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Abstract

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi equation

ut −∆u+ |∇u|q = 0

in QΩ,T = Ω × (0, T ) , where q > 1, T ∈ (0,∞] , and Ω is a smooth bounded domain of RN
containing 0, or Ω = RN . We consider weak solutions with a possible singularity at point
(x, t) = (0, 0). We show that if q ≥ q∗ = (N + 2)/(N + 1) the singularity is removable. For
1 < q < q∗, we prove the uniqueness of a very singular solution without condition as |x| → ∞;
we also show the existence and uniqueness of a very singular solution of the Dirichlet problem
in QΩ,∞, when Ω is bounded. We give a complete description of the weak solutions in each case.

Keywords Viscous Hamilton-Jacobi equation; regularity; initial isolated singularity; remov-
ability; very singular solution

A.M.S. Subject Classification 35K15, 35K55, 35B33, 35B65, 35D30

.
∗Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours

France. E-mail address:veronmf@univ-tours.fr
†Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 7350, Faculté des Sciences, 37200 Tours

France. E-mail address:Anh.Nguyen@lmpt.univ-tours.fr

1



1 Introduction

Let Ω be a smooth bounded domain of RN containing 0, or Ω = RN , and Ω0 = Ω\{0}. Here we
consider the nonnegative solutions of the viscous parabolic Hamilton-Jacobi equation

ut −∆u+ |∇u|q = 0 (1.1)

in QΩ,T = Ω× (0, T ) , where q > 1, with a possible singularity at point (x, t) = (0, 0), in the sense:

lim
t→0

∫
Ω
u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω0), (1.2)

which means formally that u(x, 0) = 0 for x 6= 0.

Such a problem was first considered for the semi-linear equation with a lower term or order 0 :

ut −∆u+ |u|q−1u = 0 in QΩ,T , (1.3)

with q > 1. In the well-known article of Brezis and Friedman [14], it was shown that the problem
admits a critical value qc = (N + 2)/N . For any q < qc, and any bounded Radon measure
u0 ∈ Mb(Ω), there exists a unique solution of (1.3) with Dirichlet conditions on ∂Ω with initial
data u0, in the weak ∗ sense:

lim
t→0

∫
Ω
u(., t)ϕdx =

∫
Ω
ϕdu0, ∀ϕ ∈ Cc(Ω). (1.4)

Moreover, from [15] and [19], there exists a very singular solution in RN , satisfying

lim
t→0

∫
Br

u(., t)dx =∞, ∀ Br ⊂ Ω, (1.5)

and it is the limit as k →∞ of the solutions with initial data kδ0, where δ0 is the Dirac mass at 0;
its uniqueness, obtained in [24], is also a consequence of the general results of [22]. For any q = qc,
such solutions do not exist, and the singularity is removable, in other words any solution of (1.3),
(1.2) satisfies u ∈ C2,1 (Ω× [0, T )) and u(x, 0) = 0 in Ω, see again [14].

Concerning equation (1.1), up to now, the description was not yet complete. Here another
critical value is involved:

q∗ =
N + 2

N + 1
.

In the case Ω = RN , we define a very singular solution (called VSS) in QRN ,∞ as any function
u ∈ L1

loc(QRN ,∞), such that |∇u| ∈ Lqloc(QRN ,∞), satisfying equation (1.1) in D′(QRN ,∞), and
conditions

lim
t→0

∫
RN

u(., t)ϕdx = 0, ∀ϕ ∈ Cc(RN\ {0}). (1.6)

lim
t→0

∫
Br

u(., t)dx =∞, ∀r > 0. (1.7)

For q ∈ (1, q∗) , it was shown in [9] the existence of a solution with initial data u0 ∈ Mb(RN ),
and uniqueness in a specific class, enlarged in [6]. The existence of a radial self-similar VSS U in
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QRN ,∞, unique in its class, was obtained in [27]; independently in [10], proved the existence of a
VSS as a limit as k → ∞ of the solutions with initial data kδ0. Uniqueness was proved in [11], in
the class of functions U such that

limt→0

∫
RN\Br U(., t)dx = 0, ∀r > 0,

U ∈ C2,1
(
QRN ,∞

)
∩ C((0,∞);L1(RN )) ∩ Lqloc((0,∞);W 1,q(RN )),

supt>0(tN/2 ‖U(., t)‖L∞(RN ) + t(q(N+1)−N)/2q
∥∥∇(U (q−1)/q(., t))

∥∥
L∞(RN )

) <∞
(1.8)

If q = q∗, it was proved in [10] that there is no solution u in QRN ,T with initial data δ0, under the
constraints

u ∈ C((0, T );L1(RN )) ∩ Lq((0, T );W 1,q(RN ); (1.9)

and the nonexistence of VSS was stated as an open problem.
In the case of the Dirichlet problem in QΩ,T , with Ω bounded, similar results were obtained in

[7]: for q ∈ (1, q∗) and any u0 ∈Mb(Ω), there exists a solution u such that

u ∈ C((0, T );L1(Ω)) ∩ L1((0, T );W 1,1
0 (Ω), |∇u|q ∈ L1 (QΩ,T ) , (1.10)

satisfying (1.4) for any ϕ ∈ Cb(Ω), and unique in that class; for q = q∗ there exists no solution in
this class when u0 is a Dirac mass; the existence or nonexistence of a VSS was not studied.

In this article we answer to these questions and complete the description of all the weak solutions.

In Section 2 we introduce the notion of weak solutions. When q 5 2, we show a C2,1 property
for any weak solution, improving some results of [11], see Theorems 2.9 and 2.10. We point out
some particular singular solutions or supersolutions, fundamental in the sequel. We also give some
trace results, in the footsteps of [22], and apply them to the solutions of (1.1), (1.2).

Our main result is the removability in the supercritical case q = q∗, proved in Section 3,
extending the results of [14] to equation (1.1).

Theorem 1.1 Assume q = q∗. Let Ω be any domain in RN . Let u ∈ L1
loc(QΩ,T ), such that |∇u| ∈

Lqloc(QΩ,T ), be any solution of problem

(PΩ)

{
ut −∆u+ |∇u|q = 0 in D′(QΩ,T ),

limt→0

∫
Ω u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω0),

Then the singularity is removable, in the following sense:
If q 5 2, then u ∈ C(Ω× [0, T )) and u(x, 0) = 0, ∀x ∈ Ω.
If q > 2, then u ∈ C([0, T );Lrloc(Ω)), for any r > 1, u is locally bounded near 0, and for any

domain ω ⊂⊂ Ω,
lim
t→0

(sup
Qω,t

u) = 0. (1.11)

Observe that our conclusions hold without any condition as |x| → ∞ if Ω = RN , or near ∂Ω when
Ω 6= RN . As a consequence, for q = q∗,

(i) there exists no VSS in QRN ,∞ in the sense above.
(ii) there exists no solution of (PΩ) with a Dirac mass at (0, 0), without assuming (1.9) or

(1.10).
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We give different proofs of Theorem 1.1 according to the values of q. For q 5 2, we take benefit
of the regularity of the solutions shown in Section 2. When q < 2, we make use of supersolutions,
and the diffi cult case is the critical one q = q∗. When q = 2, our proof is based on a change of
unknown, and on our trace results; the case q > 2 is the most delicate, because of the lack of
regularity.

Besides, if Ω = RN , we can show a global removability, without condition at ∞:

Theorem 1.2 Under the assumptions of Theorem 1.1 with Ω = RN , then

u(x, t) ≡ 0, a.e. in RN , for any t > 0.

In Section 4, we complete the study of the subcritical case q < q∗. Our main result in this range
is the uniqueness of the VSS in QRN ,∞ without any condition:

Theorem 1.3 Let q ∈ (1, q∗) . Then there exists a unique VSS in QRN ,∞.

Moreover we give a complete description of the solutions:

Theorem 1.4 Let q ∈ (1, q∗) . Let u ∈ L1
loc(QRN ,∞), be any function such that |∇u| ∈ Lqloc(QRN ,∞),

solution of equation (1.1) in D′(QRN ,∞), and satisfying (1.6). Then
• either (1.7) holds and u = U,
• or there exists k > 0 such that u(., 0) = kδ0 in the weak sense ofMb(RN ) :

lim
t→0

∫
RN

u(., t)ϕdx = kϕ(0), ∀ϕ ∈ Cb(RN ), (1.12)

and u is the unique solution satisfying (1.12),
• or u ≡ 0.

We also consider the Dirichlet problem in QΩ,T when Ω is bounded:

(DΩ,T )

{
ut −∆u+ |∇u|q = 0 in QΩ,T

u = 0 on ∂Ω× (0,∞) .
(1.13)

We give a notion of VSS for this problem, generally nonradial, and show the parallel of Theorem
1.3:

Theorem 1.5 Assume that q ∈ (1, q∗) and Ω is a smooth bounded domain of RN . Then there exists
a unique VSS of problem (DΩ,∞).

Finally we describe all the weak solutions as above.

In conclusion, q∗ clearly appears as the upperbound for existence of solutions with an isolated
singularity at time 0. We refer to [12] for the study of equation (1.1) or more general quasilinear
parabolic equations with rough initial data, where we give new decay and uniqueness properties.
The problem of removability of nonpunctual singularities will be the object of a further article.
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2 Weak solutions and regularity

2.1 First properties of the weak solutions

We set QΩ,s,τ = Ω× (s, τ) , for any domain Ω ⊂ RN , any −∞ 5 s < τ 5∞, thus QΩ,T = QΩ,0,T .

Definition 2.1 For any function Φ ∈ L1
loc(QΩ,T ), we say that a function U is a weak solution

(resp. subsolution, resp. supersolution) of equation

Ut −∆U = Φ in QΩ,T , (2.1)

if U ∈ L1
loc(QΩ,T ) and, for any ϕ ∈ D+(QΩ,T ),∫ T

0

∫
Ω

(Uϕt + U∆ϕ+ Φϕ)dxdt = 0 (resp. 5, resp. =).

Remark 2.2 Regularizing U by Uε = U ∗%ε, where (%ε) is a sequence of mollifiers in (x, t) ∈ RN+1,
we see that any solution (resp. subsolution) U of (2.1) such that U ∈ C((0, T );L1

loc(Ω)) satisfies
also for any s, τ ∈ (0, T )∫

Ω
U(., τ)ϕ(., τ)dx−

∫
Ω
U(., t)ϕ(., t)dx−

∫ τ

s

∫
Ω

(Uϕt + U∆ϕ+ Φϕ)dxdt = 0 (resp. 5 0) (2.2)

for any ϕ ∈ C∞+
c (Ω× [0, T ]), and for any ψ ∈ C2+

c (Ω) ,∫
Ω
U(., τ)ψdx−

∫
Ω
U(., s)ψdx−

∫ τ

s

∫
Ω

(U∆ψ + Φψ)dxdt = 0 (resp. 5 0). (2.3)

Next we make precise our notion of solution of equation (1.1).

