () is left unchanged. But instead of passing by
reference, a passing by value occurs, i.e., the function manipulates a local copy.
Thus, only a local copy of the string is changed in the function, but the string in
the calling function remains unchanged.

Exercise 2

A, it
// circle.cpp
// Defines and calls the function circle().

#include <iostreams>
#include <iomanip>
#include <string>
using namespace std;

solutions

// Prototype of circle():
void circle(const double& rad, double& um, double& f1l);

const double startRadius = 0.5, // Start, end and
endRadius = 10.0, // step width of
step = 0.5; // the table

string header = "\n *%%x% Computing Circles ****x \n",

line(50, '-');

int main|()

{

double rad, circuit, plane;

cout << header << endl;
cout << setw(10) << "Radius"
<< setw(20) << "Circumference"
<< setw(20) << "Area\n" << line << endl;

cout << fixed; // Floating point presentation
for(rad = startRadius;
rad < endRadius + step/2; rad += step)

circle(rad, circuit, plane);
cout << setprecision(l)<< setw(8) << rad
<< setprecision(5)<< setw(22) << circuit
<< setw(20) << plane <<endl;

}

return 0;

SOLUTIONS

// Function circle(): Compute circumference and area.
void circle(const double& r, double& u, double& f)
{

const double pi = 3.1415926536;

u =2 * pi * r;

f=pi*r* r;

}

Exercise 3

f]

// swap.cpp
// Definition and call of the function swap() .

// 1. version: parameters with pointer type,
// 2. version: parameters with reference type.

A LI EEEEEEEEEES
#include <iostream>
using namespace std;

void swap(float*, float¥); // Prototypes of swap ()
void swap(floaté&, floats);

int main ()

{

float x = 11.1F;
float y = 22.2F;

cout << "x and y before swapping: "
<< X << " " << y << endl;

swap (&x, &y); // Call pointer version.

cout << "x and y after 1. swapping: "
<< X << " " << y << endl;

swap(X, v); // Call reference version.

cout << "x and y after 2. swapping: "

<< X << " " << y << endl;
return 0;
}
void swap (float *pl, float *p2) // Pointer version
{
float temp; // Temporary variable
temp = *pl; // Above call points pl
*pl = *p2; // to x and p2 to y.
*p2 = temp;

239

240 CHAPTER 12 REFERENCES AND POINTERS

void swap (float& a, float& b) // Reference version
{
float temp; // Temporary variable
temp = a; // For above call
a = b; // a equals x and b equals y
b = temp;
!
Exercise 4
f] m e

// quadEqu.cpp

// Defines and calls the function quadEquation(),

// which computes the solutions of quadratic equations
// a*x*x + b*x + ¢ =0

// The equation and its solutions are printed by

// the function printQuadEquation() .

#include <iostream>

#include <iomanip>

#include <strings>

#include <cmaths> // For the square root sqgrt ()
using namespace std;

string header =
" *%x Solutions of Quadratic Equations ***\n",
line(50, '-');

/] ----- Prototypes -----

// Computing solutions:

bool quadEquation(double a, double b, double c,
double* x1Ptr, double* x2Ptr) ;

// Printing the equation and its solutions:
void printQuadEquation(double a, double b, double c);

int main{()

{
cout << header << endl;
printQuadEquation(2.0, -2.0, -1.5);

printQuadEquation(1.0, -6.0, 9.0);
printQuadEquation(2.0, 0.0, 2.0);
return O0;

SOLUTIONS

// Prints the equation and its solutions:
void printQuadEquation(double a, double b, double c)

{

double x1 = 0.0, x2 = 0.0; // For solutions

cout << line << '\n'
<< "\nThe quadratic equation:\n\t "
<< a << "*x*¥x + " << b << "*x + " << Cc << " =
<< endl;

if (quadEquation(a, b, c, &x1, &x2))

{

cout << "has real solutions:"

<< "\n\t x1 = " << x1
<< "\n\t X2 = " << x2 << endl;
else
cout << "has no real solutions!" << endl;

cout << "\nGo on with return. \n\n";
cin.get () ;

}

bool gquadEquation(double a, double b, double c,
double* x1Ptr, double* x2Ptr)

// Computes the solutions of the quadratic equation:

// a*x*x + b*x + ¢ = 0

// Stores the solutions in the variables to which

// x1Ptr and x2Ptr point.

// Returns: true, if a solution exists,

// otherwise false.

{

bool return flag = false;

double help = b*b - 4*a*c;

if(help >= 0) // There are real solutions.

{

help = sgrt(help);

*x1Ptr (-b + help) / (2*a);
*x2Ptr = (-b - help) / (2%a);

return flag = true;

}

return return flag;

24|

This page intentionally left blank

chapter

Defining Classes

This chapter describes how classes are defined and how instances of
classes, that is, objects, are used. In addition, structs and unions are

introduced as examples of special classes.

243

244

CHAPTER 13

DEFINING CLASSES

® THE CLASS CONCEPT

Real World
A Car
Abstraction l
Class CAR Properties (Data Members):
Date when built
Capacity (PS)
Serial number
Methods (Member functions):
to run, to brake,
to park, to turn off
Instantiation l
Objects
carl car2
Properties: Properties:

Date when built = 1990
Capacity = 100
Chassis number = 11111

Methods

Date when built = 2000
Capacity = 200
Chassis number = 22222

Methods

THE CLASS CONCEPT 245

Classes are the language element in C++ most important to the support object-oriented
programming (OOP). A class defines the properties and capacities of an object.

[] Data Abstraction

Humans use abstraction in order to manage complex situations. Objects and processes are
reduced to basics and referred to in generic terms. Classes allow more direct use of the
results of this type of abstraction in software development.

The first step towards solving a problem is analysis. In object-oriented programming,
analysis comprises identifying and describing objects and recognizing their mutual rela-
tionships. Object descriptions are the building blocks of classes.

In C++, a class is a user-defined type. It contains data members, which describe the
properties of the class, and member functions, or methods, which describe the capacities of
the objects. Classes are simply patterns used to instantiate, or create, objects of the class
type. In other words, an object is a variable of a given class.

[1 Data Encapsulation

When you define a class, you also specify the private members, that is, the members that
are not available for external access, and the public members of that class. An applica-
tion program accesses objects by using the public methods of the class and thus activat-
ing its capacities.

Access to object data is rarely direct, that is, object data is normally declared as pri-
vate and then read or modified by methods with public declarations to ensure correct
access to the data.

One important aspect of this technique is the fact that application programs need not
be aware of the internal structure of the data. If needed, the internal structure of the pro-
gram data can even be modified. Provided that the interfaces of the public methods
remain unchanged, changes like these will not affect the application program. This
allows you to enhance an application by programming an improved class version without
changing a single byte of the application.

An object is thus seen to encapsulate its private structure, protecting itself from exter-
nal influences and managing itself by its own methods. This describes the concept of data
encapsulation concisely.

246 CHAPTER 13 DEFINING CLASSES

® DEFINING CLASSES

Definition scheme

class Demo
private:
// Private data members and methods here

public:

// Public data members and methods here

Example of a class

// account.h

// Defining the class Account.

/] = e
#ifndef ACCOUNT_ // Avoid multiple inclusions.
#define ACCOUNT

#include <iostream>
#include <strings
using namespace std;

class Account

{

private: // Sheltered members:
string name; // Account holder
unsigned long nr; // Account number
double balance; // Account balance

public: //Public interface:

bool init(const string&, unsigned long, double) ;
void display () ;
Vi

#endif // _ACCOUNT

DEFINING CLASSES 247

A class definition specifies the name of the class and the names and types of the class
members.

The definition begins with the keyword class followed by the class name. The data
members and methods are then declared in the subsequent code block. Data members
and member functions can belong to any valid type, even to another previously defined
class. At the same time, the class members are divided into:

® private members, which cannot be accessed externally

® public members, which are available for external access.

The public members form the so-called public interface of the class.

The opposite page shows a schematic definition of a class. The private section gen-
erally contains data members and the public section contains the access methods for
the data. This provides for data encapsulation.

The following example includes a class named Account used to represent a bank
account. The data members, such as the name of the account holder, the account num-
ber, and the account balance, are declared as private. In addition, there are two public
methods, init () for initialization purposes and display (), which is used to display
the data on screen.

The labels private: and public: can be used at the programmer’s discretion
within a class:

® you can use the labels as often as needed, or not at all, and in any order. A sec-
tion marked as private: or public: is valid until the next public: or pri-
vate: label occurs

m the default value for member access is private. If you omit both the private
and public labels, all the class members are assumed to be private.

[1 Naming

Every piece of software uses a set of naming rules. These rules often reflect the target
platform and the class libraries used. For the purposes of this book, we decided to keep to
standard naming conventions for distinguishing classes and class members. Class names
begin with an uppercase letter and member names with a lowercase letter.

Members of different classes can share the same name. A member of another class
could therefore also be named display ().

248

CHAPTER

13 DEFINING CLASSES

= DEFINING METHODS

Methods of class Account

// account.cpp

// Defines methods init () and display() .

/] = oo
#include "account.h"
#include <iostream>
#include <iomanip>
using namespace std;

// The method init () copies the given arguments

// into the private members of the class.

bool Account::init (const string& i_name,
unsigned long i _nr,

return true;

}

// The method display () outputs private data.
void Account::display ()

{

cout << fixed << setprecision(2)

<< endl;

// Class definition

double i balance)
{
if(i name.size() < 1) // No empty name
return false;
name = 1 name;
nr = i nr;
balance = i _balance;

<< M e = =
<< "Account holder: " << name << '\n'
<< "Account number: " << nr << '"\n'
<< "Account balance: " << balance << '\n'
<< M e = =

DEFINING METHODS 249

A class definition is not complete without method definitions. Only then can the objects
of the class be used.

[Syntax

When you define a method, you must also supply the class name, separating it from the
function name by means of the scope resolution operator : :.

Syntax: type class_name: :function name (parameter list)

{ }

Failure to supply the class name results in a global function definition.

Within a method, all the members of a class can be designated directly using their
names. The class membership is automatically assumed. In particular, methods belonging
to the same class can call each other directly.

Access to private members is only possible within methods belonging to the same
class. Thus, private members are completely controlled by the class.

Defining a class does not automatically allocate memory for the data members of that
class. To allocate memory, you must define an object. When a method is called for a
given object, the method can then manipulate the data of this object.

[1 Modular Programming

A class is normally defined in several source files. In this case, you will need to place the
class definition in a header file. If you place the definition of the class Account in the
file Account . h, any source file including the header file can use the class Account.

Methods must always be defined within a source file. This would mean defining the
methods for the class Account in a source file named Account . cpp, for example.

The source code of the application program, for example, the code containing the
function main, is independent of the class and can be stored in separate source files. Sep-
arating classes from application programs facilitates re-use of classes.

In an integrated development environment, a programmer will define a project to help
manage the various program modules by inserting all the source files into the project.
When the project is compiled and linked, modified source files are automatically re-com-
piled and linked to the application program.

250

CHAPTER 13 DEFINING CLASSES

® DEFINING OBJECTS

The objects current and savings in memory

savings

name

nr

balance

current

name

nr

balance

"Cheers, Mary

1234567

2002.22

"Dylan, Bob"

87654321

—1300.13

DEFINING OBJECTS 251

Defining a class also defines a new type for which variables, that is, objects, can be
defined. An object is also referred to as an instance of a class.

[Defining Objects

An object is defined in the usual way by supplying the type and the object name.
Syntax: class_name object_namel [, object name2,...]

The following statement defines an object current of type Account:
Example: Account current; // or: class Account

Memory is now allocated for the data members of the current object. The current
object itself contains the members name, nr, and balance.

[] Objects in Memory

If multiple objects of the same class type are declared, as in
Example: Account current, savings;

each object has its own data members. Even the object savings contains the members
name, nr, and balance. However, these data members occupy a different position in
memory than the data members belonging to current.

The same methods are called for both objects. Only one instance of the machine code
for a method exists in memory—this applies even if no objects have been defined for the
class.

A method is always called for a particular instance and then manipulates the data
members of this object. This results in the memory content as shown on the opposite
page, when the method init () is called for each object with the values shown.

[Initializing Objects
The objects belonging to the Account class were originally defined but not initialized.
Each member object is thus defined but not explicitly initialized. The string name, is
empty, as it is thus defined in the class string. The initial values of the members nr
and balance are unknown, however. As is the case for other variables, these data mem-
bers will default to 0 if the object is declared global or static.

You can define exactly how an object is created and destroyed. These tasks are per-
formed by constructors and destructors. Constructors are specifically responsible for initial-
izing objects—more details are given later.

252 CHAPTER 13 DEFINING CLASSES

m USING OBJECTS

Sample program

// account_t.cpp
// Uses objects of class Account.

SR EEEERES

#include "Account.h"

int main()

{

Account currentl, current2;

currentl.init ("Cheers, Mary", 1234567, -1200.99);
currentl.display () ;

// currentl.balance += 100; // Error: private member
current2 = currentl; // ok: Assignment of
// objects is possible.
current2.display () ; // ok

// New values for current2
current2.init ("Jones, Tom", 3512347, 199.40);

current2.display () ;
// To use a reference:

Account& mtr = currentl; // mtr is an alias name
// for object currentl.
mtr.display() ; // mtr can be used just

// as object currentl.
return 0;

USING OBJECTS 253

[1 Class Member Access Operator

An application program that manipulates the objects of a class can access only the pub-
1ic members of those objects. To do so, it uses the class member access operator (in short:
dot operator).

Syntax: object.member
Where member is a data member or a method.

Example: Account current;
current.init ("Jones, Tom",1234567,-1200.99) ;

The expression current .init represents the public method init of the Account
class. This method is called with three arguments for current.
The init () call cannot be replaced by direct assignments.

Example: current.name = "Dylan, Bob"; // Error:
current .nr 1234567; // private
current.balance = -1200.99; // members

Access to the private members of an object is not permissible outside the class. It is
therefore impossible to display single members of the Account class on screen.

Example: cout << current.balance; // Error
current .display () ; // ok

The method display () displays all the data members of current. A method such as
display () can only be called for one object. The statement

display () ;

would result in an error message, since there is no global function called display ().
What data would the function have to display?

[1 Assigning Objects
The assignment operator = is the only operator that is defined for all classes by default.
However, the source and target objects must both belong to the same class. The assign-

ment is performed to assign the individual data members of the source object to the cor-
responding members of the target object.

Example: Account currentl, current2;
current2.init ("Marley, Bob",350123, 1000.0);
currentl = current2;

This copies the data members of current2 to the corresponding members of
currentl.

254 CHAPTER 13 DEFINING CLASSES

m POINTERS TO OBJECTS

Sample program

// ptrObj.cpp
// Uses pointers to objects of class Account.

[/ e e
#include "Account.h" // Includes <iostreams>, <strings>
bool getAccount (Account *pAccount) ; // Prototype
int main ()
{
Account currentl, current2, *ptr = ¤tl;
ptr->init ("Cheer, Mary", // currentl.init(...)
3512345, 99.40);
ptr->display() ; // currentl.display ()
ptr = ¤t2; // Let ptr point to current2
if (getAccount (ptr)) // Input and output a new
ptr->display() ; // account.
else
cout << "Invalid input!" << endl;

return 0;

}
/e e

// getAccount () reads data for a new account

// and adds it into the argument.

bool getAccount (Account *pAccount)

{
string name, line(50,'-"); // Local wvariables
unsigned long nr;
double startcapital;

cout << line << '\n'
<< "Enter data for a new account: \n"
<< "Account holder: ";
if (!getline(cin,name) || name.size() == 0)
return false;
cout << "Account number: ",

if(! (cin >> nr)) return false;
cout << "Starting capital: ";
if(! (cin >> startcapital)) return false;

// All input ok
pAccount->init (name, nr, startcapital);
return true;

POINTERS TO OBJECTS 255

An object of a class has a memory address—just like any other object. You can assign this
address to a suitable pointer.

Example: Account savings("Mac, Rita",b 654321, 123.5);
Account *ptrAccount = &savings;

This defines the object savings and a pointer variable called ptrAccount. The
pointer ptrAccount is initialized so that it points to the object savings. This makes
*ptrAccount the object savings itself. You can then use the statement

Example: (*ptrAccount) .display () ;

to call the method display () for the object savings. Parentheses must be used in
this case, as the operator . has higher precedence than the * operator.

[1 Arrow Operator

You can use the class member access operator -> (in short: arrow operator) instead of a
combination of * and . .

Syntax: objectPointer->member

This expression is equivalent to

(*objectPointer) .member

The operator - > is made up of a minus sign and the greater than sign.
Example: ptrAccount->display();

This statement calls the method display () for the object referenced by ptraccount,
that is, for the object savings. The statement is equivalent to the statement in the pre-
vious example.

The difference between the class member access operators . and -> is that the left
operand of the dot operator must be an object, whereas the left operand of the arrow
operator must be a pointer to an object.

[1 The Sample Program

Pointers to objects are often used as function parameters. A function that gets the
address of an object as an argument can manipulate the referenced object directly. The
example on the opposite page illustrates this point. It uses the function getAccount ()
to read the data for a new account. When called, the address of the account is passed:

getAccount (ptr) // or: getAccount (¤tl)

The function can then use the pointer ptr and the init () method to write new data
to the referenced object.

256 CHAPTER 13 DEFINING CLASSES

B structs

Sample program

// structs.cpp
// Defines and uses a struct.
/] == e
#include <iostreams>
#include <iomanip>
#include <strings
using namespace std;
struct Representative // Defining struct Representative
{
string name; // Name of a representative.
double sales; // Sales per month.
Vi
inline void print(const Representative& v)
{
cout << fixed << setprecision(2)
<< left << setw(20) << v.name
<< right << setw(10) << v.sales << endl;

}

int main ()

{

Representative rita, john;

rita.name = "Strom, Rita";
rita.sales = 37000.37;
john.name = "Quick, John";

john.sales = 23001.23;

rita.sales += 1700.11; // More Sales
cout << " Representative Sales\n"
€ Mo - " << endl;

print (rita);
print (john) ;
cout << "\nTotal of sales: "
<< rita.sales + john.sales << endl;

Representative *ptr = &john; // Pointer ptr.
// Who gets the
if (john.sales < rita.sales) // most sales?

ptr = &rita;
cout << "\nSalesman of the month: "
<< ptr-s>name << endl; // Representative's name
// pointed to by ptr.
return O;

structs 257

[] Records

In a classical, procedural language like C, multiple data that belong together logically are
put together to form a record. Extensive data such as the data for the articles in an auto-
mobile manufacturer’s stocks can be organized for ease of viewing and stored in files.

From the viewpoint of an object-oriented language, a record is merely a class contain-
ing only public data members and no methods. Thus, you can use the class keyword to
define the structure of a record in C++.

Example: class Date
{ public: short month, day, year; };

However, it is common practice to use the keyword struct, which is also available
in the C programming language, to define records. The above definition of Date with
the members day, month, and year is thus equivalent to:

Example: struct Date { short month, day, year; };

[] The Keywords c1ass and struct

You can also use the keyword struct to define a class, such as the class Account.

Example: struct Account {
private: /] .. as before
public: //
}i

The keywords class and struct only vary with respect to data encapsulation; the
default for access to members of a class defined as a struct is public. In contrast to a
class defined using the class keyword, all the class members are public unless a pri-
vate label is used. This allows the programmer to retain C compatibility.

Example: Date future;
future.year = 2100; // ok! Public data

Records in the true sense of the word, that is, objects of a class containing only pub-
1ic members, can be initialized by means of a list during definition.

Example: Date birthday = { 1, 29, 1987};

The first element in the list initializes the first data member of the object, and so on.

258

CHAPTER 13 DEFINING CLASSES

= UNIONS

An object of union wordByte in memory

Low byte b[0]
w (16 bit word)
High byte b[1]
Defining and using union wordByte
// unions.cpp
// Defines and uses a union.
/e
#include <iostream>
using namespace std;
union WordByte
{
private:
unsigned short w; // 16 bits
unsigned char b[2]; // Two bytes: b[0], b[1]
public: // Word- and byte-access:
unsigned shorté& word() { return w; }
unsigned char& lowByte() { return bl[0]; }
unsigned char& highByte(){ return b[1]; }
Vi
int main()
{
WordByte wb;
wb.word () = 256;
cout << "\nWord: " << (int)wb.word() ;
cout << "\nLow-byte: " << (int)wb.lowByte ()
<< "\nHigh-byte: " << (int)wb.highByte ()
<< endl;
return 0;
}

Screen output of the program

Word:

256

Low-Byte: O

High-

Byte: 1

UNIONS 259

[1 Memory Usage

In normal classes, each data member belonging to an object has its own separate memory
space. However, a union is a class whose members are stored in the same memory space.
Each data member has the same starting address in memory. Of course, a union cannot
store various data members at the same address simultaneously. However, a union does
provide for more versatile usage of memory space.

[1 Definition

Syntactically speaking, a union is distinguished from a class defined as a class or
struct only by the keyword union.

