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Abstract

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi problem�
ut � ��u+ jrujq = 0;

u(0) = u0;

in Q
;T = 
 � (0; T ) ; where q > 1; � = 0; T 2 (0;1] ; and 
 = RN or 
 is a smooth bounded
domain, and u0 2 Lr(
); r = 1; or u0 2 Mb(
): We show L1 decay estimates, valid for any
weak solution, without any conditions as jxj ! 1; and without uniqueness assumptions. As a
consequence we obtain new uniqueness results, when u0 2 Mb(
) and q < (N + 2)=(N + 1);
or u0 2 Lr(
) and q < (N + 2r)=(N + r): We also extend some decay properties to quasilinear
equations of the model type

ut ��pu+ juj��1 ujrujq = 0

where p > 1; � = 0; and u is a signed solution.

Keywords Viscous Hamilton-Jacobi equation; quasilinear parabolic equations with gradient
terms; regularity; decay estimates; regularizing e¤ects; uniqueness results.

A.M.S. Subject Classi�cation 35K15, 35K55, 35B33, 35B65, 35D30

1 Introduction

Here we study some parabolic equations with eventual gradient absorption terms. We are mainly
concerned by the nonnegative solutions of the well known viscous parabolic Hamilton-Jacobi equa-
tion

ut � ��u+ jrujq = 0 (1.1)

in Q
;T = 
� (0; T ) ; T 51; where q > 1; � = 0; and 
 = RN ; or 
 is a smooth bounded domain
of RN and u = 0 on @
� (0; T ) : We also consider the (signed) solutions of equations of the type

ut ��pu+ juj��1 ujrujq = 0 (1.2)
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where p > 1 and �p is the p-Laplacian, or more generally involving a quasilinear operator, nonnec-
essarily monotone,

ut � div(A(x; t; u;ru)) + g(x; u;ru) = 0 (1.3)

with natural growth conditions on A; and nonnegativity conditions

A(x; t; u; �):� = � j�jp ; g(x; u; �)u = 
 juj�+1 jrujq 
 = 0; � = 0; (1.4)

where � = 0.
We denote byMb(
) the set of bounded Radon measures in 
; and M+

b (
) the subset of
nonnegative ones. We set Q
;s;� = 
� (s; �) ; for any 0 5 s < � 51; thus Q
;T = Q
;0;T :

We study the Cauchy problem with rough initial data

u(:; 0) = u0; u0 2 Lr(
); r = 1; or u0 2Mb(
):

Our purpose is to give some decay estimates, and a regularizing e¤ect L1 estimates, for the
solutions, in terms of initial data u0; and universal estimates when 
 is bounded, under very few
assumptions on the solutions. In this problem two regularizing e¤ects can occur, the �rst one due
to the gradient term jrujq; when 
 > 0; the second to the operator when � > 0: A part of these
estimates are well known when the solutions can be approximated by smooth solutions, and satisfy
some conditions as jxj ! 1 when 
 = RN ; of boundedness or integrability, for example semi-group
solutions. Our approach is di¤erent: our results are valid for all the solutions of the equation in a
weak sense: in the sense of distributions for the case of the Laplacian, in the renormalized sense in
the case of a general operator; and we make no assumption of existence or uniqueness. Moreover
in the case of the Hamilton-Jacobi equation in RN , we make no assumption as jxj ! 1, all our
assumptions are local. As a consequence we deduce new uniqueness results for equation (1.1) in
RN or in bounded 
:

In order to get regularizing properties, we give at Section 2 an iteration lemma based of Moser�s
method, inspired by the results of [39], and we compare it to results of [34] obtained from Stam-
pacchia�s method. The Moser�s method, based on the choice of test functions of the form juj��1 u;
� > 0; appears to be well adapted to equations in a L1 context. Since such functions are not always
admissible, we combine the method with a regularization in case of equation (1.1) in RN , and a
truncature in the case of the Dirichlet problem, for the same equation, and for the general equation
(1.3).

In Section 3 we study the case of Hamilton-Jacobi equation (1.1) in RN ; for which there is
a huge literature. Among them we quote only some signi�cative contributions and refer to the
references therein: [1], [11], [6], [14], [37], see also [6], [13], [29]. One of our main results reads as
follows:

Theorem 1.1 Let u 2 L1loc(QRN ;T ); with jruj 2 Lqloc(QRN ;T ); be any nonnegative solution of
equation (1.1) in D0(QRN ;T ):

(i) Let u0 2 Lr(RN ); r = 1: Assume that u 2 C([0; T ) ;Lrloc(R
N )) and u(:; 0) = u0. Then

u 2 C([0; T ) ;Lr(RN )); and for any t 2 (0; T ); u(:; t) 2 L1(RN ) and

ku(:; t)kLr(RN ) 5 ku0kLr(RN ); (1.5)
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ku(:; t)kL1(RN ) 5 Ct��r;q;N ku0k
$r;q;N
Lr(RN ); C = C(N; q; r);

where �;$ are given for q < N by �r;q;N = 1=(rq=N + q � 1) = N$r;q;N=rq; and if � > 0; N > 2;

ku(:; t)kL1(RN ) 5 Ct�
N
2r ku0kLr(RN ); C = C(N; q; r; �):

(ii) Let u0 2 M+
b (R

N ) and assume that u(:; t) converges weakly � to u0 as t ! 0: Then u 2

C((0; T );L1(RN )); and for any t 2 (0; T ); ku(:; t)kLr(RN ) 5
Z
RN
du0;

ku(:; t)kL1(RN ) 5 Ct��1;q;N (

Z
RN
du0)

$1;q;N ; C = C(N; q);

ku(:; t)kL1(RN ) 5 Ct�
N
2

Z
RN
du0; C = C(N; q; �); if � > 0:

For any q � 2; we deduce estimates of the gradient, obtained from Bernstein technique. As a
consequence we improve some uniqueness results of [11] and [14]:

Theorem 1.2 (i) Let 1 < q < (N + 2)=(N + 1); and u0 2 M+
b (R

N ): Then there exists a unique
nonnegative function u 2 L1loc(QRN ;T ); such that jruj 2 L

q
loc(QRN ;T ); solution of equation (1.1) in

D0(QRN ;T ) such that

lim
t!0

Z
RN

u(:; t) dx =

Z
RN

 du0; 8 2 Cc(RN ):

(ii) Let u0 2 Lr(RN ); r = 1 and 1 < q < (N + 2r)=(N + r): Then there exists a unique
nonnegative solution u as above, such that u 2 C

�
[0; T ) ;Lrloc(R

N )
�
and u(:; 0) = u0:

We also �nd again the existence result of [14, Theorem 4.1] for any u0 2 Lr(RN ); r = 1, see
Proposition 3.28. Finally we improve the estimate (1.5) when q < (N + 2r)=(N + r); see Theorem
3.30.

In Section 4 we study the Dirichlet problem in a bounded domain 
:8<:
ut � ��u+ jrujq = 0; in Q
;T ;
u = 0; on @
� (0; T );
u(x; 0) = u0 = 0;

(1.6)

Here also the problem is the object of many works, such as [23], [7], [38], [8], [34]. We give decay
properties and regularizing e¤ects valid for any weak solution of the problem, in particular the
universal estimate

ku(:; t)kL1(
) 5 Ct
� 1
q�1 in (0; T ) ;

where C = C(N; q); see Theorem 4.12. And we improve the uniqueness results of [7]:
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Theorem 1.3 Assume that 
 is bounded.

(i) Let 1 < q < (N + 2)=(N + 1); and u0 2 M+
b (
): Then there exists a unique nonnegative

function u 2 C((0; T );L1 (
))\L1loc((0; T );W
1;1
0 (
)); such that jrujq 2 L1loc((0; T );L1 (
)) solution

of equation (1.1) in D0(Q
;T ) such that

lim
t!0

Z


u(:; t) dx =

Z


 du0; 8 2 Cb(
):

(ii) Let u0 2 Lr(
); r = 1; and 1 < q < (N + 2r)=(N + r): Then there exists a unique nonnegative
solution u as above, such that u 2 C ([0; T ) ;Lr(
)) and u(:; 0) = u0:

And we show the existence of solutions for any u0 2 Lr(
); r = 1; see Proposition 4.17.

In Section 5 we extend some results of section 4 to the case of the quasilinear equations (1.3),
with initial data u0 2 Lr (
) or u0 measure, and u may be a signed solution. In the case of equation

ut ��pu = 0;

with rough initial data, several local or global L1 estimates and Harnack properties have been
obtained in the last decades, see for example the pioneer works of [39], [25], [26], [31], and [24], [20]
and references therein. Regularizing properties for equation (1.2) are given in [33] in an hilbertian
context in case g = 0 or p = 2.

For this kind of problems, we combine our iteration method of Section 2 with a notion of
renormalized solution, developped by many authors [18], [33],[36], well adapted to our context of
rough initial data: we do not require that u(:; t) 2 L2(
); but we only assume that the truncates
Tk(u) of u by k > 0 lie in Lp((0; T );W 1;p(
)). We prove decay and L1 estimates of the following
type: if 
 > 0, for any r = 1; p > 1 and for example q 2 (1; N) ; then

ku(:; t)kL1(
) 5 Ct��ku0k$Lr(
); � =
1

rq
N + �+ q � 1

=
N

rq
$; (1.7)

and we deduce a universal estimate as before. If � > 0; then for any r = 1; and any p 2 (1; N) such
that p > 2N=(N + 2);

ku(:; t)kL1(
) 5 Ct�~�ku0k ~$Lr(
); ~� =
1

rp
N + p� 2

=
N

rp
~$: (1.8)

Such methods can also be extended to porous media equations, and doubly nonlinear equations
involving operators of the form u 7! ��p(jujm�1 u):

2 A Moser�s type iteration lemma

We begin by a simple bootstrap property, used for example in [39]: We recall the proof for simplicity:
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Lemma 2.1 Let ! 2 (0; 1) and � > 0; and K > 0: Let y be any positive function on (0; T ) such
that for any 0 < s < t < T

y(t) 5 K(t� s)��y!(s)
and y(t) 5 Mt�� for some M > 0: Then y satis�es an estimate independent of M : for any
t 2 (0; T )

y(t) 5 2�(1�!)�2(Kt��)(1�!)�1

Proof. We get by induction8>><>>:
y(t) 5 K2�t��y!(t=2);

y!(t=2) 5 K!22�!t��!y!
2
(t=22); :::

y!
n�1
(t=2n�1) 5 K!n�12n�!

n�1
t��!

n�1
y!

n
(t=2n);

y!
n
(t=2n) 5 2n�!nt��!nM!n :

Then
y(t) 5 K

Pn�1
k=0 $

k
t��

Pn
k=0$

k
2�

Pn
k=0(k+1)$

k)M!n+1

and going to the limit as n!1; we get the conclusion, since limM!n+1 = 1:

In the sequel we use the following iteration property:

Lemma 2.2 Let m > 1; � > 1 and � 2 R and C0 > 0. Let v 2 C([0; T ) ;L1loc(
)) be nonnegative,
and v0 = v(x; 0) 2 Lr(
) for some r = 1 such that

r >
N

m
(1�m� �); (2.1)

If r > 1 we assume that for any 0 5 s < t < T and any � = r � 1 there holds

1

�+ 1

Z


v�+1(:; t)dx+

C0
�q

Z t

s
(

Z


v�m�(:; �)dx)

1
� )d� 5 1

�+ 1

Z


v�+1(:; s)dx 51 (2.2)

where

� = �(�) = 1 +
�+ �

m
:

If r = 1 we make one of the two following assumptions:

(H1) (2.2) holds for any � = 0,
(H2)

R

 v(:; t)dx 5

R

 v0dx for any t 2 (0; T ), and v0 2 L

�(
) for some � > 1; and (2.2) holds
for any � = �� 1:
(i) Then there exists C > 0; depending on N;m; r; �; C0; and eventually �; such that for any
t 2 (0; T );

kv(:; t)kL1(
) 5 Ct��r;m;�;�kv0k
$r;m;�;�
Lr(
) ; (2.3)

where

�r;m;�;� =
1

r
�0 + �+m� 1

=
�0

r
$r;m;�;�: (2.4)

(ii) Moreover if �+m� 1 > 0; and 
 is bounded, then a universal estimate holds, with a constant
C depending on N;m; r; �; C0; j
j and eventually � : for any t 2 (0; T );

kv(:; t)kL1(
) 5 Ct�
1

m�1+� :
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Proof. (i) � Case r > 1: Let � = r � 1. From (2.2), It implies the decay:
R

 v

�+1(t)dx
is decreasing for t > s. And

R

 v

�m�(:; �)dx is �nite for almost any � 2 (s; t) : From assumption
(2.1), and � = r � 1; there holds �m� > � + 1: Replacing � by �m� � 1; taking �n ! s we haveR

 v

�m�(:; �)dx 5
R

 u

�m�(:; �n)dx for any � > �n; then

(t� �n)(
Z


v�m�(:; �n)dx)

1
� 5

Z t

�n

(

Z


v�m�(:; �)dx)

1
� dt

and alsoZ


v�+1(:; t)dx+

C0(�+ 1)

�q
(

Z t

�n

(

Z


v�m�(:; �)dx)

1
� dt 5

Z


v�+1(:; �n)dx 5

Z


v�+1(:; s)dx:

thus Z


u�+1(:; t)dx+

C0(�+ 1)

�q
(t� �n)(

Z


v�m�(:; �n)dx)

1
� 5

Z


v�+1(:; s)dx:

Then going to the limit as n ! 1; since v 2 C([0; T ] ;L1loc(
)) when �n ! s; v(:; �n) ! v(:; s) in
L1(
); and after extraction, a.e. in 
: Then from the Fatou lemma,Z



v�+1(:; t)dx+

C0(�+ 1)

�q
(t� s)(

Z


v�m�(:; s)dx)

1
� 5

Z


v�+1(:; s)dx:

Hence

kv(t)k�m�
L�m�(
)

5
�

�m

C0(�+ 1)

1

t� skv(s)k
�+1
L�+1(
)

��
; (2.5)

We start from s = 0; we have v0 2 Lr(
):
We take �0 = r � 1; thus

R

 v

�0+1(t)dx is �nite, and set �0 = 1 + (r � 1 + �) =m: We de�ne
increasing sequences (tn) ; (�n) ; (rn) ; (�n) ; by t0 = 0; r0 = r and for any n = 1;

tn = t(1� 1

2n
); rn = �n + 1; �n = 1 +

�n + �

m
; rn+1 = �nm� = (rn + �+m� 1)�:

In (2.5), we replace s; t; �; �m�; by tn; tn+1rn; rn+1; and get

kv(tn+1)kLrn+1 (
) 5
�

1

C0(m�)m
rmn+1
rn

1

tn+1 � tn

� �
rn+1

kv(tn)k
�:rn
rn+1

Lrn (
): (2.6)

It follows that

kv(tn+1)kLrn+1 (
) 5 InJnLnku0k
�n+1:r
rn+1

Lr(
) (2.7)

where

In =

n+1Y
k=1

(
rmk
rk�1

)
�n+2�k
rn+1 ; Jn =

n+1Y
k=1

�
1

tk � tk�1

� �n+2�k
rn+1

; Ln = (C0(m�)
q)
�
Pn+1
k=1

�n+2�k
rn+1 :

Since rn = �n(r + (�+m� 1)�0(1� ��n)); it is clear that

lim
�n+1r

rn+1
= $r;m;�;�; lim

1

rn+1

n+1X
k=1

�n+2�k = �r;m;�; lim

n+1X
k=1

k�1�k = �02 (2.8)
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Thus, it follows

lim Jn = 2
�
$r;m;�;�

r
�02 ; limLn = (C0(m�)

q)��r;m;�;� : (2.9)

And In has a �nite limit ` = `(N;m; r; �) as n!1: Indeed,

ln In =
m

rn+1

n+1X
k=1

�n+2�k ln rk �
1

rn+1

nX
k=0

�n+1�k ln rk =
�n+1

rn+1
(m�

n+1X
k=1

��k ln rk �
nX
k=0

��k ln rk)

and the sum S =
Pn
k=0 �

�k ln rk is �nite, since rk 5 �k(r + j�+m� 1j �0). Then In has a �nite
limit ` = `(N;m; r; �; �) = exp(r�1$r;m;�((m� � 1)S �m� ln r)): Thus we can go to the limit in
(2.7), and the conclusion follows.

