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Abstract

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi equation
u — Au+ |Vul? =0

in Qor = Q x (0,7), where ¢ > 1,7 € (0,00], and  is a smooth bounded domain of R¥
containing 0, or Q = RY. We consider weak solutions with a possible singularity at point
(z,t) = (0,0). We show that if ¢ > g. = (N + 2)/(N + 1) the singularity is removable. For
1 < ¢ < g., we prove the uniqueness of a very singular solution without condition as |z| — oo;
we also show the existence and uniqueness of a very singular solution of the Dirichlet problem
in Qq,oc, when 2 is bounded. We give a complete description of the weak solutions in each case.
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1 Introduction

Let © be a smooth bounded domain of RY containing 0, or 2 = RY and Qy = Q\{0}. Here we
consider the nonnegative solutions of the viscous parabolic Hamilton-Jacobi equation

ur — Au+ |Vul? =0 (1.1)

in Qo1 =Qx(0,7), where ¢ > 1, with a possible singularity at point (x,t) = (0,0), in the sense:

}/in}) u(., t)edr =0, Vo € Ce(Qo), (1.2)
—0Ja

which means formally that u(z,0) = 0 for z # 0.

Such a problem was first considered for the semi-linear equation with a lower term or order 0 :
w— Au+ulTlu =0 in Qqr, (1.3)

with ¢ > 1. In the well-known article of Brezis and Friedman [14], it was shown that the problem
admits a critical value ¢. = (N + 2)/N. For any ¢ < ¢., and any bounded Radon measure
ug € Mp(£2), there exists a unique solution of (1.3) with Dirichlet conditions on 92 with initial
data ug, in the weak * sense:

lim [ wu(.,t)pde = / eduyg, Vo € Ce(Q). (1.4)
Q Q

t—0

Moreover, from [15] and [19], there exists a very singular solution in RY, satisfying

lim u(., t)dz = oo, YV B, C €, (1.5)
t—0 B'r

and it is the limit as K — oo of the solutions with initial data kdy, where dg is the Dirac mass at 0;
its uniqueness, obtained in [24], is also a consequence of the general results of [22]. For any ¢ = ¢,
such solutions do not exist, and the singularity is removable, in other words any solution of (1.3),
(1.2) satisfies u € C%! (2 x [0,T)) and u(x,0) = 0 in ©Q, see again [14].

Concerning equation (1.1), up to now, the description was not yet complete. Here another

critical value is involved:
_N+2

SN+ 1

In the case Q@ = RY, we define a very singular solution (called VSS) in QRN o as any function
uw € L}, (Qrn o), such that |Vu| € LI (Qrw ), satisfying equation (1.1) in D'(Qg~ o), and
conditions

qx

lim [ u(,t)pdz =0, Ve e C.(RM\{0}). (1.6)
t—0 RN
lim [ w(.,t)dz = oo, Vr > 0. (1.7)
t—0 B'r

For ¢ € (1,q.), it was shown in [9] the existence of a solution with initial data ug € M;(RY),
and uniqueness in a specific class, enlarged in [6]. The existence of a radial self-similar VSS U in



QRN 0, Unique in its class, was obtained in [27]; independently in [10], proved the existence of a
VSS as a limit as k — oo of the solutions with initial data kdy. Uniqueness was proved in [11], in
the class of functions U such that

limy fRN\BT U(.,t)dz =0, Vr >0,
U € C* (Qgrn o) NC((0,00); LERY)) N LE ((0, 00); WH(RY)), (1.8)

Supt>0(tN/2 HU('7t)HL°°(RN) + t(@(N+1)=N)/2q HV(U(qil)/q('at))HLoo(RN)) < 00

If ¢ = gx, it was proved in [10] that there is no solution u in Qg~  with initial data dp, under the
constraints

u € O((0,T); L'(RY)) N LU(0, T); WHI(RY); (1.9)

and the nonexistence of VSS was stated as an open problem.
In the case of the Dirichlet problem in Qq 7, with € bounded, similar results were obtained in
[7]: for ¢ € (1,¢«) and any ug € My(2), there exists a solution u such that

we C((0,7); LY () N L' ((0,7); W' (), |[Vul?! € L' (Qar) (1.10)

satisfying (1.4) for any ¢ € Cp(€2), and unique in that class; for ¢ = ¢, there exists no solution in
this class when wug is a Dirac mass; the existence or nonexistence of a VSS was not studied.

In this article we answer to these questions and complete the description of all the weak solutions.

In Section 2 we introduce the notion of weak solutions. When ¢ < 2, we show a C%! property
for any weak solution, improving some results of [11], see Theorems 2.9 and 2.10. We point out
some particular singular solutions or supersolutions, fundamental in the sequel. We also give some
trace results, in the footsteps of [22], and apply them to the solutions of (1.1), (1.2).

Our main result is the remowvability in the supercritical case ¢ = ¢., proved in Section 3,
extending the results of [14] to equation (1.1).

Theorem 1.1 Assume q = q.. Let Q be any domain in RY. Let u € L} (Qqr), such that |Vu| €
Ll (Qq,r), be any solution of problem

loc

(Po) u—Au+|Vul?=0 in D' (Qqr),
limy o [o u(.,t)edz =0, Vo € Cu(Q),

Then the singularity is removable, in the following sense:

If g <2, thenu e C(2x[0,T)) and u(z,0) =0, Yz € Q.

If ¢ > 2, then w € C([0,T); L;,.(2)), for any r > 1, u is locally bounded near 0, and for any
domain w CC €,

lim(sup u) = 0. (1.11)
t—0 Qut

Observe that our conclusions hold without any condition as |z| — oo if 2 = RY, or near 92 when
Q # RYN. As a consequence, for q > g,

(i) there exists no VSS in Qgn o in the sense above.

(i) there exists no solution of (Pq) with a Dirac mass at (0,0), without assuming (1.9) or
(1.10).



We give different proofs of Theorem 1.1 according to the values of ¢q. For ¢ < 2, we take benefit
of the regularity of the solutions shown in Section 2. When g < 2, we make use of supersolutions,
and the difficult case is the critical one ¢ = g«. When ¢ = 2, our proof is based on a change of
unknown, and on our trace results; the case ¢ > 2 is the most delicate, because of the lack of
regularity.

Besides, if Q = R, we can show a global removability, without condition at co:
Theorem 1.2 Under the assumptions of Theorem 1.1 with Q = RN, then
u(zx,t) =0, ae. mRY,  for anyt > 0.

In Section 4, we complete the study of the subcritical case ¢ < ¢,. Our main result in this range
is the uniqueness of the VSS in Qrn o, without any condition:

Theorem 1.3 Let q € (1,q«). Then there exists a unique VSS in Qg -
Moreover we give a complete description of the solutions:

Theorem 1.4 Letq € (1,q.). Let u € L, (Qrn o), be any function such that |Vu| € L] (Qgpxy o),

loc
solution of equation (1.1) in D'(Qg~ ), and satisfying (1.6). Then
e either (1.7) holds and u = U,
e or there exists k > 0 such that u(.,0) = kdg in the weak sense of My(RN) :
lim u(., t)pdz = kp(0), Vo € Cy(RY), (1.12)

t—0 JpN

and u is the unique solution satisfying (1.12),
o oru=0.

We also consider the Dirichlet problem in Qo7 when €2 is bounded:

ur — Au+ |[Vul? =0 in Qo,r

(Do) { u=0 on dN2 x (0,00). (1.13)

We give a notion of VSS for this problem, generally nonradial, and show the parallel of Theorem
1.3:

Theorem 1.5 Assume that q € (1,q,) and Q is a smooth bounded domain of RN. Then there exists
a unique VSS of problem (Dg o).

Finally we describe all the weak solutions as above.

In conclusion, g, clearly appears as the upperbound for existence of solutions with an isolated
singularity at time 0. We refer to [12] for the study of equation (1.1) or more general quasilinear
parabolic equations with rough initial data, where we give new decay and uniqueness properties.
The problem of removability of nonpunctual singularities will be the object of a further article.