Example: union Number
{
long n;
double x;
}i

Number numberl, number2;

This example defines the union Number and two objects of the same type. The union
Number can be used to store either integral or floating-point numbers.

Unless a private label is used, all union members are assumed to be public. This
is similar to the default setting for structures. This allows direct access to the members n
and x in the union Number.

Example: numberl.n = 12345; // Storing an integer
numberl.n *= 3; // and multiply by 3.
number2.x = 2.77; // Floating point number

The programmer must ensure that the current content of the union is interpreted cor-
rectly. This is normally achieved using an additional type field that identifies the current
content.

The size of a union type object is derived from the longest data member, as all data
members begin at the same memory address. If we look at our example, the union
Number, this size is defined by the double member, which defaults to 8 ==
sizeof (double) byte.

The example opposite defines the union WordByte that allows you to read or write
to a 16-bit memory space byte for byte or as a unit.

260

CHAPTER 13

SE

exerc

DEFINING CLASSES

EXERCISE

Struct tm in header file ctime

struct tm

{
int tm sec; //
int tm min; //
int tm_ hour; //
int tm mday; //
int tm mon; //
int tm year; //
int tm wday; //
int tm_ yday; //
int tm isdst; //

Vi

0 - 59(60)
0 - 59
0 - 23

Day of month: 1 - 31

Month: 0 - 11 (January == 0)
Years since 1900 (Year - 1900)
Weekday: 0 - 6 (Sunday == 0)
Day of year: 0 - 365

Flag for summer-time

Sample calls to functions time (

) and localtime()

#include <iostream>
#include <ctime>
using namespace std;

struct tm *ptr;

// Pointer to struct tm.

time t sec; //
timé(ésec); //
ptr = localtime(&sec); //
//
//

cout << "Today is the "
<< "
<< endl;

For seconds.

To get the present time.
To initialize a struct of
type tm and return a
pointer to it.

<< ptr->tm yday + 1

day of the year " << ptr->tm year

EXERCISE 261

Exercise
A program needs a class to represent the date.

m Define the class Date for this purpose using three integral data members

for day, month, and year. Additionally, declare the following methods:
void init(int month, int day, int year);
void init (void) ;

void print (void) ;

Store the definition of the class Date in a header file.

m Implement the methods for the class Date in a separate source file:

I. The method print () outputs the date to standard output using the
format Month-Day-Year.

2. The method init () uses three parameters and copies the values
passed to it to corresponding members. A range check is not required
at this stage, but will be added later.

3. The method init () without parameters writes the current date to the
corresponding members.

Use the functions declared in ctime

time t

time (time t *ptrSec)

struct tm *localtime (const time t *ptrSec);

The structure tm and sample calls to this function are included oppo-
site.The type time t is defined as long in ctime.

The function time () returns the system time expressed as a num-
ber of seconds and writes this value to the variable referenced by ptr-
Sec. This value can be passed to the function localtime () that
converts the number of seconds to the local type tm date and returns
a pointer to this structure.

m Test the class Date using an application program that once more is stored

in a separate source file.To this end, define two objects for the class and
display the current date. Use object assighments and—as an additional
exercise—references and pointers to objects.

262

CHAPTER 13 DEFINING CLASSES

solution

SOLUTION
J] mm
// date.h
// First Definition of class Date.
A, ,—,—,— e, iaittti°
#ifndef DATE // Avoid multiple inclusion.

#define DATE

class Date
{
private: // Sheltered members:
short month, day, year;

public: // Public interface:
void init (void) ;
void init(int month, int day, int year);
void print (void) ;

}i

#endif // _DATE

A e
// date.cpp
// Implementing the methods of class Date.

#include "date.h"

#include <iostream>
#include <ctime>
using namespace std;

T LCCTTEEFEREEFREEEEE

void Date::init (void) // Get the present date and

{ // assign it to data members.
struct tm *ptr; // Pointer to struct tm.
time t sec; // For seconds.
time (&sec) ; // Get the present date.
ptr = localtime (&sec) ; // Initialize a struct of

// type tm and return a
// pointer to it.

month = (short) ptr->tm mon + 1;

day (short) ptr->tm mday;

year (short) ptr->tm year + 1900;

SOLUTION

/] e

void Date::init(int m, int d, int y)

{

month = (short) m;

day = (short) d;

year = (short) y;
!
Bt MA iok
void Date: :print (void) // Output the date
{

cout << month << '-' << day << '-' << year

<< endl;

1
[e e e

// date_t.cpp
// Using objects of class Date.

A e
#include "date.h"

#include <iostream>

using namespace std;

int main()

{

Date today, birthday, aDate;

today.init () ;
birthday.init(12, 11, 1997);

cout << "Today's date: ";
today.print () ;

cout << "\n Felix' birthday: ";
birthday.print () ;

COUL < Mmoo m oo \n"
"Some testing outputs:" << endl;

aDate = today; // Assignment ok

aDate.print () ;

Date *pDate = &birthday;
pDate->print () ;

// Pointer to birthday

Date &holiday = aDate;
holiday.init(1, 5, 2000);
aDate.print () ;

return 0;

// Reference to aDate.
// Writing to aDate.
// holiday.print () ;

263

This page intentionally left blank

chapter

Methods

This chapter describes
m how constructors and destructors are defined to create and
destroy objects
m how inline methods, access methods, and read-only methods
can be used
m the pointer this, which is available for all methods, and
® what you need to pay attention to when passing objects as

arguments or returning objects.

265

266 = CHAPTER |4 METHODS

m CONSTRUCTORS

Class Account with constructors

// account.h

// Defining class Account with two constructors.

/] == e
#ifndef ACCOUNT

#define ACCOUNT

#include <string>

using namespace std;

class Account

{

private: // Sheltered members:
string name; // Account holder
unsigned long nr; // Account number
double state; // State of the account

public: // Public interface:

Account (const string&, unsigned long, double);
Account (const string&) ;
bool init(const string&, unsigned long, double) ;
void display() ;

}i

#endif // _ACCOUNT

Defining the constructors

// Within file account.cpp:

Account::Account (const string& a name,
unsigned long a nr, double a state)

nr = a_nr;
name = a_name;
state = a_state;

}

Account::Account (const string& a name)

{

name = a_name;
nr = 1111111; state = 0.0;

CONSTRUCTORS 267

[The Task of a Constructor

Traditional programming languages only allocate memory for a variable being defined.
The programmer must ensure that the variable is initialized with suitable values.

An object of the class Account, as described in the previous chapter, does not possess
any valid values until the method init () is called. Non-initialized objects can lead to
serious runtime errors in your programs.

To avoid errors of this type, C++ performs implicit initialization when an object is
defined. This ensures that objects will always have valid data to work on. Initialization is
performed by special methods known as constructors.

[] Declaration

Constructors can be identified by their names. In contrast to other member functions,
the following applies:

m the name of the constructor is also the class name

B a constructor dOGS not possess a return type—not even void.

Constructors are normally declared in the public section of a class. This allows you to
create objects wherever the class definition is available.

Constructors can be overloaded, just like other functions. Constructors belonging to a
class must be distinguishable by their signature (that is, the number, order, and type of
parameters). This allows for different methods of object initialization. The example
opposite shows an addition to the Account class. The class now has two constructors.

(] Definition

Since a constructor has the same name as its class, the definition of a constructor always
begins with

Class_name: :Class_name

In the definition itself, the arguments passed can be checked for validity before they are
copied to the corresponding data members. If the number of arguments is smaller than
the number of data members, the remaining members can be initialized using default val-
ues.

Constructors can also perform more complex initialization tasks, such as opening files,
allocating memory, and configuring interfaces.

268 CHAPTER 14 METHODS

® CONSTRUCTOR CALLS

Sample program

// account2 t.cpp
// Using the constructors of class Account.

J] e
#include "account.h"

int main()
Account giro("Cheers, Mary", 1234567, -1200.99),
save ("Lucky, Luke");

Account depot; // Error: no default constructor
// defined.
giro.display() ; // To output

save.display () ;

Account temp ("Funny, Susy", 7777777, 1000000.0) ;
save = temp; // ok: Assignment of

// objects possible.
save.display () ;

// Or by the presently available method init () :
save.init ("Lucky, Luke", 7654321, 1000000.0);
save.display () ;

return 0;

CONSTRUCTOR CALLS 269

Unlike other methods, constructors cannot be called for existing objects. For this reason,
a constructor does not have a return type. Instead, a suitable constructor is called once
only when an object is created.

(] Initialization

When an object is defined, initial values can follow the object name in parentheses.
Syntax: class object(initializing list);

During initialization the compiler looks for a constructor whose signature matches the
initialization list. After allocating sufficient memory for the object, the constructor is
called. The values in the initialization list are passed as arguments to the constructor.

Example: account nomoney("Poor, Charles");

This statement calls the constructor with one parameter for the name. The other data
members will default to standard values.

If the compiler is unable to locate a constructor with a suitable signature, it will not
create the object but issue an error message.

Example: account somemoney("Li, Ed",10.0); // Error!

The class Account does not contain a constructor with two parameters.
If a constructor with only one parameter is defined in the class, the statement can be
written with an equals sign =.

Example: account nomoney = "Poor, Charles";

This statement is equivalent to the definition in the example before last. Initialization
with parentheses or the = sign was introduced previously for fundamental types. For
example, int 1 (0); isequivalenttoint i =0;.

] Default Constructor

A constructor without parameters is referred to as a default constructor. The default con-
structor is only called if an object definition does not explicitly initialize the object. A
default constructor will use standard values for all data members.

If a class does not contain a constructor definition, the compiler will create a minimal
version of the default constructor as a public member. However, this constructor will
not perform initialization. By contrast, if a class contains at least one constructor, a
default constructor must be defined explicitly, if it is needed. The definition of the
Account class does not specify a default constructor; thus a new account object can be
created with initialization only.

270 CHAPTER 14 METHODS

m DESTRUCTORS

Sample program

// demo.cpp

// Outputs constructor and destructor calls.

/] m e
#include <iostream>

#include <string>

using namespace std;

int count = 0; // Number of objects.
class Demo

{

private: string name;
public: Demo (const string&) ; // Constructor
~Demo () ; // Destructor

Vi

Demo: :Demo (const string& str)

{

++count; name = str;
cout << "I am the constructor of "<< name << '\n'
<< "This is the " << count << ". object!\n"

}

Demo:: ~Demo () // Defining the destructor

{

cout << "I am the destructor of " << name << '\n'
<< "The " << count << ". object "
<< "will be destroyed " << endl;

--count;

}

// -- To initialize and destroy objects of class Demo --
Demo globalObject ("the global object");
int main ()
cout << "The first statement in main()." << endl;
Demo firstLocalObject("the 1. local object");
Demo secLocalObject ("the 2. local object");
static Demo staticObject ("the static object") ;
cout << "\nlLast statement within the inner block"

<< endl;
cout << "Last statement in main()." << endl;
return O;

DESTRUCTORS 271

[1 Cleaning Up Objects

Objects that were created by a constructor must also be cleaned up in an orderly manner.
The tasks involved in cleaning up include releasing memory and closing files.

Objects are cleaned up by a special method called a destructor, whose name is made up
of the class name preceded by ~ (tilde).

[] Declaration and Definition

Destructors are declared in the public section and follow this syntax:
Syntax: ~class_name (void) ;

Just like the constructor, a destructor does not have a return type. Neither does it
have any parameters, which makes the destructor impossible to overload. Each class thus
has one destructor only.

If the class does not define a destructor, the compiler will create a minimal version of
a destructor as a public member, called the default destructor.

It is important to define a destructor if certain actions performed by the constructor
need to be undone. If the constructor opened a file, for example, the destructor should
close that file. The destructor in the Account class has no specific tasks to perform. The
explicit definition is thus:

Account: :~Account () {} // Nothing to do

The individual data members of an object are always removed in the order opposite of
the order in which they were created. The first data member to be created is therefore
cleaned up last. If a data member is also a class type object, the object’s own destructor

will be called.

[1 Calling Destructors

A destructor is called automatically at the end of an object’s lifetime:

m for local objects except objects that belong to the static storage class, at the
end of the code block defining the object
m for global or static objects, at the end of the program.

The sample program on the opposite page illustrates various implicit calls to constructors
and destructors.

272 CHAPTER |14 METHODS

m INLINE METHODS

Sample class account

// account.h

// New definition of class Account with inline methods
[/ e e
#ifndef ACCOUNT

#define _ACCOUNT

#include <iostreams
#include <iomanips>
#include <strings
using namespace std;

class Account

{

private:
string name;

double state;
public:

~Account () { }
void display ()

Vi

// display()
inline void Account

{

unsigned long nr;

// Sheltered members:
// Account holder
// Account number
// State of the account
//Public interface:
// Constructors: implicit inline

Account (const string& a name = "X",
unsigned long a nr = 1111111L,
double a_ state = 0.0)
name = a name; nr = a nr; state = a_state;

// Dummy destructor: implicit inline

I

outputs data of class Account.

::display () // Explicit inline

cout << fixed << setprecision(2)

< \nll
<< "Account holder: " << name << '\n'

<< "Account number: " << nr << '"\n'

<< "Account state: " << state << '"\n'
< \nll
<< endl;

#endif // _ACCOUNT

INLINE METHODS 273

A class typically contains multiple methods that fulfill simple tasks, such as reading or
updating data members. This is the only way to ensure data encapsulation and class func-
tionality.

However, continually calling “short” methods can impact a program’s runtime. In
fact, saving a re-entry address and jumping to the called function and back into the call-
ing function can take more time than executing the function itself. To avoid this over-
head, you can define inline methods in a way similar to defining inline global
functions.

[1 Explicit and Implicit inline Methods

Methods can be explicitly or implicitly defined as inline. In the first case, the method
is declared within the class, just like any other method. You simply need to place the
inline keyword before the method name in the function header when defining the
method.

Example: inline void Account::display ()

{
}

Since the compiler must have access to the code block of an inline function, the
inline function should be defined in the header containing the class definition.

Short methods can be defined within the class. Methods of this type are known as
implicit inline methods, although the inline keyword is not used.

Example: // Within class Account:
bool isPositive(){ return state > 0; }

[] Constructors and Destructors with inline Definitions

Constructors and destructors are special methods belonging to a class and, as such, can
be defined as inline. This point is illustrated by the new definition of the Account
class opposite. The constructor and the destructor are both implicit inline. The con-
structor has a default value for each argument, which means that we also have a default
constructor. You can now define objects without supplying an initialization list.

Example: Account temp;

Although we did not explicitly supply values here, the object temp was correctly initial-
ized by the default constructor we defined.

274 CHAPTER |14 METHODS

m ACCESS METHODS

Access methods for the account class

// account.h

// Class Account with set- and get-methods.

[/ = e
#ifndef ACCOUNT

#define ACCOUNT

#include <iostreams
#include <iomanip>
#include <strings
using namespace std;

class Account

{

private: // Sheltered members:

string name; // Account holder

unsigned long nr; // Account number

double state; // State of the account
public: //Public interface:

// constructors, destructor:
Account (const string& a name = "X",
unsigned long a nr = 1111111L,

double a_ state 0.0)
{ name = a name; nr = a nr; state = a_state; }
~Account () { }

// Access methods:

const string& getName () { return name; }
bool setName (const string& s)
if(s.size() < 1) // No empty name
return false;
name = s;

return true;
}
unsigned long getNr () { return nr; }
void setNr (unsigned long n) { nr = n; }
double getState() { return state; }
void setState(double x) { state = x; }
void display () ;
}i
// inline definition of display() as before.
#endif // _ACCOUNT

ACCESS METHODS 275

[1 Accessing Private Data Members

An object’s data members are normally found in the private section of a class. To
allow access to this data, you could place the data members in the public section of the
class; however, this would undermine any attempt at data encapsulation.

Access methods offer a far more useful way of accessing the private data members.
Access methods allow data to be read and manipulated in a controlled manner. If the
access methods were defined as inline, access is just as efficient as direct access to the
public members.

In the example opposite, several access methods have been added to the Account
class. You can now use the

getName (), getNr (), getState()

methods to read the individual data members. As is illustrated in getName (), references
should be read-only when used as return values. Direct access for write operations could
be possible otherwise. To manipulate data members, the following methods can be used:

setName (), setNr (), setState().
This allows you to define a new balance, as follows:

Example: save.setState(2199.0);

[1 Access Method Benefits

Defining access methods for reading and writing to each data member may seem like a
lot of work—all that typing, reams of source code, and the programmer has to remember
the names and tasks performed by all those methods.

So, you may be asking yourself how you benefit from using access methods. There are
two important issues:

m Access methods can prevent invalid access attempts at the onset by performing
sanity checks. If a class contains a member designed to represent positive num-
bers only, an access method can prevent processing negative numbers.

m Access methods also hide the actual implementation of a class. It is therefore pos-
sible to modify the internal structure of your data at a later stage. If you detect
that a new data structure will allow more efficient data handling, you can add
this modification to a new version of the class. Provided the public interface to
the class remains unchanged, an application program can be leveraged by the
modification without needing to modify the application itself. You simply re-
compile the application program.

276 CHAPTER 14 METHODS

B const OBJECTS AND METHODS

Read-only methods in the Account class

// account.h

// Account class with read-only methods.

[/ = e e e
#ifndef ACCOUNT

#define ACCOUNT

#include <iostreams
#include <iomanip>
#include <strings
using namespace std;

class Account

{

private: // Sheltered members
// Data members: as before
public: // Public interface

// Constructors and destructor
// as before

// Get-methods:

const string& getName () const { return name; }
unsigned long getNr () const { return nr; }
double getState () const { return state; }

// Set-methods:

.. // as before

// Additional methods:

void display () const;
Vi
// display () outputs the data of class Account.
inline void Account::display () const

{

cout << fixed << setprecision(2)

g Mmoo \nn
<< "Account holder: " << name << '\n'

<< "Account number: " << nr << '"\n'

<< "Account state: " << state << '"\n'

g Mmoo \nn
<< endl;

}

#endif // _ACCOUNT

const OBJECTS AND METHODS 277

[1 Accessing const Objects

If you define an object as const, the program can only read the object. As mentioned
earlier, the object must be initialized when you define it for this reason.

Example: const Account inv("YMCA, FL", 5555, 5000.0);

The object inv cannot be modified at a later stage. This also means that methods such
as setName () cannot be called for this object. However, methods such as getName or
display () will be similarly unavailable although they only perform read access with
the data members.

The reason for this is that the compiler cannot decide whether a method performs
write operations or only read operations with data members unless additional informa-
tion is supplied.

[] Read-Only Methods

Methods that perform only read operations and that you need to call for constant objects
must be identified as read-only. To identify a method as read-only, append the const
keyword in the method declaration and in the function header for the method defini-
tion.

Example: unsigned long getNr() const;

This declares the getNr () method as a read-only method that can be used for constant
objects.

Example: cout << "Account number: " << inv.getNr () ;

Of course, this does not prevent you from calling a read-only method for a non-constant
object.

The compiler issues an error message if a read-only method tries to modify a data
member. This also occurs when a read-only method calls another method that is not
defined as const.

[] const and Non-const Versions of a Method

Since the const keyword is part of the method’s signature, you can define two versions
of the method: a read-only version, which will be called for constant objects by default,
and a normal version, which will be called for non-const objects.

278

CHAPTER

14 METHODS

m STANDARD METHODS

Sample program

// stdMeth.cpp

// Using standard methods.

/] ==
#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

class CD
{ private:
string interpret, title;

long seconds; // Time duration of a song
public:
CD(const string& i="", const string& t="", long s = OL)
interpret = 1i; title = t; seconds = s;

}

const string& getInterpret () const{ return interpret; }
const string& getTitle() const { return title; }
long getSeconds() const { return seconds; }

// Generate objects of class CD and output it in tabular form

void printLine(CD cd) ; // A row of the table
int main()
{
CD cdl("Mister X", "Let's dance", 30*60 + 41),
cd2("New Guitars", "Flamenco Collection", 2772),
cd3 = cdi, // Copy constructor!
cd4 ; // Default constructor.
cd4 = cd2; // Assignment!
string line(70,'-"'); line += '\n';

cout << line << left
<< setw(20) << "Interpreter" << setw(30) << "Title"
<< "Length (Min:Sec)\n" << line << endl;

printLine (cd3) ; // Call by value ==>
printLine (cd4) ; // Copy constructor!
return 0;
1
void printLine(CD cd)
{ cout << left << setw(20) << cd.getInterpret ()
<< setw(30) << cd.getTitle()
<< right << setw(5) << cd.getSeconds() / 60
<< 't << setw(2) << cd.getSeconds() % 60 << endl;

STANDARD METHODS 279

Every class automatically contains four standard methods:

the default constructor
the destructor
the copy constructor and

the assignment.

You can use your own definitions to replace these standard methods. As illustrated by
the sample class Account, the compiler only uses the pre-defined default constructor if
no other constructor is available.

The default constructor and the implicit, minimal version of a destructor were intro-
duced earlier.