� Case r = 1: If (H1) holds we can take �0 = r � 1 = 0 and the proof is done. Next assume
(H2) Then we obtain, for any 0 5 s < t < T; and a constant C as before,

kv(:; t)kL1(
) 5 C(t� s)���;m;�;�kv(:; s)k$�;m;�;�L�(
)

5 C(t� s)���;m;�kv(:; s)k$�;m;�;�(��1)=�L1(
) kv(:; s)k$�;m;�;�=�
L1(
)

5 Ckv0k
$�;m;�;�=�

L1(
)
(t� s)���;m;�kv(:; s)k$�;m;�;�(��1)=�L1(
)

Let y(t) = kv(:; t)kL1(
): We can apply Lemma 2.1 to y, with

� = ��;m;�;�; ! =
$�;m;�;�

�0
; K = Ckv0k

$�;m;�;�=�

L1(
)
; M = Ckv0k

$�;m;�;�=�
L�(
) :

Indeed ! < 1 from assumption (2.1) with r = 1. Then there holds

kv(:; t)kL1(
) 5 2�(1�!)
�2
(Kt��)(1�!)

�1
= 2�(1�!)

�2
C(1�!)

�1
t��(1�!)

�1kv0k
$�;q;�;�=�((1�!))
L1(
)

:

And we observe that �(1 � !)�1 = �1;m;�;� and $�;m;�;�=�((1 � !)) = $1;m;�;�, then with a new
constant C, now depending on �;

kv(:; t)kL1(
) 5 Ct��1;m;�;�kv0k
$1;m;�;�
L1(
)

: (2.10)

(ii) Assume that 
 is bounded, thus Lr (
) � L1 (
) : We use the result with r = 1 and obtain
(2.10), and, for any 0 < s < t < T;

kv(t)kL1(
) 5 C(t� s)��1;m;�;�kv(s)k$1;m;�
L1(
)

5 C(t� s)��1;m;� j
j$1;m;�;� kv(s)k$1;m;�;�L1(
)

where C = C(N;m; �;C0) (or C = C(N;m; �;C0; �): And $1;m;�;� < 1; because � +m � 1 > 0:
Then we can apply Lemma 2.1, and we get

kv(�)kL1(
) 5 2�1;m;�(1�$1;m;�;�)
�2
(C j
j$1;m;�;� t��1;m;�;�)(1�$1;m;�;�)�1 =M��

1
m�1+� ;8� 2 (0; T ):

with M =M(N;m; �;C0; j
j) (or M =M(N;m; �;C0; j
j ; �)).
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Remark 2.3 This lemma can be compared with the result of [34, Theorem 2.1] obtained by the
Stampacchia�s method. In order to obtain decay estimates for the solutions u of a parabolic equation
such as (1.1) or (3.18), the Moser�s method consists to take as test functions powers juj��1 u of u;
the Stampacchia�s method uses test functions of the form (u�k)+signu: If one applies to su¢ ciently
smooth solutions, both techniques leed to decay estimates of the same type. In the case of weaker
solutions, the second method supposes that the functions (u � k)+ are admissible in the equation,
which leads to assume that u(:; t) 2 W 1;2(
); see [34]. In the sequel we combine Moser�s method
with regularization or truncature of u, in order to admit powers as test functions.

3 The Hamilton-Jacobi equation in RN

3.1 Di¤erent notions of solution

The Hamilton-Jacobi equation was �rst studied with smooth initial data. Let us recall the main
results:

� For any nonnegative u0 2 C2b
�
RN
�
; from [1] there a unique global solution in C2;1(RN�[0;1))

such that
ku(:; t)kL1(RN ) 5 ku0kL1(RN ) ; kru(:; t)kL1(RN ) 5 kru0kL1(RN ) :

Some estimates of the gradient, independant of �; have been obtained for this solution, by using
the Bersnstein technique, which consists in derivating the equation, and computing the equation
satis�ed by jruj2 : �rst from [32]

kru(:; t)kq
L1(RN ) 5

ku0kL1(RN )
t

;

then from [11],

kr(u
q�1
q )(:; t)kL1(RN ) 5 Cqt

�1=2ku0k
q�1
q

L1(RN ); (3.1)


r(u(q�1)=q(:; t)



L1(RN )

5 q � 1
q

1

t1=q
; equivalently jru(:; t)jq 5 u(:; t)

t
a:e:in RN (3.2)

� For any nonnegative u0 2 Cb
�
RN
�
, from [30] there exists a unique solution such that u 2

C2;1(QRN ;1) and u 2 C(RN � [0;1)\L1(RN � (0;1)); and from [6] estimates (3.1) and (3.2) are
still valid:

In case of rough initial data u0 2 Mb(RN ) or u 2 Lr(RN ); r = 1, existence results have been
obtained in [11], [14] at section by using di¤erent formulations involving the semi-group of heat
equation. Here we consider the solutions in a weaker sense, which does not use this formulation.

De�nition 3.1 We say that a nonnegative function u is a weak solution (resp. subsolution) of
equation of (1.1) in QRN ;T ; if u 2 L1loc(QRN ;T ); and jruj 2 L

q
loc(QRN ;T ); andZ T

0

Z


(�u't � u�'+ jrujq')dxdt = 0; (resp. 5); 8' 2 D+(QRN ;T ): (3.3)
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Remark 3.2 Recall that from [16], any weak solution satis�es

u 2 L1loc(QRN ;T ); ru 2 L2loc(QRN ;T ); u 2 C((0; T );L�loc(R
N )) 8� = 1: (3.4)

Hence (3.3) is equivalent to:Z T

0

Z


(�u't +ru:r'+ jrujq')dxdt = 0;8' 2 D(QRN ;T ); (3.5)

and we have and there holds for any s; � 2 (0; T );Z
RN

u(:; �)'(:; �)dx�
Z
RN

u(:; s)'(:; s)dx+

Z �

s

Z
RN
(�u't +ru:r'+ jrujq')dxdt = 0 (3.6)

and then for any  2 C2c
�
RN
�
;Z

RN
u(:; �) dx�

Z
RN

u(:; s) dx+

Z �

s

Z
RN
(ru:r + jrujq dxdt = 0 (3.7)

In this section we study the Cauchy problem�
ut ��u+ jrujq = 0; in QRN ;T ;
u(x; 0) = u0 = 0 in RN ; (3.8)

De�nition 3.3 Let u0 2 Lrloc
�
RN
�
; r = 1:

We say that u is a weak Lrloc solution if u is a weak solution of (1.1) and the extension of u
by u0 at time 0 satis�es u 2 C

�
[0; T ) ;Lrloc(R

N
�
):

We say that u is a weak r solution of problem (3.8) if it is a weak solution of equation (1.1)
such that

lim
t!0

Z
RN

ur(:; t) dx =

Z
RN

ur0 dx; 8 2 Cc(RN ): (3.9)

De�nition 3.4 Let u0 be any nonnegative Radon measure in RN ; we say that u is a weak Mloc

solution of problem (3.8) if it is a weak solution of (1.1) such that

lim
t!0

Z
RN

u(:; t) dx =

Z
RN

 du0; 8 2 Cc(RN ); (3.10)

Remark 3.5 Obviously, any weak Lrloc solution is a weak r solution. When r = 1; the notions of
weak 1-solution and weak Mloc solution coincide. When r > 1; u is a weak Lrloc solution if and
only if it is a weak r solution and

lim
t!0

Z
RN

u(:; t) dx =

Z
RN

u0 dx; 8 2 Cc(RN ): (3.11)

Indeed if u(:; t) converges to u0 in Lrloc(R
N ) as t ! 0; then it satis�es (3.9) and (3.11). The

converse is true. Indeed let u satisfy (3.9) and (3.11). Then u(:; t) is bounded in Lrloc; there exists
tn ! 0 such that u(:; t) ! v in D0(RN ) with v 2 Lrloc: And u(:; tn) ! u0 in D0(RN ); then v = u0,
hence it is true for any t ! 0: Then for any nonnegative  2 Cc(RN ); u(:; t) ! u0 weakly and
in norm, thus strongly in Lr(RN ); thus u(:; t) converges to u0 in Lrloc(R

N ):

9



Other types of solutions using the semigroup of the heat equation have been introduced in ([14]):

De�nition 3.6 Let u0 2 Lr
�
RN
�
: A function u is called mild Lr solution of problem (3.8) if

u 2 C([0; T ) ;Lr
�
RN
�
), and jrujq 2 L1loc([0; T ) ;Lr

�
RN
�
) and

u(:; t) = et�u0 �
Z t

0
e(t�s)�jru(:; s)jqds in Lr(RN ):

Here et� is the semi-group of the heat equation acting on Lr
�
RN
�
:

De�nition 3.7 Let u0 2 M+
b (R

N ): A function u is called mild M solution of (3.8) if u 2
Cb((0; T );L

1
�
RN
�
) and jrujq 2 L1loc([0; T ) ;L1

�
RN
�
) and for any 0 < t < T;

u(:; t) = et�u0(:)�
Z t

0
e(t�s)�jru(:; s)jqds in L1(RN ); (3.12)

where et� is de�ned on M+
b (R

N ) as the adjoint of the operator et� on C0(RN ); the space of
continuous functions on RN which tend to 0 as jxj ! 1:

Remark 3.8 Every mild Lr solution is a weak Lrloc solution:

Remark 3.9 Any mild M solution is a weak Mloc solution. Indeed for any 0 < � < t < T; we
�nd

u(:; t) = e(t��)�u(:; �)�
Z t

�
e(t�s)�jru(:; s)jqds in L1(RN );

and u(:; �) 2 L1(RN ); then u is a weak solution on (�; T ) ; then on (0; T ): As t! 0; u(:; t)�et�u0(:)
converges to 0 in L1(RN ); then weakly *, and et�u0(:)! u0 weakly *, then (3.10) holds.

Another de�nition of solution with initial data measure was given in ([11]):

De�nition 3.10 Let u0 2 M+
b (R

N ): A function u is called weak semi-group solution if u 2
C((0; T );L1

�
RN
�
) and jrujq 2 L1loc([0; T ) ;L1

�
RN
�
) and for any 0 < � < t < T;

u(:; t) = e(t��)�u(:; �)�
Z t

�
e(t�s)�jru(:; s)jqds in L1(RN ); (3.13)

lim
t!0

Z
RN

u(:; t)'dx =

Z
RN

'du0; 8' 2 Cb(RN ); (3.14a)

We �rst prove that the two de�nitions coincide:

Lemma 3.11 Let u0 2M+
b (R

N ): Then

u is a mildM solution of (3.8)() u is a weak semi-group solution of (3.8).

10



Proof. (i) Let u be a mild M solution. Then clearly (3.13) holds. Moreover for any  2
C0
�
RN
�
; from the assumption on the gradient,

< et��0;  >=< �0; e
t� >=

Z
Rn
et� d�0 =

Z
RN
(u(:; t) +

Z t

0
e(t�s)�jru(:; s)jqds) dx

By approximation the relation extends to any ' 2 Cb
�
RN
�
:Z

RN
et�'d�0 =

Z
RN

u(:; t)'dx+

Z
RN
(

Z t

0
e(t�s)�jru(:; s)jqds)'dx

=

Z
RN

u(:; t)'dx+

Z t

0

Z
RN
jrujq'dxds

since the measure is bounded. And from the integrability of the gradient and the Lebesgue theorem
in L1(RN ; d�0); we deduce

lim
t!0

Z t

0

Z
RN
jrujq'dxds = 0; lim

t!0

Z
RN

et�'d�0 =

Z
RN

'd�0;

since


et�'



L1(RN ) � k'kL1(RN ) and e
t�' converges to ' everywhere as t! 0; thus (3.14a) holds.

(ii) Let u be a weak semi-group solution. Then obviously u 2 Cb((0; T );L
1
�
RN
�
): As � ! 0;

we have

lim
�!0

Z t

�
e(t�s)�jru(:; s)jqds =

Z t

0
e(t�s)�jru(:; s)jqds in L1(RN ):

Then

lim
�!0

e(t��)�u(:; �) = u(:; t) +

Z t

0
e(t�s)�jru(:; s)jqds in L1(RN ):

Moreover (3.14a) entails that that u(:; �)! u0 in S 0(RN ) and

lim
�!0

e(t��)�u(:; �) = et�u0 in S 0(RN ); (3.15)

indeed for any ' 2 S(RN );���< e(t��)�u(:; �)� et�u0; ' >
��� � ��< et�(u(:; �)� u0(:); ' >

��+ ����Z
RN
(u(x; �)((e(t��)� � et�)')(x)dx

����
�
��< et�(u(:; �)� u0(:); ' >

��
+ ku(:; �)kL1(RN )




(e(t��)� � et�)'



L1(RN )

)

and et�is continuous on S(RN ). Then for any ' 2 S(RN ); we have

< et�u0; ' >=

Z
Rn
u(:; t)'dx+

Z
Rn
(

Z t

0
e(t�s)�jru(:; s)jqds)'dx

which extends to any ' 2 C0(RN ) by density. Thus (3.12) follows.