Definition 2.3 (i) We say that a nonnegative function u is a weak solution of equation (1.1) in
QΩ,T , if u ∈ L1

loc(QΩ,T ), |∇u|q ∈ L1
loc(QΩ,T ), and u is a weak solution of the equation in the sense

above.
(ii) We say that u is a weak solution of the Dirichlet problem (DΩ,T ) if it is a weak solution of
(1.1) in QΩ,T , such that

u ∈ L1
loc((0, T );W 1,1

0 (Ω)) ∩ C((0, T );L1(Ω)), and |∇u| ∈ Lqloc((0, T );Lq(Ω)).

Next we recall some well known properties:

Lemma 2.4 Any weak nonnegative solution of equation (1.1) satisfies u ∈ L∞loc(QΩ,T ),∇u ∈
L2
loc(QΩ,T ), and u ∈ C((0, T );Lrloc(Ω)), for any r = 1. Then
(i) for any ϕ ∈ C1

c (QΩ,T ), ∫ T

0

∫
Ω

(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt = 0, (2.4)

(ii) for any s, τ ∈ (0, T ), and any ϕ ∈ C1((0, T );C1
c (Ω)),∫

Ω
u(., τ)ϕ(., τ)dx−

∫
Ω
u(., s)ϕ(., s)dx+

∫ τ

s

∫
Ω

(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt = 0 (2.5)
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(iii) for any s, τ ∈ (0, T ), and any ψ ∈ C1
c (Ω) ,∫

Ω
u(., τ)ψdx−

∫
Ω
u(., s)ψdx+

∫ τ

s

∫
Ω

(∇u.∇ψ + |∇u|qψ)dxdt = 0 (2.6)

Proof. The function u is subcaloric, then u ∈ L∞loc(QΩ,T ), see for example [14]. Consider any
domains ω ⊂⊂ ω′ ⊂⊂ Ω, taking ψ ∈ C1

c (Ω) with support in ω′ such that ψ ≡ 1 on ω, ψ (Ω) ⊂ [0, 1] ,
and 0 < s < τ < T. The regularized function uε is a subsolution of equation (1.1) in Qω,s,τ , for
ε small enough, from the convexity of |∇u|q . Then∫

Ω
u2
ε(., τ)ψ2dx−

∫
Ω
u2
ε(., s)ψ

2dx+

∫ τ

s

∫
Ω
|∇uε|2 ψ2dx

5 2

∫ τ

s

∫
Ω
uε |∇uε| |∇ψ| dx 5

1

2

∫ τ

s

∫
Ω
|∇uε|2 ψ2dx+ 4

∫ τ

s

∫
Ω
u2
ε |∇ψ|

2 dx;

hence ∇u ∈ L2
loc(QΩ,T ) and

‖∇u‖L2(Qω,s,τ ) 5 C(‖u(., s)‖L2(Qω′,s,τ ) + ‖u‖L2(Qω′,s,τ )) 5 C ‖u‖L∞(Qω′,s,τ ) ,

with C = C(N,ω, ω′). Then (2.4) holds for any ϕ ∈ D(QΩ,T ). Moreover, since |∇u|q ∈ L1
loc(QΩ,T ),

thus function u ∈ L2
loc((0, T );W 1,2

loc (Ω)) and vt ∈ L2
loc((0, T );W−1,2(Ω)) +L1

loc (QΩ,T ) . From a local
version of [26, Theorem 1.1], we find u ∈ C((0, T );L1

loc(Ω)). Then (2.5) and (2.6) follow. Moreover
u ∈ L∞loc(QΩ,T ), then u ∈ C((0, T );Lrloc(Ω)) for any r > 1.

In the case of the Dirichlet problem (DΩ,T ), the regularization does not provide estimates
up to the boundary, thus we use another argument: the notion of entropy solution. For any
k > 0 and r ∈ R, we define as usual Tk(r) = max(−k,min(k, r)) the truncation function, and
Θk(r) =

∫ r
0 Tk(s)ds.if u ∈ C([s, τ ] ;L1(Ω)). The solutions can be defined in three equivalent ways:

Lemma 2.5 Let 0 5 s < τ 5 T, and f ∈ L1(QΩ,s,τ ) and u ∈ C([s, τ) ;L1 (Ω)), us = u(s).
Denoting by et∆ the semi-group of the heat equation with Dirichlet conditions acting on L1 (Ω) , the
three properties are equivalent:
(i) u ∈ L1

loc((s, τ);W 1,1
0 (Ω)) and

ut −∆u = f, in D′(QΩ,s,τ ),

(ii) u is an entropy solution of problem in QΩ,s,τ : Tk(u) ∈ L2((s, τ) ;W 1,2
0 (Ω)) for any k > 0, and∫

Ω
Θkv(., τ)dx+

∫ τ

s
〈ϕt, Tk(v)〉dt+

∫ τ

s

∫
Ω
∇u.∇Tk(v)dxdt =

∫
Ω

Θk(us−ϕ(., s))dx+

∫ τ

s

∫
Ω
fTk(v)dxdt

for any v such that ϕ = u− v ∈ L2((s, τ);W 1,2(Ω)) ∩ L∞ (QΩ,τ ) and ϕt ∈ L2((s, τ);W−1,2(Ω)).
(iii)

u(., t) = e(t−s)∆us +

∫ t

s
e(t−σ)∆f(σ)dσ in L1 (Ω) , ∀t ∈ [s, τ ] .

Proof. It follows from the existence and uniqueness of the solutions of (i) from [5, Lemma 3.4],
as noticed in [7], and of the entropy solutions, see [3], [25].

We deduce properties of all the bounded solutions u of (DΩ,T ) :
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Lemma 2.6 Any nonnegative weak solution of problem (DΩ,T ), such that u ∈ L∞loc((0, T );L∞ (Ω))
satisfies ∇u ∈ L2

loc(0, T );L2 (Ω)) and u ∈ C((0, T );Lr(Ω)) for any r = 1.

Proof. Since u ∈ C((0, T );L1(Ω)), for any 0 < s < τ < T, u is an entropy solution on [s, τ ]
from Lemma 2.5. Since u is bounded, then u = Tk(u) ∈ L2((s, τ) ;W 1,2

0 (Ω)), and∫
Ω
u2(., τ)dx−

∫
Ω
u2(., s)dx+

∫ τ

s

∫
Ω
|∇u|2 dx+

∫ τ

s

∫
Ω
u|∇u|qdxdt = 0;

and u ∈ C((0, T );Lr(Ω)) as in Lemma 2.4.

2.2 Estimates of the classical solutions of (DΩ,T )

Consider the Dirichlet problem (DΩ,T ) in a smooth bounded domain Ω with regular initial data
u(x, 0) = u0 ∈ C1

(
Ω
)
∩C0 (Ω) : it admits a unique classical solution u ∈ C2,1 (QΩ,∞)∩ C

(
Ω× [0,∞)

)
such that |∇u| ∈ C

(
Ω× [0,∞)

)
. Let us recall some fundamental universal estimates proved in [17]:

Theorem 2.7 ([17]) Let Ω be any smooth bounded domain. Let q > 1, and u be the classical
solution of (DΩ,T ) with initial data u0 ∈ C1,0

(
Ω
)
∩ C0 (Ω). Then there exist functions B,D ∈

C((0,∞)) depending only of N, q,Ω, such that such that, for any t ∈ (0, T ),

‖u(., t)‖L∞(Ω) 5 B(t)d(x, ∂Ω), (2.7)

‖∇u(., t)‖L∞(Ω) 5 D(t). (2.8)

Remark 2.8 In fact the term B(t) can be precised: under the assumptions above, there holds

‖u(., t)‖L∞(Ω) 5 C(1 + t
− 1
q−1 )d(x, ∂Ω) (2.9)

with C = C(N, q,Ω). Indeed (2.7) is obtained by using an explicit supersolution for any z ∈ ∂Ω, of
the form wz(x, t) = J(t)bz(x), where bz(x) is constructed such that infz∈∂Ω bz(x) ≈ d(x, ∂Ω), and J
can be chosen by J(t) = M(Arctan t)−1/(q−1) with M = M(N, q,Ω).

2.3 Regularity for q 5 2

First of all, we give a result of regularity C2,1 for any weak solution of equation (1.1) and for any
q 5 2. Such a regularity was obtained in [11, Proposition 3.2] for the VSS when q < q∗, and the
proof was valid up to q = (N + 4)/(N + 2).We did not find a good reference in the literature under
our weak assumptions, even if a priori estimates can be found in [21], and Hölderian properties in
[4], [29]. Our proof is based on a bootstrap technique, starting from the fact that u is subcaloric.

We set W2,1,ρ(Qω,s,τ ) = {u ∈ Lρ(Qω,s,τ ) : ut,∇u,D2u ∈ Lρ(Qω,s,τ )}, for any 0 5 s < τ < T
and 1 5 ρ 5∞. This space is endowed with its usual norm.

Theorem 2.9 Let 1 < q 5 2. Let Ω be any domain in RN .
(i) Let u be any weak nonnegative solution of (1.1) in QΩ,T .. Then u ∈ C2,1(QΩ,T ), and there exists
γ ∈ (0, 1) such that for any smooth domains ω ⊂⊂ ω′ ⊂⊂ Ω, and 0 < s < τ < T

‖u‖C2+γ,1+γ/2(Qω,s,τ ) 5 CΦ(‖u‖L∞(Qω′,s/2,τ )), (2.10)
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where Φ is a continuous increasing function and C = C(N, q, ω, ω′, s, τ).
(ii) For any sequence (un) of weak solutions of equation (1.1) in QΩ,T , uniformly locally bounded,
one can extract a subsequence converging in C2,1

loc (QΩ,T ) to a weak solution u of (1.1) in QΩ,T .