2 Weak solutions and regularity

2.1 First properties of the weak solutions

We set Qqs.r = Q % (s,7), for any domain Q@ C RY, any —oo < s < 7 < o0, thus Qo1 = Qo017

Definition 2.1 For any function ® € L}OC(QQ7T)7 we say that a function U is a weak solution
(resp. subsolution, resp. supersolution) of equation

Ut —AU =90 m QQ7T, (21)

if U € Li,.(Qax) and, for any ¢ € D (Qq,r),
T
/ / (Upt + UAp + Pp)dzdt =0 (resp. <, resp. 2).
0 Q

Remark 2.2 Regularizing U by U. = U * o., where (o.) is a sequence of mollifiers in (x,t) € RV+L,
we see that any solution (resp. subsolution) U of (2.1) such that U € C((0,T); L}, .(Q)) satisfies
also for any s, 7 € (0,T)

/QU(.,T)LP(.,T)d:B—/QU(.,t)go(.,t)d:)s—/S /Q(Ucpt—l—UAcp+<I><p)dacdt:0 (resp. £ 0) (2.2)

for any ¢ € C+(Q x [0,T)), and for any ¢ € C*+ (Q),

/ U(.,7)dx — / U(.,s)Ypdr — / /(UAw + ®)dadt =0 (resp. £ 0). (2.3)
Q Q s JQ
Next we make precise our notion of solution of equation (1.1).

Definition 2.3 (i) We say that a nonnegative function u is a weak solution of equation (1.1) in
Qor, if u e L}OC(QQT), |Vul|? € L}OC(QQJ‘), and u is a weak solution of the equation in the sense
above.

(it) We say that u is a weak solution of the Dirichlet problem (Dqr) if it is a weak solution of
(1.1) in Qa.r, such that

u € Lipe((0,T): Wy (2)) N C((0,T); L(R)),  and [Vu| € L], ((0,T); L))

Next we recall some well known properties:

Lemma 2.4 Any weak nonnegative solution of equation (1.1) satisfies u € LS (Qar), Vu €
L (Qar), and u € C((0,T); LT, (), for any r = 1. Then
(i) for any ¢ € C2(Qar),

T
/ /(—ugpt + Vu.Ve + |Vu|lp)dzdt = 0, (2.4)
0o Ja

(ii) for any s,7 € (0,T), and any ¢ € C1((0,T); CL (),
/Qu(.,T)ap(.,T)dw — /Qu(, s)p(.,s)dr + /ST /Q(—U(pt + Vu.Vo + |Vul|lp)dzdt = 0 (2.5)
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(iii) for any s, € (0,T), and any ¢ € CL(Q),

/Q w(., T)bds — /Q u(., s)pds + / ' /Q (Vu.V + |Vul")dadt = 0 (2.6)

Proof. The function w is subcaloric, then u € L (Qqr), see for example [14]. Consider any
domains w CC w' CC Q, taking ¢ € C () with support in w’ such that ) = 1 on w, ¥ (Q) C [0,1],
and 0 < s < 7 < T. The regularized function u. is a subsolution of equation (1.1) in Qs , , for
e small enough, from the convexity of |Vu|?. Then

[trwido— [ spidos [0 ] [vufvtas
<2/ /uE\VUEHVde / /]Vuel 1/12d33+4/ / u? |V |2 da;

hence Vu € L2 (Qqr) and

) = Cllull o,

w ,5,7—) ’

IVull2(q...ry S CUluC- )2, .+l

S,T

with C = C(N,w,w’). Then (2.4) holds for any ¢ € D(Qq,r). Moreover, since |Vu|? € L} (Qq.1),
thus function u € L2 _((0,7); T/Vl})CQ(Q)) and v, € L2 ((0,7); W12(Q)) + L. (Qa,r) - From a local
version of [26, Theorem 1.1], we find u € C((0,7); L, .(2)). Then (2.5) and (2.6) follow. Moreover
u € LY (Qar), then uw € C((0,7); Lj, .(2)) for any r > 1. ]

loc

In the case of the Dirichlet problem (Dgq7), the regularization does not provide estimates
up to the boundary, thus we use another argument: the notion of entropy solution. For any
k> 0 and r € R, we define as usual T;(r) = max(—k, min(k, 7)) the truncation function, and
Or(r) = [y Tr(s)ds.if u € C([s,7]; L'(Q2)). The solutions can be defined in three equivalent ways:

Lemma 2.5 Let 0 £ s < 7 < T, and f € LY(Qqys.) and u € C([s,7); L' (Q)), us = u(s).
Denoting by e*® the semi-group of the heat equation with Dirichlet conditions acting on L' (Q), the

three properties are equivalent:
(i) w € LL((s,7); W () and

— Au = f7 m Dl(QQ,S,T)?

(ii) u is an entropy solution of problem in Qqs.r : Ti(u) € L?((s,7); W()12(Q)) for any k>0, and

/Q Opv(. 7)da+ / "o T(0)) i+ / ' /Q V. VT, (v)dzdt = /Q Ok (t— (., 8))da+ / / FTo(v)dadt

for any v such that ¢ = u —v € L*((s,7); WH2(Q)) N L>® (Qq.r) and p: € L*((s,7); W12(Q)).
(ii)
t
u(.,t) = et=)Ay, —1—/ =2 f(5)do in L' (), Vtels,7].

Proof. It follows from the existence and uniqueness of the solutions of (i) from [5, Lemma 3.4],
as noticed in [7], and of the entropy solutions, see [3], [25]. |

We deduce properties of all the bounded solutions u of (Dq 1) :



Lemma 2.6 Any nonnegative weak solution of problem (Dq ), such that u € L7S ((0,T); L™ (£2))
satisfies Vu € L2 (0,T); L2 (Q)) and v € C((0,T); L™(Q)) for any r = 1.

loc

Proof. Since u € C((0,T); LY(Q)), for any 0 < s < 7 < T, u is an entropy solution on [s, 7]
from Lemma 2.5. Since u is bounded, then u = T}, (u) € L*((s,7); Wol’Z(Q)), and

/uQ(.,T)dl‘—/UQ(.,S)dl‘—I-/ /|Vu|2d:n—|—/ /u|Vu|qda:dt:0;
Q Q s Ja s Jo

and u € C((0,7); L"(92)) as in Lemma 2.4. [

2.2 Estimates of the classical solutions of (Dg 1)

Consider the Dirichlet problem (Dgq ) in a smooth bounded domain Q with regular initial data
u(z,0) = ug € C* (ﬁlﬁC’o (Q) : it admits a unique classical solution u € C*! (Qq,00) N C (€2 x [0, 00))
such that [Vu| € C (€ x [0,00)) . Let us recall some fundamental universal estimates proved in [17]:

Theorem 2.7 ([17]) Let  be any smooth bounded domain. Let ¢ > 1, and u be the classical
solution of (Dq,r) with initial data ug € C*° (Q) N Cy(Q). Then there exist functions B,D €
C((0,00)) depending only of N,q,$, such that such that, for any t € (0,T),

[u(., )|l L () = B(t)d(z, 09), (2.7)
[Vu(., t)|| Lo (@) = D(t). (2.8)

Remark 2.8 In fact the term B(t) can be precised: under the assumptions above, there holds
lules )l ooy < C(L+ 8771 )d(z, ) (2.9)

with C = C(N,q,Q). Indeed (2.7) is obtained by using an explicit supersolution for any z € 982, of
the form w,(z,t) = J(t)bs(x), where b,(z) is constructed such that inf,cpq b, (z) ~ d(x, ), and J
can be chosen by J(t) = M(Arctant)~ Y@=V with M = M (N, ¢, ).

2.3 Regularity for ¢ < 2

First of all, we give a result of regularity C*' for any weak solution of equation (1.1) and for any
g < 2. Such a regularity was obtained in [11, Proposition 3.2] for the VSS when ¢ < ¢y, and the
proof was valid up to ¢ = (N +4)/(N +2). We did not find a good reference in the literature under
our weak assumptions, even if a priori estimates can be found in [21], and Ho6lderian properties in
[4], [29]. Our proof is based on a bootstrap technique, starting from the fact that u is subcaloric.

We set W2LP(Qus-) = {u € LP(Qusr) & u, Vu, D*u € LP(Qu )}, forany 0 S s <7 < T
and 1 < p < co. This space is endowed with its usual norm.

Theorem 2.9 Let 1 < ¢ <2. Let Q be any domain in RYN.
(i) Let u be any weak nonnegative solution of (1.1) in Qor.. Then u € C*Y(Qq.r), and there exists
v € (0,1) such that for any smooth domains w CC W' CCQ, and0<s<7<T

lull sy < COlull g, o ) (2.10)
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where ® is a continuous increasing function and C = C(N,q,w,w’, s, 7).
(ii) For any sequence (uy) of weak solutions of equatz’on (1.1) in Qq,r, uniformly locally bounded,

one can extract a subsequence converging in C’l (QQ T) to a weak solution w of (1.1) in Qq.r.