Let us recall the main existence results using semi-groups:

11



� If 1 < q < (N + 2)=(N + 1); for any u0 2Mb(RN ); from [11], there exists a weak semi-group
solution u of problem (3.8), obtained by approximation, and u 2 C2;1(QRN ;1). The existence of
a mild M solution is also proved in [14] from the Banach �xed point theorem, and the notions
are equivalent from Lemma 3.11. In any case uniqueness results are obtained under additional
conditions of punctual or integral conditions on the gradient.

� If u0 2 Lr(RN ); r = 1; and r > N(q � 1)=(2� q); which means q < (N + 2r)=(N + r); there
exists a mild Lr solution of (3.8), and uniqueness holds in the class of pointwise mild solutions
such that u 2 C([0; T ) ;Lr

�
RN
�
) \ C((0; T );W 1;qr

�
RN
�
), from [14, Theorem 2.1]. Moreover if

q � 2, there exists a pointwise mildsolution of (3.8) for any r = 1 but uniqueness is not known for
q < 2; see [14, Theorem 4.1]. For q > 2; existence holds under the restriction that u0 is a limit of
a monotone sequence of continuous functions, and is not known in the general case.

Remark 3.12 All the de�nitions of semi-group solutions assume an integrability property of jrujq,
global in space: Observe also that (3.14a) is assumed for any ' 2 Cb(RN ). On the contrary, our
de�nitions of weak solutions are local in space, they do not require such global properties.

Finally we mention another weaker form of semi-group solutions, given in ([14]), which will be
used in the sequel:

De�nition 3.13 Let u0 2M+
b (R

N ): Then u is a pointwise mild solution of (3.8) if u 2 L1loc(QRN ;T );
and jrujq 2 L1loc(QRN ;T ); and

u(x; t) = (et�u0)(x)�
Z t

0

Z
RN

g(x� y; t� s)jru(y; s)jqdyds for a.e. (x; t) 2 QRN ;T ;

where g is the heat kernel.

Remark 3.14 For r = 1; it is clear that every mild Lr solution is a pointwise mild solution. If
u0 2 L1

�
RN
�
every pointwise mild solution is a mild L1 solution; if u0 2M+

b (R
N ), every pointwise

mild solution, is a mildM solution. see [14, Proposition 1.1 and Remark 1.2].

3.2 Decay of the norms

Next we show a decay result for the solutions of Hamilton Jacobi equations, which is valid for any
q > 1; and for all the weak solutions, with no condition of boundedness at in�nity.

When q 5 2; any weak solution u of equation (1.1) is smooth: u 2 C2;1
�
QRN ;T

�
; from [16,

Theorem 2.15]. Since it may be false for q > 2; we regularize u by convolution, setting

u" = u � %";

where (%")">0 is a sequence of molli�ers. We recall that for given 0 < s < � < T , and " small
enough, u" is a subsolution of equation (1.1); see [16]:

(u")t � ��u" + jru"jq 5 0; in QRN ;s;� (3.16)
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Theorem 3.15 Assume q > 1: Let r = 1: Let u0 2 Lr(RN ) be nonnegative. Let u be any non-
negative weak r solution of problem (3.8).

(i) Then u(:; t) 2 Lr
�
RN
�
for any t 2 (0; T ) ; andZ

RN
ur(:; t)dx 5

Z
RN

ur0dx: (3.17)

(ii) Moreover ur�1jrujq 2 L1loc([0; T ) ;L
1
�
RN
�
); and ur�2jruj2 2 L1loc([0; T ) ;L

1
�
RN
�
) if r > 1

and � > 0; and for any t 2 (0; T ) ;Z
RN

ur(:; t)dx+r

Z t

0

Z
RN

ur�1jrujqdxdt+r(r�1)�
Z t

0

Z
RN

ur�2jruj2dxdt =
Z
RN

ur0dx; if r > 1;

(3.18)Z
RN

u(:; t)dx+

Z t

0

Z
RN
jrujqdxdt =

Z
RN

u0dx; if r = 1; (3.19)

lim
t!0

Z
RN

ur(:; t)dx =

Z
RN

ur0dx: (3.20)

(iii) uq�1+r 2 L1loc(([0; T ) ;W 1;1
�
RN
�
); and if � > 0; then ur=2 2 L2loc([0; T ) ;W 1;2

�
RN
�
):

(iv) If u is a weak Lrloc solution, then u 2 C([0; T ) ;Lr
�
RN
�
):

Proof. (i) First step: case q0 > N=r: That means r = N or q is small enough: 1 < q <
N=(N � r):

Let 0 < s < � < T be �xed and " > 0 small enough. Let � > 0; and u";� = u" + �: For any
R > 0; we consider �(x) = �R(x) =  (x=R);where  (x) 2 [0; 1] ;  (x) = 1 for jxj 5 1;  (x) = 0 for
jxj = 2: Then multiplying (3.16) by ur�1";� �

� where � > 0, we get

d

dt

�
1

r

Z
RN

ur";��
�dx

�
+ (r � 1)�

Z
RN

ur�2";� jru";�j
2 ��dx+

Z
RN
jru";�jqur�1";� �

�dx

5 ��
Z
RN

ur�1";� �
��1ru";�:r�dx;

and from the Hölder inequality

�

Z
RN

ur�1";� �
��1 jru";�j jr�j dx 5

1

2

Z
RN
jru";�jqur�1";� �

�dx+ C(q; �)

Z
RN

ur�1";� �
��q0 jr�jq

0
dx;

Z
RN

ur�1";� �
��q0 jr�jq

0
dx 5

�Z
RN

ur";��
�dx

�1=r0 �Z
RN

�
�
r
�q0 jr�jrq

0
dx

�1=r
:

Choosing � = rq0 we deduce

d

dt

 �Z
RN

ur";��
�dx

�1=r!
5 C(q; �)

�Z
RN
jr�jrq

0
dx

�1=r
5 CR

N
r
�q0

where C = C(N; q; �;  ): By integration, for any 0 < s 5 � < t 5 �;�Z
RN

ur";�(:; t)�
�dx

�1=r
5
�Z

RN
ur";�(:; �)�

�dx

�1=r
+ C�R

N
r
�q0 :
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with a new constant C as above. Let R0 > 0 be �xed and take R > R0; thus Z
BR0

ur";�(:; t)dx

!1=r
5
�Z

B2R

ur";�(:; �)�
�dx

�1=r
+ C�R

N
r
�q0

Then we make successively � ! 0; and then "! 0: From (3.9), we deduce that Z
BR0

u(:; t)rdx

!1=r
5
�Z

RN
u(:; �)r��dx

�1=r
+ C�R

N
r
�q0 (3.21)

and then from (3.9) we can make � ! 0 and obtain Z
BR0

u(:; t)rdx

!1=r
5
�Z

RN
u(:; �)r��dx

�1=r
+ C�R

N
r
�q0 5

�Z
RN

ur0dx

�1=r
+ C�R

N
r
�q0

and �nally we make R!1 and then R0 !1:
Second step: case q0 < N=r: Then r < N and q = N=(N � r) > 1: Then we �x some

k 2 (1; N=(N � r)) : For any � 2 (0; 1), we have �jrujk 5 � + jrujq; hence the function

w� = �1=(k�1)(u� �t)

satis�es
(w�)t ��w� + jrw�jk 5 0

in the weak sense. Thanks to Kato�s inequality, see [21, Lemma 1], [4], we deduce that

(w+� )t ��w+� + jrw+� jk 5 0; (3.22)

in D0(QRN ;T ): And w+� has the same regularity as u; and moreover it satis�es an analogous property
to (3.9):

lim
t!0

Z
RN
(w+� )

r(:; t) dx =

Z
RN
(�1=(k�1)u0)

r dx; 8 2 Cc(RN ); (3.23)

Indeed����Z
RN
((u� �t)+)r � ur(:; t)) dx

���� 5 Z
fu=�tg

ju(:; t)� �t)r � ur(:; t)j dx+
Z
fu5�tg

ur(:; t)) dx

5 r�t

Z
RN

ur�1(:; t) dx+ Ctr

5 r�t(

Z
RN

ur(:; t)dx)1=r
0
(

Z
RN

 rdx)1=r + Ctr

then

lim
t!0

Z
RN
((u� �t)+)r � ur(:; t)) dx = 0

and (3.23) follows from (3.9) applied to �1=(k�1)u: From the �rst step we deduce that w+� (t) 2
Lr
�
RN
�
and Z

RN
(w+� )

r(:; t)dx 5 �r=(k�1)
Z
RN

ur0dx:
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Then k(u� �t)+kLr(RN ) 5 ku0kLr(RN ) : Then for any R > 0; since u 5 �t+ (u� �t)+;

ku(:; t)kLr(BR) 5 ku0kLr(RN ) + �t jBRj
r

Going to the limit as � ! 0 for �xed R; we get ku(:; t)kLr(BR) 5 ku0kLr(RN ) ; then going to the
limit as R!1 we deduce that u(:; t) 2 Lr

�
RN
�
and (3.17) holds:

(ii) Considering again u";� as above, and setting F" = jrujq � %"; there holds

(u";�)t � ��u";� + F" = 0;

then

d

dt

�Z
RN

ur";��
�dx

�
+ r(r � 1)�

Z
RN

u��1";� jru";�j2 ��dx+ r
Z
RN

F"u
�
";��

�dx

= �r
Z
RN

ur�1";� ru";�:r(�
�)dx =

Z
RN

ur";��(�
�)dx

then for any 0 < � < t < T; Z
RN

ur";�(:; t)�
�dx+ r

Z t

�

Z
RN

u�";�F"�
�dxdt

+r(r � 1)�
Z
RN

u��1";� jru";�j2 ��dx =
Z
RN

ur";�(:; �)�
�dx+

Z t

�

Z
RN

ur";��(�
�)dx

First we can go to the limit as " ! 0; because u 2 L1loc(QRN ;T ); and jruj
2 2 L1loc(QRN ;T ); and

F" ! jrujq in L1loc(QRN ;T ): Setting v� = u + �; we obtain for almost any �; t; and in fact for any
�; t by the continuity, Z

RN
vr�(:; t)�

�dx+ r

Z t

�

Z
RN

v�� jruj
q  dxdt

+r(r � 1)�
Z
RN

v��1� jruj2 ��dx =
Z
RN

vr�(:; �)�
�dx+

Z t

�

Z
RN

vr��(�
�)dx

Next we go to the limit as � ! 0 : from the Fatou Lemma we deduce that
R t
�

R
RN u

r�1 jrujq  dxdt
and (r � 1)�

R
RN u

��1 jruj2 ��dx are �nite, and then from Lebesgue we obtain the equalityZ
RN

ur(:; t)��dx+ r

Z t

�

Z
RN

u� jrujq ��dxdt

+r(r � 1)�
Z
RN

u��1 jruj2 ��dx =
Z
RN

ur(:; �)��dx+

Z t

�

Z
RN

ur�(��)dx:

Next we go to the limit as � ! 0; from (3.9). In the same way we deduce thatZ
RN

ur(:; t)��dx+ r

Z t

0

Z
RN

u� jrujq ��dxdt

+�r

Z t

0

Z
RN

u��1 jruj2 ��dx =
Z
RN

ur0(:; �)�
�dx+

Z t

�

Z
RN

ur�(��)dx
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Now u(:; t) 2 Lr
�
RN
�
for any t 2 [s; � ], andZ t

�

Z
RN

ur�(��)dx 5 C

R2
�

Z
RN

ur(�)dx

and we can make R!1. We get thatZ �

0

Z
RN

ur�1jrujqdxdt+ (r � 1)�
Z �

0

Z
RN

ur�2jruj2dxdt <1

and, from the Lebesque theorem, we deduceZ
RN

ur(:; t)dx+ r

Z t

0

Z
RN

u�jrujqdxdt+ r(r � 1)�
Z t

0

Z
RN

u��1 jruj2 dx =
Z
RN

ur0dx (3.26)

Hence (3.18) follows, which implies directly (3.20).