[1 Copy Constructor

The copy constructor initializes an object with another object of the same type. It is
called automatically when a second, already existing object is used to initialize an object.

Example: Account myAccount ("Li, Ed", 2345, 124.80);
Account yourAccount (myAccount) ;

In this example, the object yourAccount is initialized by calling the copy constructor
with the myAccount object. Each member is copied individually, that is, the following
initialization process takes place:

yourAccount .name = myAccount.name;
yourAccount .nr = myAccount.nr;
yourAccount.state = myAccount.state;

The copy constructor is also called when an object is passed to a function by value.
When the function is called, the parameter is created and initialized with the object used
as an argument.

[] Assignment

Assignment has been used in several previous examples. An object can be assigned to
another object of the same type.

Example: hisAccount = yourAccount;

The data members of the yourAccount object are copied to the corresponding mem-
bers of hisAccount in this case also. In contrast to initialization using the copy con-
structor, assignment requires two existing objects.

Later in the book, you will be introduced to situations where you need to define the
copy constructor or an assignment yourself, and the necessary techniques will be dis-
cussed.

280

CHAPTER

14 METHODS

®m this POINTER

Sample class payTime

// DayTime.h
// The class DayTime represents the time in
// hours, minutes and seconds.
/] = oo
#ifndef DAYTIME
#define DAYTIME
class DayTime
{
private:
short hour, minute, second;
bool overflow;
public:
DayTime(int h = 0, int m = 0, int s = 0)
{

overflow = false;

if(!setTime(h, m, s)) // this-s>setTime(...)
hour = minute = second = 0; // hour is equivalent
} // to this-shour etc.

bool setTime (int hour, int minute, int second = 0)
if (hour >= 0 && hour < 24
&& minute >= 0 && minute < 60
&& second >= 0 && second < 60)

this->hour = (short)hour;
this->minute = (short)minute;
this->second = (short)second;

return true;

}

else
return false;

int getHour () const { return hour; }
int getMinute() const { return minute; }
int getSecond() const { return second; }

int asSeconds () const // daytime in seconds
{ return (60*60*hour + 60*minute + second) ; }

bool isLess(DayTime t) const // compare *this and t

{

return asSeconds() < t.asSeconds() ;
} // this-sasSeconds () < t.asSeconds() ;

#endif // _DAYTIME

this POINTER 281

[1 Accessing the Current Object

A method can access any member of an object without the object name being supplied
in every case. A method will always reference the object with which it was called.

But how does a method know which object it is currently working with? When a
method is called, it is passed a hidden argument containing the address of the current
object.

The address of the current object is available to the method via the constant pointer
this. Given that actObj is the current object of type Class_id, for which a method
was called, the pointer this has the following declaration:

Class_id* const this = &actObj;

The name this is a keyword. As this is a constant pointer, it cannot be redirected.
In other words, the pointer this allows you to access the current object only.

[1 Using the this Pointer

You can use the this pointer within a method to address an object member as follows:

Example: this->data // Data member: data
this->func () // Calling member function

The compiler implicitly creates an expression of this type if only a member of the current
object is supplied.

Example: data = 12; // Corresponds to this->data=12;

Write operations of this type are permissible since the pointer this is a constant, but
the referenced object is not. However, the above statement would be invalid for a read-
only method.

The this pointer can be used explicitly to distinguish a method’s local variables from
class members of the same name. This point is illustrated by the sample method
setTime () on the opposite page.

The this pointer is always necessary to access the current object, *this, collec-
tively. This situation often occurs when the current object needs to be returned as a copy
or by reference. Then the return statement is as follows:

return *this;

282 = CHAPTER |4 METHODS

m PASSING OBJECTS AS ARGUMENTS

Calling methods setTime () and isLess ()

#include "DayTime.h"
DayTime departl(11, 11, 11), depart2;
depart2.setTime (12, 0, 0);

if (departl.isLess(depart2))
cout << "\nThe 1st plane takes off earlier" << endl;

Global function swap ()

#include "DayTime.h"
// Defines the global function swap() :

void swap(DayTime& tl, DayTime& t2) // Two
{ // parameters!
DayTime temp(tl); tl1 = t2; t2 = temp; // To swap

// tl and t2.
// A call (e.g. in function main()) :
DayTime arrivall(14, 10), arrival2(15, 20);

swap (arrivall, arrival2); // To swap

Implementing swap () as a method

// Defines the method swap() :

class DayTime // With a new method swap ()
£ . ..

public:

void swap(DayTime& t) // One parameter!

{ // To swap *this and t:

DayTime temp(t); t = *this; *this = temp;

}

}i

// A call (e.g. in function main()) :
#include "DayTime.h"
DayTime arrivall(10, 10), arrival2(9, 50);

arrivall.swap (arrival2) ;

PASSING OBJECTS AS ARGUMENTS 283

[1 Passing by Value

As you already know, passing by value copies an object that was passed as an argument to
the corresponding parameter of a function being called. The parameter is declared as an
object of the class in question.

Example: bool isLess(DayTime t) const;

When the method isLess () is called, the copy constructor executes and initializes the
created object, t, with the argument.

departl.isLess(depart2) // Copy constructor

The function uses a copy of the object depart2. The copy is cleaned up when leaving
the function, that is, the destructor is called.

[1 Passing by Reference

The overhead caused by creating and cleaning up objects can be avoided by passing argu-
ments by reference. In this case, the parameter is declared as a reference or pointer.

Example: bool isLess(const DayTime& t) const;

This new declaration of the isLess () method is preferable to the previous declaration.
There is no formal difference to the way the method is called. However, isLess () no
longer creates an internal copy, but accesses directly the object being passed. Of course,
the object cannot be changed, as the parameter was declared read-only.

[l Methods Versus Global Functions

Of course, it is possible to write a global function that expects one object as an argument.
However, this rarely makes sense since you would normally expect an object’s function-
ality to be defined in the class itself. Instead, you would normally define a method for the
class and the method would perform the task in hand. In this case, the object would not
be passed as an argument since the method would manipulate the members of the cur-
rent object.

A different situation occurs where operations with at least two objects need to be per-
formed, such as comparing or swapping. For example, the method isLess () could be
defined as a global function with two parameters. However, the function could only
access the public interface of the objects. The function swap () on the opposite page
additionally illustrates this point.

The major advantage of a globally defined function is its symmetry. The objects
involved are peers, since both are passed as arguments. This means that conversion rules
are applied to both arguments when the function is called.

284

CHAPTER

14

METHODS

® RETURNING OBJECTS

Global function currentTime ()

{

#include "DayTime.h"
#include <ctimes> // Functions time (), localtime ()
using namespace std;

const DayTime& currentTime () // Returns the

// present time.
static DayTime curTime;

time t sec; time(&sec); // Gets the present time.
// Initializes the struct
struct tm *time = localtime (&sec); // tm with it.

curTime.setTime(time->tm hour, time->tm min,
time->tm sec);
return curTime;

Sample program

{

// DayTim_t.cpp

// Tests class DayTime and function currentTime ()
//
#include "DayTime.h"
#include <iostream>
using namespace std;

// Class definition

const DayTime& currentTime () ; // The current time.

int main ()

DayTime cinema(20,30);

cout << "\nThe movie starts at ";
cinema.print () ;

DayTime now (currentTime()) ; // Copy constructor
cout << "\nThe current time is ";
now.print () ;

cout << "\nThe movie has ";
if(cinema.isLess(now))

cout << "already begun!\n" << endl;
else

cout << "not yet begun!\n" << endl;
return O;

RETURNING OBJECTS 285

A function can use the following ways to return an object as a return value: It can create
a copy of the object, or it can return a reference or pointer to that object.

[1 Returning a Copy

Returning a copy of an object is time-consuming and only makes sense for small-scale
objects.

Example: DayTime startMeeting()
DayTime start;
// Everyone has time at 14:30:
start.setTime(14, 30);
return(start) ;

On exiting the function, the local object start is destroyed. This forces the compiler to
create a temporary copy of the local object and return the copy to the calling function.

[] Returning a Reference

Of course, it is more efficient to return a reference to an object. But be aware that the
lifetime of the referenced object must not be local.

If this is the case, the object is destroyed on exiting the function and the returned ref-
erence becomes invalid. If you define the object within a function, you must use a
static declaration.

The global function currentTime () on the opposite page exploits this option by
returning a reference to the current time that it reads from the system each time the
function is called. The sample program that follows this example uses the current time to
initialize the new object now and then outputs the time. In order to output the time, an
additional method, print (), was added to the class.

[1 Using Pointers as Return Values

Instead of returning a reference, a function can also return a pointer to an object. In this
case too, you must ensure that the object still exists after exiting the function.

Example: const DayTime* currentTime() // Read-only pointer
{ // to the current time
// Unchanged
return &curTime;

286 = CHAPTER |4 METHODS

= EXERCISES

Class Article

Private members:

Type
Article number: long
Article name: string
Sales price: double

Public members:
Article(long, const string&, double);
~Article () ;

void print () ; // Formatted output
set- and get-methods for any data member

Output from constructor

An object of type Article . . . is created.
This is the Article.

Output from destructor

The object of type Article . . . is destroyed.
There are still . . . articles.

EXERCISES 287

Exercise |

A warehouse management program needs a class to represent the articles in
stock.

m Define a class called Article for this purpose using the data members
and methods shown opposite. Store the class definition for Article in a
separate header file. Declare the constructor with default arguments for
each parameter to ensure that a default constructor exists for the class.
Access methods for the data members are to be defined as inline. Neg-
ative prices must not exist. If a negative price is passed as an argument,
the price must be stored as 0. 0.

m Implement the constructor, the destructor, and the method print () ina
separate source file. Also define a global variable for the number of
Article type objects.

The constructor must use the arguments passed to it to initialize the data
members, additionally increment the global counter, and issue the message
shown opposite.

The destructor also issues a message and decrements the global counter.

The method print () displays a formatted object on screen. After
outputting an article, the program waits for the return key to be pressed.

m The application program (again use a separate source file) tests the Arti-
cle class. Define four objects belonging to the Article class type:

I. A global object and a local object in the main function.

2. Two local objects in a function test () that is called twice by main ().
One object needs a static definition. The function test () displays
these objects and outputs a message when it is terminated.

Use articles of your own choice to initialize the objects. Additionally, call
the access methods to modify individual data members and display the
objects on screen.

m Test your program. Note the order in which constructors and destruc-
tors are called.

Supplementary question: Suppose you modify the program by declaring a function
called test () with a parameter of type Article and calling the function with
an article type object. The counter for the number of objects is negative after
running the program.Why?

288 CHAPTER 14 METHODS

Methods for class pate

Public Methods:

Date () ;

Date(int month, int day, int year);
void setDate() ;

bool setDate(int mn, int da, int yr);

int getMonth() const;

int getDay () const;

int getYear () const;

bool isEqual(const Date&) const;
bool isLess(const Date&) const;
const string& asString() const;
void print() const;

Converting a number to a string

The class stringstream offers the same functionality for reading and writing to
character buffer as the classes istream and ostream do.Thus, the operators >>
and <<, just as all manipulators, are available.

// Example: Converting a number to a string.

#include <sstream> // Class stringstream
#include <iomanip> // Manipulators
double x = 12.3; // Number
string str; // Destination string
stringstream iostream; // For conversion

// number -> string.
iostream << setw(10) << x; // Add to the stream.
iostream >> str; // Read from the stream.

Notices for exercise 3
m Ayearis a leap year if it is divisible by 4 but not by 100. In addition, all
multiples of 400 are leap years. February has 29 days in a leap year.

m Use a switch statement to examine the number of days for months con-
taining less than 31 days.

EXERCISES 289

Exercise 2

In the exercises for chapter |3, an initial version of the Date class containing
members for day, month, and year was defined. Now extend this class to add
additional functionality. The methods are shown on the opposite page.

m The constructors and the method setDate () replace the init method
used in the former version.The default constructor uses default values,
for example, 1.1. 1, to initialize the objects in question.The setDate ()
method without any parameters writes the current date to the object.

m The constructor and the setDate () method with three parameters do
not need to perform range checking. This functionality will be added in
the next exercise.

m The methods isEqual () and isLess () enable comparisons with a date
passed to them.

m The method asString () returns a reference to a string containing the
date in the format mm-dd-year, e.g. 03-19-2006.You will therefore need
to convert any numerical values into their corresponding decimal strings.
This operation is performed automatically when you use the << operator
to output a number to the standard output cout. In addition to the cin
and cout streams, with which you are already familiar, so-called string
streams with the same functionality also exist. However, a string stream
does not read keyboard input or output data on screen. Instead, the tar-
get, or source, is a buffer in main memory.This allows you to perform for-
matting and conversion in main memory.

m Use an application program that calls all the methods defined in the class
to test the Date class.

Exercise 3

The Date class does not ensure that an object represents a valid date.To avoid
this issue, add range checking functionality to the class. Range checking is
performed by the constructor and the setDate () method with three
parameters.

m First, write a function called isLeapYear () that belongs to the bool
type and checks whether the year passed to it is a leap year. Define the
function as a global inline function and store it in the header file
Date.h.

m Modify the setDate () method to allow range checking for the date
passed to it. The constructor can call setDate ().

m Test the new version of the Date class.To do so, and to test set-
Date(...),read a date from the keyboard.

290 CHAPTER 14 METHODS

SOLUTIONS

Exercise |

f] mm
// article.h

// Defines a simple class, Article.

A il
#ifndef ARTICLE
#define ARTICLE

#include <string>
using namespace std;

class Article

{

solutions

private:
long nr; // Article number
string name; // Article name
double sp; // Selling price
public:

Article(long nr=0, const string& name="noname",
double sp=0.0) ;

~Article () ;

void print () ;

const string& getName () const { return name; }
long getNr () const { return nr; }
double getSP () const { return sp; }

bool setName(const string& s)

{

if(s.size() < 1) // No empty name
return false;
name = s;

return true;

!

void setNr(long n) { nr = n; }

void setSP (double v)

{ // No negative price
sp =v > 0.0°? v : 0.0;

}

}i

#endif // ARTICLE

SOLUTIONS

// article.cpp

// Defines those methods of Article, which are

// not defined inline.

// Screen output for constructor and destructor calls.

#include "Article.h" // Definition of the class
#include <iostream>

#include <iomanip>

using namespace std;

// Global counter for the objects:
int count = 0;

/] e
// Define constructor and destructor:
Article::Article(long nr, const string& name, double sp)

{

setNr (nr) ; setName (name) ; setSP(sp) ;

++count;

cout << "Created object for the article " << name
<< u_\nu
<< "This is the " << count << ". article!\n"

}

Article: :~Article ()

{

cout << "Cleaned up object for the article " << name

<< u_\nu
<< "There are still " << --count << " articles!"
<< endl;

}
/] = e s
// The method print () outputs an article.
void Article::print ()
{
long savedFlags = cout.flags() ; // To mark the
// flags of cout.
cout << fixed << setprecision(2)

< \nn
<< "Article data:\n"
<< " Number: " << nr << '"\n'
<< " Name: " << name << '\n'
<< " Sales price: " << sp << '"\n'
R i et R "
<< endl;
cout.flags (savedFlags) ; // To restore
// old flags.
cout << " --- Go on with return --- ";
cin.get () ;

291

292

CHAPTER

14 METHODS

J] = e
// article t.cpp

// Tests the Article class.

J]
#include "Article.h" // Definition of the class
#include <iostream>

#include <strings>

using namespace std;

void test () ;

// -- Creates and destroys objects of Article class --
Article Articlel(1111,"volley ball", 59.9);
int main|()
{
cout << "\nThe first statement in main().\n" << endl;
Article Article2(2222, "gym-shoes", 199.99);
Articlel.print () ;
Article2.print () ;
Article& shoes = Article2; // Another name
shoes.setNr(2233) ;
shoes.setName ("jogging-shoes") ;
shoes.setSP(shoes.getSP() - 50.0);

cout << "\nThe new values of the shoes object:\n";
shoes.print () ;

cout << "\nThe first call to test()." << endl;
test () ;

cout << "\nThe second call to test()." << endl;
test () ;

cout << "\nThe last statement in main() .\n" << endl;
return O0;

void test ()
{
Article shirt(3333, "T-Shirt", 29.9);
shirt.print () ;
static Article net (4444, "volley ball net", 99.0);
net.print () ;
cout << "\nLast statement in function test ()"
<< endl;

SOLUTIONS 293

Answer to the supplementary question:

The copy constructor is called on each “passing by value,” although this
constructor has not been defined explicitly. In other words, the implicitly defined
copy constructor is used and of course does not increment the object counter.
However, the explicitly defined destructor, which decrements the counter; is still
called for each object.

Exercises 2 and 3

T RS
// Date.h

// Defining class Date with optimized

// functionality, e.g. range check.

/] m
#ifndef DATE // Avoids multiple inclusions.

#define DATE

#include <string>

using namespace std;

class Date
{
private:
short month, day, year;
public:
Date () // Default constructor
{ month = day = year = 1; }

Date(int month, int day, int year)

{
if(!setDate(month, day, year))
month = day = year = 1; // If date is invalid
1
void setDate() ; // Sets the current date

bool setDate(int month, int day, int year);
int getMonth() const { return month; }

int getDay () const { return day; }
int getYear() const { return vyear; }
bool isEqual(const Date& d) const
{
return month == d.month && day == d.day
&& year == d.year ;
}

bool isLess(const Date& d) const;
const string& asString() const;
void print (void) const;

294

CHAPTER

14 METHODS

inline bool Date::isLess(const Date& d) const

{

if (year != d.year) return year < d.year;
else if(month != d.month) return month < d.month;
else return day < d.day;

inline bool isLeapYear(int year)

{
}

#endif // _DATE

return (year%4 == 0 && year%100 != 0) || year%400 == O;

J] m e
// Date.cpp

// Implements those methods of Date class,
// which are not defined inline.

#include "Date.h" // Class definition
#include <iostream>

#include <sstream>

#include <iomanip>

#include <strings>

#include <ctime>

using namespace std;

A ,,,Y,Y—aB il - ihi
void Date: :setDate () // Get the present date and
{ // assign it to the data members.
struct tm *dur; // Pointer to struct tm.
time t sec; // For seconds.
time (&sec) ; // Get the present time.
dur = localtime (&sec) ; // Initialize a struct of

// type tm and return a
// pointer to it.

day = (short) dur->tm mday;
month = (short) dur->tm mon + 1;
year = (short) dur->tm year + 1900;

/] =mmmmmmee-

SOLUTIONS 295

bool Date::setDate(int mn, int da, int yr)

{

if(mn < 1
if(da < 1

switch (mn)

{

|| mn > 12) return false;
|| da > 31) return false;

// Month with less than 31 days

case 2: 1if(isLeapYear (yr))
{
if(da > 29)
return false;
}
else 1if(da > 28)
return false;
break;
case 4:
case 6:
case 9:
case 11:
if(da > 30) return false;
}
month = (short) mn;
day = (short) da;
year = (short) vyr;

return true

[/ e

void Date::pri

{
}
/] =mmmmmmee-

const stringé&

{

cout << as

nt () const // Output a date
String() << endl;

Date::asString() const // Return a date
// as string.

static string dateString;

stringstream iostream; // For conversion
// number -> string
iostream << setfill('0"') // and formatting.
<< setw(2) << month << '-!
<< setw(2) << day << '-' << year;

iostream >> dateString;
return dateString;

296

CHAPTER 14

//

METHODS

// date_t.cpp
// Using objects of class Date.

!/

#include "Date.h"
#include <iostream>
using namespace std;

int main ()

{

Date today, birthday(1, 29, 1927);
const Date d2010(1,1,2010);

cout << "\n Brigit's birthday: "
<< birthday.asString() << endl;

today.setDate () ;
cout << "\nToday's date: " << today.asString/()
<< endl;;

if (today.isLess(d2010))
cout << " Good luck for this decade \n"
<< endl;
else
cout << " See you next decade \n" << endl;

Date holiday;
int month, day, year; char c;

cout << "\nWhen does your next vacation begin?\n"
<< "Enter in Month-Day-Year format: ";

if(!(cin >> month >> ¢ >> day >> c >> year))
cerr << "Invalid input!\n" << endl;

else if ('holiday.setDate(month, day, vear))
cerr << "Invalid date!\n" << endl;
else

{

cout << "\nYour first vacation: ";
holiday.print () ;

if (today.getYear () < holiday.getYear())
cout << "You should go on vacation this year!\n"
<< endl;
else
cout << "Have a nice trip!\n" << endl;

}

return 0O;

chapter

Member Objects and
Static Members

The major topics discussed in this chapter are
m member objects and how they are initialized

m data members that are created once only for all the objects in a

class.
In addition, this chapter describes constant members and enumerated

types.

297

298 CHAPTER 1I5 MEMBER OBJECTS AND STATIC MEMBERS

m MEMBER OBJECTS

A class representing measurement results

// result.h

// Class Result to represent a measurement

// and the time of measurement.