Proof. (i) e Case ¢ < 2. We can write (??) under the form u; — Au = f, where f = —|Vu|? €
LE (Qar), with ¢1 = 2/q € (1,2). From (?7), there holds u,Vu, f € L{ (Qor). Then u €
WL (Qq 1), see [21, theorem 1V.9.1]. Choosing w” such that w CC w” CC w’and denoting

loc

Q= Qusr Q = Qu /27> Q" = Qur3zsar, we deduce from (?77) that
lullwzra gy = CU Lo @y Hllull Lo (o) = CUNVUllT2 @l Lo (o) = CUlll T oo @iy Hllell Lo (1))

with C' = C(N, q,w,w’, s, 7). From the Gagliardo-Nirenberg inequality, for almost any ¢ € (0,7,

1/2 1 2
V2 D) 201 () = ellu@®ly0r ol @)=
where ¢ = ¢(N, ¢,w). Then |Vu| € Li?cl (Q), and
1/2 1 2
Vel 201 () = elu®)llig o g el ) S Cr®r(llull e )

with a new constant C] as above, where ®; is a continuous increasing function. Thus f €
LP (Qq,r), with g2 = (2/q)? € (ql, 2¢1) and u, Vu, f € L (Qo,r), in turn u € Wfog “?(Qar) B
induction we find that u € Wlo’c’ql (2x(0,T)), for any k = 1.Choosing any k so that g, > N +2, we

deduce that |[Vu| € C7/2(w x (s,7)) for any v € (0,1), see [21, Lemma I1.3.3]. Then f is locally
Holderian, thus u € C?T71+7/2(Q,, 4 ;), and (2.10) holds.

e Case ¢ = 2. We define Q and Q' as above. Since u is locally bounded, the regularized function
e = u * 9. converges to u in L¥(Q’) for any s = 1, and by extraction a.e. in ). And

(ue)t — Aue + IVUI2 *x0: =0 in Q.
Defining the functions z =1 —e™" in Qq,r, and 2° =1 — e~ " in @', we obtain that
(2%) — A(2°) + he =0,

Ue

where h, = e~ (|Vu\2 * 0z — |Vu5|2> > 0 from convexity. Then |Vu|? « 0. converges to |Vu|? and

1(Qa,r), thus he tends to 0 in L}, (Qq.7). Ase — 0, 2° converges to
zin L*(Q) for any s 2 1, and z is a solution of the heat equation in D’(Q"), hence also in D'(Qq,r))-
Then z € C*(Qq,r), hence maxgz < 1, thus u € C*(Qq,r). And [[z]| ey < 1— e lullzooany,
then (2.10) follows from analogous estimates on z.

(ii) From the estimate (2.10), one can extract a diagonal subsequence, converging a.e. to a
function w in Qq 7, and the convergence holds in C’lgo’cl(QQT). Then u is a weak solution of (1.1) in
Qa,r- u

In the case of the Dirichlet problem we obtain a corresponding regularity result for the bounded
solutions. Our proof can be compared to the proof of [7, Proposition 4.1] relative to the case ¢ < 1.

|Vue|? converges to |Vul? in L}



Theorem 2.10 Let 1 < g < 2. Let Q be a smooth bounded domain. Let u be any weak nonnegative
solution of problem (Do), such that w € LS ((0,7T); L*>(£2)).

(i) Then u satisfies the local estimates of Theorem 2.9. Moreover, u € C1O(Q x (0,T)) and there
erists v € (0,1) such that, for any 0 < s <7 < T,

lullc@xsry + IVUll oz @xisry S CPUUll Lo(gq., ) (2.11)

where C = C((N,q,,s,7,7), and ® is an increasing function.
(1t) For any sequence (u,) of weak solutions of (Dq.r) uniformly bounded in L35.((0,T); L* (Q2)),
one can extract a subsequence converging in C’llo’co(ﬁ x (0,7)) to a weak solution u of (Dq ).

Proof. (i) e Case ¢ < 2. From Lemma 2.6, we have Vu € L2 (0,T);L?(2)) and u €
C((0,7); L' (). Then f = —|Vu|? € L ((0,¢); L9 (2)). For any 0 < s <7 < T, and ¢ € [s/2,7],

we can write u(.,t) = ui(.,t) + ua2(.,t), from Lemma 2.5, where

t
wr(o) = e28u(3), () = / LA oo
s/2

We get u; € C®(Qq.s.-) from the regularizing effect of the heat equation, and us € W29 (Qq 1),
from [21, theorem IV.9.1]. As above, from the Gagliardo estimate, we get f € L2 ((0,t); L (2)),
and by induction |Vu| € C7/2(Qq.,) for some v € (0,1), see [21, Lemma I1.3.3]. The estimates
follow as above.

e Case ¢ = 2. From Theorem 2.9, u is smooth in Qo r, and z = 1 — e~ is a solution of the
heat equation, and z € C((0,T); L}(Q)). Then z(.,t) = e(t=3/222(s/2), thus z € C*°(Qq,). This
implies that maxg-—2 < 1, thus u € C*°(Qq,s,r) and the estimates follow again.

(ii) It follows directly from (2.11). =

Remark 2.11 As a consequence, in the case ¢ < 2, we find again the estimate (2.8) for the

problem (Dq ) without using the Bernstein argument, and it is valid for any weak solution u €

Lig.((0,T); L*(Q)).

loc

2.4 Singular solutions or supersolutions

In our study some functions play a fundamental role. The first one was introduced in [9].

2.4.1 A stationary supersolution
Assume that 1 < ¢ < 2. Equation (1.1) admits a stationary solution whenever N = 1 or N = 2,
1< qg< N/(N —1), defined by

In(z) =gz, =7 g =a '(a+2-N)'"7

Moreover, setting
I'(z) = Ti(]z]) = 1,4

the function I' is a radial supersolution of equation (1.1) for any N.

x| (2.12)



2.4.2 Large solutions

Here we recall a main result of [17] obtained as a consequence of the universal estimates.

Theorem 2.12 ([17]) Let G be any smooth bounded domain, and n > 0 such that B, CC G. Then
for any q > 1, there exists a (unique) solution YWG of the problem

(Y,9): — AY,E + VY, £l =0, in QG 00,
Y,IG =0, on 0G x (0,00),

a | oo ifxe By,
Y (x,O)—{ 0 if not,

which is uniformly Lipschitz continuous in G for t in compacts sets of (0,00) and is a classical
solution of the problem for t > 0, and satisfies the initial condition in the sense:

(2.13)

lim inf Y;7G(CL', t) =00, VK compact C By; lim sup YnG(J:, t) =0, VK compact C G\B,.
t—0zeK t—0 K
(2.14)

And YWG is the supremum of the solutions yy, . with initial data oy ¢ € C*(G) such that ¢ =0
on G\B,,.

A crucial point for existence was the construction of a supersolution for the problem in a ball:

Lemma 2.13 For any ball B, C RY and any X > 0, there exists a supersolution wy,s of equation
(1.1) in Bs x [0,00), such that

wys =00 on 0B, x [0,00), wys = AectH/as@) o = () > 0,

where o 1s the solution of —Aas =1 in Bs and ag =0 on 0B;.

2.5 Some trace results

First we extend a trace result of [23].

Lemma 2.14 Let ® € L}, (Qor) and U € C((0,T); Li,.(Q2)) be any nonnegative weak solution of
equation

Ut — AU = q), m QQJ".
(i) Assume that ® = —F, where F € L} (2% [0,T)). Then U(.,t) converges weak* to some Radon

loc
measure Uy :

lim [ U(.,t)pdx = / wdUy, Vo € Ce(Q).
Q Q

t—0

Furthermore, ® € Li, ([0,T); L}, .(2)), and for any ¢ € C2(2 x [0,T)),

T
- / / (Upr + UAp + Pp)dxdt = / (-,0)dUy. (2.15)
0o Ja Q

(ii) Assume that ® has a constant sign. Then

® € Line([0,T); Lio()) <= U € L5([0,T) 5 Line()).-

loc

10



Proof. (i) Let w CC w' cC Q and 0 < s < 7 < T. approximate U, F, ® by U, F., ®. so that
for ¢ small enough, (Ue); — AU: = @, in Q. 4/, Let ¢1 be a positive eigenfunction associated to

the first eigenvalue A\; of —A in VVO1 ’2(w). Taking ¢, as a test function, integrating on over w, and
setting

hE (t) :e/\lt/Ug(.,t)qﬁldx—/ /e)‘leFacbldde.
w t w
then i
he(T) 2 hg(s)+/ /e’\19(<I>5+F5)¢1dxd0