(iii) Setting v = um with m = (q � 1 + r)=q < r; we have jrvjq 2 L1loc([0; T ) ;L
1(RN )); and

v 2 L1((0; T );L r
m

�
RN
�
): From the Gagliardo-Nirenberg inequality, we deduce that

kv(:; t)kLq(RN ) 5 kv(:; t)k
1�k
L
r
m (RN )

krv(:; t)kkLq(RN ) ;
1

k
= 1 +

rq0

N
: (3.27)

Then by integration, for any 0 < � < T; using Hölder inequality,Z �

0

Z
RN

vq(:; t)dxdt =

Z �

0

Z
RN

uq�1+r(:; t)dxdt 5 C(�) kvk(1�k)q
L1((0;�);L

r
m (RN )

(

Z �

0

Z
RN
jrvjq dxdt)k

Then u 2 Lq�1+r(QRN ;� ); and v
q = uq�1+r 2 L1((0; �);W 1;1

�
RN
�
); v 2 Lq((0; �);W 1;q

�
RN
�
). If

� > 0; we also have ur�2 jruj2 =
��r(ur=2)��2 2 L1(QRN ;� ); and u

r=2 2 L2(QRN ;� ); then u
r=2 2

L2((0; �);W 1;2
�
RN
�
):

(iv) Here we assume that u 2 C([0; T ) ;Lrloc
�
RN
�
). First assume r > 1: Then from a diag-

onal procedure, there exists tn ! 0 such that u(:; tn) ! u0 a.e. in RN ; and ku(:; tn)kLr(RN ) !
ku0kLr(RN ), and u(:; tn) ! u0 weakly in Lr

�
RN
�
: Then it holds from any sequence, and u 2

C([0; T ) ;Lr
�
RN
�
). Next assume r = 1; let tn ! t 2 [0; T ) : We have for any p > 0;Z

RN
ju(tn)� u0j dx 5

Z
Bp

ju(tn)� u0j dx+
Z
RNnBp

ju(tn)� u0j dx

5
Z
Bp

ju(tn)� u0j dx+
Z
RNnBp

u(tn)dx+

Z
RNnBp

u0dx

=

Z
Bp

ju(tn)� u0j dx+
Z
RN

u(tn)dx�
Z
Bp

u0dx+

Z
Bp

(u(t)� u0)dx+
Z
RNnBp

u0dx

5 2
Z
Bp

ju(tn)� u0j dx+
Z
RN

u(tn)dx�
Z
RN

u0dx+ 2

Z
RNnBp

u0dx

And the result follows because
R
RNnBp u0dx! 0 as p!1; since u0 2 L1

�
RN
�
:

The decay result is also available for initial data measures, where we do not assume that
q < (N + 2)=(N + 1) :
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Theorem 3.16 Assume q > 1: Let u0 2 M+
b (R

N ) and u be any non-negative weak Mloc solution
of equation (3.8) in QRN ;T : Then u(:; t) 2 L1

�
RN
�
for any t > 0; andZ

RN
u(:; t)dx 5

Z
RN
du0: (3.28)

Moreover u 2 C((0; T );L1
�
RN
�
); jrujq 2 L1loc([0; T ) ;L1

�
RN
�
) andZ

RN
u(:; t)dx+

Z t

0

Z
RN
jrujqdxdt =

Z
RN
du0; (3.29)

and

lim
t!0

Z
RN

u(:; t)'dx =

Z
RN
'du0; 8' 2 Cb(RN ) (3.30)

Proof. We obtain in the same way, as in (3.21),Z
BR0

u(:; t)dx 5
Z
RN

u(:; t)��dx 5
Z
RN

u(:; �)��dx+ C�RN�q
0

and we can go to the limit as � ! 0 from (3.10), thenZ
BR0

u(:; t)dx 5
Z
RN
��du0 + C�R

N�q0 5
Z
RN
du0 + C�R

N�q0

Then going to the limit as R ! 1; and then as R0 ! 1; we deduce that (3.28) holds, and
we still obtain (3.29) holds. And u 2 C((0; T );L1

�
RN
�
); from the Lebesgue theorem, because

u 2 C((0; T );L1loc
�
RN
�
); and u 2 L1((0; T );L1

�
RN
�
)

Let us show (3.30): let ' 2 Cb(RN ) be nonnegative, we can assume that ' takes its values in
[0; 1] : Let tn ! 0:We know that lim

R
RN u(:; tn)dx =

Z
RN
du0: Let  p 2 D(RN ) with values in [0; 1] ;

 p(x) = 1 if jxj 5 p; 0 if jxj = 2p: Then for �xed p; lim
R
RN u(:; tn)' pdx =

Z
RN
' pdu0: Let � > 0:����Z

RN
u(:; tn)'dx�

Z
RN
'du0

����
5
����Z
RN

u(:; tn)' pdx�
Z
RN
' pdu0

����+ Z
RN
'(1�  p)du0 +

Z
RN

u(:; tn)'(1�  p)dx

and
Z
RN
(1 �  p)du0 ! 0 as p ! 1 from the Lebesgue Theorem, then for some p� we haveZ

RN
(1�  p)du0 5 �: As n!1;Z

RN
u(:; tn)(1�  p�)dx!

Z
RN
du0 �

Z
RN
 p�du0 =

Z
RN
(1�  p�)du0

Then
R
RN u(:; tn)'(1�  p�)dx 5 2p� for large n; and

�R
RN u(:; tn)' p�dx�

Z
RN
' p�du0

�
5 p� for

large n; hence we majorizate by 4�; hence the result.
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3.3 Regularizing e¤ects

Here we deduce of the decay estimates a regularizing e¤ect without any condition at 1; achieving
the proof of Theorem 1.1.

Theorem 3.17 Let q > 1: Let r = 1 and u0 2 Lr(RN ). Let u be any non-negative weak Lrloc
solution of problem (3.8) in QRN ;T (3.9). Then u(:; t) 2 L1(RN ) for any t 2 (0; T ) and

ku(:; t)kL1(RN ) 5 Ct��rq;N ku0k
$r;q;N
Lr(RN ); (3.31)

where C = C(N; q; r) and �r;q;N ; $r;q;N are given by

�r;q;N =
1

rq
N + q � 1

; $r;q;N =
rq

N
�r;q; if q < N; (3.32)

and
ku(:; t)kL1(RN ) 5 Ct�

N
2r ku0kLr(RN ); if � > 0; 2 < N: (3.33)

where C = C(N; q; r; �):

Proof. Since u is a weak Lrloc solution, then u 2 C([0; T ) ;Lr
�
RN
�
); from Theorem 3.15, thus

for any 0 5 s < T; u is a weak r solution in QRN ;s;T ; and
R
RN u

r(s)dx < 1 with r = 1; for any
s 5 t < T; and for any � = 0 such that

R
RN u

�+1(s)dx <1; applying Theorem 3.15 to u starting
at point s; denoting � = 1 + �=q; we have

1

�+ 1

Z
RN

u�+1(:; t)dx+

Z t

s

Z
RN
jr(u�)jqdxdt 5 1

�+ 1

Z
RN

u�+1(:; s)dx (3.34)

and u�(:; t) 2 Lq(QRN ;s;� ) for a.e.t.

(i) Proof of (3.31). First suppose q < N: Then from the Sobolev injection of W 1;q
�
RN
�
into

Lq
� �RN�,

1

�+ 1

Z
RN

u�+1(:; t)dx+
CN;q
�q

Z t

s
(

Z
RN

u�q
�
(:; t)dx)

q
q� )dt 5 1

�+ 1

Z
RN

u�+1(:; s)dx

so that we can apply Lemma 2.2 withm = q and � = N=(N�q) and deduce (3.31). If q = N we still
obtain (3.31), with �r;q;N = 1=(q+ r� 1) = $r;q;N=r if q > N; and �r;q;N = 1=(N(1� �) + r� 1) =
$r;q;N=r(1 � �) if q = N; where � 2 (0; 1) is arbitrary: Indeed, if q = N;then W 1;q

�
RN
�
�

Lq�
�
RN
�
for any � > 0; and Lemma 2.2 applies. If q > N; W 1;q

�
RN
�
� L1

�
RN
�
; and then

t 7! ku(:; t)k�q
L1(RN ) = ku(:; t)k

q+r�1
L1(RN ) is nonincreasing, thus for any r = 1; from (3.34),Z

RN
ur(:; t)dx+ CN;Nrt ku(:; t)kq+r�1L1(RN ) 5

Z
RN

ur0dx:

(ii) Proof of (3.33). Assume � > 0; N > 2: For any � > 0 such that
R
RN u

�+1(s)dx <1

1

�+ 1

Z
RN

u�+1(t)dx+
�
~�2
�

Z t

�

Z
RN

���r(u~�)���2 dx 5 1

�+ 1

Z
RN

u�+1(�)dx

18



where ~� = (� + 1)=2; and u~� 2 L2loc((0; �);W
1;2
�
RN
�
): From the Sobolev injection of W 1;2

�
RN
�

into L2
� �RN�, we get

1

�+ 1

Z
RN

u�+1(t)dx+
�CN
~�2

�

Z t

s
(

Z
RN

u
~�2�)2

�=2dx 5 1

�+ 1

Z
RN

u�+1(s)dx:

First suppose r > 1: Then we can apply Lemma 2.2 with C0 = (r�1)CN�; q = 2; � = N=(N�2) and
� = �1; since ~� = 1+(��1)=2, and r > N(1�2+1)=2; and obtain (3.33). Next assume r = 1: Then
u 2 C([0; T ) ;L1(RN )) \ L1loc((0; T );L1(RN )) because of estimate (3.31), then C([0; T ) ;L�(RN ))
for any � > 1; for example with � = 2; and ku(:; t)kL1(RN ) is nonincreasing, from Theorem 3.15,
hence we can still apply Lemma 2.2 on (�; t) for 0 < � < t < T

ku(:; t)kL1(RN ) 5 C(t� �)�
N
2 ku(:; �)kL1(RN ) 5 C(t� �)�

N
2 ku0kL1(RN )

Then we still obtain (3.33) with C = C(N; q; r; �):

Remark 3.18 If N 5 2 we obtain similarly that ku(:; t)kL1(RN ) 5 Ct�~�ku0k ~$Lr(RN ) with ~� =

1=r = ~$=r if N = 1; and ~� = 1=(r � 2�)= ~$=r(1� �) if N = 2:

Remark 3.19 As a consequence, for any k = 1; q < N;

ku(:; t)kLkr(RN ) 5 Ct�
�r;q
k0 ku0k

$r;q
k0 +

1
k

Lr(RN ) ; (3.35)

ku(:; t)kLkr(RN ) 5 Ct�
N
2rk0 ku0kLr(RN ); if � > 0: (3.36)

Indeed it follows from (3.17) and (3.31), (3.33) by interpolation

ku(:; t)kLkr(RN ) 5 ku(:; t)k1=k
0

L1(RN )
ku(:; t)k1=k

Lr(RN ):

Remark 3.20 If q 5 2; then u 2 C2;1
�
QRN ;T

�
; from the regularity result of [16, Theorem 2.12].

In this case we do not need to introduce the regularization by u"; we only need to introduce
u+ �; when r > 1 and make � ! 0:

In case of initial data measures, we obtain in the same way:

Theorem 3.21 Assume q > 1: Let u0 2 M+
b (R

N ) and u be any non-negative weak Mloc solution
of equation (3.8) in QRN ;T :Then

ku(:; t)kL1(RN ) 5 Ct��1;q(

Z
RN
du0)

$1;q ;

where �1;q; $1;q are given at (3.32), and C = C(N; q). Moreover if � > 0; with C = C(N; q; �);

ku(:; t)kL1(RN ) 5 Ct�
N
2

Z
RN
du0: (3.37)

19



Proof. Taking � > 0; we have for any t = �;

ku(:; t)kL1(RN ) 5 C(t� �)��1ku(:; t)k�2
L1(RN ) 5 C(t� �)��1(

Z
RN
du0)

�2

and then we make "! 0 and deduce the estimate. If � > 0; we also obtain for t > s > 0

ku(:; t)kL1(RN ) 5 C(t� s)�
N
2

Z
RN

u(:; s)dx

and going to the limit as s! 0; we deduce (3.37).

Remark 3.22 Up to now, the decay estimate (3.17) and the L1 estimate (3.31) of u were proved
in case u0 2 Cb

�
RN
�
\Lr

�
RN
�
and for the unique bounded solution u of problem (3.8), and based

on the estimate (3.2) given in [14, Theorem 5.6]; indeed (3.31) follows from the Gagliardo-Nirenberg
estimate:

ku(:; t)kL1(RN ) 5 kru(:; t)k
N

N+r

L1(RN )ku(:; t)k
r

N+r

Lr(RN ) 5 C(q; r)ku(:; t)k
N

q(N+r)

L1(RN )ku0k
r

N+r

Lr(RN ):

3.4 Further estimates and convergence results for q 5 2:
Here we consider the case 1 < q 5 2: From the L1 estimates above, and the interior regularity of
u; we deduce new local estimates and convergence results:

Corollary 3.23 Assume 1 < q 5 2:
(i) Any nonnegative weak Lrloc solution (resp. Mloc solution) u of problem (3.8) with initial

data u0 2 Lr(RN ); r = 1 (resp. u0 2M+
b (R

N )) satis�es u 2 C2;1(QRN ;T ) \ L1loc((0; T ) ;Cb(RN )):

(ii) Let (u0;n) be any bounded sequence in Lr(RN ); r = 1 (resp. in M+
b (R

N )): For any n 2 N;
let un be any nonnegative weak Lrloc solution (resp. Mloc solution) of problem (3.8) with initial
data u0;n: Then one can extract a subsequence converging in C

2;1
loc (QRN ;T ) to a weak solution u of

(1.1) in QRN ;T .

Proof. From [16, Theorem 2.16] there there exists 
 2 (0; 1) such that for any nonnegative
weak solution of equation (1.1) u in QRN ;T and any ball BR � RN ; and 0 < s < � < T;

kukC2+
;1+
=2(QBR;s;� ) 5 C�(kukL1(QB2R;s=2;� )):

where C = C(N; q;R; s; �) and � is a continuous increasing function. From estimates (3.31), (3.37),
we deduce that u 2 L1loc((0; T ) ;Cb(RN )) and

kukC2+
;1+
=2(QBR;s;� ) 5 C�(ku0kLr(RN )); (resp. kukC2+
;1+
=2(QBR;s;� ) 5 C�(

Z
RN

du0) (3.38)

and the conclusions follow.

We also deduce global gradient estimates in RN :
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Corollary 3.24 Assume 1 < q 5 2 (i) Let u0 2 Lr(RN ); r = 1: Then any weak Lrloc solution u of
problem (3.8) satis�es

kru(:; t)kL1(RN ) 5 Ct�#r;qku0k
{r;q
Lr(RN ); (3.39)

#r;q =
N + r

rq +N(q � 1) ; {r;q =
r

rq +N(q � 1)

and jrujq 2 L1loc((0; T );Lr(RN )); andZ
RN
jru(:; t)jqr dx 5 Cqt

�r( q
2
+�r;q(q�1))ku0k(1+$r;q(q�1))rLr(RN ) (3.40)

And for � > 0;

kru(:; t)kL1(RN ) 5 Ct
� 1
q
(N
2r
+1)ku0k

1
q

Lr(RN ); (3.41)Z
RN
jru(:; t)jqr dx 5 Cqt

�r( q
2
+N
2r
(q�1))ku0kqrLr(RN ); (3.42)

moreover if q < 2; u is a pointwise mild solution.

(ii) Let u0 2M+
b (R

N ): Then any weakMloc solution of (3.8) satis�es

kru(:; t)kL1(RN ) 5 Ct�#1;q(

Z
RN
du0)

{1;q ;

and jruj 2 L1loc((0; T );Lq(RN ); and for � > 0;

kru(:; t)kL1(RN ) 5 Ct
� 1
q
(N
2
+1)
(

Z
RN
du0)

1=q:

As a consequence, in any case u is de�ned on (0;1).