/] = e
#ifndef RESULT

#define RESULT

#include "DayTime.h" // Class DayTime
class Result
{ .
private:
double wval;
DayTime time;
public:
Result () ; // Default constructor
Result (double w, const DayTime& z = currentTime()) ;

Result (double w, int hr, int min, int sec);
double getVal() const { return val; }
void setVal(double w) { val = w; }
const DayTime& getTime() const { return time; }
void setTime(const DayTime& z) { time = z; }
bool setTime(int hr, int min, int sec)
{ return time.setTime(hr, min, sec); }
void print () const; // Output result and time.
}i

#endif // RESULT

A first implementation of constructors

#include "result.h"
Result::Result() { val = 0.0; }
Result::Result(double w, const DayTime& 2z)

{
}

Result::Result (double w, int hr, int min, int sec)
{ val = w;
time = DayTime (hr, min, sec); // Assign a temporary
// object of type
} // DayTime to time.

val = w; time = z;

MEMBER OBJECTS 299

[1 “Has-A” Relationship

Data members belonging to one class can be objects of a different class. In our example,
the Account class, we already made use of this feature. The name of the account holder
is stored in a string type data member. An object of the Account class therefore has a
string type member sub-object, or member object for short.

If a class contains a data member whose type is of a different class, the relationship
between the classes is referred to as a “Has-A” relationship.

[1 Calling Constructors

When an object containing member objects is initialized, multiple constructor calls are
to be executed. One of these is the constructor for the complete object, and the others
are constructors for the member objects. The order of the constructor calls is significant in
this case. First, the member objects are created and initialized; this then allows the con-
structor to create the whole object. Unless otherwise stated, the default constructor will
be called for each member object.

[1 The Constructors for the Sample Class Result

The example on the opposite page defines a sample class called Result. In addition to a
double type measurement, the time of each measurement is recorded. For ease of read-
ing, the constructors were defined separately, rather than as inline.

The default constructor only sets the value of the measurement to 0. However, initial-
ization is complete since the default constructor is called for the member object time.

Example: Result current;

The default constructor for the member object time first sets the hours, minutes and
seconds to 0. Then the constructor for the Result class is called and a value of 0.0 is
assigned to val.

The other constructors can be used to initialize an object explicitly.

Example: Result temperaturel(15.9); // Current Time
Result temperature2(1l6.7, 14, 30, 35);

Since the compiler has no information on the relation of initial values and member
objects, it first calls the default constructor for the member object time. Subsequently
the instructions for the Result class constructor can be executed, and values are
assigned to the data members.

300

CHAPTER 15 MEMBER OBJECTS AND STATIC MEMBERS

m MEMBER INITIALIZERS

New implementation of constructors

#include "result.h"

Result::Result() : val(0.0) { /* ... %/}
Result::Result(double w, const DayTime& 2z)
: val(w), time(z)
{ /7 ... %/}
Result::Result(double w, int hr, int min, int sec)
val (w), time (hr, min, sec)
{
/* L. x/

}

You can replace the comment /*
Result class there is nothing to do at present.

Sample program

// result t.cpp

// Tests constructors of class Result

f]
#include "Result.h"

#include <iostream>

using namespace std;

int main () // Some air temperature measurements
DayTime morning(6,30);
Result t1, // Default constructor
t2(12.5, morning),
t3(18.2, 12,0,0),
t4(17.7); // at current time
cout << "Default values: "; tl.print () ;

P e " << endl;
t2.print () ;
t3.print () ;
t4.print () ;
cout << endl;
return 0O;

* / with statements, if needed. However, in the case of the

MEMBER INITIALIZERS 301

[Initializing Member Objects

Calling default constructors to create member objects raises several issues:

® A member object is initialized first with default values. Correct values are
assigned later. This additional action can impact your program’s performance.

m Constant objects or references cannot be declared as member objects since it is
impossible to assign values to them later.

m Classes that do not have a default constructor definition cannot be used as types
for member objects.

When defining a constructor, you can use member initializers to ensure general and
efficient use of member objects.

[1 Syntax for Member Initializers

A member initializer contains the name of the data member, followed by the initial val-
ues in parentheses.

Example: time (hr,min,sec) // Member initializer

Multiple member initializers are separated by commas. A list of member initializers
defined in this way follows the constructor header and is separated from the header by a
colon.

Example: Result::Result(/* Parameters */)
val (w), time (hr, min, sec)
{ /* Function block */ }

This ensures that a suitable constructor will be called for data members with member ini-
tializers and avoids calls to the default constructor with subsequent assignments. As the
example shows, you can also use member initializers for data members belonging to fun-
damental types.

The argument names of the member initializers are normally constructor parameters.
This helps pass the values used to create an object to the right member object.

Member initializers can only be stated in a constructor definition. The constructor declaration remains

unchanged.

302 CHAPTER 1I5 MEMBER OBJECTS AND STATIC MEMBERS

m CONSTANT MEMBER OBJECTS

New version of class Result

// result2.h

// The class Result with a constant data member.
A s R R
#ifndef RESULT

#define RESULT

#include "DayTime.h" // Class DayTime
class Result

{

private:

double wval;
const DayTime time;

public:
Result (double w, const DayTime& z = currentTime()) ;
Result (double w, int hr, int min, int sec);
double getVal() const { return val; }
void setVal(double w) { val = w; }
const DayTime& getTime() const { return time; }
void print () const;

}i

#endif // RESULT

Using the new class Result

// result2 t.cpp : Tests the new class Result.
[/ =
#include "result2.h"
#include <iostream>
using namespace std;
int main()
{
DayTime start(10,15);
Result ml1(101.01, start),

m2(ml), // Copy constructor ok!
m3(99.9); // At current time.

// m2 = m3; // Error! Standard assignment incorrect.
m2.setVal (100.9) ; // Corrected value for m2
cout << "\n Result Time \n"

< Mmm " << endl;
ml.print () ; m2.print () ; m3.print () ;

return 0;

CONSTANT MEMBER OBJECTS 303

[1 Declaring const Member Objects

If a class contains data members that need to keep their initial values, you can define
these members as const. For example, you could set the time for a measurement once
and not change this time subsequently. However, you need to be able to edit the meas-
urement value to correct systematic errors. In this case, the member object time can be
declared as follows:

Example: const DayTime time;

Since the const member object time cannot be modified by a later assignment, the cor-
rect constructor must be called to initialize the object. In other words, when you define a
constructor for a class, you must also define a member initializer for each const member
object.

[] The Sample Class result

If the member object time is const, the first version of the constructors are invalid
since they modify t ime by means of a later assignment.

Example: time = DayTime(st, mn, sk); // Error!

However, the later versions of these constructors are ok. The member initializer ensures
that the desired initial values are used to create the member object time.

One further effect of the const member object is the fact that the setTime (.. .)
methods can no longer be applied. The compiler will issue an error message at this point
and for any statement in the current program that attempts to modify the static member,
time. This means that a programmer cannot accidentally overwrite a member declared
as a const.

The new version of the Result class no longer contains a default constructor, since a
default value for the time of the measurement does not make sense.

[Example with Fundamental Type

Data members with fundamental types can also be defined as const. The class Client
contains a number, nr, which is used to identify customers. Since the client number
never changes, it makes sense to define the number as const. The constructor for
Client would then read as follows:

Example: cClient::Client(/*...*/) : nr(++id)
{ /*x...%/ }

The member initializer nr (++id) initializes the const data member nr with the
global value id, which is incremented prior to use.

304

CHAPTER

15 MEMBER OBJECTS AND STATIC MEMBERS

= STATIC DATA MEMBERS

Class rResult with static members

// result3.h
// The class Result with static data members.
A EE
#ifndef RESULT
#define RESULT
#include "DayTime.h" // Class DayTime
class Result
{ .
private:

double val;

const DayTime time;

// Declaration of static members:

static double min, max; // Minimum, maximum

static bool first; // true, 1if it is the first wvalue.

void setMinMax (double w); // private function
public:

Result (double w, const DayTime& z = currentTime()) ;

Result (double w, int hr, int min, int sec);

// ... The other member functions as before

Vi

#endif // _RESULT_

Implementation and initialization

// result3.cpp
// Defining static data members and
// methods, which are not defined inline.

T RS

#include "result3.h"

double Result::min = 0.0;

double Result::max = 0.0;

bool Result::first = true;

void Result::setMinMax (double w) // Help function
{ if(first) { min = max = w; first = false; }

else 1if(w < min) min = w;
else if(w > max) max = w;

}

// Constructors with member initializer.

Result::Result(double w, const DayTime& 2z)
val(w), time(z)

{ setMinMax(w); }

Result::Result(double w, int hr, int min, int sec)
val (w), time(hr, min, sec)

{ setMinMax(w); }

// Implements the other member functions.

STATIC DATA MEMBERS 305

[1 Class-Specific Data

Every object has its own characteristics. This means that the data members of two differ-
ent objects will be stored at different memory addresses.

However, sometimes it is useful to keep some common data that can be accessed by all
the objects belonging to a class, for example:

m figures such as exchange rates, interest rates or time limits which have the same
value for every object

m status information, such as the number of objects, current minimum or maximum
threshold values, or pointers to some objects; for example, a pointer to an active
window in a window class.

This kind of data needs to be stored once only, no matter how many objects exist.
Since a programmer will also need to manage the data from within the class, it should be
represented within the class rather than globally. Static data members can be used for this
purpose. In contrast to normal data members, static data members occur only once in
memory.

[Declaration

Static data members are declared within a class, that is, the keyword static is used to
declare members of this type. On the opposite page, the following statement

Example: static double min, max; // Declaration

defines two static data members called min and max that record the minimum and maxi-
mum values for the measurements.

1 Definition and Initialization

Static data members occupy memory space even if no objects of the class in question
have been created. Just like member functions, which occur only once, static data mem-
bers must be defined and initialized in an external source file. The range operator : : is
then used to relate the data members to the class.

Example: double Result::min = 0.0; // Definition
As the example illustrates, the static keyword is not used during the definition. Static

data members and member functions belonging to the same class are normally defined in
one source file.

306 CHAPTER 15 MEMBER OBJECTS AND STATIC MEMBERS

m ACCESSING STATIC DATA MEMBERS

Class Result with static methods

{

private:
double
const
static
static
static

public:
//
static
static

}i

class Result

val;

DayTime time;

double min, max; // Minimum, Maximum
bool first; // true, if first result
void setMinMax (double w); // Help function

Member functions as before, plus:
double getMin() { return min; }
double getMax() { return max; }

Application program

#include

// result3 t.cpp

// Uses the new class Result.
A
"result3.h"
#include <iostream>
using namespace std;

int main () //Some air temperature measurements
{
DayTime morning(6,45);
Result templ(6.45, morning),
temp2(11.2, 12,0,0);
double temp = 0.0;
cout << "\nWhat is the air temperature now? ";
cin >> temp;
Result temp3 (temp) ; // At current time.
cout << "\n Temperature Time \n"
<< M- " << endl;
templ.print(); temp2.print(); temp3.print();
cout
<< "\n Minimum Temperature: " << Result::getMin|()
<< "\n Maximum Temperature: " << Result::getMax()
<< endl;
return O;

ACCESSING STATIC DATA MEMBERS 307

[] Static Data Members and Encapsulation

The normal rules for data encapsulation also apply to static data members. A static data
member declared as public is therefore directly accessible to any object.

If the static data members min and max in the Result class are declared public
rather than private, and given that temperature is an object belonging to the class,
the following statement

Example: cout << temperature.max;
outputs the maximum measured value. You can also use the range operator:
Example: cout << Result::max;

This syntax is preferable to the previous example, since it clearly shows that a static data
member exists independently of any objects.

[] Static Member Functions

Of course, you can use class methods to access a static data member with a private
declaration. However, normal methods can be used for class objects only. Since static
data members are independent of any objects, access to them should also be independent
of any objects. Static member functions are used for this purpose. For example, you can call
a static member function for a class even though no objects exist in that class.

The static keyword is used to define static member functions.

Example: static double getMin() ; // Within class.

As the Result class, which was modified to include the static member functions
getMin (), setMin (), etc. shows, an inline definition is also permissible. Defini-
tions outside of the class do not need to repeat the static keyword.

A static member function can be called using any object belonging to the class or,
preferably, using a range operator.

Example: temperature.setMax(42.4); // Equivalent
Result: :setMax (42.4) ; // Calls.

Calling a static member function does not bind the function to any class object. The
this pointer is therefore unavailable, in contrast to normal member functions. This also
means that static member functions cannot access data members and methods that are
not static themselves.

308 CHAPTER 15 MEMBER OBJECTS AND STATIC MEMBERS

® ENUMERATION

Sample program

// enum.cpp
// Uses enum-constants within a class.

f]
#include <iostream>
using namespace std;

class Lights

{
public: // Enumeration for class Lights
enum State { off, red, green, amber };
private:
State state;
public:
Lights(State s = off) : state(s) {}

State getState() const { return state; }
void setState(State g)
{ switch(s)

{ case off: cout << " OFF ", Dbreak;
case red: cout << " RED ", break;
case green: cout << " GREEN ", Dbreak;
case amber: cout << " AMBER ", Dbreak;
default: return;

}

state = s;

Vi

int main ()
{
cout << "Some statements with objects "
<< "of type Lights!\n"
Lights Al, A2 (Lights::red);
Lights::State as;
as = A2.getState();
if(as == Lights::red)
{
Al.setState(Lights::red);
A2.setState(Lights::amber) ;
cout << endl;
return O;

ENUMERATION 309

[] Definition

An enumeration is a user-definable, integral type. An enumeration is defined using the
enum keyword. A range of values and a name for these values are also defined at the
same time.

Example: enum Shape{ Line, Rectangle, Ellipse};

This statement defines the enumerated type Shape. The names quoted in the list iden-
tify integral constants. Their values can be deduced from the list order. The first constant
has a value of 0, and each subsequent constant has a value that is one higher than its
predecessor.

In the previous example, Line thus represents a value of 0, Rectangle a value of 1,
and E11lipse a value of 2. A Shape type variable can only assume one of these values.

Example: Shape shape = Rectangle; // Variable shape

//
switch (shape) // To evaluate shape
{

case Line: // ... etc.

However, you can also define the values of the constants explicitly.
Example: enum Bound { Lower = -100, Upper = 100};

You can leave out the type name, if you only need to define the constants.
Example: enum { OFF, OUT=0, ON, IN=1 };

This statement defines the constants OFF and OUT, setting their value to 0, and the con-
stants ON and IN with a value of 1. The values for OFF and ON are implicit.

[1 Class-Specific Constants

Enumeration can be used to define integral symbolic constants in a simple way. In con-
trast to #define directives, which merely replace text strings, enum constants are part
of a declaration and thus have a valid range. This allows you to define constants that are
visible within a namespace or class only.

The example on the opposite page shows the enumerated type State, which was
defined within the Lights class. This means that the type and enum constant are only
available for direct use within the class. The enumeration itself is declared as public,
however, and access from outside the class is therefore possible.

Example: if(Lights.getState() == Lights::red)
//

310

exercises

CHAPTER 1I5 MEMBER OBJECTS AND STATIC MEMBERS

EXERCISES

Copy constructor of class article

The copy constructor creates a copy of an existing object. The parameter is thus
a read-only reference to the object that needs to be copied. The copy
constructor in the Article class is thus declared as follows:

Declaration of copy constructor:

Article(const Article&);

The default copy constructor simply transfers the data members to the new
object.

The Member Class

Private Data Members Type
Member Number int
Name string
Birthday const Date

//Possibly more information, such as an address, telephone number, ...
Public Methods

Constructor with one parameter for each data member

Access methods for each data member. The birthday is read-only.

A method for formatted screen output of all data members

EXERCISES 311

Exercise |

In the first exercise of the last chapter you defined a simple class called
Article.This involved using a global counter to log object creation and
destruction. Improve and extend the Article class as follows:

m Use a static data member instead of a global variable to count the current
number of objects.

m Declare a static access method called getCount () for the Article class.
The method returns the current number of objects.

m Define a copy constructor that also increments the object counter by |
and issues a message. This ensures that the counter will always be accu-
rate.

Tip: Use member initializers.

m Test the new version of the class.To do so, call the function test () by

passing an article type object to the function.
Exercise 2

A sports club needs a program to manage its members.Your task is to define
and test a class called Member for this purpose.

Define the Member class using the data members shown opposite. Use
the Date class defined in the last chapter for your definition. Since a
member’s birthday will not change, the data member for birthdays must
be defined as a const.

Overload the constructor to allow for entering a date as an object as
well as three values for day, month, and year.

Implement the necessary methods.

Test the new Member class by creating at least two objects with the data
of your choice and calling the methods you defined.

Add a static member called ptrBoss to the class.This pointer indicates
the member who has been appointed as chairperson. If no chairperson
has been appointed, the pointer should point to NULL.

Additionally, define the static access methods getBoss () and setBoss ().
Use a pointer to set and return the object in question.

Test the enhanced Member class by reading the number of an existing
member, making the member the new chairperson and displaying the
chairperson using getBoss ().

312

CHAPTER 1I5 MEMBER OBJECTS AND STATIC MEMBERS

Sample output

Simulation of two traffic lights!

Terminate this program with <Ctrl>+<C>!

1. Light 2. Light

RED AMBER

GREEN

AMBER

AMBER RED
GREEN
AMBER

RED AMBER

GREEN

//

Hints for implementing the function wait ()

The function time() is declared in the header file ctime. The call
time (NULL) determines the number of seconds of type time t since
1.1.1970, 0:0 hours.The type time_t is defined as long.

Instead of calling the function time () in a loop, you can use the function
Sleep () for Windows or the function sleep () for Unix. These system
calls are not standardized, yet they are much more effective because they
send a process to sleep instead of using a waiting loop.

EXERCISES 313

Exercise 3

Create a program to simulate the signal positions for two sets of traffic lights at
a junction. Use the class Lights as defined in this chapter for your program.

m Each set of lights is switched through the phases red, amber, green, amber,
red, and so on.You must ensure that one set of lights can be only in the
amber or green state when the other set of lights is red.

m The lights operate in an infinite loop that can be terminated by interrupt-
ing the program.You can use the key combination <Ctr|>+<C> for DOS
and Windows and the Interrupt key, i.e., normally the key, for
UNIX.

m The status of the lights is constant for a certain number of seconds. For
example, the green phase can take 20 seconds and the amber phase |
second. These values can be different for each set of lights. Define an
auxiliary function

inline void wait(int sec)

The function returns after the stipulated number of seconds.To do so,
you can call the standard function time () in a loop. Don’t forget to read
the notes on the opposite page.

314

CHAPTER 1I5 MEMBER OBJECTS AND STATIC MEMBERS

solutions

SOLUTIONS

Exercise |

T

// article.h
// Defines a simple class - Article.

J] e

#ifndef ARTICLE H_
#define ARTICLE H_
#include <strings>

using namespace std;

class Article

{

private:
long nr; // Article number
string name; // Article name
double sp; // Sales price
// Static data member:
static int countObj; // Number of objects
public:

Article(long nr=0, const string& name="noname",

double sp=0.0) ;
// Copy constructor:
Article(const Article& anArticle);
~Article() ;
void print () ;
// Access methods:

const string& getName() const { return name; }
long getNr () const { return nr; }
double getSP () const { return sp; }
static int getCount () { return countObj; }

bool setName(const string& s)

{

if(s.size() < 1) // No empty Name
return false;
name = s;

return true;

}

void setNr(long n) { nr = n; }
void setSP(double v)

{ // No negative price

sp =v >0.07? v : 0.0;

}
}i

#endif // _ARTICLE

SOLUTIONS 315

[/ = e
// article.cpp

// Methods of Article, which are not defined as inline.
// Constructor and destructor output when called.

LT ST
#include "article.h" // Definition of the class
#include <iostream>

#include <iomanip>

using namespace std;

// Defining the static data member:
int Article::countObj = 0; // Number of objects

// Defining the constructor and destructor:

Article::Article(long nr, const string& name, double sp)

{

setNr (nr) ; setName (name) ; setSP (sp) ;
++countObj ;
cout << "An article \"" << name
<< "\" is created.\n"
<< "This is the " << countObj << ". articlel!l™"
<< endl;

}

// Defining the copy constructor:
Article::Article(const Article& art)
:nr (art.nr), name(art.name), splart.sp)
{
++countObj ;
cout << "A copy of the article \"" << name
<< "\" is generated.\n"
<< "This is the " << countObj << ". article!™"
<< endl;

}

Article::~Article ()

{

cout << "The article \"" << name
<< "\" is destroyed.\n"
<< "There are still " << --countObj << " articles!™"
<< endl;

}

// The method print () outputs an article.
void Article: :print ()

{
}

// As before! Compare to the solutions of chapter 14.