Proof. (i) • Case q < 2. We can write (??) under the form ut −∆u = f, where f = −|∇u|q ∈
Lq1loc(QΩ,T ), with q1 = 2/q ∈ (1, 2). From (??), there holds u,∇u, f ∈ Lq1loc(QΩ,T ). Then u ∈
W2,1,q1
loc (QΩ,T ), see [21, theorem IV.9.1]. Choosing ω′′ such that ω ⊂⊂ ω′′ ⊂⊂ ω′and denoting

Q = Qω,s,τ , Q
′ = Qω′,s/2,τ , Q

′′ = Qω′′,3s/4,τ , we deduce from (??) that

‖u‖W2,1,q1 (Q) 5 C(‖f‖Lq1 (Q′′)+‖u‖Lq1 (Q′′)) 5 C(‖∇u‖q
L2(Q′′)+‖u‖L∞(Q′)) 5 C(‖u‖qL∞(Q′)+‖u‖L∞(Q′)),

with C = C(N, q, ω, ω′, s, τ). From the Gagliardo-Nirenberg inequality, for almost any t ∈ (0, T ),

‖∇u(., t)‖L2q1 (ω) 5 c‖u(t)‖1/2
W 2,q1 (ω)

‖u(t)‖1/2L∞(ω).

where c = c(N, q, ω). Then |∇u| ∈ L2q1
loc (Q), and

‖∇u‖L2q1 (Q) 5 c‖u(t)‖1/2
W 2,q1 (Q)

‖u‖1/2L∞(Q) 5 C1Φ1(‖u‖L∞(Q′))),

with a new constant C1 as above, where Φ1 is a continuous increasing function. Thus f ∈
Lq2loc(QΩ,T ), with q2 = (2/q)2 ∈ (q1, 2q1) and u,∇u, f ∈ Lq2loc(QΩ,T ), in turn u ∈ W2,1,q2

loc (QΩ,T ). By

induction we find that u ∈ W2,1,qk1
loc (Ω×(0, T )), for any k = 1.Choosing any k so that qk > N+2, we

deduce that |∇u| ∈ Cγ,γ/2(ω × (s, τ)) for any γ ∈ (0, 1), see [21, Lemma II.3.3]. Then f is locally
Hölderian, thus u ∈ C2+γ,1+γ/2(Qω,s,τ ), and (2.10) holds.

• Case q = 2. We define Q and Q′ as above. Since u is locally bounded, the regularized function
uε = u ∗ %ε converges to u in Ls(Q′) for any s = 1, and by extraction a.e. in Q. And

(uε)t −∆uε + |∇u|2 ∗ %ε = 0 in Q′.

Defining the functions z = 1− e−u in QΩ,T , and zε = 1− e−uε in Q′, we obtain that

(zε)t −∆(zε) + hε = 0,

where hε = e−uε
(
|∇u|2 ∗ %ε − |∇uε|2

)
= 0 from convexity. Then |∇u|2 ∗ %ε converges to |∇u|2 and

|∇uε|2 converges to |∇u|2 in L1
loc(QΩ,T ), thus hε tends to 0 in L1

loc(QΩ,T ). As ε→ 0, zε converges to
z in Ls(Q) for any s = 1, and z is a solution of the heat equation in D′(Q′), hence also in D′(QΩ,T )).
Then z ∈ C∞(QΩ,T ), hence maxQz < 1, thus u ∈ C∞(QΩ,T ). And ‖z‖L∞(Q′) < 1 − e−‖u‖L∞(Q′) ,
then (2.10) follows from analogous estimates on z.

(ii) From the estimate (2.10), one can extract a diagonal subsequence, converging a.e. to a
function u in QΩ,T , and the convergence holds in C

2,1
loc (QΩ,T ). Then u is a weak solution of (1.1) in

QΩ,T .

In the case of the Dirichlet problem we obtain a corresponding regularity result for the bounded
solutions. Our proof can be compared to the proof of [7, Proposition 4.1] relative to the case q < 1.

8



Theorem 2.10 Let 1 < q 5 2. Let Ω be a smooth bounded domain. Let u be any weak nonnegative
solution of problem (DΩ,T ), such that u ∈ L∞loc((0, T ) ;L∞(Ω)).
(i) Then u satisfies the local estimates of Theorem 2.9. Moreover, u ∈ C1,0(Ω × (0, T )) and there
exists γ ∈ (0, 1) such that, for any 0 < s < τ < T,

‖u‖C(Ω×[s,τ ]) + ‖∇u‖Cγ,γ/2(Ω×[s,τ ]) 5 CΦ(‖u‖L∞(QΩ,s/2,τ )) (2.11)

where C = C((N, q,Ω, s, τ, γ), and Φ is an increasing function.
(ii) For any sequence (un) of weak solutions of (DΩ,T ) uniformly bounded in L∞loc((0, T );L∞ (Ω)),

one can extract a subsequence converging in C1,0
loc (Ω× (0, T )) to a weak solution u of (DΩ,T ).

Proof. (i) • Case q < 2. From Lemma 2.6, we have ∇u ∈ L2
loc(0, T );L2 (Ω)) and u ∈

C((0, T );L1(Ω)). Then f = −|∇u|q ∈ Lq1loc((0, t);Lq1 (Ω)). For any 0 < s < τ < T, and t ∈ [s/2, τ ] ,
we can write u(., t) = u1(., t) + u2(., t), from Lemma 2.5, where

u1(., t) = e(t−s/2)∆u(
s

2
), u2(., t) =

∫ t

s/2
e(t−σ)∆f(σ)dσ.

We get u1 ∈ C∞(QΩ,s,τ ) from the regularizing effect of the heat equation, and u2 ∈ W2,1,q1(QΩ,T ),
from [21, theorem IV.9.1]. As above, from the Gagliardo estimate, we get f ∈ Lq2loc((0, t);Lq2 (Ω)),
and by induction |∇u| ∈ Cγ,γ/2(QΩ,s,τ ) for some γ ∈ (0, 1), see [21, Lemma II.3.3]. The estimates
follow as above.
• Case q = 2. From Theorem 2.9, u is smooth in QΩ,T , and z = 1 − e−u is a solution of the

heat equation, and z ∈ C((0, T );L1(Ω)). Then z(., t) = e(t−s/2)∆z(s/2), thus z ∈ C∞(QΩ,s,τ ). This
implies that maxQΩ,s,τ

z < 1, thus u ∈ C∞(QΩ,s,τ ) and the estimates follow again.
(ii) It follows directly from (2.11).

Remark 2.11 As a consequence, in the case q 5 2, we find again the estimate (2.8) for the
problem (DΩ,T ) without using the Bernstein argument, and it is valid for any weak solution u ∈
L∞loc((0, T ) ;L∞(Ω)).

2.4 Singular solutions or supersolutions

In our study some functions play a fundamental role. The first one was introduced in [9].

2.4.1 A stationary supersolution

Assume that 1 < q < 2. Equation (1.1) admits a stationary solution whenever N = 1 or N = 2,
1 < q < N/(N − 1), defined by

ΓN (x) = γN,q |x|−a , a =
2− q
q − 1

, γN,q = a−1(a+ 2−N)1−q.

Moreover, setting
Γ(x) = Γ1(|x|) = γ1,q |x|−a (2.12)

the function Γ is a radial supersolution of equation (1.1) for any N.
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2.4.2 Large solutions

Here we recall a main result of [17] obtained as a consequence of the universal estimates.

Theorem 2.12 ([17]) Let G be any smooth bounded domain, and η > 0 such that Bη ⊂⊂ G. Then
for any q > 1, there exists a (unique) solution Y G

η of the problem
(Y G
η )t −∆Y G

η + |∇Y G
η |q = 0, in QG,∞,

Y G
η = 0, on ∂G× (0,∞),

Y G
η (x, 0) =

{
∞ if x ∈ Bη,

0 if not,

(2.13)

which is uniformly Lipschitz continuous in G for t in compacts sets of (0,∞) and is a classical
solution of the problem for t > 0, and satisfies the initial condition in the sense:

lim
t→0

inf
x∈K

Y G
η (x, t) =∞, ∀K compact ⊂ Bη; lim

t→0
sup
x∈K

Y G
η (x, t) = 0, ∀K compact ⊂ G\Bη.

(2.14)
And Y G

η is the supremum of the solutions yϕη,G with initial data ϕη,G ∈ C+(G) such that ϕη,G = 0

on G\Bη.

A crucial point for existence was the construction of a supersolution for the problem in a ball:

Lemma 2.13 For any ball Bs ⊂ RN and any λ > 0, there exists a supersolution wλ,s of equation
(1.1) in Bs × [0,∞), such that

wλ,s =∞ on ∂Bs × [0,∞) , wλ,s = λect+1/αs(x), c = c(λ) > 0,

where αs is the solution of −∆αs = 1 in Bs and αs = 0 on ∂Bs.

2.5 Some trace results

First we extend a trace result of [23].

Lemma 2.14 Let Φ ∈ L1
loc(QΩ,T ) and U ∈ C((0, T );L1

loc(Ω)) be any nonnegative weak solution of
equation

Ut −∆U = Φ, in QΩ,T .

(i) Assume that Φ = −F, where F ∈ L1
loc(Ω× [0, T )). Then U(., t) converges weak∗ to some Radon

measure U0 :

lim
t→0

∫
Ω
U(., t)ϕdx =

∫
Ω
ϕdU0, ∀ϕ ∈ Cc(Ω).

Furthermore, Φ ∈ L1
loc([0, T );L1

loc(Ω)), and for any ϕ ∈ C2
c (Ω× [0, T )),

−
∫ T

0

∫
Ω

(Uϕt + U∆ϕ+ Φϕ)dxdt =

∫
Ω
ϕ(., 0)dU0. (2.15)

(ii) Assume that Φ has a constant sign. Then

Φ ∈ L1
loc([0, T );L1

loc(Ω))⇐⇒ U ∈ L∞loc( [0, T ) ;L1
loc(Ω)).
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Proof. (i) Let ω ⊂⊂ ω′ ⊂⊂ Ω and 0 < s < τ < T . approximate U,F,Φ by Uε, Fε,Φε so that
for ε small enough, (Uε)t −∆Uε = Φε in Qω′,s/2,τ . Let φ1 be a positive eigenfunction associated to

the first eigenvalue λ1 of −∆ in W 1,2
0 (ω). Taking φ1 as a test function, integrating on over ω, and

setting

hε(t) = eλ1t

∫
ω
Uε(., t)φ1dx−

∫ τ

t

∫
ω
eλ1θFεφ1dxdθ.

then

hε(τ) = hε(s) +

∫ τ

s

∫
ω
eλ1θ(Φε + Fε)φ1dxdθ

As ε→ 0 we deduce that the function

t 7−→ h(t) = eλ1t

∫
ω
U(., t)φ1dx−

∫ τ

t

∫
ω
eλ1sF (., s)φ1dxdθ,

is nondecreasing on (0, T ). From the assumption on F,
∫
ω U(., t)φ1dx has a limit as t → 0, and

Φ ∈ L1
loc([0, T );L1

loc(Ω)). Otherwise, for any ψ ∈ C2+
c (Ω), and any t < τ, there holds∫

Ω
U(., τ)ψdx−

∫ τ

t

∫
Ω

(U∆ψ + Φψ)dxdt =

∫
Ω
U(., t)ψdx

from (2.3). Thus
∫

Ω U(., t)ψdx has a limit µ(ψ) as t → 0. Then µ extends in a unique way as a
Radon measure U0 on Ω. Finally for any ϕ ∈ C∞c (Ω× [0, T )), we have

−
∫ T

t

∫
Ω

(Uϕt + U∆ϕ+ Φϕ)dxdt =

∫
Ω
U(., t)ϕ(., t)dx.

Going to the limit as t→ 0, we deduce (2.15), since∣∣∣∣∫
Ω
U(., t)(ϕ(., t)− ϕ(., 0))dx

∣∣∣∣ 5 Ct

∫
suppϕ

U(., t)dx.