Proof. (i) Let u0 2 Lr(RN ); r = 1: Then for any � > 0; u(:; �) 2 Cb(RN ); from Corollary
3.23. From [30], u is the unique solution v such that v 2 C2;1

�
RN � (�; T )

�
\ Cb

�
RN � [�; T )

�
,

and v(:; �) = u(:; �); since v 2 C2b
�
RN � (�; T

�
); we deduce that u 2 C2b

�
RN � (0; T

�
); and for any

� 5 t < T;

ku(:; t)kL1(RN ) 5 ku(:; �)kL1(RN ); kru(:; t)kL1(RN ) 5 kru(:; �)kL1(RN );

and

jru(:; t)jq 5 Cq
u(:; t)

t� � ; a.e. in RN : (3.43)

From the decay estimates, we also have ku(:; �)kLr(RN ) 5 ku0kLr(RN ): And u(:; �) 2 L~r(RN ) for any
~r 2 [r;1] ; and u 2 C([�; T ) ;L~r(RN )): Going to the limit in (3.43) as �! 0; we deduce (3.39) from
(3.31), and (3.41) from (3.33). Moreover jrujq 2 L1loc((0; T );Lr(RN )); since

kru(:; t)kLqr(RN ) 5 Ct�1=qku0k1=qLr(RN ):
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More precisely we get from estimate (3.1),

kr(u
q�1
q (:; t)kL1(RN ) 5 Cq(t� �)�1=2ku(:; �)k

q�1
q

L1(RN )

then from estimate (3.33), for any t 2 (0; T ) ; with other constants Cq;

kr(u
q�1
q (:; t)kL1(RN ) 5 Cqt

�1=2ku(:; t
2
)k

q�1
q

L1(RN )

jru(:; t)jq 5 Cqt
�q=2ku(:; t

2
)kq�1
L1(RN )u(:; t);

then from estimate (3.31) we getZ
RN
jru(:; t)jqr dx 5 Cqku0k$r;q(q�1)rLr(RN ) t�r(

q
2
+�r;q(q�1))

Z
RN

u(:; t)rdx

then (3.40) follows.

Assume that � > 0; then (3.42) follows from (3.33). Moreover, from [30, Theorem 6], u(:; t) 2
C2b (R

N ) for any t 2 (�; T ) ; in particular u(:; 2�) 2 C2b (RN ); then for any t = �; and any x 2 RN ;

u(x; t) = e(t�2�)�u(x; 2�)�
Z t

2�

Z
RN

g(x� y; t� s)jru(y; s)jqdyds; (3.44)

see for example [6, Proposition 4.2 ]. But u(x; 2�) converges to u0 in Lr(RN ); and then e(t�2�)�u(:; �)
converges to et�u0 in Lr(RN ): Then we can go to the limit as � ! 0 in (3.44), for a.e. x 2 RN :
the integral is convergent, then u is a pointwise mild solution.

(ii) For Theorem 3.16, we have u(:; t) 2 L1(RN ) for t = � > 0; which gives from (i)

ku(:; t)kL1(RN ) 5 C(t� ")��1;qku(:; �)k$1;q
L1(RN ) 5 C(t� ")��1;q(

Z
RN
du0)

$1;q

and then we go to the limit as �! 0: And jruj 2 L1loc((0; T );Lq(RN ); since

kru(:; t)kLq(RN ) 5 Ct�1=q(

Z
RN
du0)

1=q:

And the estimates (3.40) and (3.42) hold with r = 1 and ku0kL1(RN ) replaced by
Z
RN
du0:

3.5 Existence and uniqueness results for q � 2
Let u0 2 Lr(RN ); r = 1: We �rst consider the subcritical case q < (N + 2r)=(N + r), equivalently
q < 2 and r > N(q � 1)=(2� q):

Theorem 3.25 Let u0 2 Lr(RN ); r = 1: Suppose 1 < q < (N + 2r)=(N + r). Then any weak Lrloc
solution u of problem (3.8) satis�es

jrujq 2 L1loc([0; T ) ;Lr(RN )): (3.45)

And
u is a weak Lrloc solution() u is a mild Lr solution.
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Proof. Let u be any weak Lrloc solution. Then from (3.40),Z �

0
kru(:; t)kq

Lqr(RN ) dt =

Z �

0
(

Z
RN
jru(:; t)jqr dx)

1
r dt 5 C

Z �

0
t�(

q
2
+�r;q(q�1))dt

with C = Cqku0k(1+$r;q(q�1))rLr(RN ) ; and q=2 + �r;q(q � 1) < 1 is equivalent to q < (N + 2r)=(N + r);
if � > 0, the estimate (3.42) leads to the same conclusion, since q=2 + (q � 1)N=2r < 1 is still
equivalent to q < (N + 2r)=(N + r): Then (3.45) holds. Moreover from Corollary 3.24, u is a mild
pointwise solution:

u(:; t) = et�u0(:)�
Z t

0

Z
RN

g(x� y; t� s)jru(y; s)jqdyds; (3.46)

and u 2 C([0; T ) ;Lr
�
RN
�
) from Theorem 3.15, and f = jrujq 2 L1loc([0; T ) ;L

r(RN )); thus the
relation (3.46) holds in Lr(RN );

u(:; t) = (et�u0)�
Z t

0
e(t�s)� jru(:; s)jq (s)ds in Lr(RN ); (3.47)

that means u is a mild Lrsolution. Conversely it is clear that any mild Lrsolution is a weak Lrloc
solution:

Next we deduce the uniqueness results of Theorem 1.2.

Theorem 3.26 Let u0 2 Lr(RN ): Assume 1 < q < (N + 2r)=(N + r); or q = 2: Then there exists
a unique weak Lrloc solution u of problem (3.8). In the �rst case, u 2 C((0; T );W 1;qr(RN )):

Proof. (i) Case 1 < q < (N + 2r)=(N + r): From [14, Theorem 2.1], there exists a mild
Lr solution, then it is a Lrloc solution. Let us show the uniqueness. Let u be any weak Lrloc
solution, thus u is a mild Lr solution, from Theorem 3.25. And u 2 L1((0; T );Lr(RN )) from
Theorem 3.15, and u 2 L1loc((0; T );W 1;qr

�
RN
�
), since jruj 2 L1loc((0; T );Lqr

�
RN
�
) from Theorem

3.25 and u 2 L1loc((0; T );L
qr
�
RN
�
) by interpolation. . Then we enter in the class of uniqueness

u 2 L1loc((0; T );W
1;qr
�
RN
�
) required in [14, Lemma 2.2 and Remark 2.5]. Thus u is unique, and

satis�es u 2 C((0; T );W 1;qr(RN )); from [14, Theorem 2.1].

(ii) Case q = 2: From [14, Theorem 4.2] there exists a unique solution u such that u 2
C([0; T ) ;Lr

�
RN
�
) \ u 2 C2;1(

�
QRN ;1

�
solution of (1.1) at each point. Then it is a weak Lrloc

solution. Reciprocally any weak Lrloc solution u satis�es the conditions above, from Theorem 3.15
and [16, Theorem 2.16].

Theorem 3.27 Assume that 1 < q < (N + 2)=(N + 1): Let u0 2 M+
b (R

N ): Then there exists a
unique weakMloc solution of problem (3.8).

Proof. The existence of a weak semi-group solution was obtained in [11] by approximation.
The existence of a mild M solution was proved in [14, Theorem 2.2], and the two notions are
equivalent from Lemma 3.11. In any case the solution is a weak Mloc solution. Next consider
any solution Mloc solution u. Then u(:; t) 2 L1(RN ) for any t 2 (�; T ) by applying theorem
3.17 from �=2. Then again we deduce u(:; �) 2 Cb(RN ); then (3.43). From Theorem 3.15 we
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obtain again that u 2 L1loc((0; T );W 1;q
�
RN
�
): And moreover from the uniqueness after �; we have

u 2 C((�; T );W 1;q
�
RN
�
) from Theorem 3.26. Then u 2 C((0; T );W 1;q

�
RN
�
): And u satis�es

(3.30) from Theorem 3.16. Then u is a weak semi-group solution, then a mild M solution from
Lemma 3.11. Then we enter the class of uniqueness of [14, Theorem 2.2]. We can also prove the
uniqueness directly: if u1; u2 are two solutions, since they are mildM solutions, we have

(u1 � u2)(:; t) =
Z t

0
e(t�s)�(jru1(:; s)jq � jru2(:; s)jq)ds

and we know that jruj jq 2 C((0; T );Lr(RN )); hence

kr(u1 � u2)(:; t)kLqr(RN ) 5
Z t

0




r(e(t�s)�)



L1(RN )

kjru1(:; s)jq � jru2(:; s)jqkLqr(RN ) ds

5 C

Z t

0
(t� s)�1=2 max

j=1;2
kruj(:; s)kq�1L1(RN ) kr(u1 � u2)(:; s)kLqr(RN ) ds

5 C

Z t

0
(t� s)�1=2s�(q�1)#1;q kr(u1 � u2)(:; s)kLqr(RN ) ds

and we can apply the singular Gronwall lemma when 2 < (q � 1)#1;q; which means precisely
q < N+2

N+1 : Then r(u1 � u2)(:; t) = 0 in L
qr
�
RN
�
; hence u1 = u2:

Finally we give a short proof of the existence result of [14, Theorem 4.1].

Proposition 3.28 Let 1 < q < 2. For any nonnegative u0 2 Lr(RN ); r � 1; there exists a mild
pointwise solution u of problem (3.8), and u 2 C([0; T ) ;Lr

�
RN
�
).

Proof. Let u0;n = min(u0; n): Then u0;n 2 L�(RN ) for any � � r: Choosing � > N(q�1)=(2�q);
that means q < q�; from [14, Theorem 2.1], there exists a mild L� solution un with initial data
u0;n; and un 2 C((0; T );C2b (RN )) \ C2;1(QRN ;T ): Then (un) is nondecreasing from the comparison
principle, and un(:; t) � et�u0 � Ct�N=2r ku0kLr(RN ) : From Corollary 3.23, (un) converges in

C2;1loc (QRN ;T ) to a weak solution u of (1.1) in QRN ;T , and u(:; t) � et�u0: Moreoever (jrunjq) is
bounded in L1loc

�
[0; T ) ;L1loc(R

N )
�
: indeed for any � 2 D+(RN ); with values in [0; 1] ; and any

0 < s < t < T;Z
RN

un(t; :)�
q0dx+

Z t

s

Z
RN
jrunjq�q

0
dx 5 �q0

Z t

s

Z
RN

�1=(q�1)run:r�dx+
Z
RN

un(s; :)�
q0dx

5 1

2

Z t

s

Z
RN
jrunjq�q

0
dx+ Ct

Z
RN
jr�jq0dx+

Z
RN

un(s; :)�
q0dx

and un 2 C([0; T ) ;L�
�
RN
�
); thus we can go to the limit as s! 0 :Z

RN
un(t; :)�

q0dx+
1

2

Z t

s

Z
RN
jrunjq�q

0
dx 5 Ct

Z
RN
jr�jq0dx+

Z
RN

u0�
q0dx:

Thus jrujq 2 L1loc
�
[0; T ) ;L1loc(R

N )
�
; hence, from [16, Proposition 2.11], u admits a trace as

t ! 0 : there exists a Radon measure �0 in RN ; such that u(:; t) converges weakly* to �0: And
et�u0 converges to u0 in Lr(RN ); thus �0 2 L1loc(R

N ) and 0 � �0 � u0; and un � u; thus
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u0;n � �0; hence �0 = u0: Also there exists a function g 2 Lr(RN ) such that u(:; t) 5 g for small
t: Then the nonnegative function et�u0 � u(:; t) converges weakly* to 0; and then in L1loc(R

N ):
Hence u(:; t) converges to u0 in L1loc(R

N ); then in Lr(
) from the Lebesgue theorem. Thus u 2
C([0; T ) ;Lr

�
RN
�
). In particular u is a weak Lrloc solution, then a pointwise mild solution, from

Corollary 3.24.

Remark 3.29 The uniqueness of the solution is still an open problem when u0 2 Lr(RN ) and
q = (N + 2r)=(N + r):

3.6 More decay estimates for q < (N + 2r)=(N + r)

Here, we exploit theorem 3.15 to obtain a better decay estimate of the Lr norm when u0 2 Lr(RN )
and q < (N + 2r)=(N + r); which appears to be new for r > 1: In case r = 1 we �nd again the
result of [2], proved under the assumption that the energy relation (3.29) holds.

Theorem 3.30 Let r = 1 and 1 < q < (N+2r)=(N+r): Let u be any non-negative weak r solution
of problem (3.8) with u0 2 Lr(RN ). Then there exists C = C(N; q; r) such that for any t 2 (0; T )Z

RN
ur(:; t)dx � C(

Z
fjxj>

p
tg
ur0(x)dx+ t

�ar�N
2 ); a =

2� q
q � 1 : (3.48)

As a consequence, limt�!1 ku(t)kLr(RN ) = 0 and

r

Z 1

0

Z
RN

ur�1jrujqdxdt+ r(r � 1)�
Z 1

0

Z
RN

ur�2jruj2dxdt =
Z
RN

ur0dx:

Proof. We still consider v = um with m = (q � 1 + r)=q < r: Let E(s) =
R
RN u

r(:; s)dx; thus
from the energy relation (3.18) of theorem 3.15, E 2W 1;1((0; T )) and for almost any s 2 (0; T );

E0(s) = �r(r � 1)
Z
RN
jruj2ur�2(:; s)dx�

Z
RN
jrujqur�1(:; s)dx � 0:

Next, we set E = E1+E2 with E1(s) =
R
fjxj<2Rg u

r(x; s)dx; E2(s) =
R
fjxj�2Rg u

r(x; s)dx: From the
Gagliardo-Nirenberg inequality (3.27), we obtain successively

E1(s) =

Z
fjxj<2Rg

v
r
m (x; s)dx �

 Z
fjxj<2Rg

vq(x; s)dx

! r
mq

(2R)
1� r

mq

5 Ckrv(s)k
kr
m

Lq(RN )kv(s)k
(1�k)r
m

Lr=m(RN )R
N(1� r

mq
)

5 1

2
kv(s)k

r
m

Lr=m(RN ) + C(N; q; r)krv(s)k
kr
m

Lq(RN )R
N
k
(1� r

mq
)
;

thus
E(s) 5 C(krv(s)k

r
m

Lq(RN )R
N
k
(1� r

mq
)
+ 2E2(s)): (3.49)

Consider two smooth cut-o¤ functions ', � with values in [0; 1] ; such that ' = 1 in B1; with support
in B2, and � = 1 � ', and put 'l(x) = '(xl ); �R(x) = �( xR). As in the �rst step of theorem 3.15,
we obtain for any 0 < � < s < t < T , and l > 2R,�Z

RN
ur(:; s)'�l �

�
Rdx

� 1
r

�
�Z

RN
ur(:; �)'�l �

�
Rdx

� 1
r

+ C(s� �)(R
N
r
�q0 + l

N
r
�q0); (3.50)

25



with � = rq0 Noting that our assumption on q implies N < rq0. As � ! 0 and l!1. we deduce�Z
RN

ur(x; s)�Rdx

� 1
r

�
�Z

RN
ur0(x)�Rdx

� 1
r

+ CsR
N
r
�q0 ;

hence, taking R =
p
t, and setting

� = r +
N � rq0
2

=
(N + 2r)� q(N + r)

2(q � 1) =
ar �N
2

;

we �nd

E2(s) � A(t) = C

 Z
fjxj>

p
tg
ur0(x)dx+ t

��

!
;

where with a new constant C: Next, we set F (s) = E(s) � 2A(t): Either there exists t0 2 (0; t)
such that F (t0) � 0, then F (s) � 0; 8s 2 (t0; t); thus by continuity, E(t) � 2A(t); hence (3.48)
holds. Or F (s) > 0, 8s 2 (0; t): Since

�F 0(s) �
Z
RN
jrujqur�1(x; s)dx =

Z
RN
jrv(x; s)jqdx (3.51)

it follows from (3.49) that F (s) 5 C(�F 0(s))
r
mq t

N
2k
(1� r

mq
)
: Thus by integration

C(t� s)t�
N
2k
(1� r

mq
) 5 F (t)�

q�1
r � F (s)

q�1
r :

Then as s �! 0 we get F (t) 5 Ct��; since � = r=(q � 1)�N=2k, and (3.48) still holds.