316

CHAPTER

15 MEMBER OBJECTS AND STATIC MEMBERS

J] s
// article t.cpp
// Tests the class Article including a copy constructor.

e e e e R R R

#include "article.h" // Definition of the class
#include <iostream>

#include <string>

using namespace std;

void test (Article a); // Prototype

Article articlel(1111, "tent", 159.9); // Global

int main ()

{
cout << "\nThe first statement in main().\n" << endl;
Article article2(2222,"jogging shoes", 199.99);
cout << "\nThe first call of test()." << endl;
test (articlel) ; // Passing by Value
cout << "\nThe second call of test()." << endl;
test (article2) ; // Passing by Value
cout << "\nThe last statement in main() .\n"
<< "\nThere are still " << Article::getCount ()
<< " objects\n" << endl;
return 0;
!
void test (Article a) // Calls the copy constructor
{
cout << "\nThe given object:" << endl;

a.print () ;

static Article bike(3333, "bicycle", 999.0);

cout << "\nThe static object in function test():"
<< endl;

bike.print () ;

cout << "\nThe last statement in function test ()"
<< endl;

SOLUTIONS

Exercise 2

317

The Date class from the last chapter (see files Date.h and Date.cpp) can be

left unchanged. But it makes sense to define the function isLeapYear ()as a
static member function of class Date rather than globally.
The other files:

T
// member.h

// Defines the Member class containing a constant

// and a static member.

e
#ifndef MEMBER H_
#define MEMBER H

#include "Date.h"
#include <strings>

using namespace std;

class Member

{
private:
int nr; // Member number
string name; // Name
const Date birth; // Birthday
// ... more data
static Member *ptrBoss; // Pointer to boss,
// NULL = no boss.
public:

Member (long m _nr, const string& m_ name,
const Date& m birth)
nr(m nr), birth(m birth)

(
}

Member (long m nr, const string& m name,
int day, int month, int year)
nr (m_nr), birth(day,month,year)

if (!setName (m_name)) name = "Unknown";

(

if (!setName (m _name)) name = "Unknown";
int getNr () const { return nr; }
const string& getName() const { return name; }

const Date& getBirthday() const { return birth; }

void setNr(int n) { nr = n; }

318 CHAPTER 1I5 MEMBER OBJECTS AND STATIC MEMBERS

bool setName(const string& s)

{

if(s.size() < 1) // No empty name
return false;
name = s;

return true;

}

void display () const;

// static methods:
static Member* getBoss ()

static void setBoss(Member* ptrMem)

{
}

return ptrBoss;

ptrBoss = ptrMem;

Vi
#endif // MEMBER H_

[/ e e
// member.cpp
// Members of class Member not defined inline.

#include "member.h" // Class definition
#include <iostream>
using namespace std;

// Pointer to the boss:
Member* Member::ptrBoss = NULL;

void Member: :display () const

{
string line(50, '-');
cout << line

<< "\n Member number: " << nr
<< "\n Member: " << name
<< "\n Birthday " << birth.asString()

<< '"\n' << line << endl;

//

SOLUTIONS

// member t.cpp
// Using the class Member.

//

#include "member.h" // Class definition
#include <iostream>

#include <strings>

using namespace std;

int main ()

{

Date today; today.setDate();
cout << "Date: " << today.asString() << endl;

Member fran(0, "Quick, Fran", 17,11,81),

kurt (2222, "Rush, Kurt", Date(3,5,77));
franzi.setNr(1111) ;
cout << "\nTwo members of the sports club:\n" << endl;
fran.display () ;
kurt.display () ;
cout << "\nSomething changed!" << endl;
fran.setName ("Rush-Quick") ;
fran.display () ;
Member benny(1122, "Rush, Benny", 1,1,2000);
cout << "The youngest member of the sports club: \n";
benny.display () ;
// Who is the boss?
int nr;
Member *ptr = NULL;
cout << "\nWho is the boss of the sports club?\n"

<< "Enter the member number: ";

if(cin >> nr)

{

if(nr == fran.getNr())
ptr = &fran;
else if(nr == kurt.getNr())

ptr = &kurt;

Member: :setBoss (ptr) ;
1
cout << "\nThe Boss of the sports club:" << endl;
ptr = Member::getBoss () ;
if (ptr != NULL)

ptr->display () ;
else

cout << "No boss existing!" << endl;
return 0O;

319

320 CHAPTER 1I5 MEMBER OBJECTS AND STATIC MEMBERS

Exercise 3

The definition of class Lights from this chapter remains
unchanged.

. —————,LHifinun
// Lights t.cpp Simulates two traffic lights.

A —————————————
#include "lights.h" // Definition of class Lights

#include <iostreams

#include <ctimes> // Standard function time ()

using namespace hr;

inline void wait(int sec) // Wait sec seconds.
{ time t end = time (NULL) + sec;
while(time (NULL) < end) ;

// Alternative for Windows:
// #include <windows.h>

// inline void wait(int sec) { Sleep(1000 * sec); }

Lights Al, A2; // Traffic lights and

enum { greenTimel = 10 , amberTimel = 1, // time to wait.
greenTime2 = 14 , amberTime2 = 2 };

int main()
{ cout << "Simulating two traffic lights!\n\n"
<< "Terminate this program with <Ctrls>+<C>!\n"

<< endl;
cout << " 1. Light 2. Light\n"
T " << endl;
while (true)

{ Al.setState(Lights::red); // Al = red
A2.setState(Lights: :amber) ; cout << endl;
wait (amberTime2) ;
cout << " "

A2.setState(Lights::green); cout << endl;
wait (greenTime2) ;

cout << " "

A2 .setState(Lights: :amber) ; cout << endl;
wait (amberTime2) ;

Al.setState(Lights::amber) ; // A2 = red
A2 .setState(Lights::red); cout << endl;
wait (amberTimel) ;

Al.setState(Lights::green); cout << endl;
wait (greenTimel) ;

Al.setState(Lights: :amber) ; cout << endl;

wait (amberTimel) ;

}

return 0O;

chapter

Arrays

This chapter describes how to define and use arrays, illustrating one-

dimensional and multidimensional arrays, C strings and class arrays.

321

322

CHAPTER

16 ARRAYS

m DEFINING ARRAYS

The array arr in memory

arr[0]

arr[1l]

arr[2]

arr[9]

Sample program

// array.cpp

// To input numbers into an array and output after.
T T EELETTEEEEE
#include <iostream>

#include <iomanip>

using namespace std;

int main()
const int MAXCNT = 10; // Constant
float arr [MAXCNT], x; // Array, temp. variable
int i, cnt; // Index, quantity

cout << "Enter up to 10 numbers \n"

<< "(Quit with a letter):" << endl;
for(i = 0; 1 < MAXCNT && cin >> x; ++1)
arr[i] = x;
cnt = 1;
cout << "The given numbers:\n" << endl;
for(i = 0; 1 < cnt; ++1)

cout << setw(1l0) << arr[i];
cout << endl;
return 0;

DEFINING ARRAYS 323

An array contains multiple objects of identical types stored sequentially in memory. The
individual objects in an array, referred to as array elements, can be addressed using a num-
ber, the so-called index or subscript. An array is also referred to as a vector.

[1 Defining Arrays

An array must be defined just like any other object. The definition includes the array
name and the type and number of array elements.

Syntax: type name [count] ; // Array name

In the above syntax description, count is an integral constant or integral expression
containing only constants.

Example: float arr[10]; // Array arr

This statement defines the array arr with 10 elements of f1oat type. The object arr
itself is of a derived type, an “array of f1oat elements” or “float array.”

An array always occupies a contiguous memory space. In the case of the array arr, this
space is 10*sizeof (float) = 40 bytes.

[1 Index for Array Elements

The subscript operator [1 is used to access individual array elements. In C++ an index
always begins at zero. The elements belonging to the array arr are thus

arr[0], arr[1l] , arr[2], ... , arr[9]

The index of the last array element is thus 1 lower than the number of array elements.
Any int expression can be used as an index. The subscript operator [] has high prece-
dence, just like the class member operators . and -> .

No error message is issued if the index exceeds the valid index range. As a program-
mer, you need to be particularly careful to avoid this error! However, you can define a
class to perform range checking for indices.

You can create an array from any type with the exception of some special types, such
as void and certain classes. Class arrays are discussed later.

Example: short number[20]; // short array
for(int i=0; i < 20; i++)
number [i] = (short) (i*10) ;

This example defines an array called number with 20 short elements and assigns the
values 0, 10, 20, ...,190 to the elements.

324

CHAPTER 16

ARRAYS

m INITIALIZING ARRAYS

Sample program

{

// fibo.cpp

// The program computes the first 20 Fibonacci

// numbers and the corresponding Fibonacci quotients.
//
#include <iostream>

#include <iomanip>

#include <cmaths> // Prototype of sqgrt ()
#include <strings

using namespace std;

#define COUNT 20
long fib[COUNT + 1] = { 0, 1 };

string header =

Index Fibonacci number Fibonacci quotient Deviation"

"\n of limit "

int main()

int 1i;
double g, lim;

for(i=1; i1 < COUNT; ++i) // Computing the
fib[i+1] = fib[i] + fib[i-1]; // Fibonacci numbers

lim = (1.0 + sqgrt(5.0)) / 2.0; // Limit

// Title and the first two Fibonacci numbers:
cout << header << endl;
cout << setw(5) << 0 << setw(15) << fib[0] << endl;
cout << setw(5) << 1 << setw(1l5) << fib[1l] << endl;
// Rest of the table:
for(i=2; i1 <= COUNT; i++)
{ // Quotient:
q = (double)fib[i] / (double)fib[i-1];
cout << setw(5) << 1 << setw(1l5) << fib/[i]
<< setw(20) << fixed << setprecision(10) << g
<< setw(20) << scientific << setprecision(3)
<< lim - g << endl;

}

return 0;

INITIALIZING ARRAYS 325

L] Initialization List

Arrays can be initialized when you define them. A list containing the values for the indi-
vidual array elements is used to initialize the array:

Example: int num([3] = { 30, 50, 80 };

A value of 30 is assigned to num [0], 50 to num[1], and 80 to num[2]. If you initialize
an array when you define it, you do not need to state its length.

Example: int num([] = { 30, 50, 80 };

In this case, the length of the array is equal to the number of initial values. If the array
length is explicitly stated in the definition and is larger than the number of initial values,
any remaining array elements are set to zero. If, in contrast, the number of initial values
exceeds the array length, the surplus values are ignored.

Locally defined arrays are created on the stack at program runtime. You should there-
fore be aware of the following issues when defining arrays:

m Arrays that occupy a large amount of memory (e.g., more than one kbyte) should
be defined as global or static.

m Unless they are initialized, the elements of a local array will not necessarily have
a definite value. Values are normally assigned by means of a loop.

You cannot assign a vector to another vector. However, you can overload the assign-
ment operator within a class designed to represent arrays. This topic will be discussed in
depth later.

[1 The Sample Program Opposite

The example on the opposite page contains the first twenty Fibonacci numbers and their
quotients. Fibonacci numbers are useful for representing natural growth. In computer sci-
ence, Fibonacci numbers are used for things like memory management and hashing.
Their definition is as follows:

m the first Fibonacci number is 0, the second is 1
m each subsequent Fibonacci number is the sum of its two immediate predecessors.

This results in the following sequence: 0, 1, 1, 2, 3, 5, 8, 13,
The quotient of a Fibonacci number and its predecessor is referred to as a Fibonacci
quotient. The sequence of Fibonacci quotients, 1/1, 2/1, 3/2, ..., converges towards

the threshold value (1 + V5) /2.

326 CHAPTER 16 ARRAYS

m C STRINGS

[Initializing

char text[40]

String text in memory:

"Hello Eve";

String text

T
@

|\0|

Index:

9

10

11

The array text has length of 40, whereas the string “Hello Eve" only occupies the first 9 bytes.

Sample program

// C-string.cpp Using C strings.

//

#include <iostreams
#include <iomanip>
#include <cstring>
using namespace std;
char header/[] "\n
int main()

{

char hello[30]
cout << header <<
cin >> setw(20)

strcat (hello,

cin.sync () ;

<< endl;

return 0;

*** C Strings ***\n\n";
"Hello ", name[20], message[80];
"Your first name: ";
>> name; // Enter a word.

name) ;
cout << hello << endl;

/!
/!

cout << "\nWhat is the message

cin.getline(message, 80); //
//
if (strlen(message) > 0) //
{ //
for(int i=0; message[i] !=
cout << messagel[i] << ' ';

cout << endl;

}

Append the name.

No previous input.
for today?"

Enter a line with a
max of 79 characters.
If string length is
longer than 0.
"\O'; ++1)

// Output with

// white spaces.

C STRINGS 327

[] char Arrays

Arrays whose elements are of char type are often used as data communication buffers.
Example: char buffer[10*512]; // 5 Kbyte buffer

However, their most common use is for string storage. One way of representing a
string is to store the string and the terminating null character '\0' in a char array.
When you define an array, you can use a string constant to initialize the array.

Example: char name[] = "Hugo";
This definition is equivalent to
char name([] = { 'H','u','g','o','\0" };

As you can see, the string name occupies five bytes, including an additional byte for the
null character. If you need to allocate more memory, you can state the size of the array
explicitly as shown opposite.

In the C language, strings are usually represented as char vectors with a terminating
null character. In C++, strings of this type are referred to as C strings to distinguish them
from objects of the st ring class.

[1 C Strings and the string Class

C strings are simple char arrays, which means that the functionality of the string
class is not available for them. Thus, for example, assignments and comparisons are not

defined.

Example: char str1[20], str2[20] = "A string";
strl = str2; // Error!
strcpy (strl, str2); // ok!

The standard functions of the C language, such as strlen(), strcpy (), strcmp (),
and others, are available for C strings. These global functions all begin with the str pre-
fix.

As the program on the opposite page shows, I/O streams are overloaded for char
arrays, too. Input and output are as easily achieved as with string class objects. How-
ever, the program must make sure not to overrun the end of the char array when read-
ing data into the array. You can use the width () method or the setw () manipulator
for this purpose.

Example: cin >> setw(20) >> name; // 19 characters

C strings are preferable to the string class if only a few operations are needed and
you want to avoid unnecessary overheads.

328

CHAPTER

16 ARRAYS

m CLASS ARRAYS

Sample program

// AccountTab.cpp
// An array containing objects of class Account.

/] e e

#include "account.h" // Definition of class Account
#include <iostream>
using namespace std;

Account giro("Lucky, Peter", 1234567, -1200.99);
Account accountTab[] =

Account ("Tang, Sarah", 123000, 2500.0),

Account ("Smith, John", 543001),

Account (), // Default constructor
"Li, Zhang", // Account ("Li, Zhang"),
giro // Account (giro)

int cnt = sizeof (accountTab) / sizeof (Account) ;

int main ()

{

// To set some values:
accountTab[1l] .setState(10000.00) ;

// Assignment ok:
accountTab[2] = Account ("Pit, Dave", 727003, 200.00);

cout << "The accounts in the table:" << endl;
for(int 1 = 0; 1 < cnt; ++1)
accountTab [i] .display () ;
if(i1 % 3 == 2)

{

cout << "Press return to go on!\n";
cin.get () ;

1
!
cout << endl;

return 0;

CLASS ARRAYS 329

[1 Declaring Class Arrays

Array elements can also be objects of a class type. The array is known as a class array in
this case. When you declare an array of this type, you only need to state the type of the
array elements.

Example: Result temperatureTab[24];

This statement defines the class array temperatureTab that stores 24 objects of type
Result. This class was introduced at the beginning of the last chapter.

As the statement does not initialize the array explicitly, the default constructor is
automatically called for each array element.

Class arrays can only be defined without explicit initialization if a default constructor exists for the class.

Thus, the previous example is only valid for the first version of the Result class as
this class contains a default constructor.

[1 Explicit Initialization

A class array is initialized as usual by an initialization list. The list contains a constructor
call for each array element.

Example: Result temperatureTab[24] =

{
Result(-2.5, 0,30,30),
Result (3.5), // At present time
4.5, // Just so
Result (templ), // Copy constructor
temp2 // Just so

Vi

The first five array elements are initialized by the constructor calls implicitly contained
in these statements. Instead of using a constructor with one argument, you can simply
supply the argument. The default constructor is then called for the remaining elements.
If the size of an array is not stated explicitly, the number of values in the initialization
list defines the size of the array.
The public interface of the objects in the array is available for use as usual.

Example: temperatureTab[2].setTime(2,30,21);

No additional parentheses are needed in this statement since the subscript operator []
and the class member operator . are read from left to right, although they have the same
precedence.

16 ARRAYS

® MULTIDIMENSIONAL ARRAYS

Sample program

// multidim.cpp

// Demonstrates multidimensional arrays.

/] = e
#include <iostream>

#include <iomanip>

using namespace std;

char representative[2] [20] = {"Armstrong, Wendy",
"Beauty, Eve"};

// Each representative has five different
// articles available, having sold the following:
int articleCount([2][5] = { { 20, 51, 30, 17, 44},
{150, 120, 90, 110, 88}

Vi

int main()
for(int i=0; i < 2; i++)
cout <<"\nRepresentative: " << representativel[i];
cout << "\nNumber of items sold: ";

for(int j = 0; j < 5; j++)
cout << setw(6) << articleCount[i] [j];
cout << endl;

}

return 0;

Screen output:
Representative: Armstrong, Wendy

Items sold: 20 51 30 17 44

Representative: Beauty, Eve
Items sold: 150 120 90 110 88

MULTIDIMENSIONAL ARRAYS 331

[1 Defining Multidimensional Arrays

In C++ you can define multidimensional arrays with any number of dimensions. The
ANSI standard stipulates a minimum of 256 dimensions but the total number of dimen-
sions is in fact limited by the amount of memory available.

The most common multidimensional array type is the two-dimensional array, the so-
called matrix.

Example: float number[3] [10]; // 3 x 10 matrix

This defines a matrix called number that contains 3 rows and 10 columns. Each of the 30
(3 X 10) elements is a f1oat type. The assignment

Example: number[0][9] = 7.2; // Row 0, column 9

stores the value 7.2 in the last element of the first row.

[1 Arrays as Array Elements

C++ does not need any special syntax to define multidimensional arrays. On the con-
trary, an n-dimensional array is no different than an array with only one dimension
whose elements are (n—1)-dimensional arrays.

The array number thus contains the following three elements:

number [0] number [1] number [2] .

Each of these elements is a f1loat array with a size of 10, which in turn forms the rows of
the two-dimensional array, number.

This means that the same rules apply to multidimensional arrays as to one-dimen-
sional arrays. The initialization list of a two-dimensional array thus contains the values of
the array elements, that is, the one-dimensional rows.

Examples: int arr([2] [3] { {5, 0, 0o}, {7, o, 0} };
int arr(1[3]1 = { {5}, {7} }:

These two definitions are equivalent. When you initialize an array, you can only omit
the size of the first dimension. It is necessary to define any other dimensions since they
define the size of array elements.

[1 The Example on the Opposite Page

The program opposite defines the two-dimensional arrays representative and
articleCount, which have two rows each. The representative[i] rows are
char arrays used for storing the names of the representatives. You can also use a one-
dimensional string array.

Example: string representative[2] = {"La..","Fo.."};

332 CHAPTER 16 ARRAYS

® MEMBER ARRAYS

Class TelList

// tellList.h

// Class TellList to represent a list

// containing names and telephone numbers.
T
#ifndef TelList

#define TelList

#include <strings

using namespace std;

#define PSEUDO -1 // Pseudo position

#define MAX 100 // Maximal number of elements

// Type of a list element:
struct Element { string name, telNr; };

class Tellist

{

private:
Element v [MAX]; // The array and the current
int count; // number of elements
public:
TellList (){ count = 0;}
int getCount () const { return count; }

Element *retrieve(int i)

{
}

bool append(const Element& el)

return (i >= 0 && 1 < count)? &v[i] : NULL;

return append(el.name, el.telNr);
}
bool append(const stringé& name,

const string& telNr) ;

bool erase(const string& name) ;
int search(const string& name) ;
void print();
int print(const string& name) ;
int getNewEntries() ;

Vi

#endif // TellList

MEMBER ARRAYS 333

[1 Encapsulating Arrays

A programmer often needs to handle objects of the same type, such as company employ-
ees, bank accounts, or the articles in stock. A class designed to perform this task can use
an array for ease of data management. An array allows you to access individual objects
directly and perform searches.

A class that encapsulates an array will provide methods for simple array operations,
such as inserting and deleting objects. When you design a class of this type, one aim will
be to perform automatic range checking. This helps avoid overrunning the end of an
array when performing read or write operations. The resulting class will contain a com-
fortable and safe interface for object data management.

[The Class Telnist

The class TelList on the opposite page is designed to manage a simple telephone list.

Each entry in the list contains a dataset containing a name and a phone number. The
Element type, which comprises two strings, was defined for this purpose. The array v
can store up to MAX entries of the Element type. The data member count records the
number of elements currently stored in the array. When a phone list is created, this num-
ber will initially be 0. When an element is inserted or deleted, the number is modified
correspondingly.