(ii) If U ∈ L∞loc( [0, T ) ;L1
loc(Ω)), then

∫ τ
t

∫
Ω Φψdxdt is bounded as t→ 0, and Φ ∈ L1

loc([0, T );L1
loc(Ω))

from the Fatou Lemma. The converse is a direct consequence of (i).

We deduce a trace property for equation (1.1), inspired by the results of [22] for equation 1.3:

Proposition 2.15 For any nonnegative weak solution u of (1.1) in QΩ,T , the following conditions
are equivalent:
(i) u ∈ L∞loc( [0, T ) ;L1

loc(Ω)),
(ii) ∇u ∈ Lqloc(Ω× [0, T )),
(iii) u(., t) converges weak∗ to some nonnegative Radon measure u0 in Ω.
And then for any τ ∈ (0, T ), and any ϕ ∈ C1

c (Ω× [0, T )),∫
Ω
u(., τ)ϕdx+

∫ τ

0

∫
Ω

(−uϕt +∇u.∇ϕ− |∇u|q ϕ)dxdt =

∫
Ω
ϕ(., 0)du0.

Remark 2.16 If q = 2, and u admits a Radon measure u0 as a trace, in the sense of condition
(iii), then necessarily

u0 ∈ L1
loc(Ω), and u ∈ C

(
[0, T ) ;L1

loc(Ω)
)
.

Indeed condition (ii) implies that u ∈ L2
loc([0, T ) ;W 1,2

loc (Ω)), and ut ∈ L2
loc((0, T );W−1,2

loc (Ω)) +
L1 (Qω,T ) , then the conclusion holds from [26]. As a first consequence, there exists no weak solution
of equation (1.1) with a Dirac mass as initial data. This had been shown in [1, Theorem 2.2 and
Remark 2.1] for the Dirichlet problem (DΩ,T ).
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2.6 Behaviour of Solutions of (1.1), (1.2) in Ω0

Next we come to problem (1.1), (1.2). In order to see what occurs at t = 0, we extend the solutions
on (−T, T ) as in [14].

Proposition 2.17 Let u be any weak solution of (1.1), (1.2). Then the function u defined a.e. in
QΩ,−T,T by

u(x, t) =

{
u(x, t), if (x, t) ∈ QΩ,T ,

0 if (x, t) ∈ QΩ,−T,0,
(2.16)

is a weak solution of the equation (1.1) in QΩ0,−T,T . If moreover

lim
t→0

∫
Ω
u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω), (2.17)

then u is a weak solution of (1.1) in QΩ,−T,T .

Proof. From assumption (1.2), u ∈ L∞loc([0, T ) × Ω0), and |∇u| ∈ Lqloc(Ω0 × [0, T )), from
Proposition 2.15. For any k = 1, we consider a function t 7−→ ζk(t) = ζ(kt), where ζ ∈
C∞ ([0,∞)) , ζ([0,∞)) ⊂ [0, 1] , ζ ≡ 0 in [0, 1] , ζ ≡ 1 in [2,∞) .For any ϕ ∈ D(QΩ0,−T,T ), we
have from the Lebesgue theorem

< ∇u, ϕ >= −
∫ T

0

∫
Ω
u∇ϕdxdt = − lim

∫ T

0

∫
Ω
u∇(ϕζk)dxdt

= lim

∫ T

0

∫
Ω
ϕζk∇udxdt =

∫ T

0

∫
Ω
ϕ∇udxdt,

thus ∇u ∈ Lqloc(QΩ0,−T,T ) and ∇u(x, t) = χ(0,T )∇u(x, t); hence ∇u ∈ L2
loc(QΩ0,−T,T ) from Lemma

2.4, and∫ T

−T

∫
Ω

(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt =

∫ T

0

∫
Ω

(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt. (2.18)

Moreover

0 =

∫ T

0

∫
Ω

(−u(ϕζk)t +∇u.∇(ϕζk) + |∇u|qϕζkdxdt

= −
∫ T

0

∫
Ω
uϕ(ζk)tdxdt+

∫ T

0

∫
Ω

(−uϕtζk +∇u.∇(ϕζk) + |∇u|qϕζkdxdt.

As k →∞, the first term in the right hand side tends to 0 from (1.2), as in [14], and we can go to
the limit in the second term, since |∇u| ∈ Lqloc(Ω0 × [0, T )). Thus from (2.18), u is a weak solution
of equation (1.1) in QΩ0,−T,T . If (2.17) holds, the same result holds in Ω instead of Ω0.

From Proposition 2.17 and Theorem 2.9 applied to u, we deduce directly the following:

Corollary 2.18 Assume 1 < q 5 2. Then any weak solution u of (1.1), (1.2) satisfies u ∈ C2,1(Ω0×
[0, T )) and u(x, 0) = 0, ∀x ∈ Ω0.

If (2.17) holds, then u ∈ C2,1(Ω× [0, T )) and u(x, 0) = 0, ∀x ∈ Ω.
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3 The critical or supercritical case

3.1 Removability in the range q∗ < q < 2

For any 1 < q < 2 we can compare the solutions with the function Γ defined at (2.12).

Lemma 3.1 Let 1 < q < 2. Let u be any nonnegative weak solution of (1.1) in QΩ,T , satisfying
(1.2).
(i) Let r > 0 such that Br ⊂ Ω.Then there exists τ1 > 0 such that

u(x, t) 5 Γ(x) ∀(x, t) ∈ QBr\{0},τ1 . (3.1)

(ii) If Ω = RN , then
u(x, t) 5 Γ(x) ∀(x, t) ∈ Q

RN\{0},T
. (3.2)

Proof. (i) For any η ∈ (0, r), we put Ωη = Br\Bη, and we set Fη(x) = Γ(|x| − η), for any
x ∈ Ωη. Then Fη is a super-solution of (1.1) in QΩη ,∞. From Corollary 2.18, there exists τ1 < T
such that maxt∈[0,τ1]

|x|=r
u(t, x) < 1, and u is bounded in Ωη × [0, τ1]. From the comparison principle

there holds u(x, t) 5 Fη(x) in Ωη × [0, τ1] . As η → 0, we deduce (3.1).
(ii) From Lemma 2.13, for any x0 ∈ RN\B2, the function x 7→ w1,1(x−x0) is a supersolution of

equation (1.1) in QB(x0,1),∞, then in particular u(t, x0) 5 ec(1)t+1/α1(0), thus u bounded in QRN\B2,T .

From the comparison principle in RN\Bη for any η ∈ (0, 1), see [18], we find u(x, t) 5 Fη(x) in
QRN\Bη ,T , hence (3.2) holds as η → 0.

As a direct consequence we get a simple proof of Theorem 1.1 in this range of q :

Proof of Theorem 1.1 for q∗ < q < 2. The assumption q∗ < q is equivalent to a < N. Let
Br ⊂ Ω and τ1 defined at Lemma 3.1; we find for any t ∈ (0, τ1) ,∫

Br

u(., t)dx 5
∫
Br

Γdx 5 γq |∂B1| rN−a
N − a ;

then u ∈ L∞((0, τ1);L1(Br)). From Proposition 2.15, u(., t) converges weak∗ to a measure µ on Br :

lim
t→0

∫
Br

u(., t)ψdx =

∫
Br

ψdµ, ∀ψ ∈ Cc (Br) .

From (1.2), µ is concentrated at 0 and then µ = kδ0 for some k = 0. Suppose that k > 0, and
choose ψη such that ψη(0) = 1, ψη(Br) ⊂ [0, 1] , suppψη ⊂ Bη, with η ∈ (0, r) small enough such
that γq |∂B1| ηN−a 5 (N − a)k/2. For any t ∈ (0, τ1), Lemma 3.1 yields∫

Br

u(., t)ψηdx 5
∫
Bη

Γdx 5 k

2
.

As t tends to 0 the left-hand side tends to k, which is a contradiction. Then k = 0, hence for any
ψ ∈ C∞c (Br) , there holds limt→0

∫
Br
u(., t)ψdx = 0. We conclude from Corollary 2.18.
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3.2 Removability in the whole range q∗ 5 q < 2

The above proof is not valid in the critical case q = q∗, since Γ 6∈ L1
loc

(
RN
)
. Then we use the large

solutions constructed at Theorem 2.12, and prove a comparison property, valid for any 1 < q < 2.

Proposition 3.2 Let 1 < q < 2. Under the assumptions of Theorem 2.12 with G = Bn (n = 1)
the functions Y Bn

η converge as n→∞ to a radial solution Yη of problem
(Yη)t −∆Yη + |∇Yη|q = 0, in Q∞,

Yη(x, 0) =

{
∞ if x ∈ Bη,

0 if not.
(3.3)

Then, as η → 0, Yη converges to a radial self-similar solution Y of equation (1.1) in QRN ,∞, such
that

Y (x, t) 5 Γ (x) , Y (x, t) 5 C(1 + t
− 1
q−1 ), in Q∞, (3.4)

where C = C(N, q), and
lim
t→0

( sup
|x|=r

Y (x, t)) = 0. (3.5)

If q∗ 5 q < 2, then Y = 0.

Proof. Let η ∈ (0, 1/2). For any n = 1, Y Bn
η is the supremum of the solutions yϕη,Bn with

initial data ϕη,Bn ∈ C+(Bn) such that ϕη,Bn = 0 on Bn\Bη; from the comparison principle in
QBn\Bη ,∞, see for example [28],

yϕη,Bn (x, t) 5 Γ1 (|x| − η) in (Bn\Bη)× [0,∞) . (3.6)

Next we compare yϕη,Bn in QB1,∞ with the classical solution w of the Dirichlet problem (DB1,∞)

with initial data ϕη,Bn . We deduce that, for any (x, t) ∈ B1 × (0,∞),

yϕη,Bn (x, t) 5 C(1 + t
− 1
q−1 ) + γq{1− η)}−

2−q
q−1 5 C(1 + t

− 1
q−1 ) + γq2

2−q
q−1 , (3.7)

with C = C(N, q), from Theorem 2.7 and Remark 2.8. And for any (x, t) ∈ (Bn\B1)× (0,∞), we
have yϕη,Bn (x, t) 5 Γ (1− η) , since Γ is decreasing, hence (3.7) holds in Bn × [0,∞) . The same
majoration holds for Y Bn

η :

Y Bn
η (., t) 5 C(1 + t

− 1
q−1 ), in QBn,∞,

with a new C = C(N, q). Then we can go to the limit as n→∞, for fixed η. Since Y Bn
η 5 Y

Bn+1
η

in QBn,∞, (Y Bn
η ) converges in C2,1

loc (QRN ,∞) to a weak solution Yη of equation (1.1), from Theorem
2.9. Then Yη = supY Bn

η satisfies

Yη 5 C(1 + t
− 1
q−1 ), in Q∞, (3.8)

and Yη solves the problem (3.3) in the sense

lim
t→0

inf
x∈K

Yη(x, t) =∞, ∀K compact ⊂ Bη; lim
t→0

sup
x∈K

Yη(x, t) = 0, ∀K compact ⊂ RN\Bη.