Remark 3.31 The case r = 1 has been the object of many works, assuming that u0 2 L1(RN ) \
W 1;1(RN ): There holds limt�!1 ku(t)kL1(RN ) = 0 if and only if q � (N +2)=(N +1); see [1], [11],
[3], [29]. When q < (N + 2)=(N + 1), the absorption plays a role in the asymptotics. From [9], if
limjxj!1 jxja u0(x) = 0; then u(:; t) converges as t ! 1 to the very singular solution constructed
in [35], [12]. In that case

R
RN u(:; t)dx behaves like t

�(a�N)=2 for large t; and estimate (3.48) is
sharp: If q > (N + 2)=(N + 1); and u0 2 L1(RN ); then u(:; t) behaves as the fundamental solution
of heat equation, see [9].

Our result is new when u0 2 Lr(RN ); r > 1 and u0 62 L1(RN ): When q > (N + 2)=(N + 1);
and u0 is bounded and behaves like jxj�b as jxj ! 1 with b 2 (a;N); it has been shown that u(:; t)
behaves as the selfsimilar solution of the heat equation with initial data jxj�b ; see [17]. In that case
u0 2 Lr(RN ) for any r > N=b and

R
RN u

r(:; t)dx behaves like t�(br�N)=2. Thus (3.48) is sharp as
b! a:

4 The Dirichlet problem in Q
;T

Here we study equation (1.1) in case of a regular bounded domain 
; with Dirichlet conditions on
@
� (0; T ); with � = 1 :

(D
;T )

�
ut ��u+ jrujq = 0; in Q
;T ;
u = 0 on @
� (0; T ); (4.1)
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Let us recall some well-known results in case of smooth initial data. For any nonnegative
u0 2 C10

�


�
, there exists a unique solution u 2 C2;1 (
� (0;1))\ C

�

� [0;1)

�
; such that

jruj 2 C
�

� [0;1)

�
: Universal a priori estimates are given in [23]: there exists a constant C > 0

and a function D 2 C((0;1) such that

u(:; t) 5 C(1 + t�1=(q�1))d(x; @
); jru(:; t)j 5 D(t): (4.2)

The estimate on u is based on the construction of supersolutions, and the estimate of the gradient
is deduced from the �rst one by the Bernstein technique.

As in section 3, we study the problem with rough initial data, and introduce di¤erent notions
of solutions.

4.1 Solutions of the heat equation with L1 data

In the following, since the regularization used at Section does not provide estimates up to the
boundary, thus we use another argument: the notion of entropy solution, introduce din [36], for
the problem 8<:

ut ��u = f; in Q
;s;� ;
u = 0 on @
� (s; �);
u(:; s) = us = 0

(4.3)

when f and us are integrable, that we recall now. For any k > 0 and � 2 R; we de�ne as usual the
trucation fonction Tk and a primitive �k by

Tk(�) = max(�k;min(k; �)); �k(s) =

Z r

0
Tk(�)d�: (4.4)

De�nition 4.1 Let s; � 2 R with s < �; and f 2 L1(Q
;s;� ) and us 2 L1(
): A function
u 2 C([s; � ] ;L1(
)) is an entropy solution of the problem (4.3) if and for any k > 0; Tk(u) 2
L2((s; �) ;W 1;2

0 (
)) andR

�k(u� ')(:; �)dx�

R

�k(us � '(:; s)dx+

R �
s h't; Tk(u� ')idt

+
R �
s

R

(ru:rTk(u� ')� fTk(u� ')dxdt � 0

(4.5)

for any ' 2 L2((s; �);W 1;2(
)) \ L1 (Q
;� ) such that 't 2 L2((s; �);W�1;2(
)).

Other notions of solutions have been used for this problem, see [7], recalled below. In fact
they are equivalent: here et� denotes the semi-group of the heat equation with Dirichlet conditions
acting on L1 (
) ;

Lemma 4.2 Let -1 < s < � < 1; f 2 L1(Q
;s;� ), us 2 L1(
) and u 2 C([s; � ] ;L1(
));
u(:; s) = us: Then denoting the three properties are equivalent:

(i) u is a weak solution of problem (4.3) in Q
;s;� ; that means u 2 L1loc((s; �);W
1;1
0 (
)) and

ut ��u = f; in D0(Q
;s;� ); (4.6)

27



(ii) u is a mild solution of (4.3), that means, for any t 2 [s; � ] ;

u(:; t) = e(t�s)�us +

Z t

s
e(t��)�f(�)d� in L1 (
) ; (4.7)

(iii) u is an entropy solution of (4.3).

Such a solution exists, is unique, and will be called weak solution of (4.3).

Proof. It follows from the existence and uniqueness of the solutions of (i) from [4, Lemma 3.4],
as noticed in [7], and of the entropy solutions, see [18].

As a consequence, when u is bounded, we can admit test functions of the form u� :

Lemma 4.3 Let s; � 2 R with s < �; and f 2 L1(Q
;s;� ) and u be any nonnegative bounded weak
solution in Q
;s;� of (4.3).

Then for any � > 0, we have u��1 jruj2 2 L1(Q
;s;� ) and

1

�+ 1

Z


u�+1(:; �))dx+ �

Z Z
Q
;s;�

u��1 jruj2 dxdt = 1

�+ 1

Z


u�+1(:; s))dx+

Z �

s

Z


fu�dxdt:

(4.8)

Proof. There holds u 2 L2((s; �);W 1;2
0 (
)) \ L1 (Q
;s;� ) ; and ut 2 L2((s; �);W�1;2(
)) +

L1 (Q
;s;� ) ; then any function ' 2 L2((s; �);W 1;2
0 (
))\L1 (Q
;s;� ) is admissible in equation (4.6).

In particular for any � > 0, we can take ' = M�;�(u) = (u+ �)� � ��; with � > 0: Integrating on
[s; � ] we deduce thatZ �

s
< ut; ' > +�

Z Z
Q
;s;�

(u+ �)��1 jruj2 dxdt =
Z �

s

Z


fM�;�(u)dxdt:

Let k > 0 such that supQ
;s;� u 5 k; thus u = Tk(u): Moreover the function � 7! M(�) = (Tk(�) +

�)�� �� is continuous on R+and piecewise C1 such that M(0) = 0 and M 0 has a compact support.
Denoting M�;�(r) = (u + �)�+1=(� + 1) � ��u; we can integrate by parts from [28, Lemma 7.1],
and deduce thatZ


M�;�(u)(:; �))dx�

Z


M�;�(u)(:; s))dx+�

Z Z
Q
;s;�

(u+�)��1 jruj2 dxdt =
Z �

s

Z


fM�;�(u)dxdt

and then we go to the limit as � ! 0 from the Fatou Lemma and then from the Lebesgue theorem.
Thus (4.8) holds for � > 0:

Remark 4.4 From [28], the notion of entropy solution of (4.3) is also equivalent to the notion of
renormalized solution, that we develop in Section 5. Lemma 4.3 is a special case of a much more
general property of the truncates when u is not necessarily bounded, see Lemma 5.4.
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4.2 Di¤erent notions of solutions of problem (D
;T )

De�nition 4.5 We say thay u is a weak solution of the problem (D
;T ) if u 2 C((0; T );L1 (
))\
L1loc((0; T );W

1;1
0 (
)); such that jrujq 2 L1loc((0; T );L1 (
)) and u satis�es

ut ��u+ jrujq = 0; in D0(Q
;T ): (4.9)

Next we study the Cauchy problem8<:
ut ��u+ jrujq = 0; in Q
;T ;
u = 0 on @
� (0; T );
u(x; 0) = u0 = 0

(4.10)

with u0 2 Lr (
) ; r = 1; or only u0 2M+
b (
): Here in any case u0 2M

+
b (
):

De�nition 4.6 If u0 2 Lr(
); r = 1; we say that u is a weak Lr solution of problem (4.10) if it is
a weak solution of (D
;T ), such that the extension of u by u0 at time 0 satis�es u 2 C ([0; T ) ;Lr(
)):

De�nition 4.7 For any u0 2 M+
b (
); we say that u is a weak M solution of problem (4.10) if it

is a weak solution of (D
;T ), such that

lim
t!0

Z


u(:; t) dx =

Z


 du0; 8 2 Cb(
): (4.11)

Some semi-group notions of solutions have been introduced in [7], for any nonnegative u0 2
M+

b (
): Here e
t�u0 =

R

 g
(:; y; t)du0(y); where g
 is the heat kernel with Dirichlet conditions on

@
:

De�nition 4.8 For any u0 2 M+
b (
); a function u is a mild solution of problem (4.10) if

u 2 C((0; T );L1 (
)), and jrujq 2 L1loc([0; T ) ;L1 (
)) and

u(:; t) = et�u0(:)�
Z t

0
e(t�s)�jru(:; s)jqds in L1 (
) ; (4.12)

Remark 4.9 As it was shown in [7, p.1420], from Lemma 4.2, u is a mild solution if and only if
u is a weakM solution such that jrujq 2 L1loc([0; T ) ;L1 (
)); and then u 2 L1loc([0; T ) ;W

1;1
0 (
)):

Remark 4.10 As in Remark 3.12, the de�nition of mild solution requires an integrability property
of the gradient up to time 0, namely jrujq 2 L1loc([0; T ) ;L

1 (
)): The de�nition of weak solution
only assumes that jrujq 2 L1loc((0; T );L1 (
)):

4.3 Decay and regularizing e¤ect

Here 
 is bounded, then the situation is simpler than in RN , because we take bene�t of the
regularizing e¤ect of the semi-group et� associated with the �rst eigenvalue �1 of the Laplacian,
and also since Lr(
) � L1(
):
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Lemma 4.11 Let q > 1; and u0 2 Lr(
); r = 1: 1) Let u be any non-negative weak Lr -solution
of problem (4.10).

(i) Then u(:; t) 2 L1(
) for any t > 0; and

ku(:; t)kLr(
) 5 Ce��1tku0kLr(
); ku(:; t)kL1(
) 5 Ct�
N
2r e��1tku0kLr(
): (4.13)

(ii) Moreover jrujq 2 L1loc([0; T ) ;L1 (
)); andZ


u(:; t)dx+

Z t

0

Z


jrujqdxdt 5

Z


u0dx: (4.14)

If r > 1; then ur�1jrujq 2 L1loc([0; T ) ;L1 (
)); we have ur�2jruj2 2 L1loc([0; T ) ;L1 (
)) and

1

r

Z


ur(:; t)dx+

Z t

0

Z


ur�1jrujqdxdt+ (r � 1)

Z t

0

Z


ur�2jruj2dxdt = 1

r

Z


ur0dx; (4.15)

As a consequence, uq�1+r 2 L1loc(([0; T ) ;W
1;1
0 (
)):

2) Let u0 2 M+
b (
) and u be any non-negative weak M solution of problem (4.10). Then (4.13)

and (4.14) still hold as in case u0 2 L1(
); where the norm ku0kL1(
) is replaced by
Z


du0: In

particular u is a mild solution.

Proof. 1) (i) Let 0 < � < � < T: Since u is a weak solution of (D
;T ), we can apply Lemma 4.2
with f = �jrujq in Q
;�;� : Thus u is a mild solution of the problem in Q
;�;� : for any t 2 [�; � ] ;

u(:; t) = e(t��)�u(:; �)�
Z t

�
e(t��)�jrujqd� in L1 (
) :

thus u(:; t) 5 e(t��)�u(:; �): From our assumptions u 2 C ([0; T ) ;Lr(
)); thus we deduce u(:; t) 5
et�u0 as �! 0: Then (4.13) follows.

(ii) The function u is bounded in Q
;s;� ; thus from Lemma 4.3, for any � > 1;

1

�

Z


u�(:; t)dx+

Z t

�

Z


u��1jrujqdxdt+ (�� 1)

Z t

�

Z


u��2jruj2dxdt = 1

�

Z


u�(:; �)dx: (4.16)

and we make �! 1: From Fatou Lemma we deduce that jrujq 2 L1 (Q
;�;� ) andZ


u(:; t)dx+

Z t

�

Z


jrujqdxdt 5

Z


u(:; �)dx:

As �! 0 we deduce that jrujq 2 L1 (Q
;� ) and (4.14) holds. If r > 1; we can take � = r in (4.16)
and obtain (4.15) as �! 0. Then uq�1+r 2 L1loc(([0; T ) ;W

1;1
0 (
)) as in the case of RN :

2) The same estimates hold because lim�!0 ku(:; �)kL1(
) =
Z


du0:
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Theorem 4.12 Let q > 1 and u0 2 Lr(
); r = 1: 1) Let u be any non-negative weak Lr -solution
of problem (4.10). Then

ku(:; t)kL1(
) 5 Ct��r;qku0k$r;qLr(
); (4.17)

where �r;q; $r;q are given at (3.32).