As ¢ — 0 we deduce that the function

t— h(t) = eklt/

w

U(.,t)gzﬁldx—/tT/e)‘lsF(.,s)cﬁldxdﬁ,

is nondecreasing on (0,7"). From the assumption on F, fw U(.,t)¢p1dx has a limit as t — 0, and
®c L} ([0,T); L} (Q)). Otherwise, for any ¥ € C2+(Q2), and any ¢ < 7, there holds

loc loc
/QU(.,T)q/de—/tT/Q(UAlb—i—@w)dxdt:/QU(.,t)z/Jda:

from (2.3). Thus [, U(.,t)¢dz has a limit u(¢)) as t — 0. Then p extends in a unique way as a
Radon measure Uy on Q. Finally for any ¢ € C°(Q2 x [0,7")), we have

T
—/ /(U(pt +UAp + Qp)dxdt = / U, t)e(., t)dx.
t Q Q
Going to the limit as ¢ — 0, we deduce (2.15), since
[ U000 - pt0dz| S0t [ Ut
Q suppe

(i) IfU € LS. ([0,T) ; L},.(Q)), then [, [ ®vdzdtis bounded ast — 0, and @ € L}, .([0,T); L},.(Q))

loc
from the Fatou Lemma. The converse is a direct consequence of (i). ]

We deduce a trace property for equation (1.1), inspired by the results of [22] for equation 1.3:

Proposition 2.15 For any nonnegative weak solution w of (1.1) in Qqr, the following conditions
are equivalent:

(i) u € LS, (10,7): L, (2),

(i) Vu e LiL (2 x [0,T)),

(71i) u(.,t) converges weak* to some nonnegative Radon measure uy in €.

And then for any T € (0,T), and any ¢ € CX(Q x [0,T)),

/u(.,r)godx—i—/ /(—uapt—l—Vu.Vgo—\Vu|q<p)dxdt:/go(.,O)dug.
Q 0o Ja Q

Remark 2.16 If ¢ = 2, and u admits a Radon measure ug as a trace, in the sense of condition
(i), then necessarily
up € L, (), andu € C([0,T);Lj,.(Q)).

Indeed condition (ii) implies that u € L?OC([O,T);VVZIO’CZ(Q)), and u; € LZQOC((O,T);VVZZSQ(Q)) +
LY (Qu.r), then the conclusion holds from [26]. As a first consequence, there exists no weak solution
of equation (1.1) with a Dirac mass as initial data. This had been shown in [1, Theorem 2.2 and

Remark 2.1] for the Dirichlet problem (Daq,r).
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2.6 Behaviour of Solutions of (1.1), (1.2) in €

Next we come to problem (1.1), (1.2). In order to see what occurs at ¢ = 0, we extend the solutions
on (=T,T) as in [14].

Proposition 2.17 Let u be any weak solution of (1.1), (1.2). Then the function @ defined a.e. in
Qo,—1,1 by

_ ] u(x,t),  if (x,t) € Qar,
e, ) _{ 0 if (.)€ Qo 1o (2.16)
is a weak solution of the equation (1.1) in Qq, —1,r. If moreover
%in% u(.,t)pdr =0, Vo € C.(9), (2.17)
—VJQ

then @ is a weak solution of (1.1) in Qq,—17.

Proof. From assumption (1.2), u € L ([0,T) x Qq), and |Vu| € L (Q x [0,T)), from

loc loc
Proposition 2.15. For any k 1, we consider a function ¢ —— ((t) = ((kt), where ¢ €
C*([0,00)),¢([0,00)) C [0,1],¢ =

0 in [0,1],¢ = 1 in [2,00) .For any ¢ € D(Qq,—1.1), We
have from the Lebesgue theorem

T T
<Vu,p >= —/ / uVdrdt = — lim/ / uV ((g)dxdt
0 JQ 0 Q

T T
= lim/ /go{kVudxdt :/ /@Vudmdt,
0 Q 0 Q

>
¢

thus Vu € L] (Qqo,—7.1) and Vu(z,t) = x (o) Vu(z, t); hence Vu € L7 (Qq,,—7,r) from Lemma
2.4, and
T T
/ /(—ugot + Vu.Vo + |Vully)dzdt = / /(—ugpt + Vu.Vo + |Vu|lp)dzdt. (2.18)
-TJQ 0 Q
Moreover

T
0=/ /(_U(¢Ck)t+Vu.V(g0§k)+|Vu|q<pgkd:vdt
0 Q

T T
- _ _ q
/0 /ngp(gk)tdxdt + /0 /Q( upCr + Vu. V(o) + [Vu|Tplpdadt.

As k — oo, the first term in the right hand side tends to 0 from (1.2), as in [14], and we can go to
the limit in the second term, since |Vu| € L} (Qo x [0,7)). Thus from (2.18), @ is a weak solution

loc

of equation (1.1) in Qq,,—7,7. If (2.17) holds, the same result holds in € instead of €. [ |

From Proposition 2.17 and Theorem 2.9 applied to @, we deduce directly the following:
Corollary 2.18 Assume 1 < q < 2. Then any weak solution u of (1.1), (1.2) satisfies u € C*1(Qox

[0,7)) and u(x,0) =0, Yz € Q.
If (2.17) holds, then u € C*Y(Q x [0,T)) and u(x,0) =0, Vo € .

12



3 The critical or supercritical case

3.1 Removability in the range ¢, < ¢ < 2

For any 1 < ¢ < 2 we can compare the solutions with the function I' defined at (2.12).

Lemma 3.1 Let 1 < g < 2. Let u be any nonnegative weak solution of (1.1) in Qq,r, satisfying

(1.2).
(i) Let r > 0 such that B, C Q.Then there exists 71 > 0 such that

u(m,t) é F(a:) V(CE, t) S QBT\{U},T:[‘ (31)
(ii) If Q = RV, then

u(z,t) < I'(x) V(z,t) € Qv oy (3.2)

Proof. (i) For any n € (0,7), we put Q, = B,\B,, and we set F,(z) = I'(|z| — n), for any
x € €. Then F), is a super-solution of (1.1) in Qq, . From Corollary 2.18, there exists 71 < T
such that max;c(g ) u(t,z) < 1, and u is bounded in Q, x [0,71]. From the comparison principle

|z|=r
there holds u(z,t) < F(z) in ©, x [0,7]. As n — 0, we deduce (3.1).

(ii) From Lemma 2.13, for any zo € R™\ By, the function = +— wy 1(x — zp) is a supersolution of
equation (1.1) in Q(z,1),00, then in particular u(t, zo) = ecWt+1/01(0) thys 4 bounded in QrN\ By, -
From the comparison principle in RV\B,, for any n € (0,1), see [18], we find u(z,t) < F,(z) in
Qrw\ g, > hence (3.2) holds as n — 0. ]

As a direct consequence we get a simple proof of Theorem 1.1 in this range of ¢ :

Proof of Theorem 1.1 for ¢, < g < 2. The assumption ¢, < q is equivalent to a < N. Let
B, C Q and 7y defined at Lemma 3.1; we find for any ¢ € (0,71),

Vg |0By | rV -2
e < [ Tde < 212207
[t s [ rar< HEAT

then u € L*((0,71); L*(B,)). From Proposition 2.15, u(.,t) converges weak* to a measure y on B, :

lim [ u(.,t)ydr = / pdyu, Vi € C. (By).
” B

t—0 B

From (1.2), p is concentrated at 0 and then pu = kdy for some k£ = 0. Suppose that k& > 0, and
choose 9, such that ¢, (0) = 1, ¥, (B,) C [0,1], suppy,, C By, with € (0,r) small enough such
that v, [0B1|nN =% < (N — a)k/2. For any t € (0,71), Lemma 3.1 yields

k
/ u(., t)ydr < / Idz < —.
r B77 2

As t tends to 0 the left-hand side tends to k, which is a contradiction. Then k& = 0, hence for any
¢ € C° (By), there holds lim;—o [ u(.,t)¢dz = 0. We conclude from Corollary 2.18. |

13



3.2 Removability in the whole range ¢, < ¢ < 2

loc
solutions constructed at Theorem 2.12, and prove a comparison property, valid for any 1 < g < 2.