(3.9)
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Indeed from Lemma 2.13, for any ball B(x0, s) ⊂ RN\Bη, and any λ > 0, there holds Y Bn
η 5

wλ,s(x−x0) inQB(x0,s),∞ for any n > |x0|+|r| ; in turn Yη 5 wλ,s(x−x0), hence limt→0 supB(x0,s/2) Yη(., t) 5
λe1/α(s/2) for any λ > 0. Moreover (3.6) implies that

Yη(x, t) 5 Γ1 (|x| − η) in QRN\Bη ,∞.

Then for any r > η, and any p > r,

sup
|x|=r

Yη(x, t) 5 sup
x∈Bp\Bη

Yη(x, t) + sup
x∈RN\Bp

Yη(x, t) 5 sup
x∈Bp\Bη

Yη(x, t) + Γ (|p| − η) .

Since limr→∞ Γ1(r) = 0, we deduce that

lim
t→0

( sup
|x|=r

Yη(x, t)) = 0. (3.10)

Next we let η → 0 : observing that Yη 5 Yη′ for η 5 η′, in the same way, from Theorem 2.9,
the function Y = infη>0 Yη is a weak solution of equation (1.1) in QRN ,∞, satisfying (3.4), and
(3.5) which implies in particular (1.6). By their construction, all the functions Y Bn

η are radial, and
satisfy the relation of similarity,

κaY Bn
η (κx, κ2t) = Y

Bn/κ
η/κ (x, t), ∀κ > 0, ∀(x, t) ∈ Bn/k;

then Y is radial and self-similar.
Suppose q = q∗ and Y 6≡ 0; writing Y under the similar form Y (x, t) = t−a/2f(t−1/2 |x|), then

from [27, Theorem 2.1], we find limr→∞raf(r) > 0, which contradicts (3.5); thus Y ≡ 0.

Proposition 3.3 Let 1 < q < 2. Let Ω be any domain in RN . Let u be any weak solution of
(1.1),(1.2) in QΩ,T . Then for any τ ∈ (0, T ) and any ball Br ⊂⊂ Ω, there holds

u 5 Y + max
∂Br×[0,τ ]

u, in QBr,τ . (3.11)

Moreover, if Ω = RN , then
u 5 Y, in QRN ,T (3.12)

and u ∈ C2,1(QRN ,∞) ∩ C((0,∞);C2
b (RN )).

Proof. Let u be such a solution in QΩ,T . Let τ ∈ (0, T ) , Br ⊂⊂ Ω, and Mr = max∂Br×[0,τ ] u
and ε > 0 be fixed. From Corollary 2.18, for any 0 < η < r/2, there is δη > 0 such that

u(x, t) < ε, for η 5 |x| 5 r, t ∈ (0, δη).

Let R > r. Next, for any δ ∈ (0, δη), we make a comparison in QBr,δ,τ between u(x, t) and

y2η,R,δ(x, t) = Y BR
2η (x, t− δ) +Mr + ε

as follows. On the parabolic boundary of QBr,δ,τ , it is clear that u 5 y2η,δ,R, since u 5 Mr on
∂Br × [δ, τ ] , u(x, δ) 5 ε for x ∈ Br\Bη, and u(x, δ) 5 ∞ = y2η,R,δ, for x ∈ Bη. And y2η,R,δ
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converges to +∞ uniformly on Bη as t → δ, and u(., δ) is bounded on Bη. Then, from the
comparison principle,

u 5 y2η,R,δ, in QBr,δ,τ .

As δ tends to 0 in (??), and we get

u 5 Y BR
2η +Mr + ε, in QBr,τ , (3.13)

by the continuity of Y BR
2η in QBr,T . Since (3.13) holds for any η < r/2, and any ε > 0, we obtain

(3.11). Moreover if Ω = RN , then Mr 5 Γ1(r) from Lemma 3.1, and we get (3.12) by letting
r → ∞. Moreover u ∈ C2,1(QRN ,∞) from Theorem 2.9, then from (3.4), u ∈ Cb(QRN ,ε,∞) for any
ε > 0, then from [18, Theorems 3 and 6], u ∈ C((0,∞);C2

b (RN )).

As a direct consequence, we deduce a new proof of Theorem 1.1, valid in the range q∗ 5 q < 2 :

Proof of Theorem 1.1 for q∗ 5 q < 2. Since q = q∗, we have Y = 0, from Proposition 3.2,
thus u is bounded in QBr,τ from Proposition 3.3. Then limt→0

∫
Br
u(., t)ψdx = 0 still holds for any

ψ ∈ C∞c (Br) , and we conclude again from Corollary 2.18.

3.3 Removability for q = 2

When q > 2, the regularity of the solutions of equation (1.1), in particular the continuity property,
is not known up to now. We can only mention the recent result of [16]: if a solution in the viscosity
sense is continuous, then it is Hölderian. Then it is diffi cult to apply comparison theorems. Here
we use the transformation u 7−→ z = 1 − e−u, which reduces classically equation (1.1) to the
heat equation when q = 2. We gain the fact that z is bounded. For p > 2, our proof requires
regularization arguments.

Proof of Theorem 1.1 for q = 2. Let us set v = e−u, and z = 1 − v. Notice that z is an
increasing function of u, taking its values in [0, 1] .

(i) Case q = 2. From Theorem 2.9, u is a classical solution in QΩ,T , and u(x, 0) = 0 in Ω0 from
Corollary 2.18. Then z is a classical solution of the heat equation in QΩ,T , and z ∈ C(Ω0 × [0, T ))
and z(x, 0) = 0 for x 6= 0. From Lemma 2.14, z converges weak∗ to a Radon measure µ as t → 0,
necessarily concentrated at 0, from (1.2), since z 5 u. Then µ = 0, because z is bounded. As
for u, defining the extension z of z by 0 for t ∈ (−T, 0) , we find that z is a solution of heat
equation in QΩ,−T,T , then z ∈ C∞(QΩ,−T,T ). Hence z is strictly locally bounded by 1, thus also
u ∈ C∞(QΩ,−T,T ), thus u(0, 0) = 0, and the proof is done, and moreover u ∈ C∞(Ω× [0, T )).

(ii) Case q > 2. We regularize u by uε and obtain

(uε)t −∆uε + (|∇u|q)ε = 0,

and we set vε = euε .Then vε satisfies the equation

vεt −∆vε = vε
(
(|∇u|q)ε − |∇uε|2

)
.

Observe that vε is not the regularisation of v, but it has the same convergence properties. Going
to the limit as ε→ 0, v satisfies equation

vt −∆v = Φ, where Φ = v(|∇u|q − |∇u|2) ∈ L1
loc(QΩ,T ),
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in D′(QΩ,T ). Next from Hölder inequality, we can apply lemma 2.14 to v with F = 1 Then z(., t)
converges weak∗ to a Radon measure µ as t → 0, and Φ ∈ L1

loc(Ω × [0, T )); and for any ϕ ∈
C2
c (Ω× [0, T )) there holds∫ T

0

∫
Ω
z(ϕt + ∆ϕ)dxdt =

∫ T

0

∫
Ω

Φϕdxdt+

∫
Ω
ϕ(x, 0)dµ, (3.14)

from (2.15). We claim that µ = 0 and the extension of z by 0 for t = 0 satisfies z ∈ C([0, T ) , L1
loc (Ω)).

Indeed, from assumption (1.2), u(., t)converges to 0 in L1
loc (Ω0) as t→ 0, thus also z(., t). For any

sequence (tn) tending to 0, we can extract a (diagonal) subsequence such that u(., tν) converges
to 0, a.e. in Ω. Since z is bounded, it follows that (z(., tν)) converges to 0 in L1

loc (Ω) from the
Lebesgue theorem. And then z(., t) converges to 0 in L1

loc (Ω) as t→ 0.
We still consider the extension z of z by 0 on for t ∈ (−T, 0) . For any φ ∈ D+(QΩ,−T,T ), we have
from (3.14),

−
∫ T

−T

∫
Ω
z(φt + ∆φ)dxdt = −

∫ T

0

∫
Ω
z(φt + ∆φ)dxdt = −

∫ T

0

∫
Ω

Φϕdxdt

5
∫ T

0

∫
Ω

(1− z)ϕdxdt 5
∫ T

−T

∫
Ω

(1− z)ϕdxdt.

Then z is a subsolution of equation

wt −∆w + w = 1 (3.15)

in D′(QΩ,−T,T ). Otherwise u is the weak solution of equation (1.1) in QΩ0,−T,T , then u is subcaloric.
As a consequence, for any τ ∈ (0, T ), and any ball B2r ⊂⊂ Ω, the function u is essentially bounded
on QB2r\Br/2,−τ,τ by a constant Mr,τ . Then z 5 1− e−Mr,τ = mr,τ < 1 on this set. For any K > 0

the function yK(t) = 1 −Ke−t is a solution of equation (3.15). Taking K = e−(Mr,τ+τ+1), we can
apply the comparison principle in QBr,−τ,τ to the regularisation zε of z for ε small enough, and
deduce that z 5 yK a.e. in QBr,−τ,τ , and then

z 5 1− e−(Mr,τ+2τ+1) < 1 in QBr,−τ,τ .

Hence u = − ln(1 − z) is essentially bounded in QBr,−τ,τ . Finally u ∈ L∞loc(QΩ,−T,T ), from the
subcaloricity, hence u ∈ L∞loc(QΩ,T ). Besides, for any 0 < s < t < τ, and any domain ω ⊂⊂ Ω,

|u(., t)− u(., s)| 5 e
‖u‖L∞(Qω,−τ,τ ) |z(., t)− z(., s)|.

Then u ∈ C([0, T );L1
loc(Ω)), and u ∈ C([0, T );Lrloc(Ω)), for any r > 1, since u is locally bounded.

Furthermore, for any ball B(x0, 2ρ) ⊂ Ω, and any t ∈
(
ρ2 − T, T

)
,

sup
B(x0,ρ)×(t−ρ2,t))

u 5 Cρ−(N+2)

∫ t

t−ρ2

∫
B(x0,2ρ)

udxds,

where C = C(N), see for example [20, Theorem 6.17]. Hence for any t ∈ (0, τ) and ρ < T 1/2, we
find

sup
B(x0,ρ)×(0,t))

u 5 Cρ−(N+2)

∫ t

0

∫
B(x0,2ρ)

udxds 5 Cρ−(N+2)t ‖u‖L∞(QB(x0,2ρ),τ
) ,

hence (1.11) holds, which achieves the proof.
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3.4 Global removability in RN

Next we show Theorem 1.2 relative to Ω = RN . It is a consequence of Proposition 3.3 in case
1 < q < 2. In fact the result is general, as shown below:

Proposition 3.4 Let q > 1. Let u be any non-negative weak subsolution of equation (1.1) in QRN ,T
such that u ∈ C((0, T, L1

loc(R
N )), and

lim
t→0

∫
RN

u(., t)ψdx = 0, (3.16)

for any ψ ∈ Cc
(
RN
)
. Then u ≡ 0.