2) Any non-negative weak solution u of (D
;T ) satis�es the universal estimate, where C = C(N; q) >
0;

ku(:; t)kL1(
) 5 Ct
� 1
q�1 : (4.18)

Proof. 1) For any � > 0; setting � = 1 + �; and 0 < � 5 s < t < T; setting � = 1 + �=q; we
have from (4.16),

1

�+ 1

Z


u�+1(:; t)dx+

Z t

s

Z



���r(u�)���q dxdt 5 1

�+ 1

Z


u�+1(:; s)dx:

And u�(:; t) 2 L1(Q
;s;� ) for a.e. t > 0; then u�(:; t) 2 W 1;q (
); and u(:; t) 2 W 1;1
0 (
)) hence

u�(:; t) 2W 1;q
0 (
) ; then from the Sobolev injection of W 1;q

0 (
) into Lq
�
(
), for any s < t;

1

�+ 1

Z


u�+1(:; t)dx+

CN;q
�q

Z t

s
(

Z


u�q

�
(:; �)dx)

q
q� dt 5 1

�+ 1

Z


u�+1(:; s)dx:

Then we can apply Lemma 2.2 on [�; T ), and deduce estimates for � < t < T;

ku(:; t)kL1(
) 5 C(t� �)��r;qku(:; �)k$r;qLr(
);

ku(:; t)kL1(
) 5 C(t� �)�
1

q�1 :

and we deduce (4.17) and (4.18) as �! 0.

2) Let u be any weak solution of (D
;T ): Let � > 0: Since u 2 C([�; T ) ;L1(
)) we �nd, for any
t 2 [�; T ) ;

ku(:; t)kL1(
) 5 C(t� �)�
1

q�1

with C = C(N; q); and deduce (4.18) for any t 2 (0; T ) by letting � tend to 0:

Remark 4.13 The same decay estimates where shown in [34] in case q < 2, for any weak Lr

solution u such that u 2 C((0; T );L2 (
)) \ L2((0; T );W 1;2
0 (
)); and (u � k)+ is admissible as

a test function in the equation; this implies integrability properties of ujrujq: Our result is valid
without any of these conditions.

4.4 Existence and uniqueness results for q 5 2
Here we consider the case 1 < q 5 2: From the universal a priori estimate (4.18), we deduce new
convergence results:

Corollary 4.14 Assume 1 < q 5 2: Then
(i) any weak solution u of problem (D
;T ) satis�es u 2 C2;1

�
QRN ;T

�
\ C1;0

�

� (0; T )

�
;

(ii) for any sequence of weak solutions (un) of (D
;T ); one can extract a subsequence converging
in C2;1loc (QRN ;T ) \ C1;0

�

� (0; T )

�
to a weak solution u of (D
;T ).
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Proof. (i) From [16, Theorem 2.17], any weak solution u of (D
;T ) such that u 2 L1loc((0; T ) ;L1(
))
satis�es u 2 C2;1

�
QRN ;T

�
\C1;0

�

� (0; T )

�
: And any weak solution u 2 L1loc((0; T ) ;L1(
)); from

Theorem 4.12,3.

(ii) Moreover (un) is uniformly bounded in L1loc (0; T );L
1 (
)). From [16, Theorem 2.13], there

exists � 2 (0; 1) such that, for any 0 < s < � < T;

kunkC(
�[s;� ]) + krunkC�;�=2(
�[s;� ]) 5 C�(kunkL1(Q
;s=2;� )) (4.19)

where C = C((N; q;
; s; �; �); and � is an increasing function. The conclusion follows.

Theorem 4.15 Suppose 1 < q < (N + 2)=(N + 1): For any u0 2 M+
b (
); problem (4.10) admits

a unique weakM solution.

Proof. From Lemma 4.11, u is a mildM solution, and then it is the unique mildM solution,
from [7, Theorem 3.2].

Next assume that u0 2 Lr(
) and q < (N + 2r)=(N + r): In [7, Theorem 3.3], it is proved that
there exists a weak Lr solution such that u 2 Lqloc([0; T ) ;W

1;qr
0 (
)); and it is unique in this space.

The local existence in an interval (0; T1) is obtained by the Banach �xed point theorem in a ball of
radius K1 of the space

XK1(T1) =

(
u 2 C((0; T1] ;W 1;qr

0 (
)) : sup
(0;t1]

t�(ku(:; t)kLqr(
) + t
1
2 kru(:; t)kLqr(
)) <1

)
where � = N=2rq0; under the condition

ku0kLr(
) +K
q
1T



1 5 CK1; where 
 = 1� q(� + 1=2) and C = C(N; q; r;
): (4.20)

We prove the uniqueness with no condition of integrability :

Theorem 4.16 Assume that u0 2 Lr(
) and 1 < q < (N + 2r)=(N + r): Then problem (4.10)
admits a unique weak Lr solution.

Proof. Let � > 0: From Theorem 4.12, u is bounded on (�; T ) for any � 2 (0; T ). Then
u 2 C2;1(Q
;T )\C1;0(
� (0; T )) because q < 2; from [16, Theorem 2.16]. From (4.2), there exists
a function D 2 C((0;1) such that for any � > 0 and for t = �

kru(:; t)kL1(
) 5 D(t� �):

Then jruj is bounded in Q�;T;
 for any � > 0: Thus u 2 C((0; T );W 1;qr
0 (
)): The problem with

initial data u(:; �) at time 0 has a unique solution v� such that v� 2 C((0; T � �);W 1;qr
0 (
)); then

v�(:; t) = u(:; t+ �): Let K1 and T1 such that (4.20) holds. Since ku(:; �)kLr(
) 5 ku0kLr(
), we also
have kv�(0)kLr(
) +K

q
1T



1 5 CK1; thus for any t 2 (0; T1)

t�(kv�(:; t)kLqr(
) + t
1
2 krv�(:; t)kLqr(
) 5 K1:

Going to the limit as �! 0 from the Fatou Lemma, we obtain

t�(ku(:; t)kLqr(
) + t
1
2 kru(:; t)kLqr(
) 5 K1:
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Hence we enter the class of uniqueness. Then u is the unique solution constructed in [7].

Finally we give existence results for any u0 2 Lr(
); r � 1, extending the results of [7, Theorem
3.4] for u0 2 L1(
); also proved for more general operators in [33]. We proceed as in Proposition
3.28.

Proposition 4.17 Let 1 < q � 2. For any nonnegative u0 2 Lr(
); r � 1; there exists a weak Lr
solution of problem (4.10). And it is unique if q = 2:

Proof. (i) Case q < 2: Let u0;n = min(u0; n): Then for � > N(q � 1)=(2 � q); from [7,
Theorem 3.3], there exists a mild solution un with initial data u0;n; and un 2 C([0; T ) ;L�(
)) \
Lq((0; T );W 1;q�

0 (
) \ C2;1 (Q
;T ) : Then un(:; t) � et�u0; and (un) is nondecreasing and jrunjq is
bounded in L1loc

�
[0; T ) ;L1(
)

�
from (4.14). From Corollary 3.23, (un) converges in C

2;1
loc (Q
;T ) to

a weak solution u of (1.1) in Q
;T , and then u(:; t) � et�u0 and jrujq 2 L1loc
�
[0; T ) ;L1(
)

�
: Thus

from [16, Proposition 2.11], u(:; t) converges weakly* to some Radon measure �0 on 
. And et�u0
converges to u0 in Lr(
); thus �0 2 L1loc(
) and 0 � �0 � u0. Since un � u; there holds u0;n � �0;
hence �0 = u0 2 Lr(
): Also there exists a function g 2 Lr(
) such that u(:; t) 5 g for small t: Then
the nonnegative function et�u0 � u(:; t) converges weakly* to 0; and then in L1loc(
): Hence u(:; t)
converges to u0 in L1loc(
); then in L

r(
) from the Lebesgue theorem. Thus u 2 C([0; T ) ;Lr (
)):
(ii) Case q = 2: As in [14, Theorem 4.2], using the classical transformation v = 1 � e�u; it

can be shown that there exists a unique solution u such that u 2 C([0; T ) ;Lr (
)) \ C2;1 (Q
;T ) \
C1
�

� (0; T )

�
. Then it is a weak Lr solution. Reciprocally any weak Lr solution u satis�es the

conditions above, from Corollary 4.14 and [16, Theorem 2.17].

5 Regularizing e¤ects for quasilinear Dirichlet problems

Next we extend some results of section 4 to a general quasilinear problem, where u may be a signed
solution. In this section, we suppose 
 is a smooth bounded domain in RN : Let p; q > 1: Let A be a
Caratheodory function on Q
;1�R�RN such that for any (u; �) 2 R�RN ; and a.e. (x; t) 2 Q
;1;

jA(x; t; u; �)j 5 C(j�jp�1 + b(x; t)); C > 0; b 2 Lp0(Q
;1); (5.1)

and A is nonnegative operator:

A(x; t; u; �):� = � j�jp � = 0; (5.2)

with no monotonicity assumption.

Let g be a Caratheodory function on Q
;1 � R+ � RN , such that

g(x; t; u; �)u = 
 juj�+1 j�jq ; � = 0; 
 = 0: (5.3)

De�nition 5.1 We say that A is coercive if (5.2) holds with � > 0; and g is coercive if (5.3) holds
with 
 > 0:

We consider the solutions of the Dirichlet problem

(P
;T )

8<:
ut � div(A(x; t; u;ru)) + g(x; t; u;ru) = 0; in Q
;T ;
u = 0; on @
� (0; T );
u(x; 0) = u0

(5.4)

where u0 2 Lr (
) ; r = 1 or only u0 2Mb(
):
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5.1 Solutions of quasilinear heat equation with L1 data

Here we consider the problem in Q
;s;�8<:
ut � div(A(x; t; u;ru)) = f; in Q
;s;� ;
u = 0; on @
� (s; �);
u(x; s) = us

(5.5)

First we recall the notion of renormalized solution introduced in [18] for this problem with L1 data:

De�nition 5.2 Let s; � 2 R with s < �; and f 2 L1(Q
;s;� ) and us 2 L1(
): A function u 2
L1((s; �);L1(
)) is a renormalized solution in Q
;s;� of (5.5) if Tk(u) 2 Lp((s; �);W 1;p

0 (
)) for
any k = 0; and for any S 2W 2;1(R) such that S0 has a compact support,

(S(u))t � div(A(x; t; u;ru)S0(u)) + S00(u)(A(x; t; u;ru):ru� S0(u)f = 0 in D0(Q
;s;� ); (5.6)

and u(s) = us; and

lim
n!1

Z Z
Q
;s;�\fn5u5n+1g

jrujpdxdt = 0; (5.7)

Remark 5.3 The initial condition takes sense from [18], because S(u) lies in the set

E =
n
' 2 Lp((0; T );W 1;p

0 (
)) : 't 2 Lp
0
((0; T );W�1;p0(
)) + L1 (Q
;T )

o
(5.8)

and E � C([0; T ] ;L1(
)); and any function ' 2 Lp((0; T );W 1;p
0 (
)) \ L1 (Q
;T ) is admissible in

equation (5.6). Moreover from [28, Lemma 7.1], v = S(u) satis�es for any  2 C1([s; � ]� �
) the
integration formulaZ �

s
< vt;M(v) >=

Z


M(v(:; �)) (:; �)dx�

Z


M(v(:; s)) (:; s)dx�

Z �

s

Z


 tM(v)dxdt; (5.9)

for any functionM continuous and piecewise C1 such thatM(0) = 0 andM 0 has a compact support,
whereM(r) =

R r
0 M(�)d�:

A main point in the sequel is the choice of test functions: here we approximate juj��1 u for
� > 0 by truncation. In the following lemma, we solve some technical di¢ culties arising because
the truncates are not smooth enough to apply the integration formula, and moreover we do not
assume � = 1:

Lemma 5.4 Let s; � 2 R with s < �; and f 2 L1(Q
;s;� ) and u 2 C([s; � ] ;L1(
)) be any non-
negative renormalized solution in Q
;s;� of (5.5), with us = u(:; s). For any � > 0 and k > 0; we
set

Tk;�(r) =
Z r

0
jTk(�)j��1 Tk(�)d�:

Then jTk(u)j��1A(x; t; u;ru):r(Tk(u)) 2 L1(Q
;s;� ) andZ


Tk;�(u)(:; �))dx+ �

Z Z
Q
;s;�

jTk(u)j��1A(x; t; u;ru):r(Tk(u))dxdt

=

Z


Tk;�(u)(:; s))dx+

Z �

s

Z


f jTk(u)j��1 Tk(u)dxdt: (5.10)
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Proof. Let � > 0; k > 0 be �xed, and for any n = 2; and � 2 R;

Sn(�) =

Z �

0
(1� jT1(s� Tn(s)j)ds; n = 2:

This function, introduced in [18], is a smoothing of the truncate Tn+1; such that 0 5 Sn(�)� 5
Tn+1(�)�; supp S0n � [�(n+ 1); n+ 1], and Sn(�) = Sn(Tk(�)) for any n > k: Let � 2 (0; k) ; and
n > k: Setting

T�;k;�(�) = ((Tk(j�j) + �))� � ��)sign�; T�;k;�(r) =
Z r

0
T�;k;�(�)d�

Then we can take in (5.6) S = Sn and ' = T�;k;�(u) = T�;k;�(Sn(u)): We obtainZ t

s
< (Sn(u))t; ' > +

Z t

s

Z


S0n(u)A(x; t; u;ru):r'dxdt

=

Z t

s

Z


S0n(u)f'dxdt�

Z t

s

Z


S00n(u)(A(x; t; u;ru):ru)'dxdt:

then from (5.9), we deduceZ


T�;k;�(Sn(u)(:; �))dx+ �

Z Z
Q
;s;�

(Tk(juj) + �)��1A(x; t; u;ru):r(Tk(u))dxdt

=

Z


T�;k;�(Sn(u)(:; s))dx+

Z �

s

Z


S0n(u)f'dxdt�

Z t

s

Z


S00n(u)(A(x; t; u;ru):ru)'dxdt

First we make � ! 0: We have jT�;k;�(�)j 5 k� j�j for any � 2 R; and Sn(u) 2 C([0; T ] ;L1(
)); and
S0n is bounded, thus we can go to the limit in the right hand side: In the left hand side, From the
positivity of A; and the Fatou Lemma we deduce that Tk(juj)��1A(x; u;ru):rTk(u) 2 L1(Q
;s;� ):
Then we can apply Lebesgue theorem: indeed A(x; u;ru):rTk(u) 2 L1(Q
;s;� ) from (5.1), since
Tk(u) 2 Lp((s; �);W 1;p