The above proof is not valid in the critical case ¢ = g, since I' ¢ L} (RN ) . Then we use the large

Proposition 3.2 Let 1 < g < 2. Under the assumptions of Theorem 2.12 with G = B,, (n = 1)
the functions YUB" converge as n — oo to a radial solution Y, of problem

(V) — AY, + VY, |2 =0, N Qoo,

[ oo ifxze By, (3.3)
¥o(@,0) = { 0 if not.
Then, as n — 0, Yy, converges to a radial self-similar solution' Y of equation (1.1) in Qg , such
that
Y(@,t) ST (z), Y(@t) <O+t 71),  inQu, (3.4)
where C' = C(N,q), and
lim(sup Y(z,t)) = 0. (3.5)

=0 g2

Ifg. £ g <2, thenY = 0.

Proof. Let n € (0,1/2). For any n = 1, YWB” is the supremum of the solutions y,, , with
initial data ¢, 5, € C*(B,) such that ¢, g, = 0 on B,\B,; from the comparison principle in
Q Ba\By 00 S€€ for example [28],

Yons, (@:t) ST1(lz[ —n)  in (Ba\By) x [0,00). (3.6)

Next we compare y,, , in @B, 00 With the classical solution w of the Dirichlet problem (Dp, )
with initial data ¢, g,. We deduce that, for any (z,t) € By x (0, 00),

2— 2—
Yor i (2,8) S C(L+ £ 7T) f {1 =)} a1 SO+ 1) 4 y,201, (3.7)

with C = C(N, q), from Theorem 2.7 and Remark 2.8. And for any (z,t) € (B,\B1) x (0,00), we
have y,, 5 (2,t) = I'(1 —n), since I is decreasing, hence (3.7) holds in B,, x [0,00). The same
majoration holds for Yan :

_ 1 .
VP () SCA+t7aT),  in QB
n+1

with a new C' = C(N, q). Then we can go to the limit as n — oo, for fixed 1. Since YnB" < YnB

in @B, oo, (YUB”) converges in Cfc;cl(QRNm) to a weak solution Y,, of equation (1.1), from Theorem

2.9. Then Y;, = sup YnB" satisfies

Y, SO+t 7),  inQuw, (3.8)
and Y;, solves the problem (3.3) in the sense
lim inf Y, (x,t) = 0o, VK compact C By; %im sup Y, (z,t) =0, VK compact C ]RN\E.

t—0xeK —0ecK
(3.9)

14



Indeed from Lemma 2.13, for any ball B(zg,s) C RY¥\B,, and any A > 0, there holds Yan
W5 (T—20) IN Q B(gg,s),00 fOT aANY 1 > [20|+|7|; in turn Y, < wy s(z—0), hence lim;_g SUPB(a0,s/2)
Ael/(5/2) for any A > 0. Moreover (3.6) implies that

A
A

(1)

Yn(l‘,t) § I'h (|$’ - 77) in QRN\E,W'
Then for any r > n, and any p > r,

sup Yy (2, 8) = sup  Yy(z, )+ sup  Yy(w,t) S sup  Yy(w,t) + T (|p[ —n).
|z[zr z€Bp\ By 2€RN\B, 2€B,\ By,

Since lim, o I'1(r) = 0, we deduce that

lim(sup Y, (z,t)) = 0. (3.10)

=0 g >r

Next we let 7 — 0 : observing that Y;, < Y,y for n < 7/, in the same way, from Theorem 2.9,
the function Y = inf,~0Y; is a weak solution of equation (1.1) in Qg ., satisfying (3.4), and
(3.5) which implies in particular (1.6). By their construction, all the functions YHB” are radial, and
satisfy the relation of similarity,

/@“YWB"(/W, K2t) = YWE/}:/“ (z,t), Vi >0, VY(z,t) € Byu;
then Y is radial and self-similar.
Suppose ¢ > ¢, and Y # 0; writing ¥ under the similar form Y (z,t) = t=%/2f(¢t='/2|z|), then
from [27, Theorem 2.1], we find lim, 7% f(r) > 0, which contradicts (3.5); thus Y = 0. |

Proposition 3.3 Let 1 < ¢ < 2. Let Q be any domain in RYN. Let u be any weak solution of
(1.1),(1.2) in Qqr. Then for any T € (0,T) and any ball B, CC Q, there holds

<Y+ ) ' . 3.11
BEY 4 max o in Qp,,r (3.11)

Moreover, if @ = RN, then
u é Y, mn QRN,T (312)

and u € C*1(Qgw ) N C((0,50); CARY)).

Proof. Let u be such a solution in Qqr. Let 7 € (0,7), B, CC £, and M, = maxyp, «[0,/] U
and € > 0 be fixed. From Corollary 2.18, for any 0 < n < r/2, there is ¢, > 0 such that

u(z,t) < e, for n<|z|<r, te(0,6).
Let R > r. Next, for any § € (0, 6,), we make a comparison in @p, 5, between u(z,t) and
Yo s (T, t) = Yo R (,t — 8) + M, + ¢

as follows. On the parabolic boundary of @p, s+, it is clear that u < Yoan.6,Rs since u < M, on
0B, x [6,7], u(z,0) < ¢ for x € B, \B,, and u(x,) < 00 = yay.gs, for x € B,. And yay Rr;s
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converges to +oo uniformly on B, as t — 4, and u(.,0) is bounded on B,. Then, from the
comparison principle,
uSyamRrs QB

As 0 tends to 0 in (?7), and we get
WS YR+ M, +e,  inQp,.r, (3.13)

by the continuity of YQgR in @p, 7. Since (3.13) holds for any n < r/2, and any € > 0, we obtain
(3.11). Moreover if Q = R¥, then M, < I'i(r) from Lemma 3.1, and we get (3.12) by letting
r — o0. Moreover u € C*}(Qgn ) from Theorem 2.9, then from (3.4), u € Cy(Qgw (o) for any
€ > 0, then from [18, Theorems 3 and 6], u € C((0, 00); CZ(RM)). [

As a direct consequence, we deduce a new proof of Theorem 1.1, valid in the range ¢, < ¢ < 2:

Proof of Theorem 1.1 for ¢, < ¢ < 2. Since ¢ = ¢4, we have Y = 0, from Proposition 3.2,
thus w is bounded in @Qp, ; from Proposition 3.3. Then lim;_o B. u(., t)pdz = 0 still holds for any
¥ € CX (B,), and we conclude again from Corollary 2.18. ]

3.3 Removability for ¢ = 2

When g > 2, the regularity of the solutions of equation (1.1), in particular the continuity property,
is not known up to now. We can only mention the recent result of [16]: if a solution in the viscosity
sense is continuous, then it is Holderian. Then it is difficult to apply comparison theorems. Here
we use the transformation u —— z = 1 — e™*, which reduces classically equation (1.1) to the
heat equation when ¢ = 2. We gain the fact that z is bounded. For p > 2, our proof requires
regularization arguments.

Proof of Theorem 1.1 for ¢ = 2. Let us set v = e~ %, and z = 1 — v. Notice that z is an
increasing function of u, taking its values in [0, 1].

(i) Case ¢ = 2. From Theorem 2.9, u is a classical solution in Qq r, and u(z,0) = 0 in Qp from
Corollary 2.18. Then z is a classical solution of the heat equation in Qq 7, and z € C(£y x [0,T"))
and z(z,0) = 0 for  # 0. From Lemma 2.14, z converges weak® to a Radon measure p as t — 0,
necessarily concentrated at 0, from (1.2), since z < u. Then p = 0, because z is bounded. As
for u, defining the extension z of z by 0 for t € (—T7,0), we find that Z is a solution of heat
equation in Qq 77, then Z € C*®(Qq,—71). Hence Z is strictly locally bounded by 1, thus also
u € C®(Qq,—11), thus u(0,0) = 0, and the proof is done, and moreover u € C*(Q2 x [0,T)).

(ii) Case ¢ > 2. We regularize u by u. and obtain

(ue)t — Aue + (|Vul?)e =0,
and we set v® = e%.Then v° satisfies the equation
vi — Av® =° ((\Vu|q)6 - |Vu€|2) .

Observe that v® is not the regularisation of v, but it has the same convergence properties. Going
to the limit as € — 0, v satisfies equation

vy — Av = &, where & = v(|Vu|? — |Vu]2) € L}OC(QQ’T),
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in D'(Qa,r). Next from Holder inequality, we can apply lemma 2.14 to v with F' = 1 Then z(.,t)
converges weak* to a Radon measure p as t — 0, and ® € L} (Q x [0,T)); and for any ¢ €
C2(2 x [0,T)) there holds

T T
/ /z(¢t+A<p)dxdt:/ /q)gpdwdt—l—/go(x,O)d,u, (3.14)
0o Ja 0o Jo Q

from (2.15). We claim that 4 = 0 and the extension of z by 0 for ¢ = 0 satisfies z € C([0,T), L} . (2)).
Indeed, from assumption (1.2), u(.,t)converges to 0 in L}, (€p) as ¢ — 0, thus also z(.,t). For any
sequence (t,,) tending to 0, we can extract a (diagonal) subsequence such that w(.,t,) converges
to 0, a.e. in . Since z is bounded, it follows that (z(.,t,)) converges to 0 in L], () from the
Lebesgue theorem. And then z(.,t) converges to 0 in L}, () as t — 0.