Proof. From Remark 2.2 and Lemma 2.4, since u ∈ C((0, T, L1
loc(R

N )), there holds∫
RN

u(., t)ψdx−
∫
RN

u(., s)ψdx+

∫ τ

s

∫
RN

(∇u.∇ψ + |∇u|qψdxdt 5 0,

for any ψ ∈ C2,+
c (RN ), and any (s, t) ⊂ (0, T ) .Taking ψ = ξq

′
with ξ ∈ D+(RN ) and using Hölder

inequality, we deduce∫
RN

u(., t)ψdx−
∫
RN

u(., s)ψdx+

∫ t

s

∫
RN
|∇u|qψdxdt 5 q′(

∫ t

s

∫
RN
|∇u|qψdx)

1
q (

∫ t

s

∫
RN
|∇ξ|q′dx)

1
q′

5 1

2

∫ t

s

∫
RN
|∇u|qψdx+ Cq

∫ t

s

∫
RN
|∇ξ|q′dx

with Cq = (2(q − 1))q
′
. For given R > r > 0, we choose ξ(x) = φ(|x| /R), where φ([0,∞)) ⊂

[0, 1] , φ ≡ 1 in [0, 1] , φ ≡ 0 in [2,∞) , and go to the limit as s→ 0 from (3.16). It follows that∫
Br

u(., t)dx+
1

2

∫ t

0

∫
Br

|∇u|qdxdt 5 CqtR
N−q′ .

(i) Case q < N/(N − 1). Here N − q′ < 0. Letting R → ∞, we deduce that
∫
Br
u(., t)dx = 0, for

any r > 0, thus u ≡ 0.
(ii) Case q = N/(N − 1). Then we fix some k ∈ (1, N/(N − 1)) ; for any η ∈ (0, 1), there holds
η|∇u|k 5 η + |∇u|q, hence the function wη = η1/(k−1)(u− ηt) satisfies

(wη)t −∆wη + |∇wη|k 5 0

in the weak sense. Thanks to the Kato inequality, see for example [24] or [5], we deduce that

(w+
η )t −∆w+

η + |∇w+
η |k 5 0,

in D′(QRN ,T ). Moreover wη ∈ C([0, T ) , L1
loc(R

N )), and, for any r > 0,

lim
t→0+

∫
Br

w+
η (., t)dx = η−

1
k−1 lim

t→0+

∫
Br

(u(., t)− ηt)+dx = 0.

By the above proof, w+
η ≡ 0. Letting η tend to 0 we get again u ≡ 0.
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3.5 Behaviour of the approximating sequences

When q = q∗, a simple question is to know what can happen to a sequence of solutions with smooth
initial data converging to the Dirac mass, and one can expect that it converges to 0. We get more
generally the following:

Theorem 3.5 Assume that q = q∗. Let (ϕε) be any sequence in D+
(
RN
)
, with supp ϕε ∈ Bε. Then

the sequence (uε) of solutions of (1.1) in QRN ,∞, with inital data ϕε, converges to 0 in Cloc(QRN ,∞).

In the same way, if Ω is bounded, the sequence
(
uΩ
ε

)
of solutions of (DΩ,∞), with initial data ϕε,

converges to 0 in Cloc(Ω× (0,∞)).

Proof. Let ε ∈ (0, 1) . Since uΩ
ε 5 uε, we only need to prove the result in case Ω = RN .

(i) Case q < 2. From the comparison principle there holds uε 5 Y2ε, where Y2ε defined at (3.3);
and Y2ε converges to 0 in C1

loc(QRN ,∞) from Proposition 3.2, then also uε.

(ii) Case q = 2. Let us fix some k such that q∗ < k < 2. As in the proof of Proposition 3.4, for
any η ∈ (0, 1) , wε,η = η1/(k−1)(uε − ηt) satisfies

(wε,η)t −∆wε,η + |∇wε,η|k 5 0

in D′(QRN ,∞), and wε,η ∈ L∞loc([0,∞) ;L∞(RN )). From the comparison principle we find that
wε,η 5 vε, where vε is the solution of equation (1.1) with q replaced by k and vε(., 0) = ρε; hence
uε 5 ηt+ η−1/(k−1)vε. And (vε) converges to 0 in Cloc(QRN ,∞) from (i). Let K = [s, τ ]×K be any
compact in QRN ,∞. Then

lim sup
ε→0
‖uε‖L∞(K) 5 ητ + η1/(k−1) lim sup

ε→0
‖vε‖L∞(K) = ητ

for any η > 0, then limε→0 ‖uε‖L∞(K) = 0.

4 The subcritical case 1 < q < q∗

We first recall the following results of [7, Theorem 3.2 and Proposition 5.1] for the Dirichlet problem.

Theorem 4.1 ([7]) Let 1 < q < q∗ and Ω be a smooth bounded domain. Then for any u0 ∈Mb(Ω)
there exists a weak solution of problem (DΩ,∞) such that u(., 0) = u0 in the weak sense ofMb(Ω) :

lim
t→0

∫
Ω
u(., t)ϕdx =

∫
Ω
ϕdu0, ∀ϕ ∈ Cb(Ω), (4.1)

and u is given equivalently by the semi-group formula

u(., t) = et∆u0 −
∫ t

0
e(t−s)∆ |∇u(., s)|q (s)ds in L1(Ω). (4.2)

Moreover u ∈ C2,1(QΩ,∞), and u ∈ C
(
QΩ,ε,∞

)
for any ε > 0. And u is the unique weak solution of

problem (DΩ,T ) for any T ∈ (0,∞) .
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This solution was obtained from the Banach fixed point theorem. The existence was also
obtained by approximation in [1], from the pioneer results of [13]. Here we give a shorter proof of
Theorem 4.1 when u0 is nonnegative, and state precisely the convergence:

Proposition 4.2 Suppose 1 < q < q∗. Let u0 ∈M+
b (Ω), and (u0,n) be any sequence of functions of

C1
b (Ω)∩C0(Ω) converging weak ∗ to u0, such that ‖u0,n‖L1(Ω) 5 ‖u0‖Mb(Ω) . Let un be the classical
solution of (DΩ,∞) with initial data u0,n.

Then (un) converges in C2,1
loc (QΩ,∞) ∩ C1,0

loc (Ω× (0,∞)) to a function u ∈ Lqloc([0,∞) ;W 1,q
0 (Ω))

and u is the unique solution of (DΩ,T ), (4.1) for any T > 0. And u satisfies the estimates (2.9) and
(2.8) in QΩ,∞.

Proof. There holds

un(., t) = et∆u0,n −
∫ t

0
e(t−s)∆ |∇un(., s)|q (s)ds in L1(Ω).

From estimate (2.9) and Theorem 2.10, since q < 2, one can extract a subsequence, still denoted
(un), converging in C2,1

loc (QΩ,∞) ∩ C1
loc(Ω× (0,∞)) to a weak solution u of (DΩ,∞). And∫

Ω
un(., t)dx+

∫ t

0

∫
Ω
|∇un(., s)|q (s)dxds−

∫ t

0

∫
∂Ω

∂un
∂ν

(., s)dxds =

∫
Ω
u0,ndx. (4.3)

Hence |∇un|q is bounded in L1(QΩ,∞) by ‖u0‖Mb(Ω) . Then from [5, Lemma 3.3], (un) is bounded

in Lγ((0, τ),W 1,γ
0 (Ω)) for any γ ∈ [1, q∗). Thus (|∇un|q) converges to |∇u|q in L1

loc([0,∞) , L1(Ω)),
and

(
et∆u0,n

)
converges a.e. to et∆u0, and u satisfies (4.2). Moreover u is the unique solution of

(DΩ,T ), (4.1). Indeed let v be any other solution; taking γ ∈ (q, q∗) , there holds from [5, Lemma
3.3], with constants C = C(γ,Ω),

‖∇(u− v)‖Lγ(QΩ,τ ) 5 C ‖|∇u|q − |∇v|q‖
L1(QΩ,τ )

5 C(‖∇u‖q−1
Lq(QΩ,T ) + ‖∇v‖q−1

Lq(QΩ,T )) ‖∇(u− v)‖Lq(QΩ,τ )

5 C ‖u0‖
q−1
q

Mb(Ω) ‖∇(u− v)‖Lγ(QΩ,τ ) τ
γ−q
γq ,

hence v = u on (0, τ) for τ 5 C = C(γ,Ω, u0), and then on (0, T ). Then the whole sequence (un)
converges to u.

Remark 4.3 Applying Proposition 4.2 on (ε, T ) for ε > 0, we deduce regularity results: any weak
solution u of (DΩ,T ) extends as a solution of the problem (DΩ,∞), and u ∈ C2,1(QΩ,∞), and u ∈
C
(
QΩ,ε,∞

)
for any ε > 0, and u satisfies the universal estimates (2.9) and (2.8) in QΩ,∞. In turn

u ∈ C1,0
loc (QΩ,∞) from Theorem 2.10.

Notation 4.4 For any k > 0, we denote by uk,Ω the above solution of (DΩ,∞) with initial data
kδ0.

4.1 The case Ω = RN

We first show that the function Y constructed at Proposition 3.2 is a VSS:
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Lemma 4.5 The function Y is a maximal V.S.S. in QRN ,∞, and coincides with the radial self-
similar solution constructed in [27]. It satisfies

lim
t→0

∫
RN\Br

Y (., t)dx = 0, ∀r > 0. (4.4)

Proof. Consider any ball Bp with p ∈ N∗. We can approximate the function uk,Bp by uk,Bpε ,
solution with initial data kρε, where (ρε) is a sequence of mollifiers with support in Bε ⊂ B1. For
any η ∈ (0, 1) , there holds uk,Bpε 5 Yη for ε < η. Then we find uk,Bp 5 Y. As a first consequence,
Y 6= 0, and for any ball Br such that r < 1, taking ϕ ∈ Cc(Br) with values in [0, 1] , such that
ϕ ≡ 1 on Br/2,

limt→0

∫
Br

Y (., t)dx = lim
t→0

∫
Br

uk,Bp(., t)ϕdx = k, (4.5)

thus Y satisfies (1.7). From (3.10), Y is the unique radial self-similar VSS constructed in [27]. It
satisfies (4.4), since Y (x, t) = t−a/2f(t−1/2 |x|), and limr→∞ ra−Ner

2/4f(r) > 0, from [27, Theorem
2.1], which implies (1.6). And Y is a maximal VSS, since Y is greater than any weak solution of
(1.1), (1.2), from Proposition 3.3.