The TelList class uses a single default constructor that sets the counter, count, to
zero. It is not necessary to provide an initial value for the MAX elements in the array v
since the default constructor of the st ring class is executed for all strings.

The tasks performed by the other methods are easily deduced from their names. The
retrieve () method returns to a given index a pointer to the corresponding element.
Using a pointer makes it possible to return a NULL pointer if the index is invalid.

The append () methods add a new entry to the list. The data passed to a method is
copied to the next free array element and the counter is incremented. If there is no space
available, the name field is empty, or the name is already in use, nothing happens. In this
case, the method returns false instead of true.

The exercises for this chapter contain further details on these methods. You can
implement the methods for the TelList yourself and go on to test them.

334 CHAPTER 16 ARRAYS

EXERCISES

Example of a bubble sort algorithm

Original array: 100 50 30 70 40

exercises

After the first loop: 50 30 70 40 | | 100

largest element T

After the second loop: 30 50 40 | | 70 100

second largest element T

Sieve of Eratosthenes

For this task you can define an array of boolean values in which each element is
initially true.To eliminate a number n you simply set the n™ element in the array
to false.

Result:

Index 0 1 2 3 4 5 6 7 8 9

Array false | false | true | true | false| true | false| true | false| false

Screen shot of exercise 4

* * BREAIK * * % *

--- Press interrupt key to terminate (*C) ---

The output of a scrolling string has to be performed at the same cursor position.
The screen control characters make it possible to locate the cursor, and that
independent of the current compiler (see appendix).

EXERCISES 335

Exercise |

Write a C++ program that reads a maximum of 100 integers from the keyboard,
stores them in a long array, sorts the integers in ascending order, and displays
sorted output. Input can be terminated by any invalid input, such as a letter.

Use the bubble sort algorithm to sort the array. This algorithm repeatedly accesses the array, comparing
neighboring array elements and swapping them if needed. The sorting algorithm terminates when there
are no more elements that need to be swapped. You use a flag to indicate that no elements have been

swapped.

Exercise 2

Chapter 14 introduced the sample class DayTime and the isLess () method.
Define and initialize an array with four bayTime class objects.

Then write a main function that first uses the print () method to display the
four elements. Finally, find the largest and smallest elements and output them on
screen.

Exercise 3

Write a program that outputs all prime numbers less than 1000.The program
should also count the number of prime numbers less than 1000.An integer >= 2
is a prime number if it is not divisible by any number except | and itself. Use the
Sieve of Eratosthenes:

To find primary numbers simply eliminate multiples of any primary numbers
you have already found, i.e.:

first eliminate any multiples of 2 (4,6,8,...),

then eliminate any multiples of 3 (6,9, 12, ...),

then eliminate any multiples of 5 (10, 15,20, ..) // 4 has already been eliminated
and so on.

Exercise 4

Write a C++ program to create the screen output shown opposite. The
following banner

* * % B REAIK * *x %

is to be displayed in the center of the window and scrolled left.You can scroll
the banner by beginning string output with the first character, then the second,
and so on. Handle the string like a loop where the first letter follows the last
letter and output continues until the starting position is reached.

You can use a wait loop to modify the speed of the banner after each string is
output.

336 = CHAPTER 16 ARRAYS

Exercise 5
Methods to be implemented for the TelList class

bool append(const stringé& name,
const string& telNr) ;

bool erase(const string& name) ;
int search(const string& name) ;
void print () ;

int print(const string& name) ;

int getNewEntries() ;

Menu of the application program

*xx%% Telephone List | **xx*x*

D = Display all entries

F = Find a telephone number
A = Append an entry

E = Erase an entry

Q = Quit the program

Your choice:

EXERCISES 337

Exercise 5

The sample class TelList was introduced in this chapter; however, some
methods still need to be implemented and tested.

m Implement the TelList class methods shown opposite.

The name is used as an unambiguous key. This means the append ()
method can only be used to append an entry provided the name is nei-
ther blank nor already in use.

The method erase () deletes an array element.The position of the ele-
ment to be deleted is first located using the search () method. If the ele-
ment does not exist, erase () returns a value of false.In any other case,
the last element in the array is used to overwrite the element that is to
be deleted and the counter count is decremented.

The search () method finds the position in the array that contains the
search name. If the search operation is unsuccessful, the value PSEUDO is
returned.

The print method without parameters outputs all available entries.You
can pass the first letter or letters of a name to the second method to
output any entries beginning with these letters. Use the method com-
pare () from the string class to help you with this task.

Example: strl.compare(0, 5, str2) == 0

This expression is true if the five characters subsequent to position 0 in
the strings str1 and str2 are identical.

The getNewEntries () method is used to read new phone list entries
from the keyboard. Each new entry is appended using the append ()
method. Reading should be terminated if the user types an empty string.
The method returns the number of new entries.

Write an application program that creates a phone list of type TelList
and displays the menu shown on the opposite page.

The menu must be placed in a function of your own that can return the
command input. The menu must be called in the main loop of the pro-
gram. Depending on the command input, one of the methods defined in
the class TelList should be called. If the menu item “Erase” or “Search”
is chosen, you must also read a name or the first letters of a name from
the keyboard.

The phone list will not be stored permanently in a file. This is just one of the enhancements (another
would be variable length) that will be added at a later stage.

338

CHAPTER 16 ARRAYS

solutions

SOLUTIONS

Exercise |

[/ e e
// bubble.cpp

// Inputs integers into an array,

// sorts in ascending order, and outputs them.

A e
#include <iostream>

#include <iomanip>

using namespace std;

#define MAX 100 // Maximum number
long number [MAX] ;

int main ()

{

int i, cnt; // Index, quantity

cout << "\nS orting Integers \n"
<< endl;

// To input the integers:

cout << "Enter up to 100 integers \n"

<< "(Quit with any letter):" << endl;

for(i = 0; 1 < MAX && cin >> number[i]; ++1)
cnt = i;
// To sort the numbers:
bool sorted = false; // Not yet sorted.
long help; // Swap.
int end = cnt; // End of a loop.
while(!sorted) // As long as not
{ // yet sorted.

sorted = true;

--end;

for(i = 0; i < end; ++1) // Compares

{ // adjacent integers.

if (number[i] > number[i+1])

sorted = false; // Not yet sorted.
help = number [i]; // Swap.
number [1] = number [i+1] ;

number [1+1]= help;

SOLUTIONS

// Outputs the numbers
cout << "The sorted numbers:\n" << endl;

for(i = 0; 1 < cnt; ++1)
cout << setw(10) << number([i];
cout << endl;

return 0;

Exercise 2

f] e e
// DayTime.h

// The class DayTime represents the time in hours,

// minutes and seconds.

[/ e e e
#ifndef DAYTIME

#define DAYTIME_

#include <iostream>

#include <iomanip>

using namespace std;

class DayTime
{
private:
short hour, minute, second;
bool overflow;
public:
DayTime(int h = 0, int m = 0, int s = 0)
{

overflow = false;

if(!setTime(h, m, s)) // this->setTime(...

hour = minute = second = 0;
bool setTime (int hour, int minute, int second = 0)
if(hour >= 0 && hour < 24
&& minute >= 0 && minute < 60
&& second >= 0 && second < 60)

this->hour = (short)hour;
this->minute (short)minute;
this->second = (short)second;
return true;

}

else
return false;

339

340

CHAPTER

16 ARRAYS

int getHour () const { return hour; }
int getMinute() const { return minute; };
int getSecond() const { return second; };

int asSeconds () const // Daytime in seconds

{
}

bool isLess(DayTime t) const // Compares

// *this and t.
{
return asSeconds () < t.asSeconds() ;
} // this->sSeconds() < t.asSeconds() ;

return (60*60*hour + 60*minute + second) ;

void print () const
cout << setfill('0")
<< setw(2) << hour << '
<< setw(2) << minute << ':'!'
<< setw(2) << second << " Uhr" << endl;

cout << setfill(' ');
}
void swap(DayTime& t) // Just one parameter!
{ // Swaps *this and t:

DayTime temp(t); t = *this; *this = temp;
}
}i

#endif // DAYTIME

[/ = mmmm e
// TimeTab.cpp

// An array containing objects of class DayTime.

/] e
#include "DayTime.h" // Definition of class DayTime
#include <iostream>

using namespace std;

char header|[] =

"\n\n **% Table with Daytimes ***\n\n";

int main()
{
DayTime timeTab[4] =
{ 18, DayTime(10,25), DayTime (14,55,30)};
int 1i;
timeTab[3] .setTime(8,40,50) ; // Last element.
cout << header << endl;

SOLUTIONS 341

// Output:
for(1 = 0; 1 < 4; ++1)
{
timeTab [i] .print () ;
cout << endl;

// To compute shortest and longest time:
int 1 min = 0, i max = 0; // Indices for shortest
// and longest elements.
for(i = 1; 1 < 4; ++1)
{
if (timeTab[i] .isLess(timeTab[i min]))
i min = i;

if (timeTab[i max] .isLess(timeTab[i]))

i max = i;
cout << "\nShortest time: "; timeTab[i min].print();
cout << "\nLongest time: "; timeTab[i max] .print () ;

return 0;

342

CHAPTER 16

ARRAYS

Exercise 3

//
//
//
//

sieve.cpp
Identifies prime numbers using the Sieve of
Eratosthenes.

#include <iostreams>

#include <iomanip>

using namespace std;

#define LIMIT 1000 // Upper limit

bool flags[LIMIT] = { false, false}; // Array with flags

int main ()

{

register int i, j; // Indices
for(i = 2; 1 < LIMIT; ++1)
flags[i] = true; // Sets flags to true

// Sieving:
for(i = 2; i < LIMIT/2; ++1)
{

if(flags[i]) // Is i a prime number?

{ // Yes -> Delete multiples.

for(j = i+i; j < LIMIT; j += i)
flags[j] = false;

}

1

// To count:

int count = 0; // Counter
for(i = 2; i < LIMIT; ++i)
if (flags[il) // If i is a prime number
++count ; // -> count
// Output:

cout << "There are'"<< count <<" prime numbers less than"
<< LIMIT << endl;

cout << "\nTo output prime numbers? (y/n) ";

char reply; cin.get(reply);

if(reply == 'y' || reply == 'Y")
{ for(i =2; i < LIMIT; ++1i)
if (flags[i]) // If i is a prime number
{ // -> to output it.
cout.width(8); cout << 1i;

}
}

cout << endl; return O;

SOLUTIONS

Exercise 4

[/ mmmmm e
// scroll.cpp

// Scrolling a message.

[/ mmmmm e
#include <iostream>

#include <iomanip>

using namespace std;

#define DELAY 10000000L // Output delay

inline void cls () // Clear screen

{
}

cout << "\033[2J\n";

inline void locate(int z, int s) // Put cursor in row z
{ // and column s
cout << "\033[" << z << ';' << 8 << 'H';

}

char msg[] = "* * * BREAK * *x % n.

int main ()

{

int i, start = 0, len = strlen(msg);

cls(); locate(24, 20); // Row 24, column 20
cout << "--- Press interrupt key to terminate (*C) ---";

while(true)

{

locate(12, 25); // Row 12, column 25
i = start; // Output from index start
do

{

cout << msgli++];

i =1 % len; // if(1 == len) i = 0;

while(1 != start);

cout << endl; // Outputs buffer to screen

// Wait in short

for(int count = 0; count < DELAY; ++count)

++start; // For next output

start %= len; // start = start % len;
cls();
return O;

343

344 CHAPTER 16 ARRAYS

Exercise 5

NN Hh e
// tellList.h

// The class Tellist representing a list

// with names and telephone numbers.

// As before in this chapter.

J] e s
// tellList.cpp

// Implements the methods of class TellList.

f]
#include "telList.h" // Definition of class TellList
#include <iostream>

#include <iomanip>

using namespace std;

bool Tellist::append(const string& name,
const string& telNr)

if (count < MAX // Space available,
&& name.length() > 1 // 2 characters at least
&& search(name) == PSEUDO) // not yet existing

v [count] .name
v [count] .telNr
++count;
return true;

}

return false;

o
B
o 3
=
Z
K~

bool Tellist::erase(const string& key)
{
int 1 = search(key);
if(i != PSEUDO)
{ // Copies the last
v[i] = v[count-1]; --count; // element to position i
return true;

}

return false;

SOLUTIONS

int TellList::search(const string& key)

{

for(int 1 = 0; i < count; i++) // Searching.
if(v[i] .name == key)
return 1i; // Found
return PSEUDO; // Not found

}

// Functions to support the output:
inline void tabHeader () // Title of the table

{
cout << "\n Name Telephone #\n"

inline void printline(const Elementé& el)

{

cout << left << setw(30) << el.name.c str()
<< left << setw(20) << el.telNr.c str()
<< endl;

}

void TelList::print () // Outputs all entries

{

if (count == 0)
cout << "\nThe telephone list is empty!" << endl;
else
{
tabHeader () ;
for(int 1 = 0; i < count; ++1i)
printline(v[i]);

int TellList::print(const string& name) const // Entries

{ // beginning with name.
int matches = 0, len = name.length();

for(int 1 = 0; 1 < count; ++1)

{

if (v[i] .name.compare (0, len, name) == 0)
{
if(matches == 0) tabHeader(); // Title before
// first output.
++matches;
printline(vI[i]);
}
1
if (matches == 0)
cout << "No corresponding entry found!" << endl;
return matches;

345

346 CHAPTER 16 ARRAYS

int TelList::getNewEntries() // Input new entries
{

int inputCount = 0;

cout << "\nEnter new names and telephone numbers:"

"\n (Terminate by empty input) "
<< endl;
Element el;
while(true)

{

cout << "\nNew last name, first name: ",

cin.sync(); getline(cin, el.name);
if (el.name.empty())

break;
cout << "\nTelephone number: ";
cin.sync(); getline(cin, el.telNr);

if (lappend(el))

{

cout << "Name has not been found!" << endl;
if (count == MAX)

{

cout << "The Table is full!" << endl;

break;
if (search(el.name) != PSEUDO)
cout << "Name already exists!" << endl;
else
++inputCount;
cout << "A new element has been inserted!"
<< endl;

}
}

return inputCount;

J] m
// tellist t.cpp

// Manages a telephone list.

J e s
#include "telList.h" // Definition of class Tellist
#include <iostream>

#include <strings>

#include <cctypes>

using namespace std;

inline wvoid cls()

{ cout << "\033[2J\n";// Output only new-lines, if ANSI

} // control characters are not available.

SOLUTIONS 347

inline void go_on()

{

}

int menu () ;

I

char header/[]

u\n\n

TellList myFriends;

int main ()

{

int action
string name;

cout << "\n\nGo on with return! ";
cin.sync(); cin.clear(); // No previous input
while(cin.get() != '\n')

// Reads a command

x%% Telephone List **x\n\n";

// A telephone list

// Command
// Reads a name

myFriends.append ("Lucky, Peter", "0203-1234567");
while(action != 'B'")
{

action = menu() ;

cls () ;

cout << header << endl;

switch (

{

case

case

case

action)

lDl:

IFI:

IAI .

// Show all
myFriends.print () ;

go_on() ;
break;
// Search
cout <<
"\n--- To search for a phone number ---\n"

"\nEnter the beginning of a name: ";
getline(cin, name) ;
if (!name.empty())
{
myFriends.print (name) ;
go_on() ;
}

break;

// Insert
myFriends.getNewEntries() ;
break;

348 CHAPTER 16 ARRAYS

case 'E': // Delete
cout <<
"\n--- To delete a telephone entry. ---\n "
"\nEnter the complete name: ";
getline(cin, name);
if (!name.empty())
{
if(!myFriends.erase(name))
cout << name << " not found!"
<< endl;
else
cout << "Entry for " << name
<< " deleted!" << endl;
go_on() ;
}

break;

case 'T': cls(); // To terminate
break;
1

} // End of while

return 0;

}

int menu ()

{

static char menuStr[] =

"\n\n D = Display all entries"
"\n\n F = Find a telephone number"
"\n\n A = Append a new entry "
"\n\n E = Erase an entry "

"\n\n Q = Quit the program"

"\n\n Your choice: ";

cls();
cout << header << menuStr;

char choice;

cin.sync(); cin.clear(); // No previous input
if(!cin.get (choice))

choice = 'B';
else

choice = toupper (choice) ;

cin.sync() ; // Clear input buffer
return choice;

chapter

Arrays and Pointers

This chapter describes the relationship between pointers and arrays. This
includes:

® pointer arithmetic

m pointer version of functions

m pointers as return values and read-only pointers

® pointer arrays
Operations that use C strings illustrate how to use pointers for efficient
programming. String access via the command line of an application

program is used to illustrate pointer arrays.

349

350 CHAPTER 17

ARRAYS AND POINTERS

m ARRAYS AND POINTERS (1)

Sample program

// textPtr.cpp
// Using arrays of char and pointers to char
/] =
#include <iostream>
using namespace std;
int main()
{
cout << "Demonstrating arrays of char "
<< "and pointers to char.\n"
<< endl;
char text[] = "Good morning!",
name [] "Bill!";
char *cPtr = "Hello "; // Let cPtr point
// to "Hello ".
cout << cPtr << name << '\n'
<< text << endl;
cout << "The text \"" << text
<< "\" starts at address " << (void*)text
<< endl;
cout << text + 6 // What happens now?
<< endl;
cPtr = name; // Let cPtr point to name, i.e. *cPtr
// 1s equivalent to name [0]
cout << "This is the " << *cPtr << " of " << cPtr
<< endl;
*cPtr = 'k';
cout << "Bill can not " << cPtr << "!\n" << endl;
return 0;
}

Sample output:

Demonstrating arrays of char and pointers to char.

Hello Bill!

Good morning!

The text "Good morning!" starts at address 00451E40

morning!

This is the B of Bill!
Bill can not kill!

ARRAYS AND POINTERS (1) 351

[1 Name and Address of an Array

In C++ the name of an array is also the starting address for that array. To be more pre-
cise, an array name is a pointer to the first array element.

Example: char town[] = "Beijing";

In this case, town is a char pointer to town[0], that is, a pointer to the memory
address that stores the 'B' character. Expressions town and &town [0] are thus equiva-
lent.

Example: cout << town; // or: cout << &town[0];

A pointer to the first character of the string town is passed. The characters forming the
string are read and displayed from this point onward until the terminating null character,
"\ 0", is reached.

[J Pointer Variables and Arrays

An array name is not a pointer variable but a constant that cannot be modified. How-
ever, you can assign this constant to a pointer variable.

Example: char *cPtr;
cPtr = town; // or: cPtr = &town[0];
cout << cPtr; // To output "Beijing"

Now cPtr points to the array element town [0] just like town. But, in contrast to
town, cPtr is a variable that can be moved.

Example: cptr = "Hello!";

After this statement, cPtr points to the ‘H' character. String constants such as
“Hello!" are also char arrays and thus represent the address of the first array element.

[Typeless Pointers

If you need to display the address rather than the string, you should pass a void* type
pointer rather than a char pointer.

Example: cout << (void *)town;

This casts the char pointer to a void * type pointer and passes it as an argument to
the << operator, which in turn outputs the address in hexadecimal format. The << oper-
ator belongs to the ostream class and is overloaded for void * types for this purpose.

A void * pointer represents a memory address without establishing a certain type.
void * pointers are also referred to as typeless pointers for this reason. When you use a
typeless pointer for memory access, you must therefore name the type being accessed
explicitly by means of type casting.

352

CHAPTER 17 ARRAYS AND POINTERS

m ARRAYS AND POINTERS (2)

Sample program

// arrPtr.cpp
// Outputs addresses and values of array elements.

/] e

#include <iostream>
using namespace std;

int arr[4] = { 0, 10, 20, 30 };
int main()
{
cout << "\nAddress and value of array elements:\n"
<< endl;
for(int 1 = 0; 1 < 4; i++)
cout << "Address: " << (void*) (arr+i) // &arr[il
<< " Value: " << *(arr+i) // arr[il]
<< endl;
return 0;

Interrelation between pointers and array elements

ar 0 arr[0]

arr + 1 10 arr[1l]

arr + 2 20 arr[0]

arr + 3 30 arr[3]

ARRAYS AND POINTERS (2) 353

[1 Addressing Array Elements

Access to individual array elements in C++ is very closely related to pointer arithmetic.
Now let’s look at an int array to illustrate this point.

Example: int arr[4] = { 0, 10, 20, 30 };

As you already know, the name of the array arr is an int pointer to arr [0] .

Now it is possible to add or subtract pointers and integral values. The size of the
object referenced by the pointer is automatically taken into consideration.

Since arr is an int pointer to arr [0], arr+1 points to the next array element
arr[1],i.e., to an address that is sizeof (int) bytes higher in memory. The memory
space between the two entries will be two or four bytes, depending on the size of the type
int. Thus the following applies to any given number, i:

arr + i points to the array element arr [i] ,

* (arr + 1) isthe array element arr[i] ,

This technique can also be used to address memory spaces outside of the array. Thus,
arr - 1 addresses the word that precedes arr [0]. But generally this does not make
much sense, since you have no means of knowing what is stored at this memory address.