We still consider the extension z of z by 0 on for ¢t € (=T,0). For any ¢ € D (Qq,—71), we have

from (3.14),
/ / (61 + Ad)dudt — / / (61 + A)dudt — / / dydzdt
g/o /Q(l—z)cpdxdt < /_T/Qu — 2)pdudt.

—Aw+w=1 (3.15)

loc

Then Z is a subsolution of equation

in D'(Qq,—7.1). Otherwise u is the weak solution of equation (1.1) in Qq,,—7,7, then 7 is subcaloric.
As a consequence, for any 7 € (0,7'), and any ball By, CC €, the function w is essentially bounded
on QBQT\BT/Q,#T by a constant M, . Then z < 1 — e Mrr — myr < 1 on this set. For any K > 0

the function y (t) = 1 — Ke* is a solution of equation (3.15). Taking K = e~ Mr7+7+1) e can
apply the comparison principle in @p, —- to the regularisation z. of Z for € small enough, and
deduce that Z < yx a.e. in @p, 7, and then

z<1-— e~ (Mrr+27+1) in @p,,—7r
Hence @ = —In(1 — %) is essentially bounded in @Qp, —r,. Finally w € LS (Qq,—7r), from the
subcaloricity, hence u € Li® (Qq ). Besides, for any 0 < s <t < 7, and any domain w CC §2,
ey t) = u(., 5)| S M2 @unn) (1) — 2(.,5)].

Then u € C([0,T); L}, (), and u € C([0,T); L, .(2)), for any r > 1, since u is locally bounded.

Furthermore, for any ball B(zg,2p) C 2, and any ¢ € (p2 - T, T),

t
sup u < Cp (N+2) / / udxds,
B(zo,p) % (t—p%,t)) t—p? J B(zo,2p)

where C' = C(N), see for example [20, Theorem 6.17]. Hence for any ¢t € (0,7) and p < T2, we
find

t
sup U § Cp_(N+2)/ / udxds g Cp—(N+2)t HUH - :
B(z0,p) % (0,t)) 20,20) L2(QB(xg,20),7)

hence (1.11) holds, which achieves the proof. ]
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3.4 Global removability in RY

Next we show Theorem 1.2 relative to Q = RM. It is a consequence of Proposition 3.3 in case
1 < ¢ < 2. In fact the result is general, as shown below:

Proposition 3.4 Let q > 1. Let u be any non-negative weak subsolution of equation (1.1) in Qgn
such that u € C((0,T, L, .(RY)), and

loc

lim u(.,t)pdr =0, (3.16)
t—0 JrN

for any ¥ € C. (]RN). Then u = 0.

Proof. From Remark 2.2 and Lemma 2.4, since v € C((0,7, L} _(RY)), there holds

loc

/RN u(., t)pdr — /RN u(., $)dz + /ST /RN(Vu.Vlb + |Vu|9pdadt < 0,

for any ¥ € C21(RY), and any (s,¢) C (0,7 .Taking ¢ = £7 with £ € DT(RY) and using Holder
inequality, we deduce

/RN u(.,t)wdx—/RN u(.,s)wdx—l—/: /RN\Vu|q¢dxdt§q’(/:/RN |vu\qwd:c)i(/: /RNWqu’dx)ql'

1/t t /
< 2/ / |Vu|Tpdr + Cq/ / |VET dx
s JRN s JRN

with C, = (2(¢ — 1))¥. For given R > 7 > 0, we choose £(z) = ¢(|z| /R), where ¢([0,00)) C
[0,1],¢6=11in [0,1],¢ =0 in [2,00), and go to the limit as s — 0 from (3.16). It follows that

1 [ :
/ u(.,t)dz + 2/ / \Vu|%dzdt < C,tRN .
i 0 T

(i) Case ¢ < N/(N —1). Here N — ¢’ < 0. Letting R — oo, we deduce that [, u(.,t)dz = 0, for
any r > 0, thus u = 0.

(ii) Case ¢ = N/(N — 1). Then we fix some k € (1, N/(N —1)); for any n € (0,1), there holds
n|VaulF £ n+ |Vaul?, hence the function w, = n'/*~1(u — nt) satisfies

(wp)e — Awy + |Vw,7|k S0
in the weak sense. Thanks to the Kato inequality, see for example [24] or [5], we deduce that
(w)e — Aw) + [Vw, F <0,

in D'(Qgv r). Moreover w, € C([0,T) ,L}OC(RN)), and, for any r > 0,

1
li (., t)de =n 1 lim u(.,t) —nt)Tdx = 0.
Jim [y (o )de = T [ (ul1) = nt)

By the above proof, w; = 0. Letting n tend to 0 we get again u = 0. ]
n n
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3.5 Behaviour of the approximating sequences

When ¢ = ¢4, a simple question is to know what can happen to a sequence of solutions with smooth
initial data converging to the Dirac mass, and one can expect that it converges to 0. We get more
generally the following:

Theorem 3.5 Assume that ¢ 2 q.. Let (p:) be any sequence in DT (RN), with supp . € Be. Then
the sequence (uc) of solutions of (1.1) in Qrn , with inital data e, converges to 0 in Cioc(Qrny )-
In the same way, if 2 is bounded, the sequence (u?) of solutions of (Dgq o), with initial data e,
converges to 0 in Cioe(§2 x (0,00)).

Proof. Let ¢ € (0,1). Since u$! < u., we only need to prove the result in case Q = RV,

E =

(i) Case ¢ < 2. From the comparison principle there holds u. < Y., where Y5, defined at (3.3);
and Ya. converges to 0 in C} (Qgw o) from Proposition 3.2, then also ..

(ii) Case ¢ = 2. Let us fix some k such that ¢, < k < 2. As in the proof of Proposition 3.4, for
any n € (0,1), We,p = 171/(16_1)(118 — nt) satisfies

(W)t — Awey + |Vw5,,7|k <0

loc
Wen S v, where v, is the solution of equation (1.1) with ¢ replaced by k and v.(.,0) = p.; hence

ue <t +n~Y/*EDy_ And (v.) converges to 0 in Cloc(QRrN o) from (i). Let K =[s, 7] x K be any
compact in Qgn . Then

in D'(Qpy o), and we, € L2 ([0,00); L°(RY)). From the comparison principle we find that

limsu% ||Us||L°°(IC) < g7 + /D lim su;()) HU€”L°°(IC) =nr
e— e

for any 1 > 0, then lim. o [|uc|| oo (i) = O. [

4 The subcritical case 1 < ¢ < ¢,

We first recall the following results of [7, Theorem 3.2 and Proposition 5.1] for the Dirichlet problem.

Theorem 4.1 ([7]) Let1 < q < g« and Q be a smooth bounded domain. Then for any ug € My(2)
there exists a weak solution of problem (Dq o) such that u(.,0) = ug in the weak sense of My(Q) :

lim [ wu(.,t)pdx = / eduy, Vo € Cy(92), (4.1)
Q Q

t—0

and u is given equivalently by the semi-group formula
t
u(.,t) = ePug — / =32 1Tu(., s)|? (s)ds in LY(). (4.2)
0

Moreover u € 02’1(629700), andu € C (QQ767OO) for any € > 0. And u is the unique weak solution of
problem (Do) for any T € (0,00) .
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This solution was obtained from the Banach fixed point theorem. The existence was also
obtained by approximation in [1], from the pioneer results of [13]. Here we give a shorter proof of
Theorem 4.1 when ug is nonnegative, and state precisely the convergence:

Proposition 4.2 Suppose 1 < q < q«. Let ug € M;“(Q), and (ug,n) be any sequence of functions of
CL() N Cy(2) converging weak * to ug, ) S luoll vy () - Let un be the classical
solution of (Dq,c) with initial data ug .