0 (
)); and (Tk(juj) + �)��1 5 max(T��1k (juj); (k + 1)��1): Then the same
relation holds with � = 0, with T0;k;�(r) = T��1k (juj)Tk(u) :Z



Tk;�(Sn(u)(:; �))dx�

Z


Tk;�(Sn(u)(:; s))dx+ �

Z t

s

Z


T��1k (juj)A(x; u;ru):r(Tk(u))dxdt

=

Z �

s

Z


S0n(u)fT0;k;;�(u)dxdt�

Z t

s

Z


S00n(u)(A(x; t; u;ru):ru)T0;k;;�(u)dxdt:

Then we make n!1: Since u 2 C([0; T ] ;L1(
)); for any t 2 [s; � ]

lim
n!1

Z


Tk;�(Sn(u)(:; t))dx =

Z


Tk;�(u(:; t))dx;

moreover

lim
n!1

Z t

s

Z


S00n(u)(A(x; t; u;ru):ru) T0;k;�(u)dxdt = 0

from (5.7), (5.1), since S00n = �1[n;n+1] + 1[�n;�n�1]: Moreover

lim
n!1

Z �

s

Z


S0n(u)fT0;k;;�(u)dxdt =

Z �

s

Z


fT0;k;;�(u)dxdt

since S0n(u) ! 1 a.e. and is uniformly bounded. Then (5.10) follows.
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5.2 Notion of solutions of problem (P
;T )

De�nition 5.5 We say that u is a renormalized solution of problem (P
;T ) if:

(i) u 2 C((0; T );L1(
)); Tk(u) 2 Lploc((0; T );W
1;p
0 (
)) for any k = 0; and g(x; u;ru) 2

L1loc((0; T );L
1(
));

(i) for any 0 < s < � < T; u is a renormalized solution of problem�
ut � div(A(x; t; u;ru)) + g(x; t; u;ru) = 0; in Q
;s;� ;
u = 0; on @
� (0; T );

with initial data u(:; s);

(ii) for u0 2 Lr(
); the extension of u by u0 at time 0 belongs to C([0; T ) ;Lr(
)); for u0 2
Mb(
); there holds

lim
t!0

Z


u(:; t) dx =

Z


 du0; 8 2 Cb(
): (5.11)

Remark 5.6 Recall that ru is de�ned by ru = r(Tk(u)) on the set juj � k: The assumption on
g means that, for any 0 < s < � < T;Z

Q
;s;�

jg(:; u;ru)j dxdt =
1X
k=1

Z
Q
;s;�\fk�15juj5kg

jg(:; u;r(Tk(u))j dxdt <1:

We �rst prove decay properties of the solutions.

Theorem 5.7 Let p; q > 1; and 
 be a regular bounded domain of RN : Let A and g satisfy (5.1)
(5.2) and (5.3).

1) Let u0 2 Lr(
); r = 1 and u be any renormalized solution of (P
;T ): Then for any t 2 [0; T ) ;Z


jujr (:; t)dx 5

Z


ju0jr dx: (5.12)

Moreover if r > 1; or if g is coercive, then 
 juj�+r�1 jrujq + � jujr�2 jrujp 2 L1loc([0; T ) ;L1 (
));
andZ



jujr (:; t)dx+ r


Z t

0

Z


juj�+r�1 jrujqdxdt+ r(r � 1)�

Z t

0

Z


jujr�2 jrujpdxdt 5

Z


ju0jr dx:

(5.13)
2) Let u0 2M+

b (
) and u be any nonnegative renormalized solution of (P
;T ) of problem (4.10).
Then the same conclusions hold as in case u0 2 L1(
); where the norm ku0kL1(
) is replaced byZ


du0:
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Proof. 1) Let 0 < s < t < T; then we have for any � > 0; any k > 0; from Lemma 5.4,Z


Tk;�(u)(:; �))dx+ �

Z t

s

Z


jTk(u)j��1A(x; t; u;ru):r(Tk(u))dxdt

=

Z


Tk;�(u)(:; s))dx�

Z �

s

Z


jTk(u)j��1 Tk(u)g(:; u;ru)dxdt

And jTk(u)j��1 Tk(u)g(:; u;ru) � 
 jTk(u)j�+� jrTk(u)jq from (5.3). Then
R

 Tk;�(u)(:; t)) is de-

creasing for any k; � > 0; andZ


Tk;�(u)(:; �))dx+ 


Z t

s

Z


jTk(u)j�+� jrTk(u)jq dxdt+ ��

Z t

s

Z


jTk(u)j��1 jrTk(u)jp dxdt

5
Z


Tk;�(u)(:; s))dx (5.14)

If r > 1; we can take � = r � 1 > 0 in (5.14) and getZ


Tk;r�1(u)(:; t))dx+ 


Z t

s

Z


jTk(u)jr�1+� jrTk(u)jq dxdt+ ��

Z t

s

Z


jTk(u)jr�2 jrTk(u)jp dxdt

5
Z


Tk;r�1(u)(:; s))dx 5

1

r

Z


jujr (:; s)dx (5.15)

Since u 2 C([0; T ) ;Lr(
)) we can go to the limit as k ! 1; and s ! 0; and deduce that

 jujr�1+� jrujq and �� jujr�2 jrujp belong to L1loc

�
[0; T ) ;L1(
)

�
and for any t 2 (0; T ) ;Z



jujr (:; t)dx+ r


Z t

0

Z


jujr�1+� jrujq dxdt+ r(r � 1)�

Z t

0

Z


jujr�2 jrujp dxdt 5

Z


ju0jr dx:

If r = 1; we take any � > 0 in (5.14) and observe that for any � > 0;

jTk(�)j�+1

�+ 1
5 Tk;�(�) 5 k� j�j (5.16)

ThenZ


jTk(u)j�+1 (:; t))dx+ (�+ 1)


Z t

s

Z


jTk(u)j�+� jrTk(u)jq dxdt 5 (�+ 1)k�

Z


juj (:; s)dx

Then we go to the limit as �! 0; we deduceZ


jTk(u)j (:; t))dx+ 


Z t

s

Z


jTk(u)j� jrTk(u)jq dxdt 5

Z


juj (:; s)dx (5.17)

and then as s! 0 we �ndZ


Tk(u)(:; t))dx+ 


Z t

s

Z


jTk(u)j� jrTk(u)jq dxdt 5

Z


ju0j dx (5.18)

and �nally k !1; and deduce that
R

 juj (:; t)dx 5

R

 ju0j dx: Moreover if 
 > 0; we �ndZ



juj (:; t)dx+ 


Z t

0

Z


juj� jrujqdxdt 5

Z


ju0j dx;
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thus (5.13) still holds with r = 1:

2) We still �nd (5.17). And lims!0
R

 u(:; s)dx =

Z


du0 from (5.11), hence the conclusion.

Next we deduce L1 estimates, in particular a universal one.

Theorem 5.8 Let p > 1; 1 < q < N; and 
 be a regular bounded domain of RN : Assume (5.1)
(5.2) and (5.3). Let u0 2 Lr(
); r = 1; and u be any renormalized solution of (P
;T ):

(i) If g is coercive, there exists C = C(N; q; �; 
;
) independent of A; such that

ku(:; t)kL1(
) 5 Ct��r;q;�ku0k
$r;q;�
Lr(
) ; (5.19)

where
�r;q;� =

1
rq
N + �+ q � 1

; $r;q;� =
rq

N
�r;q;�

and there exists C = C(N; q; �; j
j) such that

ku(:; t)kL1(
) 5 Ct
� 1
q�1+� : (5.20)

(ii) If A is coercive and r > (2� p)N=p; (in particular if p > 2N=(N + 1)), and p < N; then

ku(:; t)kL1(
) 5 Ct��r;p;�1ku0k$r;p;�1Lr(
) ; (5.21)

where
�r;p;�1 =

1
rp
N + p� 2

; $r;p;�1 =
1

1 + N
rp(p� 2)

and if p > 2; there exists C = C(N; p; j
j) such that

ku(:; t)kL1(
) 5 Ct
� 1
p�2 : (5.22)

(iii) The same conclusions hold if u is nonnegative and u0 2M+
b (
); as in case u0 2 L1(
); where

the norm ku0kL1(
) is replaced by
Z


du0:

Proof. (i) Let 0 < s < t < T . Since g is coercive, from Theorem 5.7, for any � = 0 such that
juj�+1 (:; s) 2 L1(
); we get from (5.13)Z



juj�+1 (:; t)dx+ (�+ 1)


Z t

s

Z


juj�+� jrujqdxdt 5

Z


juj�+1 (:; s)dx;

and in particularZ


jTk(u)j�+1 (:; t)dx+ (�+ 1)


Z t

s

Z


(Tk(u))

�+� jrTk(u)jq dxdt 5
Z


juj�+1 (:; s)dx

And juj�+� jrujq = jr(juj��1 u)jq with � = 1 + (� + �)=q = 1: Then jr((juj��1 u)(:; t))j, and
also jr((jTk(u)j��1 Tk(u))(:; t))j belong to Lq(
) for a.e. t > 0: Since jTk(u)j��1 Tk(u)(:; t) 2
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L1(
) it follows that jTk(u)j��1 Tk(u)(:; t) 2 W 1;q (
). Moreover Tk(u)(:; t) 2 W 1;p
0 (
)); hence

jTk(u)j��1 Tk(u)(:; t) 2W 1;q
0 (
) : Then from the Sobolev injection of W 1;q

0 (
) into Lq
�
(
),Z



jTk(u)j�+1 (:; t)dx+ 


C0(�+ 1)

�q

Z t

s
(

Z


jTk(u)j�q

�
(:; �)dx)

q
q� d� 5

Z


juj�+1 (:; s)dx:

Going to the limit as k !1; we �ndZ


juj�+1 (:; t)dx+ 
C0(�+ 1)

�q

Z t

s
(

Z


juj�q

�
(:; �)dx)

q
q� d� 5 1

�+ 1

Z


juj�+1 (:; s)dx:

Then we can apply Lemma 2.2 on [�; T ), with m = q and � = N=(N � q); we deduce the estimate
for [�; T ) ;

ku(:; t)kL1(
) 5 C(t� �)��r;q;�ku(:; �)k$r;q;�Lr(
) ;

with C = C(N; q; �; 
;
): Finally we go to the limit as � ! 0; and get (5.19) for u0 2 Lr(
); and
the analogous when u is nonnegative and u0 2M+

b (
); and also (5.20).

(ii) Assume that A is coercive. Then for any � > 0,Z


Tk;�(u)(:; t))dx+ ��

Z t

s

Z


jTk(u)j��1 jrTk(u)jp dxdt 5

Z


Tk;�(u)(:; s))dx

from (5.14). From the Sobolev injection of W 1;p
0 (
) into Lp

�
(
), since p < N; we deduce

1

�+ 1

Z


u�+1(:; t)dx+ �

C0
kp

Z t

s
(

Z


ukp

�
(:; �)dx)

q
q� dt 5 1

�+ 1

Z


u�+1(:; s)dx:

with k = 1 + (�� 1)=p:
� First suppose r > 1; then we start from �0 = r � 1 > 0, and we can apply Lemma 2.2 with

m = p; � = N=(N � q) and � = �1: The condition (2.1) is satis�ed, since r > N(2� p)=p.
� Next suppose r = 1: Then 1 > (2� p)N=p; thus p� 1 + p=N > 1: For any � > 0;Z


jTk(u)j�+1 (:; t))dx+ �(�+ 1)�

Z t

s

Z


jTk(u)j��1 jrTk(u)jp dxdt 5 (�+ 1)k�

Z


juj (:; s)dx

Taking � = 1; we get from (5.12),

�

Z t

s

Z


jrTk(u)jp dxdt 5 k

Z


juj (:; s)dx 5 k

Z


ju0j dx:

And from (5.12), u 2 L1
�
(s; T );L1 (
)

�
; then from standard estimates, there holds u 2 L�(Q
;s;t)

for any � 2 (1; p� 1 + p=N) ; see [19]. Then juj� (:; t) 2 L1 (
) for almost any t 2 (0; T ) ; hence we
can apply Lemma 2.2 on [�; T ) for � > 0; with the same parameters, after �xing such a � = �p;N :
We obtain that

ku(:; t)kL1(
) 5 C(t� �)��1;p;�1ku(:; �)k$1;p;�1
L1(
)

;

where C = C(N; p; �; �p;N ) = C(N; p; �); �nally we go to the limit as � ! 0 because u 2
C([0; T ] ;L1(
)): Estimate (5.22) follows, since �1 + p� 1 > 0:

(iii) Similarly, if u0 2M+
b (
) and u is nonnegative, we are lead to the same conclusions, where

ku0kL1(
) is replaced by
R

 du0: In particular (5.21) holds for p > 2N=(N +1); and (5.22) for p > 2:
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Remark 5.9 As at Remark 3.18, we still obtain L1 estimates for q � N or p � N: If g is coercive,
we get (5.19) with �r;q;N = 1=(q + r � 1 + �) = $r;q;N=r if q > N; and �r;N;N = 1=(N(1 � �) +
r � 1 + �) = $r;N;N=r(1 � �) where � 2 (0; 1) is arbitrary: If A is coercive we get (5.21) with
�r;p;�1 = 1=(r+p�2) = $r;p;�1=r if p > N; and �r;N;�1 = 1=(N(1� �)+p�2) = $r;N;�1=r(1� �):

Remark 5.10 Our results apply in particular to the problem8<:
ut � div(A(x; t; u;ru)) = 0; in Q
;T ;
u = 0; on @
� (0; T );
u(x; 0) = u0

Thus we �nd again the estimates of [34, Theorem 5.3], with less regularity on the solutions: those
estimates were proved for solutions u 2 C([0; T ) ;Lr(
)) such that u 2 Lp((0; T ) ;W 1;p

0 (
)) \
C([0; T ) ;L2(
)). The notion of renormalized solutions, equivalent to the notion of entropy solutions
of [36] (see [28]), is weaker.

Remark 5.11 The extension of results of section 3 to the case of equation of type (1.2) in the case

 = RN will be treated a further article.

Acknowledgement 5.12 We thank Professor F. Weissler for helpfull discussions during the prepa-
ration of this article.
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