In [10], a VSS U is obtained as the limit of a sequence of solutions uk of (1.1) in QRN ,∞ with
initial data kδ0, constructed in [9]. The proof is based on diffi cult estimates of the gradient obtained
from from the Bernstein technique by derivation of equation, showing that U satisfies (1.8) and is
minimal in that class, from [11, Theorem 3.8]. Here we prove again the existence of the uk and U
in a very simple way:

Lemma 4.6 (i) For any k > 0 there exists a weak solution uk of (1.1) in QRN ,∞, such that
uk ∈ L∞((0,∞);L1(RN )) and

∣∣∇uk∣∣ ∈ Lq(QRN ,∞), with initial data kδ0, in the weak sense of
Mb

(
RN
)

lim
t→0

∫
RN

uk(., t)ψdx = kψ(0), ∀ψ ∈ Cb(RN ); (4.6)

and uk = supp∈N∗ u
k,Bp, where uk,Bp is the solution of the Dirichlet problem (DBp,∞) with initial

data kδ0.
(ii) As k →∞, uk converges in C2,1

loc (QRN ,∞) to a V.S.S U in QRN ,∞.

Proof. (i) Let k > 0 be fixed. Consider the sequence
(
uk,Bp

)
p=1

and notice that it is nonde-
creasing. We have

uk,Bp(., t) 5 Y (., t) 5 C(1 + t
− 1
q−1 ), (4.7)

from Proposition 3.2. From Theorem 2.9 the sequence converges in C2,1
loc (QΩ,∞) to a solution uk of

equation (1.1) in QRN ,∞, and u
k 5 Y, thus uk satisfies (1.6) from (3.5). Moreover for any t > 0,

there holds
∫
Bp
uk,Bp(., t)dx 5 k from (4.2), then

∫
RN u

k(., t)dx 5 k from the Fatou Lemma. In

turn from Proposition 2.15, uk(., t) converges weak∗ to a Radon measure µ, concentrated at 0, then
µ = k′δ0, k

′ > 0. Otherwise uk,Bp 5 uk, then
∫
Bp
uk,Bp(., t)dx 5

∫
RN u

k(., t)dx, thus from (4.5)

k 5 lim inf
t→0

∫
RN

uk(., t)dx;
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then limt→0

∫
RN u

k(., t)dx = k. Taking ϕp ∈ D+(RN ), with values in [0, 1] , such that ϕp = 1 on Bp,
we get ∫

Bp

uk,Bp(., t)dx 5
∫
RN

uk(., t)ϕpdx 5
∫
RN

uk(., t)dx

hence k′ = k. Thus uk(., t) converges weak ∗ to kδ0 as t→ 0. In fact the convergence holds in the
weak sense ofMb(RN ). Indeed for any ψ ∈ C+

b (RN ), using a function ϕ ∈ Cc(RN ) with values in
[0, 1] such that ϕ ≡ 1 on a ball Br, we can write∫

RN
uk(., t)ψdx =

∫
RN

uk(., t)ψϕdx+

∫
RN

uk(., t)ψ(1− ϕ)dx,

and ∫
RN

uk(., t)ψ(1− ϕ)dx 5 ‖ψ‖L∞(RN )

∫
RN\Br

uk(., t)dx 5 ‖ψ‖L∞(Ω)

∫
RN\Br

Y (., t)dx

and the right hand side tends to 0 from (4.4). From (4.3), we find
∥∥∥∣∣∣∇uk,Bpε

∣∣∣q∥∥∥
L1(QBp,∞)

5

k ‖ρε‖L1(Bp) = k, hence
∥∥∣∣∇uk,Bp∣∣q∥∥

L1(QBp,∞)
5 k, and finally

∥∥∣∣∇uk∣∣q∥∥
L1(QRN,∞)

5 k.

(ii) From (4.7) or from Proposition (3.3), there holds

uk(., t) 5 Y (., t) 5 C(1 + t
− 1
q−1 ).

From Theorem 2.9, uk converges in C2,1
loc (QRN ,∞) to a weak solution U of equation (1.1). Then

uk 5 U 5 Y, thus U satisfies (1.7) and (4.4) as Y . Hence U is a VSS in QRN ,∞.

Next we prove the uniqueness of the VSS:

Proof of Theorem 1.3. Let us show that U is minimal among all the VSS. Any VSS u in
QRN ,∞ satisfies u ∈ C2,1(QRN ,∞)∩C((0,∞);C2

b (RN )) and u 5 Y , from Proposition 3.3, and (3.4).
For fixed k > 0 and p > 1, one constructs a sequence of functions uk0,n ∈ D+(RN ) with support in
B1 such that

uk0,n 5 u(.,
1

n
) in RN , lim

n→∞

∫
RN

uk0,ndx = k.

Indeed ‖u(., 1/n)‖L1(RN ) tends to ∞, then, for n large enough, there exists sn,k > 0 such that∥∥Tsn,k(u)(., 1/n)
∥∥
L1(RN )

= k. And εn = ‖u(., 1/n)‖L1(RN\B1) + ‖u(., 1/n)‖L∞(RN\B1) tends to 0,

from (4.4) and (3.5). Then vkn = (Tsn,k(u)(., 1/n)−2εn)+ has a compact support in B1, and we can

take for uk0,n a suitable regularization of v
k
n. Let us call u

k,Bp
n the solution of (DBp,∞) with initial

data uk0,n. Then u
k,Bp
n (., t) 5 u(., t+1/n) from the comparison principle. As n→∞, uk0,n converges

to kδ0 weakly inMb(Bp), since for any ψ ∈ C+
b (Bp), and any r ∈ (0, 1) ,∣∣∣∣∣

∫
Bp

uk0,nψdx− kψ(0)

∣∣∣∣∣ 5 ψ(0)

∣∣∣∣∣
∫
Bp

(uk0,n − k)dx

∣∣∣∣∣
+ 2 ‖ψ‖L∞(Bp)

∫
RN\Br

u(.,
1

n
)dx+ sup

Br

|ψ − ψ(0)|
∫
RN

uk0,ndx.
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Then u
k,Bp
n converges to uk,Bp from Proposition 4.2, and uk,Bp 5 u. From Lemma 4.6, we get

uk 5 u 5 Y. As k → ∞, we deduce that U 5 u 5 Y. Moreover U is radial and self-similar, then
U = Y = u from [27].

Finally we describe all the solutions:
Proof of Theorem 1.4. Let u be any weak solution of (1.1), (1.6). Either (1.7) holds,

then u = Y. Or there exists a ball Br such that
∫
Br
u(., t)dx stays bounded as t → 0. Then

u ∈ L∞loc( [0, T ) ;L1
loc(R

N )), from Corollary 2.18. From Proposition 2.15, u(., t) converges weak∗ to
a measure µ as t → 0. Then µ is concentrated at 0 from (1.6), hence the exists k = 0 such that
µ = kδ0, and (1.12) holds as in Lemma 4.6, since u 5 Y . If k = 0, then u ≡ 0 from Theorem 1.2.

Next we show the uniqueness, namely that u = uk constructed at Lemma 4.6. Here only we use
the gradient estimates obtained by the Bernstein technique. We have u ∈ C((0,∞);C2

b (RN )) from
Proposition (3.3), and u ∈ L∞((0,∞);L1(RN )) from (3.2) or (4.4) thus u ∈ C((0,∞);L1(RN )).
From [9], [8], for any ε > 0, and any t = ε, we have the semi-group formula

u(., t) = e(t−ε)∆u(., ε)−
∫ t

ε
e(t−s)∆ |∇u|q (s)ds in L1(RN ), (4.8)

and there exists C(q) such that for any t > 0,

|∇u(., t)|q 5 C(q)(t− ε)−1u(., t).

and u 5 Y, then as ε→ 0 we obtain

‖∇u(., t)‖L∞(RN ) 5 C(q)t−1/q ‖Y (., t)‖1/q
L∞(RN )

5 Ct−(N+2)/2q

where C = C(N, q). From (1.12) and (4.8) there holds |∇u|q ∈ L1
loc([0,∞) ;L1(RN )). Otherwise

e(t−ε)∆u(x, ε) converges to kg in C′b(RN ), where g is the heat kernel, then

u(., t) = kg −
∫ t

0
e(t−s)∆ |∇u|q (s)ds in C′b(RN ).

Then

(u− uk)(., t) = −
∫ t

0
e(t−s)∆(|∇u|q −

∣∣∣∇uk∣∣∣q)(s)ds in L1(RN ),

∥∥∥∇(u− uk)(., t)
∥∥∥
Lq(RN )

5
∫ t

0

∥∥∥∇e(t−s)∆
∥∥∥
L1(RN )

∥∥∥|∇u(., s)|q −
∣∣∣∇uk(., s)∣∣∣q∥∥∥

Lq(RN )
ds

5 C

∫ t

0
(t− s)−1/2s−(q−1)(N+2)/2q

∥∥∥∇(u− uk)(., s)
∥∥∥
Lq(RN )

ds.

Thus ∇(u − uk)(., t) = 0 in Lq
(
RN
)
, from the singular Gronwall lemma, valid since q < N+2

N+1 ;

hence u = uk.

Remark 4.7 This uniqueness result is a special case of a general one given for measure data in
[12, Theorem 3.27].
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4.2 The Dirichlet problem (DΩ,∞)

Here Ω is bounded, and we consider the weak solutions of the problem (DΩ,∞) such that

lim
t→0

∫
Ω
u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω\ {0}). (4.9)

First, we give regularity properties of these solutions.

Lemma 4.8 Any weak solution u of (DΩ,∞), (4.9), in QΩ,∞ satisfies

u ∈ C1,0(Ω\ {0} × [0,∞)) ∩ C1,0(Ω× (0,∞)) ∩ C2,1 (QΩ,∞) .

Proof. We know that u ∈ C1,0(Ω × (0,∞)) ∩ C2,1 (QΩ,∞) , see Remark 4.3. Moreover u ∈
C2,1(Ω0 × [0,∞)) and u(x, 0) = 0, ∀x ∈ Ω0, from Corollary 2.18. Let Bη ⊂⊂ Ω be fixed, and
Ωη = Ω\Bη. Then u ∈ C1 (∂Bη × [0,∞)) , thus for any T ∈ (0,∞) , there exists Cτ > 0 such that
u(., t) 5 Cτ t on ∂Bη × [0, T ) . Then the function w = u− Cτ t solves

wt −∆w = − |∇u|q − Cτ in D′
(
QΩη ,T

)
,

then w+ ∈ C((0, T );L1 (Ωη) ∩ L1
loc((0, T );W 1,1

0 (Ωη)), and

w+
t −∆w+ 5 0 in D′

(
QΩη ,T

)
from the Kato inequality. Moreover, from assumption (4.9), w+ ∈ L∞((0, T );L1 (Ωη)) and w+(., t)
converges to 0 in the weak sense of Mb (Ωη) . As a consequence, w 5 0, from [5, Lemma 3.4];
thus u(., t) 5 CT t in Ωη,T . Then the function u defined by (2.16) is bounded in QΩη ,τ . Hence
u ∈ C1,0(Ωη × (−T, T )) from Theorem 2.10, thus u ∈ C1,0(Ω\ {0} × [0,∞)).