Then (u,) converges in 0120’01(629700) N C’llOCO(Q x (0,00)) to a function uw € L} ([0, 00); Wol’q(Q))
and u is the unique solution of (Do), (4.1) for any T > 0. And u satisfies the estimates (2.9) and

(2.8) in Qo.s0-

Proof. There holds

t
(o t) = g, — / (I [Ty (L) (s)ds  in LL(Q).
0

From estimate (2.9) and Theorem 2.10, since ¢ < 2, one can extract a subsequence, still denoted
(uy), converging in 012073 (Qa.00) NCL (22 x (0,00)) to a weak solution u of (Dg o). And

loc

/un da:—i—/ /|Vun s)|% (s dxds—// aun da:ds/uondx. (4.3)
90 B ¢ Q

Hence |Vu,|? is bounded in L'(Qq, o) by [[wo| g, () - Then from [5, Lemma 3.3, (up) is bounded
in L7((0,7), W, (Q)) for any v € [1,¢.). Thus (|Vuy,|?) converges to [Vu|? in L% ([0,00), L'(R2)),

loc
and (emugm) converges a.e. to e®ug, and u satisfies (4.2). Moreover u is the unique solution of
(Dar), (4.1). Indeed let v be any other solution; taking v € (g, g«) , there holds from [5, Lemma

3.3], with constants C = C(~, ),

IV (u =)l 7,y = ClIVul® = Vol

g—1

L1(Qq..) = (HVUHLq (Qa.r) + HVUHLq (Qa.r ) HV(u - ”)HLq(QQ’T)

y—aq

< Clluoll vty @y 1V (= 0) L gq ) 777 5
b() :

hence v = w on (0,7) for 7 < C = C(v,Q,up), and then on (0,7). Then the whole sequence (u,)
converges to u. ]

Remark 4.3 Applying Proposition 4.2 on (e,T) for e > 0, we deduce reqularity results: any weak
solution u of (Dq.r) extends as a solution of the problem (Dqo), and u € C*Y(Qa.o0), and u €

(QQ c Oo) for any € > 0, and u satisfies the universal estimates (2.9) and (2.8) in Qo oo- In turn
u € CZOC(QQ oo) from Theorem 2.10.

Notation 4.4 For any k > 0, we denote by uF% the above solution of (Dg,00) with initial data
kdg.

4.1 The case Q) = RV

We first show that the function Y constructed at Proposition 3.2 is a VSS:
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Lemma 4.5 The function Y is a mazximal V.S5.5. in Qg~ and coincides with the radial self-

similar solution constructed in [27]. It satisfies

,007

lim Y(,t)dz =0,  ¥r>0. (4.4)
t—0 RN\BT

Proof. Consider any ball B, with p € N*. We can approximate the function ukBr by uf’Bp ,
solution with initial data kp., where (p:) is a sequence of mollifiers with support in B, C B;. For
any 1 € (0,1), there holds ulg’B” =Y, for e < 7. Then we find uFBr < Y. As a first consequence,
Y # 0, and for any ball B, such that r < 1, taking ¢ € C.(B,) with values in [0, 1], such that
Y= 1 on Br/2a

limt_)o/ Y (., t)dz > lim [ uPPr(, t)pdz =k, (4.5)

B t=0/B,
thus Y satisfies (1.7). From (3.10), Y is the unique radial self-similar VSS constructed in [27]. It
satisfies (4.4), since Y (z,t) = t~¥/2f(t~1/2|z|), and lim,_oo r* Ne™*/4f(r) > 0, from [27, Theorem
2.1], which implies (1.6). And Y is a maximal VSS, since Y is greater than any weak solution of
(1.1), (1.2), from Proposition 3.3. ]

In [10], a VSS U is obtained as the limit of a sequence of solutions u* of (1.1) in Qrw oo With
initial data kdg, constructed in [9]. The proof is based on difficult estimates of the gradient obtained
from from the Bernstein technique by derivation of equation, showing that U satisfies (1.8) and is
minimal in that class, from [11, Theorem 3.8]. Here we prove again the existence of the u* and U
in a very simple way:

Lemma 4.6 (i) For any k > 0 there exists a weak solution u¥ of (1.1) in QRN o, such that
ub € L®((0,00); LY(RY)) and |VuF| € LYQp~ o), with initial data kéo, in the weak sense of
M, (RY)

lim [ (. t)pde = kyp(0), Vo € GRY); (4.6)
—> RN

and ub = SUPpe ukBr  where uPr is the solution of the Dirichlet problem (DB,,x0) with initial
data kdy.
(ii) As k — oo, uF converges in CfO’CI(QRNm) toa V.S.5U in Qgpn .

Proof. (i) Let & > 0 be fixed. Consider the sequence (uk7BP)p21 and notice that it is nonde-
creasing. We have

WP () S Y (1) S C(1+ ¢ 1), (4.7)

from Proposition 3.2. From Theorem 2.9 the sequence converges in C’fo’cl(Qon) to a solution u* of

equation (1.1) in QRN o, and uP <Y, thus u” satisfies (1.6) from (3.5). Moreover for any ¢t > 0,

there holds pr uPBe(,t)dz £ k from (4.2), then [pn u”(.,t)dz < k from the Fatou Lemma. In

turn from Proposition 2.15, u*(., ) converges weak* to a Radon measure u, concentrated at 0, then
w = k'8, k' > 0. Otherwise u®B» < u¥, then pr ubBr(t)de £ [pn uF (. t)da, thus from (4.5)

k < lim inf uF (., t)da;
t—0 RN
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then limy o [pn u”(.,t)da = k. Taking ¢, € DT(RY), with values in [0, 1], such that ¢, = 1 on B,,

we get,
[ abBnaes [t opdss [ ko
By RN RN

hence k' = k. Thus u¥(.,t) converges weak * to kdy as t — 0. In fact the convergence holds in the
weak sense of M,(RY). Indeed for any ¢ € C; (RY), using a function ¢ € C.(RY) with values in
[0, 1] such that ¢ =1 on a ball B,, we can write

/ uk(.,t)wda: = / uk(.,t)wapdaz + / uk(.,t)z/;(l — ¢)dz,
RN RN RN
and

Wt < [l gy [ Vot

RN\B,
|

Plli@un ) SF

[ Cwt e < Wl [

T

and the right hand side tends to 0 from (4.4). From (4.3), we find H’Vu?’Bp

A

Ll(QBp,oo)

kB,

klpellpi(p,) = k> hence ||| Vu ‘qHLl(QBp,od < k, and finally |||Vu

(ii) From (4.7) or from Proposition (3.3), there holds
W) SY (L) SO+t ).

From Theorem 2.9, u* converges in Cfo’cl(QRNm) to a weak solution U of equation (1.1). Then
u S U <Y, thus U satisfies (1.7) and (4.4) as Y. Hence U is a VSS in Qgn . [ |

Next we prove the uniqueness of the VSS:

Proof of Theorem 1.3. Let us show that U is minimal among all the VSS. Any VSS « in
QRN o satisfies u € C%H(Qgn o) NC((0,00); CZ(RY)) and uw £ Y, from Proposition 3.3, and (3.4).
For fixed £ > 0 and p > 1, one constructs a sequence of functions u’&n € D" (RN ) with support in
Bj such that

1. . .
“lg,n <u(,-) inRY, lim ulg’ndx =k.
n n—oo [pN

Indeed [lu(.,1/n)|[ 1y tends to oo, then, for n large enough, there exists s, > 0 such that

HTSn,k(u)('71/n)HL1(RN) = k. And €n = HU’('?l/n)HLl(RN\Bl) + Hu('vl/n)HLw(RN\Bl) tends to O?
from (4.4) and (3.5). Then v} = (T,

s (u)(.,1/n) —2e,)" has a compact support in By, and we can
n,k( )(

take for ulgm a suitable regularization of v¥. Let us call urP? the solution of (DB,,00) With initial
data u’&n. Then uqlfb’B”(., t) £ u(.,t+1/n) from the comparison principle. As n — oo, ulgm converges

to kdp weakly in My(B,), since for any 9 € Cgr(Bp), and any r € (0,1),

/ (ulgn — k)dx
Bp

1
£ 206l e / u(cy L)z + sup [& — 9(0) / ok de.
R n B, RN

' /B ul bz — kep(0)] < $(0)

N\BT

22



Then uﬁ’B” converges to u®Pr from Proposition 4.2, and u®5» < u. From Lemma 4.6, we get
uP <u Y. As k — oo, we deduce that U < u < Y. Moreover U is radial and self-similar, then
U=Y =u from [27]. |

Finally we describe all the solutions:
Proof of Theorem 1.4. Let u be any weak solution of (1.1), (1.6). Either (1.7) holds,
then u = Y. Or there exists a ball B, such that [, u B, t)dx stays bounded as t — 0. Then

u€ L([0,T); L (RN)), from Corollary 2.18. From Propos1t10n 2.15, u(.,t) converges weak* to
a measure p as t — 0. Then p is concentrated at 0 from (1.6), hence the exists k& = 0 such that
i = kdp, and (1.12) holds as in Lemma 4.6, since v £ Y. If £ =0, then u = 0 from Theorem 1.2.