[1 Addressing with Pointer Variables
Array elements can also be addressed using pointer variables.
Example: int *ptr = arr; // ptr points to arr[0]
In this case, both ptr and arr are pointers to the array element arr[0]. Thus,
ptr + 1,ptr + 2,. . . point to the array elements arr[1], arr[2],
For any given integer, i, the following expressions are thus equivalent:
&arr [i] arr + 1 ptr + i
The following thus represent equivalent values:
arr[i] *(arr + 1) *(ptr + 1) ptr[i]
At first it might seem surprising that you can use the array notation ptr [i] for pointers.

The compiler translates arr[i] to * (arr + 1i)—in other words: “Start at address
arr, move i objects up, and access the object!” This also applies to ptr[i].

354 CHAPTER 17 ARRAYS AND POINTERS

= POINTER ARITHMETIC

Examples for arithmetic with pointers

float v[6] = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 },
*pv, X;

PV = V + 4; // Let pv point to vI[4].

*pv = 1.4; // Assign 1.4 to v[4].

pv -= 2; // Reset pv to v[2].

++pV; // Let pv point to v[3].

X = *pPV++; // Assign vI[3] to x and
// increment pv.

X += *pv--; // Increment x by v[4] and let
// pv point to vI[3] again.

--pv; // Reset pv to vI[2].

To step through an array of classes

// Searches for a given account number in a table of
// accounts and outputs the found account.

kinclude raceount . /) Definition of elass Accouit.

Account accountTab[100]; // Table containing accounts.

int main()

{ int cnt; // Actual number of accounts.
Account *aPtr; // Pointer to Account-objects.

// To input data into accountTab and actualize cnt.

// To search for the account number 1234567:

bool found = false;

for(aPtr = accountTab; aPtr < accountTab+cnt;++aPtr)

if(aPtr->getNr () == 1234567)
{ found = true;
break;
if(found) // Found?
aPtr->display () ; // Yes -> display.

// To continue

POINTER ARITHMETIC 355

In C++ you can perform arithmetic operations and comparisons with pointers, provided
they make sense. This primarily means that the pointer must always point to the ele-
ments of an array. The following examples show some of your options with pointer arith-
metic:

Example: float v[6], *pv = v; // pv points to vI[0]
int i = 3;

[] Moving a Pointer in an Array

As you already know, the addition pv + i results in a pointer to the array element
v [1] . You can use a statement such as pv = pv + 1i; to store the pointer in the vari-
able pv. This moves the pointer pv i objects, that is, pv now points to v [i].

You can also use the operators ++, --, and += or -= with pointer variables. Some
examples are shown opposite. Please note that the indirection operator, *, and the oper-
ators ++ and -- have the same precedence. Operators and operands thus are grouped
from right to left:

Example: *pv++ isequivalentto * (pv++)

The ++ operator increments the pointer and not the variable referenced by the pointer.
Operations of this type are not possible using the pointer v since v is a constant.

[1 Subtracting Pointers

An addition performed with two pointers does not return anything useful and is there-
fore invalid. However, it does make sense to perform a subtraction with two pointers,
resulting in an int value that represents the number of array elements between the
pointers. You can use this technique to compute the index of an array element refer-
enced by a pointer. To do so, you simply subtract the starting address of the array. For
example, if pv points to the array element v [3], you can use the following statement

Example: int index = pv - v;

to assign a value of 3 to the variable index.

[1 Comparing Pointers
Finally, comparisons can be performed with two pointers of the same type.

Example: for(pv = v + 5; pv >= v; --pv)
cout << setw(1l0) << *pv;

This loop outputs the numbers contained in v in reverse order. In the example on the
opposite page, the pointer aPtr walks through the first cnt elements of the array
accountTab, as long as aPtr < accountTab + cnt.

356 CHAPTER 17

ARRAYS AND POINTERS

m ARRAYS AS ARGUMENTS

Sample program

//
//
//
/7
//

{

reverse.cpp
Defines and calls the function reverse() .
reverse () copies a C string into another C string
and reverses the order of characters.

#include <iostream>
using namespace std;

#include <string.hs> // Header-File for Cstrings,
// here for strlen().

void reverse(char str[], char umstr[]); // Prototype

int main() // Read a word and

// output in reversed order.
const int CNT = 81;
char word[CNT], revword|[CNT] ;

cout << "Enter a word: ";
cin.width (CNT) ; // maximal CNT-1 characters
cin >> word;

reverse (word, revword) ; // Call
cout << "\nThe \"reversed\" word: " << revword
<< endl ;

return 0;
}
void reverse(char s1[], char s2[]) // Copies the
{ // reversed C string sl to s2

int j = 0;

for(int i = strlen(sl)-1; i >= 0; i--, Jj++)

s2[j] = sl1[il;
s2[j] = '\o'; // Terminating character

Sample output:

Enter a word: REGAL

The

"reversed" word: LAGER

ARRAYS AS ARGUMENTS 357

If an array name is passed as an argument when calling a function, the function actually
receives the address of the first array element. The called function can then perform read
or write operations for any element in the array.

[1 Declaring Parameters

If the argument is an array, there are two equivalent methods of declaring parameters.
This point is illustrated by the example using strlen() to return the length of a C
string. For example, calling strlen ("REGAL") returns a value of 5.

1. You can declare the parameter as an array.

Example: int strlen(char str[]) // Compute length of
{ dint i; // str without '\0'.
for(i = 0; str[i]l != '"\0'; ++1)

return (i) ;

}

2. You can declare the parameter as a pointer.

Example: int strlen(char *str)
{ /* as above */ '}

In both cases the parameter str is a pointer that stores the starting address of the
array. Array notation is preferable if you intend to use an index to access the elements of
an array. Calling strlen ("REGAL") ; leads to the following situation:

'R' El 'G‘ ‘Al gL "\0'

str[0] str[l] str[2] str[3] str[4] str[5]

As you can see, the length of a C string is equal to the index of the element containing
the terminating null character.

The function reverse () on the opposite page copies the characters of a C string to
a second char array in reverse order, first copying the last character in s1, that is, the
character with the index strlen(s1) -1, to s2[0], then the second to last character
s2[11, and so on.

[] Array Length

A function to which an array is passed initially knows only the starting address of the
array but not its length. In the case of C strings, the length is derived implicitly from the
position of the terminating null character. In most other cases the length must be sup-
plied explicitly.

Example: void sort(Account aTab[], int len)
{ /* To sort array aTab of length len */}

358

CHAPTER 17 ARRAYS AND POINTERS

®m POINTER VERSIONS OF FUNCTIONS

0 Function strcpy

The standard function strcpy () copies C strings.

Example: char dest[30], source[] = "A string";
strcpy(dest, source);

Here the string source is copied to dest “from left to right” just like an assignment.
The following function strcpy () is somewhat simpler than the standard function
since it has no return value.

Index Version of strepy ()

void strcpy(char s1[], char s2][]) // Copies s2 to sl
{
int 1i; // Index
for(i = 0; s2[i] != '\o'; ++i) // Copy.
s1[i] = s2[i];
s1[i] = '\o'; // Append terminating
} // character.

Pointer version | of strcpy ()

void strcpy(char *sl, char *s2) // Copies s2 to sl
{
for(; *s2 != '"\0'; ++sl, ++s2) // Copy
*sl = *s2;
*s1 = '\0'; // Append terminating
} // character.

Pointer version 2 of strcpy ()

void strcpy(char *sl, char *s2) // Copy s2 to sl.
{
while((*sl++ = *s2++) != '\0') // Copy and append
H // terminating
} // character.

POINTER VERSIONS OF FUNCTIONS 359

[1 Using Pointers Instead of Indices

As we have already seen, a parameter for an array argument is always a pointer to the
first array element. When declaring parameters for a given type T:

T name[] isalways equivalentto T *name.
So far, in previous sample functions, the pointer has been used like a fixed base
address for the array, with an index being used to access the individual array elements.

However, it is possible to use pointers instead of indices.

Example: A new version of the standard function strlen():

int strlen(char *str) // Computes length
{ // of str without '\0'.
char* p = str;
for(p = str; *p != '\0'; ++p) // Search
; // for \O
return (p - str);

}

In this case, the difference between two pointers results in the string length.

[J] The Sample Functions Opposite

The first version of the function strcpy () “string copy” opposite uses an index,
whereas the second does not. Both versions produce the same results: the string s2 is
copied to s1. When you call the function, you must ensure that the char array refer-
enced by s1 is large enough.

As the parameters s1 and s2 are pointer variables, they can be shifted. The second
“pointer version” of strcpy (), which is also shown opposite, uses this feature, although
the function interface remains unchanged.

Generally, pointer versions are preferable to index versions as they are quicker. In an
expression such as s1[1] the values of the variables s1 and i are read and added to
compute the address of the current object, whereas s1 in the pointer version already
contains the required address.

[] Multidimensional Arrays as Parameters

In a parameter declaration for multidimensional arrays, you need to state every dimension
with the exception of the first. Thus, a parameter declaration for a two-dimensional array
will always contain the number of columns.

Example: long func(int num[] [10]); // ok.
long func(int *num[10]); // also ok.

17 ARRAYS AND POINTERS

m READ-ONLY POINTERS

Sample program

// accountFct.cpp
// Defines and calls a function, which outputs
// a list of overdrawn accounts.

/] = e
#include "account.h" // Definition of class Account.
Account accountTabl[] = // Table with Account-objects.

{ Account ("Twain, Mark", 1234567, -3434.30),
Account ("Crusoe, Robinson", 200000, 0.00),
Account ("Temple, Shirley", 543001, +777.70),
Account ("Valentin, Carl", 543002, -1111.10),
i
int cnt = sizeof (accountTab) / sizeof (Account) ;
// Prototype:
int displayOverdraw(const Account *aTab, int cnt,
double limit) ;
int main ()

double limit = 0.0;

cout << "Output the overdrawn accounts!\n"
<< "These are the accounts, which fell below \n"
<< "the limit, ex. -1000.00.\n" << endl;

cout << "What is the limit? ";

cin >> limit;

cout << "Listing the overdrawn accounts:\n" << endl;

if (displayOverdraw(accountTab, cnt, limit) == 0)
cout << "\nNo account found!"
<< endl;
return 0;

}

int displayOverdraw(const Account *aTab, int cnt,
double limit)
{ int count = 0;
const Account* aPtr;
for(aPtr = aTab; aPtr < aTab + cnt; ++aPtr)
if (aPtr->getState() < limit) // Below the limit?
{
aPtr->display () ; // Yes -> display.
++count;

}

return count;

READ-ONLY POINTERS 361

[1 Pointers to const Objects

You can use a normal pointer for both read and write access to an object. However, just
like the definition used for a reference, you can also define a read-only pointer, that is, a
pointer that can be used for read operations only. In fact, a read-only pointer is obliga-
tory if you need to point to a constant object.

[1 Declaration

You use the keyword const to define a read-only pointer.
Example: const int a = 5, b = 10, *p = &a;

This statement defines the constants a and b, and a pointer p to a constant object of
type int. The referenced object *p can be read but not modified.

Example: cout << *p; // To read is ok.
*p o= 1; // Error!

The pointer itself is not a constant, so it can be modified:
Example: p = &b; // ok!

The referenced object also does not need to be a constant. In other words, a read-only
pointer can also point to a non-constant object.

Example: Account depo("Twain, Mark", 1234, 4321.90);

const Account* ptr = &depo; // ok!
ptr->display() ; // ok!
prt->setState(7777.70) ; // Error!

But ptr can only be used for read access to the non-constant object depo.

[1 Read-Only Pointers as Parameters

Read-only pointers are most commonly found in parameter lists. This guarantees that
arguments cannot be modified.

Example: int strlen(const char *s);

In this example, the parameter s is a read-only pointer. This allows you to pass constant
C strings to the standard function strlen (). You cannot remove the “write protection”
by assigning the read-only pointer s to a normal pointer.

Example: char *temp = s; // Error!

You need to declare a read-only pointer if a constant object may be passed as an argu-
ment.

362

CHAPTER 17 ARRAYS AND POINTERS

® RETURNING POINTERS

Sample program

// searchl.cpp

// A filter to output all lines containing a given

// pattern. The function strstr() is called.

// Call: searchl [< text.dat]

/] = e
#include <iostreams>

using namespace std;

#define MAXL 200 // Maximum length of line
namespace MyScope
{ // Self-defined version of function strstr():

char *strstr(const char *str, const char *patt);

}

char line[500], // For a line of text.
patt[] = "is"; // The search pattern.
int main ()

{ 4int lineNr = 0; // As long as a line is left over:
while(cin.getline(line, MAXL))
{
++1ineNr;
if (MyScope::strstr(line, patt) != NULL)
// If the pattern is found:
cout.width (3) ;
cout << lineNr << ": " // Output the line
<< line << endl; // number and the line

return 0;

// strstr.cpp
// A self-defined version of the function strstr()
A
#include <string.h> // For strlen() and strncmp ()
namespace MyScope
{
char *strstr(const char *sl, const char *s2)
{ // To search for the string s2 within sl.
int len = strlen(s2);
for(; *sl1l != '"\0'; ++sl)
if (strncmp(sl, s2, len) == 0) // s2 found?
return (char *)sl; // Yes -> return pointer
// to this position, or
return NULL; // else the NULL pointer.

}
}

RETURNING POINTERS 363

A function can return a pointer to an object. This makes sense for a function that
searches for a particular object, for example. Such a function will return either a pointer
to the required object or a NULL pointer if the object cannot be found.

The standard C library functions often use pointers as return values. For example, the
functions strcpy (), strcat (), and strstr () each return a pointer to the first char-
acter in a C string.

[J The Functions strcpy () and strcat ()

In contrast to the example on the page entitled “Pointer versions of functions,” the stan-
dard function strcpy () has a return value. The function returns its first argument, that
is, a pointer to the target string and leads to the following:

Prototype: char* strcpy(char* sl, const char* s2);

The second parameter is a read-only pointer, since the source string is read-only.

The standard function strcat () concatenates two C strings, adding the C string
passed as the second argument to the first argument. When you call this function, make
sure that the char array for the first string is large enough to store both strings. The
return value is the first argument. The following example shows one possible implemen-
tation.

Example: char *strcat(char *sl, const char *s2)
{
char *p = sl + strlen(sl); // End of sl
strcpy (p, s2);
return sl;

[] Notes on the Sample Program

The program on the opposite page shows a self-defined version of the standard function
strstr (). This version was placed in the MyScope namespace to distinguish it from
the standard function.

The function strstr () searches for a given character sequence within a string. The
standard function strncmp () is used to compare two strings. This function returns zero
if the first n characters are identical.

The program uses the strstr () function to display all the lines in the text contain-
ing the letters “is" with line numbers. The exercises for this chapter contain a program
called search. cpp where you can supply a search pattern.

364 CHAPTER 17 ARRAYS AND POINTERS

m ARRAYS OF POINTERS

Pointers in the array accptr

Array
accPtr Account objects
accPtr[0] ® —p |"Novack,..", 1234,
accPtr[l] @ —» |"Davis, ..", 2345,
accPtr[2] o
accPtr[3] o
accPtr[4] o

Sample function with pointers to char

// The function displayError () outputs an error message
// to a corresponding error number.
/] =
#include <iostream>
using namespace std;
void displayError (int errorNr)
{
static char* errorMsg[] = {
"Invalid error number",
"Exrror 1: Too much data ",
"Error 2: Not enough memory ",
"Error 3: No data available " };
if (errorNr < 1 || errorNr > 3)
errorNr = O;
cerr << errorMsglerrorNr] << endl;

A string literal, such as “Erroxr. . ." is a char pointer to the first character in the string. Thus, such a
pointer can be used to initialize another char pointer.

Due to its static declaration, the array is generated only once and remains valid until the program
ends.

ARRAYS OF POINTERS 365

Pointers offer various possibilities for simple and efficient handling of large amounts of
data. For example, when you are sorting objects it makes sense to define pointers to those
objects and simply place the pointers in order, instead of rearranging the actual order of
the objects in memory.

[1 Defining Arrays of Pointers

Whenever you need a large number of pointers, you can define an array whose elements
are pointers. An array of this type is referred to as a pointer array.

Example: Account* accPtr[5];

The array accPtr contains five Account pointers accPtr[0], accPtr[1], .. ,
accPtr[4]. The individual pointers in the array can now be assigned object addresses.
Any pointers not currently in use should have the value NULL.

Example: Account save("Novack, Kim", 1111, 9999.90);
Account depo("Davis, Sammy", 2222, 1000.);
accPtr[0] = &save;
accPtr[1l] = &depo;
for(int i=2; i<5; ++i) accPtr[i] = NULL;

[] Initialization

As usual, an initialization list is used to initialize the array. In the case of a pointer array,
the list contains either valid addresses or the value NULL.

Example: Account* accpPtr[5] = { &depo, &save, NULL};

The value NULL is automatically assigned to any objects for which the list does not con-
tain a value. This produces the same result as in the previous example.

[] Usage

The individual objects addressed by the pointers in an array do not need to occupy a
contiguous memory space. Normally these objects will be created and possibly destroyed
dynamically at runtime (this will be discussed in detail in a later chapter). This allows for
extremely flexible object handling. The order is defined only by the pointers.

Example: for(int 1=0; 1i<5; ++1)
if (accPtr[i] != NULL)
accPtr[i] ->display(); // To output

The function displayError () opposite displays the error message for a correspon-
ding error number, using an array of char pointers to the error messages.

CHAPTER 17 ARRAYS AND POINTERS

® COMMAND LINE ARGUMENTS

Sample program

// hello.cpp

// Demonstrates the command line arguments.

// Call: hello namel name2

A e e
#include <iostream>

using namespace std;

int main(int argc, char *argv([])

{
if(argc != 3)
{
cerr << "Use: hello namel name2" << endl;
return 1;
}
cout << "Hello " << argv[l] << '"!' << endl;

cout << "Best wishes \n"
<< "\tyours " << argv[2] << endl;
return 0;

Example of calling the program:

hello Jeany Vivi

Screen output

Hello Jeany!
Best wishes
Yours Vivi

Array argv in memory

argv argv[0] —» "C:\...\HELLO.EXE"

argv([2] —» "Jeany"

=
argv[l] @—P» "vivi"
®
NULL o-

]

COMMAND LINE ARGUMENTS 367

[1 Arguments for a Program

When you launch a program, you can use the command line to supply additional charac-
ter sequences other than the program name. These command line arguments are typically
used to govern how a program is executed or to supply the data a program will work with.

Example: copy filel file2

In this case, the program copy is launched with the arguments filel and file2. The
individual arguments are separated by spaces. Characters used for redirecting input and
output (> or <) and a following word are evaluated by the operating system and not
passed to the program. If an argument contains space or redirection characters, you must
place it in double quotes.

[1 Parameters of the Function nain ()

So far we have only used the function main () without parameters. However, if you
intend to process command line arguments, you must define parameters for main ().

Example: int main(int argc, char * argv[])
{ . . . // Function block }

argc contains the number of arguments passed via the command line. The program
name is one of these, so argc will have a value of at least 1.
The parameter argv is an array of char pointers:

argv[0] points to the program name (and path)

argv[1] points to the first real argument, that is, the word after the pro-
gram name

argv[2] points to the second argument

argv [argc-1] points to the last argument

argv [argc] is the NULL pointer

The parameters are traditionally named argc and argv although any other name could
be used.

Various operating systems, for example WINDOWS 98/00/NT and UNIX, allow you
to declare a third parameter for main (). This parameter is an array with pointers to
environment strings. The exercises for this chapter contain a program that displays the
program environment.

368 CHAPTER 17 ARRAYS AND POINTERS

exercises

EXERCISES

For exercise 3
Index version of the standard function strcmp ()

++1)

// strcmp () compares two C strings lexicographically.
// Return value: < 0, 1f strl < str2
// = 0, 1f strl == str2
// > 0, if strl > str2 .
/] mm
int strcmp(const char strl[], const char str2[])
{
int i;
for(i=0; strl[i] == str2[i] && strli[i] != '\0';
return (strl[i] - str2[i]);
}

Notes on exercise 4
The selection sort algorithm

Method

First find the smallest element in the array and exchange it with the first

element.

This procedure is repeated while 1 > 0 for the remainder of an array

containing array elements with an initial index of i.

Example
Original array: 100 50 30 70 40
¢smmbﬁebmaﬂT
Atter the first loop: 30 [||| 50 100 70

\L second smallest element T

After the second loop: 30 40 ||| | 100 70

EXERCISES 369
Exercise |
Given an array v with the following definition:
int v[] = { 10, 20, 30, 40 }, i, *pv;

What screen output is caused by the following statements?

a. for(pv = v; pv <=V + 3; pv++)
cout << " *pv = " << *pv;

b. for(pv=v, i =1; i <= 3; i++)
cout << " pv[i] =" << pvl[i]l;

c. for(pv=v, 1= 0; pv+i <= &v[3]; pv++,i++)
cout << " *(pv + i) =" << *(pv + 1i);

d. for(pv=v + 3; pv >=v; --pv)
cout << " v[" << (pv - v) << "] ="

<< v[pv - v];
Exercise 2

Write a program that uses the cin method get () to read a line character by
character and stores it in a char array.The line is then output in reverse order.
Use a pointer, not an index, to address the array elements.