Definition 4.9 Let T ∈ (0,∞] . We call VSS in QΩ,T any weak solution u of the Dirichlet problem
(DΩ,T ), (4.9), such that

lim
t→0

∫
Br

u(., t)dx =∞, ∀Br ⊂ Ω. (4.10)

Remark 4.10 From Remark 4.3, any VSS in QΩ,T extends as a VSS in QΩ,∞, and satisfies (2.9)
and (2.8).

Next we prove the existence and uniqueness of the VSS. Our proof is based on the uniqueness
of the VSS in RN , and does not use the uniqueness of the function uk.

Proof of Theorem 1.5. (i) Existence of a minimal VSS. For any k > 0 we consider the
solution uk,Ω of (DΩ,∞) with initial data kδ0. By regularization as in Lemma 4.6, we obtain that
uk,Ω 5 Y. The sequence

(
uk,Ω

)
is nondecreasing. From estimate (2.9) and Theorem 2.10,

(
uk,Ω

)
converges in C2,1

loc (QΩ,∞) ∩ C1,0
loc (Ω × (0,∞)) to a weak solution UΩ of (DΩ,∞), and then UΩ 5 Y.

Hence UΩ satisfies (4.10), and (4.9) from (4.4), thus UΩ is a VSS in Ω. Next we show that UΩ is
minimal. Consider any VSS u in QΩ,∞. Let k > 0 be fixed. As in the proof of Theorem 1.3, one
constructs a sequence uk,Ωn of solutions of (DΩ,∞) with initial data functions uk,Ω0,n ∈ D(Ω) such that

0 5 uk,Ω0,n 5 u(.,
1

n
) in Ω, lim

n→∞

∫
Ω
uk,Ω0,n dx = k.

24



We still find uk,,Ωn (., t) 5 u(., t + 1/n) from the comparison principle, valid from Lemma 4.8. As
n→∞, uk,Ω0,n converges to kδ0 weakly inMb(Ω), then uk,Ωn converges to uk,Ω from Proposition 4.2.
Thus uk,Ω 5 u for any k > 0, hence UΩ 5 u.

(ii) Existence of a maximal VSS. For any ball Bη ⊂⊂ Ω, we consider the function Y Ω
η defined

at Theorem 2.12. Consider again any VSS u in Ω, and follow the proof of Proposition 3.3, replacing
Br by Ω. Let ε > 0 be fixed. From Lemma 4.8, for any ball Bη ⊂⊂ Ω, setting Ωη = Ω\Bη there is
δη > 0 such that u(x, t) < ε in QΩη ,δη . For any δ ∈ (0, δη), from the comparison principle in QΩ,δ,τ

we obtain
u(x, t) 5 Y Ω

2η(x, t− δ) + ε in QΩ,δ,τ .

As δ tends to 0, and then ε → 0, we deduce that u 5 Y Ω
2η in QΩ,∞. Note that Y Ω

η 5 Y Ω
η′ for any

η 5 η′. From the estimate (2.9) and Theorem 2.9, Y Ω
η converges in C1,0

loc (Ω× (0,∞)) to a classical
solution Y Ω of (DΩ,∞), and u 5 Y Ω. Moreover Y Ω satisfies (4.10), since Y Ω = U, and (4.9) since
Y Ω 5 Y, then Y Ω is a maximal VSS in Ω.

(iii) Uniqueness. For fixed k > 0, we intend to compare uk,Ω with uk, by approximation. Let
0 < η < r be fixed such that Br ⊂⊂ Ω. Consider again the function Yη defined by (3.3). Let δ > 0
be fixed. From (3.10), there exists τδ > 0 such that sup(RN\Br)×[0,τδ]

Yη 5 δ. Let (ρε) be a sequence

of mollifiers with support in Bε ⊂ Bη. Let uk,Ωε be the solution of (DΩ,∞) in QΩ,∞ with initial data

kρε. For any p > 1 such that Ω ⊂ Bp, let u
k,Bp
ε be the solution of (DBp,∞) with the same initial

data. By definition of Y Bp
η and Yη, there holds u

k,Bp
ε 5 Y

Bp
η 5 Yη, hence sup∂Ω×[0,τδ]

u
k,Bp
ε 5 δ.

From the comparison principle we find

u
k,Bp
ε 5 uk,Ωε + δ in Ω× [0, τδ] .

Going to the limit as ε→ 0 from Proposition 4.2, then as p→∞ from Lemma 4.6, then as k →∞,
we find

U 5 UΩ + δ in Ω× (0, τδ] .

The function WΩ = Y Ω − UΩ ∈ C1,0(Ω\ {0} × [0,∞)) ∩ C1,0(Ω × (0,∞)) from Lemma (4.8), and
WΩ = 0 on ∂Ω× [0,∞). Since Y Ω 5 Y = U, then WΩ 5 δ in Ω× (0, τδ] . Thus WΩ(., t) converges
uniformly to 0 as t → 0. Then from the comparison principle, for any ε ∈ (0, δ), supΩ×[ε,T )W

Ω 5
maxΩW

Ω(., ε), thus WΩ = 0, hence Y Ω = UΩ.

Finally we describe all the solutions as in the case of RN :

Theorem 4.11 Let u be any weak solution of (DΩ,∞), (4.9). Then either u = UΩ, or there exists
k > 0 such that u = uk,Ω, or u ≡ 0.

Proof. Either u = Y Ω, or there exists a ball Br such that
∫
Br
u(., t)dx stays bounded as t→ 0.

Then from (4.9), u ∈ L∞loc( [0,∞) ;L1(Ω)). From Proposition 2.15, u(., t) converges weak∗ to a
measure µ as t → 0, concentrated at {0} from (4.9). Hence the exists k = 0 such that µ = kδ0,
thus

lim
t→0

∫
Ω
u(., t)ϕdx = kϕ(., 0), ∀ϕ ∈ Cc(Ω),

and it holds for any ϕ ∈ Cb(Ω), from (4.9). If k > 0, then u = uk,Ω from uniqueness, see Proposition
4.2. If k = 0, then u ≡ 0 from Theorem 1.2.

25



References

[1] M. Alaa, Solutions faibles d’équations paraboliques quasilinéaires avec données mesures, Ann.
Math. Blaise Pascal, 3 (1996), 1-15.

[2] L. Amour and M. Ben-Artzi, Global existence and decay for Viscous Hamilton-Jacobi equations,
Nonlinear Analysis, Methods and Applications, 31 (1998), 621-628.

[3] F. Andreu, J. Mazon, S. Segura de Leon and J. Toledo, Existence and uniqueness for a degen-
erate parabolic equation with l1 data, Trans. Amer. Math. Soc. 351 (1999), 285-306.

[4] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations,
Arch. Rat. Mech. Anal. 25 (1967), 81-122.

[5] P. Baras and M. Pierre, Problemes paraboliques semi-lineaires avec données mesures, Applica-
ble Anal. 18 (1984),111-149.

[6] M. Ben Artzi, P. Souplet and F. Weissler, The local theory for Viscous Hamilton-Jacobi equa-
tions in Lebesgue spaces, J. Math. Pures Appl. 81 (2002), 343-378.

[7] S. Benachour, S. Dabuleanu, The mixed Cauchy-Dirichlet problem for a viscous Hamilton-
Jacobi equation, Adv. Diff. Equ. 8 (2003), 1409-1452.

[8] S. Benachour, M. Ben Artzi, and P. Laurençot, Sharp decay estimates and vanishing viscosity
for diffusive Hamilton-Jacobi equations, Adv. Differential Equations 14 (2009), 1—25.

[9] S. Benachour and P. Laurençot, Global solutions to viscous Hamilton-Jacobi equations with
irregular initial data, Comm. Partial Differential Equations 24 (1999), 1999-2021.

[10] S. Benachour and P. Laurençot, Very singular solutions to a nonlinear parabolic equation with
absorption, I- Existence, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 27-44.

[11] S. Benachour, H. Koch, and P. Laurençot, Very singular solutions to a nonlinear parabolic
equation with absorption, II- Uniqueness, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 39-
54.

[12] M.F. Bidaut-Véron, and A. N. Dao, L∞ estimates and uniqueness results for nonlinear par-
abolic equations with gradient absorption terms, Arxiv N◦ 1202 2674.

[13] L. Boccardo and T. Gallouet, Nonlinear elliptic and parabolic equations involving measure
data, J. Funct. Anal. 87 (1989), 149-169.

[14] H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial condi-
tions, J.Math.Pures Appl. 62 (1983), 73-97.

[15] H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with
absorption, Arch. Ration. Mech. Analysis 95 (1986), 185-209.

[16] P. Cannarsa and P. Cardaliaget, Hölder estimates in space-time for viscosity solutions of
Hamilton-Jacobi equations, Comm. Pure Appl. Math. 63 (2010) 590—629.

26



[17] M. Crandall, P. Lions and P. Souganidis, Maximal solutions and universal bounds for some
partial differential equations of evolution, Arch. Rat. Mech. Anal. 105 (1989), 163-190.

[18] B. Gilding, M. Guedda and R. Kersner, The Cauchy problem for ut = ∆u + |∇u|q , J. Math.
Anal. Appl. 284 (2003), 733-755.

[19] S. Kamin and L. A. Peletier, Singular solutions of the heat equation with absorption, Proc.
Amer. Math. Soc. 95 (1985), 205-210.

[20] G. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co.
Pte. Ltd. (1996).

[21] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’Ceva, Linear and Quasilinear Equations
of Parabolic Type, Transl. Math. Monogr. 23, Amer. Math. Soc., Providence, 1968.

[22] M. Marcus and L.Véron, Initial trace of positive solutions of some nonlinear parabolic equa-
tions, Comm. Part. Diff. Equ., 24 (1999), 1445-1499.

[23] I. Moutoussamy and L. Véron, Source type positive solutions of nonlinear parabolic inequalities,
Ann. Normale Sup. Di Pisa, 4 (1989), 527-555.

[24] L. Oswald, Isolated positive singularities for a nonlinear heat equation, Houston J. Math. 14
(1988), 543—572.

[25] A. Prignet, Existence and uniqueness of "entropy" solutions of parabolic prolems with L1 data,
Nonlinear Anal. 28 (1997), 1943-1954.

[26] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of tru-
cations, Ann. Mat. Pura Appl., 177 (1999), 143-172.

[27] Y. Qi and M. Wang, The self-similar profiles of generalized KPZ equation, Pacific J. Math.
201 (2001), 223-240.

[28] P. Souplet and Q. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, J.
Anal. Math. 99 (2006), 355-396.

[29] N. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Part. Diff. Equ.
21 (1968), 205-226

27