Next we show the uniqueness, namely that u = u* constructed at Lemma 4.6. Here only we use

the gradient estimates obtained by the Bernstein technique. We have u € C((0,00); CZ(R")) from
Proposition (3.3), and u € L>((0,00); L}(RY)) from (3.2) or (4.4) thus u € C((0,00); L}(RM)).
From [9], [8], for any € > 0, and any t = €, we have the semi-group formula

t
u(.,t) = ety e) — / =2 || (s)ds in LY(RY), (4.8)

and there exists C'(q) such that for any ¢ > 0,
IVl D] < Cla)(t - o) M., b)
and u <Y, then as € — 0 we obtain

[V ) ooy < C@E Y ()| oy < Cm V4220

where C' = C(N,q). From (1.12) and (4.8) there holds |Vu|? € L

L ([0,00) ; LY(RYN)). Otherwise
elt—€)A

u(x, €) convergeb to kg in C;(RY), where g is the heat kernel, then

t
u(.,t) = k;g—/o =2 |u|?(s)ds  in Cj(RN).

Then
(0 — uM) (1) = —/ 2 (Tuft — |V [ s)ds in L'RY),
0

HV(u—uk)(.,t)‘

Ji9uc o1 = ot ]

t
S/ Hve(tfs)A‘
LQ(RN) - 0

t
< c/ (t—s)*l/%*(q*l)(m?)/?qku—uk)(.,s)‘
0

LY(RN) La(RN)

ds.

La(RN)

N+2,
N+1»

Thus V(u — u*)(.,t) = 0 in L? (RY), from the singular Gronwall lemma, valid since g <

hence u = uF.

Remark 4.7 This uniqueness result is a special case of a general one given for measure data in
[12, Theorem 3.27].
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4.2 The Dirichlet problem (D )

Here © is bounded, and we consider the weak solutions of the problem (Dgq o) such that

}i_lg ; u(.,t)pdx =0, Vo € C.(Q\ {0}). (4.9)

First, we give regularity properties of these solutions.

Lemma 4.8 Any weak solution u of (Do), (4-9), in Qq,co satisfies
u € OO\ {0} x [0,00)) NCHO(Q x (0,00)) N C*! (Qa00) -

Proof. We know that u € C19(Q x (0,00)) N C*! (Qa.o0), see Remark 4.3. Moreover u €
C*1(Qp x [0,00)) and u(z,0) = 0, Vo € Qp, from Corollary 2.18. Let B, CC € be fixed, and
Q, = Q\B,. Then u € C! (9B, x [0,00)), thus for any T € (0,00), there exists C > 0 such that
u(.,t) < Crt on 0B, x [0,T). Then the function w = u — C-t solves

wy — Aw = — |Vu|? = C; in D' (Qq, ),

then w € C((0,T); L' (Q,) N L}

loc

((0,7); Wy (), and
w — Awt L0 in D’ (QQmT)

from the Kato inequality. Moreover, from assumption (4.9), w* € L>((0,7); L (,)) and w™(., )
converges to 0 in the weak sense of My (€,;). As a consequence, w < 0, from [5, Lemma 3.4];
thus u(.,t) < Crt in Q7. Then the function % defined by (2.16) is bounded in Qq, ,. Hence
u € C1O(Q, x (—T,T)) from Theorem 2.10, thus u € C1O(Q\ {0} x [0, 0)). ]

Definition 4.9 Let T € (0,00]. We call VSS in Qq,r any weak solution u of the Dirichlet problem
(Dar), (4-9), such that
lim | w(.,t)dz = oo, VB, C . (4.10)
t—0 Br

Remark 4.10 From Remark 4.3, any VSS in Qo1 extends as a VSS in Qq., and satisfies (2.9)
and (2.8).

Next we prove the existence and uniqueness of the VSS. Our proof is based on the uniqueness

of the VSS in RY, and does not use the uniqueness of the function u*.

Proof of Theorem 1.5. (i) Existence of a minimal VSS. For any k > 0 we consider the
solution u®$ of (Dg o) with initial data kdg. By regularization as in Lemma 4.6, we obtain that
uP < Y. The sequence (uf?) is nondecreasing. From estimate (2.9) and Theorem 2.10, (u*)

converges in Cﬁ)’cl(Qon) N CEY( x (0,00)) to a weak solution U? of (D), and then U LY.

loc

Hence U? satisfies (4.10), and (4.9) from (4.4), thus U is a VSS in Q. Next we show that U® is
minimal. Consider any VSS u in Qo . Let £ > 0 be fixed. As in the proof of Theorem 1.3, one

constructs a sequence utof solutions of (Dg,00) with initial data functions ugg € D() such that

1
0= ugg <u(,—) inQ

. Q
, lim ulg’n dxr =k.
n n—oo Jq )
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We still find up?(.,t) < u(.,t + 1/n) from the comparison principle, valid from Lemma 4.8. As
n — 00, Uy, converges to kdy weakly in My(£2), then ulbt converges to u** from Proposition 4.2.
Thus v < u for any k > 0, hence U*? < w.

(i1) Existence of a mazimal VSS. For any ball B, CC 2, we consider the function Y,]Q defined
at Theorem 2.12. Consider again any VSS w in €2, and follow the proof of Proposition 3.3, replacing
B, by Q. Let € > 0 be fixed. From Lemma 4.8, for any ball B, CC 2, setting (), = Q\Bf77 there is
6y > 0 such that u(x,t) < ¢ in Qq, 5,- For any § € (0,0,), from the comparison principle in Qq s -
we obtain

u(z,t) < Y%(x,t —d)+¢e  inQasr

As ¢ tends to 0, and then ¢ — 0, we deduce that u < Y2f}] in Qq,00- Note that YnQ < Yn(,2 for any

n < 7. From the estimate (2.9) and Theorem 2.9, YnQ converges in Cllo’g(ﬁ x (0,00)) to a classical
solution Y of (Dq o), and u < Y. Moreover Y satisfies (4.10), since Y > U, and (4.9) since
Y92 <Y, then Y* is a maximal VSS in Q.

(iii) Uniqueness. For fixed k > 0, we intend to compare u*% with u*, by approximation. Let
0 < n <7 be fixed such that B, CC . Consider again the function Y}, defined by (3.3). Let 6 > 0
be fixed. From (3.10), there exists 75 > 0 such that supea g,yx[o,75] Yy = 0. Let (pc) be a sequence

k,Q

of mollifiers with support in B, C B,,. Let ulgﬂ be the solution of (Dg ) in Qq 00 With initial data
kpe. For any p > 1 such that {2 C B, let u];’B” be the solution of (Dp, ) With the same initial
data. By definition of Yan and Y;,, there holds ubPr < Y,,B" = Y, hence supyoxo,7] ubPr <.
From the comparison principle we find

ubPr < ulbst 4§ in Q x [0,75].

Going to the limit as ¢ — 0 from Proposition 4.2, then as p — oo from Lemma 4.6, then as k — oo,
we find

USU%+6 inQx(0,7].
The function W% = Y® — U% € C19(Q\ {0} x [0,00)) N CH0(Q x (0,00)) from Lemma (4.8), and
W =0 on 0Q x [0,00). Since Y? <Y = U, then W® <6 in Q x (0,75]. Thus W*(.,t) converges
uniformly to 0 as ¢ — 0. Then from the comparison principle, for any € € (0,6), supg, (€T we <
maxﬁwﬂ(., €), thus W% = 0, hence Y = U, (]

Finally we describe all the solutions as in the case of R :

Theorem 4.11 Let u be any weak solution of (Da.oo), (4.9). Then either u = U, or there erists
k> 0 such that u = u%, or u=0.

Proof. Either u = Y, or there exists a ball B, such that fBr u(.,t)dz stays bounded as t — 0.
Then from (4.9), u € L2 ([0,00); LY(2)). From Proposition 2.15, u(.,t) converges weak* to a

measure p as t — 0, concentrated at {0} from (4.9). Hence the exists k = 0 such that p = kdp,
thus

%in(l) u(., t)pdz = kp(.,0), Vo € Ce(£2),
—vJQ

and it holds for any ¢ € Cy(Q), from (4.9). If k > 0, then u = u® from uniqueness, see Proposition
4.2. If k =0, then v = 0 from Theorem 1.2. [
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