Exercise 3

The standard function strcmp () performs a lexicographical comparison of two
C strings. The opposite page contains an index version of strcmp ().The return
value is the difference between two character codes.

Write a pointer version of the function strcmp (). Call this function
str_cmp () to distinguish it from the standard function.

To test the function, use a loop to read two lines of text and output the
results of the comparison.The loop should terminate when both strings are
empty.

Exercise 4

Define and test the function selectionSort () that sorts an array of int
values in ascending order.The principle of the selection sort algorithm is shown
opposite.

Arguments: An int array and its length
Return values: None

Develop both an index version and a pointer version. Test the functions with
random numbers between -10000 and +10000.

370 CHAPTER 17 ARRAYS AND POINTERS

Notes on exercise 5
Sample environment strings for DOS/Windows

COMSPEC=C : \ COMMAND . COM

PATH=C: \WINDOWS ; C: \WINDOWS\ COMMAND; C: \DOS ; D: \TOOLS ;
PROMPT=pg

TEMP=C: \TEMP

Frequency table for exercise 7

Blood-
pressure| <120 120-129 130-139 140-149 >=160
Age
20-29 25 34 26 12 8
30-39 19 27 24 11 4

40-49 6 15 35 36 18

EXERCISES 371

Exercise 5

a. Write a program that outputs its own name and all command line argu-
ments, each in a separate line.

b. Now extend the program to output its own environment.The environ-
ment is a memory area containing strings in the format

NAME=String

A third parameter for the function main () allows access to the environment.
This parameter is an array of pointers just like argv.The array elements are
char pointers to the environment strings, the last element being a NULL
pointer.

Exercise 6

A sample filter program called searchi, which outputs lines and the relevant
line numbers for lines containing the search pattern "ei", was introduced in this
chapter.

Modify the program to produce a useful tool called search, to which you can
pass any search pattern via the command line.The program should issue an
error message and terminate if the command line does not contain a search
string. Use the standard function strstr ().

Sample call:

search Shanghai < news.txt

Exercise 7

The following frequency was observed during an examination of the relationship
between age and blood pressure for 300 males.

Write a function that calculates the sums of the rows and columns in an int
matrix with three rows and five columns. Store the sums of the rows and
columns separately in a one-dimensional row or column array.

Arguments: The matrix, the row array, and the column array.
Return value: The sum of all the matrix elements.

To test the function, output the matrix, as shown in the graphic opposite
along with the computed sums in your main function.

372 CHAPTER 17 ARRAYS AND POINTERS

SOLUTIONS

Exercise |
Screen Output:

a. *pv = 10 *pv = 20 *pv = 30 *pv = 40
b. pviil = 20 pvIil = 30 pvI[i] = 40

C. * (pv+i) = 10 *(pv+i) = 30

d. vI[3] = 40 v[2] = 30 vI[1] = 20 v[0] = 10

Exercise 2
A e e

// reverse.cpp
// Exercise on pointer arithmetic:
// Reads a line and outputs the line in reverse order.

solutions

#include <iostream>
using namespace std;

#define MAXLEN 80
int main ()
{
char line [MAXLEN], *p;
cout << "Enter a line of text: " << endl;
// Input a line:
for(p = line;

P < line+MAXLEN && cin.get(*p) && *p != '\n';
++p)

// Output the line in reverse order:
while(--p >= line)
cout << *p;

cout << endl;

return 0;

SOLUTIONS

Exercise 3

T

// str_cmp.cpp
// Define and test the pointer version str cmp ()
// of the standard function strcmp ().

#include <iostreams>
using namespace std;
#define MAXLEN 100 // Maximum length of C strings
// Prototype:
int str cmp(const char* strl, const char* str2);
int main() // Test str_cmp ()
{

char textl [MAXLEN], text2[MAXLEN] ;

cout << "Testing the function str cmp()" << endl;

while(true)

{

cout << "Enter two lines of text!\n"
"End with two empty lines.\n" << endl;

cout << "1. line: ";
cin.sync(); cin.clear(); cin.get (textl, MAXLEN) ;
cout << "2. line: ";
cin.sync(); cin.clear(); cin.get (text2,MAXLEN) ;
if(textl[0] == '\0' && text2[0] == '\0')

break; // Both lines empty.

int cmp = str cmp(textl, text2);
if(cmp < 0)

cout << "The 1st string is smaller!\n";
else if(cmp == 0)

cout << "Both strings are equal!\n";
else

cout << "The 1st string is greater!\n";
cout << endl;

}

return 0;

.
// Function str_ cmp ()
// Pointer version of the standard function strcmp() .

int str cmp(const char* strl, const char* str2)

{

for(; *strl == *str2 && *strl != '\0'; ++strl, ++str2)

7

return (*strl - *str2);

373

374

CHAPTER

17 ARRAYS AND POINTERS
Exercise 4
F A e i e

// selSort.cpp
// Implement the selection sort algorithm
// for int-arrays.

#include <iostream>

#include <iomanip>

#include <cstdlibs> // For srand(), rand()
#include <ctime> // For time ()

using namespace std;

// Prototype:
void selectionSort(int arr[], int len);

const int len = 200;

int intArr[len]; // int-array
int main ()
cout << "\n *x*%* Selection Sort Algorithm ***\n"
<< endl;

// To initialize an int-array with random numbers:
srand((unsigned int)time (NULL)); // Initialize the
// random number generator.
for(int n=0; n < len; ++n)
intArr[n] = (rand() % 20000)-10000;

// To sort the numbers
selectionSort (intArr, 1len);

// To output the numbers
cout << "The sorted numbers:" << endl;

for(int 1 = 0; 1 < len; ++1i)
cout << setw(8) << intArr[i];

cout << endl;

return 0;

inline void swap(int& a, inté& b)

{
}

int temp = a; a = b; b = temp;

SOLUTIONS

// Index version:

/*
void selectionSort(int arr[], int len)
{
register int j, mini; // Indices
for(int 1 = 0; 1i < len-1; ++1)
{
mini = i; // Search for minimum
for(j = i+l; j < len; ++j) // starting with index 1.
if(arr[mini] > arrl[jl)
mini = j;
swap (arr[i], arr[mini]); // Swap.

}
*/

// Pointer version:
void selectionSort(int *arr, int len)

{

register int *p, *minp; // Pointer to array elements,
int *last = arr + len-1; // pointer to the last element
for(; arr < last; ++arr)

{

minp = arr; // Search for minimum
for(p = arr+l; p <= last; ++p) // starting with arr
if (*minp > *p)
minp = p;

swap (*arr, *minp) ; // Swap.

375

376 CHAPTER 17 ARRAYS AND POINTERS

Exercise 5

J]
// args.cpp

// The program outputs the program name including the path,
// command line arguments and the environment.

#include <iostream>
using namespace std;

int main(int argc, char *argv([], char *env[])

{

cout << "Program: " << argv[0] << endl;

cout << "\nCommand line arguments:" << endl;

int 1i;

for(1 = 1; i < argc; ++1) // Arguments

cout << argv[i] << endl;

cout << "Type <Return> to go on";

cin.get () ;
cout << "\nEnvironment strings:" << endl;
for(i = 0; env[i] != NULL; ++1) // Environment

cout << env[i] << endl;

return O0;

}

Exercise 6

// search.cpp
// A filter that outputs all lines containing a certain
// pattern. The standard function strstr() is called.

// Call: search pattern [< text.dat]

// If no file name is passed the input is read from the
// keyboard. In this case end input with <Ctrls> + <Z>.

YN .,
#include <iostreams>
#include <cstrings> // Standard functions for C strings
using namespace std;
#define MAXL 200 // Maximum length of line

char 1line[500]; // For a line of text.

SOLUTIONS 377

int main(int argc, char *argvl[])

{

if(argc != 2)

{

cerr << "Call: search pattern [< text.dat]"

<< endl;
return 1;
int lineNr = O0;

// As long as a line exists:
while(cin.getline(line, MAXL))

{

++1ineNr;

if(strstr(line, argv[l]) != NULL)
{ // If the pattern was found:
cout.width(3);
cout << lineNr << ": " // Output the line
<< line << endl; // number and the line

}
}

return 0O;

}

Exercise 7

]
// matrix.cpp
// To compute the sums of rows and columns in a matrix.

#include <iostream>
#include <iomanip>
using namespace std;

// Define and initiate a two-dimensional array:

int matrix[3]1[5] = { { 25, 34, 26, 12, 8 },
{ 19, 27, 24, 11, 4 },
{ 6, 15, 35, 36, 18 } };

int rowsuml[3]; // For the sums of the rows
int colsuml[5]; // For the sums of the columns

// Prototype of function matrixsum() :
int matrixsum(int arr2D[] [5], int wvlen,
int rsum[], int csuml(]) ;

378

CHAPTER

17

ARRAYS AND POINTERS

int main|()

{

//

cout << "Testing the function matrixsum() .\n"
<< endl;

// Compute sums:
int totalsum =
matrixsum(matrix, 3, rowsum, colsum) ;

// Output matrix and sums:
cout << "The matrix with the sums "
<< "of rows and columns:\n"

<< endl;
int i,5;
for(1 =0 ; 1 < 3 ; ++1) // Output rows of the
{ // matrix with row sums.

for(j =0 ; j <5 ; ++j)
cout << setw(8) << matrix[i] [j];
cout << " | " << setw(8) << rowsum[i] << endl;
}
COUt << M e oo "
<< endl;
for(j =0 ; 3
cout << setw (8
cout << " | " <<
return O;

<5 ; ++3)
) << colsuml[j];
setw(8) << totalsum << endl;

int matrixsum(int v[] [5], int len,

{

int rsuml[], int csum[])

int ro, co; // Row and column index
for(ro = 0 ; ro < len ; ++ro) // To compute row sums
rsum[ro] = 0;
for(co =0 ; co < 5 ; ++co)

rsum[ro] += v[ro] [co];
for(co = 0 ; co < 5 ; ++co) // Compute column sums

csum[co] = 0;
for(ro = 0 ; ro < len ; ++ro)
csum[co] += v[ro] [co];
}
return (rsum[0] + rsum[1l] + rsum[2]); // Total sum =
// sum of row sums.

chapter

Fundamentals of File
Input and Output

This chapter describes sequential file access using file streams. File

streams provide simple and portable file handling techniques.

379

380

CHAPTER 18 FUNDAMENTALS OF FILE INPUT AND OUTPUT

m FILES

File operations

Main Memory

File Buffer

External Memory

FILES 381

When a program is terminated, the program data stored in main memory is lost. To store
data permanently, you need to write that data to a file on an external storage medium.

[] File Operations

Single characters or character strings can be written to text files just like they can be out-
put on screen. However, it is common practice to store records in files. A record contains
data that forms a logical unit, such as the human resource information for a person. A
write operation stores a record in a file, that is, the existing record in the file is updated or
a new record is added. When you read a record, this record is taken from the file and
copied to the data structure of a program.

Objects can be put into permanent storage using similar techniques. However, this
normally involves more than just storing an object’s data. You also need to ensure that
the object can be correctly reconstructed when it is read, and this in turn involves stor-
ing type information and references to other objects.

External mass storage media, such as hard disks, are normally block-oriented—that is,
data is transferred in blocks whose size is a multiple of 512 bytes. Efficient and easy file
management thus implies putting the data you need to store into temporary storage in
main memory, in a so-called file buffer.

L1 File Positions

From the viewpoint of a C++ program, a file is simply a long byte array. The structure of
the file, using records for example, is entirely the programmer’s responsibility, allowing
for a maximum degree of flexibility.

Every character in a file occupies a byte position. The first byte occupies position O,
the second byte position 1, and so on. The current file position is the position of the byte
that will be read or written next. Each byte that is transferred automatically increases the
current file position by 1.

In the case of sequential access, the data is read or written byte by byte in a fixed order.
The first read operation starts at the beginning of the file. If you need access to some
piece of information in a file, you must read the file content from start to finish. Write
operations can create a new file, overwrite an existing file, or append new data to an
existing file.

Easy access to given data in a file implies being able to set the current file position as
required. This technique is known as random file access and will be discussed in one of the
following chapters.

382 = CHAPTER 18 FUNDAMENTALS OF FILE INPUT AND OUTPUT

® FILE STREAMS

Stream classes for file access

ios
istream ostream
A A
iostream
A
ifstream ofstream
fstream

FILE STREAMS 383

C++ provides various standard classes for file management. These so-called file stream
classes allow for easy file handling. As a programmer you will not need to concern your-
self with file buffer management or system specifics.

Since the file stream classes have been standardized, you can use them to develop
portable C++ programs. One program can thus process files on a Windows NT or UNIX
platform. You simply need to recompile the program for each platform you use.

[] The File Stream Classes in the iostream Library

The class hierarchy on the opposite page shows that the file stream classes contain the
stream classes, with which you are already familiar, as base classes:

m the ifstream class derives from the istream class and allows file reading

m the of stream class derives from the ostream stream class and supports writing
to files

m the fstream class derives from the iostream stream class. As you would
expect, it supports both read and write operations for files.

The file stream classes are declared in the fstream header file. An object that
belongs to a file stream class is known as a file stream.

[1 Functionality

The file stream classes inherit the functionality of their base classes. Thus, the methods,
operators, and manipulators you have already used for cin and cout are also available
here. Thus every file stream has:

m methods for non-formatted writing and reading of single characters and/or data

blocks
m the operators << or >> for formatted reading and writing from or to files
m methods and manipulators for formatting character sequences
m methods for state queries.

File handling methods, particularly methods for opening and closing files, round off the
package.

384 CHAPTER 18 FUNDAMENTALS OF FILE INPUT AND OUTPUT

®m CREATING FILE STREAMS

Sample program

// showfile.cpp

// Reads a text file and outputs it in pages,

// i.e. 20 lines per page.

// Call: showfile filename
/e
#include <iostream>

#include <fstream>

using namespace std;

int main(int argc, char *argv[])

{

if(arge !'= 2) // File declared?

{
cerr << "Use: showfile filename" << endl;
return 1;

}

ifstream file(argv[1l]) ; // Create a file stream

// and open for reading.
if('file) // Get status.
{

cerr << "An error occurred when opening the file "
<< argv([l] << endl;

return 2;
}
char 1line[80];
int cnt = 0;
while(file.getline(line, 80)) // Copy the file
{ // to standard
cout << line << endl; // output.
if (++cnt == 20)
{
cnt = 0;
cout << "\n\t ---- <return> to continue ---- "
<< endl;
cin.sync(); cin.get() ;
}
1
if(!file.eof ()) // End-of-file occurred?
{

cerr << "Error reading the file "
<< argv([l] << endl;
return 3;

}

return 0;

CREATING FILE STREAMS 385

[] Opening a File

You need to open a file before you can manipulate it. To do so, you can

m state the file name, which can also contain a path
m define a so-called file access mode.

If the path is not explicitly stated, the file must be in the current directory. The file
access mode specifically defines whether read and/or write access to the file is permitted.
Any files still open when a program terminates are automatically closed.

[1 File Stream Definition

You can open a file when you create a file stream—you simply state the file name to do
so. In this case default values are used for the file access mode.

Example: ifstream myfile("test.fle");

The file name test.fle is passed to the constructor of the ifstream class, which
opens the file for reading. Since the path was not stated, the file must be in the current
directory. When a file is opened, the current file position is the beginning of the file.

If you create a file stream for write-only access, the file you state need not exist. In
this case a new file is created.

Example: ofstream yourfile("new.fle");

This statement creates a new file called new. f1e and opens the file for writing. But be
careful! If the file already exists, it will be truncated to a length of zero bytes, or in other
words deleted.

You can create a file stream which does not reference a specific file and use the
open () method to open a file later.

Example: ofstream yourfile;
yourfile.open("new.fle") ;

This example has the same effect as the previous example. More specifically, open ()
uses the same default values for file access when opening a file as the default constructor
for the class.

[t rarely makes sense to use fixed file names. In the case of the sample program on the
opposite page, you state the file name in the command line when you launch the pro-
gram. If no file name is supplied, the program issues an error message and terminates.
Using interactive user input is another possible way to define a file name.

386 CHAPTER 18 FUNDAMENTALS OF FILE INPUT AND OUTPUT

= OPEN MODES

Flags for the open mode of a file

Flag Effects
ios::in Opens an existing file for input.
ios::out Opens a file for output. This flag implies

ios: :trunc if it is not combined with one of the
flags ios::inorios::apporios::ate.

ios::app Opens a file for output at the end-of-file.
ios::trunc An existing file is truncated to zero length.
ios::ate Open and seek to end immediately after opening.

Without this flag, the starting position after opening is
always at the beginning of the file.

ios::binary | Perform input and output in binary mode.

I. These flags are defined in the baseclass ios, which is common to all stream classes, and
are of the ios: : openmode type.

2. By default a file is opened as a text file in so-called text mode. When you read from or
write to a text file, control characters to indicate newlines or the end-of-file are inter-
preted separately and adapted to the current platform (so-called “cooked mode”).When
a file is opened in binary mode, the file contents are left unchanged (the so called “raw
mode”).

Default settings when opening a file

The constructor and the method open () of all stream classes use the following default
values:

Class Flags
ifstream ios::in
ofstream ios::out | ios::trunc

fstream ios::in | ios::out

OPEN MODES 387

To open a file in any but the default mode, you must supply both the file name and the
open mode. This is necessary, for example, to open an existing file for write access with-
out deleting the file.

[1 Open Mode Flags

In addition to the file name, you can pass a second argument for the open mode to the
constructors and the open () method. The open mode is determined by using flags. A
flag represents a single bit in a computer word. If the flag is raised, the bit in question will
contain the value 1, with O representing all other cases.

You can use the bit operator, |, to combine various flags. Either the flag ios: :in or
ios: :out must be stated in all cases. If the flag ios: : in is raised, the file must already
exist. If the flag ios: : in is not used, the file is created, if it does not already exist.

Example: fstream addresses("Address.fle", ios::out | ios::app);

This opens a file for writing at end-of-file. The file is created, if it does not already exist.
The file will automatically grow after every write operation.

You can use the default mode for the fstream class, that is, ios: :in | ios: :out,
to open an existing file for reading and writing. This so-called update mode is used for
updating the information in a file and is often seen in conjunction with random file
access.

[1 Error Handling

Errors can occur when opening a file. A user may not have the required access privileges,
or the file you want to read may not exist. The state flag failbit of the ios base class
is raised in this case. The flag can either be queried directly using the fail () method,
or indirectly by querying the status of a file stream in an i f condition.

Example: if(Imyfile) // or: if (myfile.fail())

The £ail bit is also set if a read or write error occurs. If a read operation fails, the end
of the current file may have been reached. To distinguish this normal behavior from a
read error, you can use the eof () method (eof = end-of-file) to query the eof bit:

Example: if(myfile.eof()) // At end-of-file?

The eof bit is set if you try to carry on reading at the end of a file. The sample program
on the previous page illustrates the potential issues.

CHAPTER 18 FUNDAMENTALS OF FILE INPUT AND OUTPUT

m CLOSING FILES

Sample program

// fcopyl.cpp : Copies files.
// Call: fcopyl source [destination]
[/ == e

#include <iostreams>

#include <fstream>

using namespace std;

inline void openerror (const char *file)

{

cerr << "Error on opening the file " << file << endl;
exit (1) ; // Ends program closing

} // all opened files.

void copy(istream& is, ostream& os) ; // Prototype

int main(int argc, char *argv[])

{

if(arge < 2 || argc > 3)
{ cerr << "Call: fcopyl source [destination]"
<< endl;
return 1; // or: exit (1) ;
}
ifstream infile(argv[1]) ; // Open 1lst file
if(!infile.is open())

openerror (argv[1l]) ;

if (argc == 2) // Just one sourcefile.
copy (infile, cout);
else // Source and destination
{
ofstream outfile(argv([2]) ; // Open 2nd file
if(!'outfile.is open())

openerror (argv[2]) ;
copy(infile, outfile);
outfile.close() ; // Unnecessary.
1
infile.close () ; // Unnecessary.
return 0O;

}

void copy(istream& is, ostream& os) // Copy it to os.
char c;
while(is.get(c))
os.put (c) ; // or: os << C ;

CLOSING FILES 389

[Motivation

After you have completed file manipulation, the file should always be closed for the fol-
lowing reasons:

m data may be lost, if for some reason the program is not terminated correctly
m there is a limit to the number of files that a program can open simultaneously.

A program that terminates correctly will automatically close any open files before exit-
ing. A file stream destructor will also close a file referenced by a stream. However, if the
file is no longer in use before this point, you should close the file explicitly.

[1 Methods close() and is open()

Each of the file str