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Abstract

In this work we study the nonnegative solutions of the elliptic system

�u = jxjav�; �v = jxjbu�

in the superlinear case �� > 1; which blow up near the boundary of a domain of RN ; or
at one isolated point. In the radial case we give the precise behavior of the large solutions
near the boundary in any dimension N . We also show the existence of in�nitely many
solutions blowing up at 0: Furthermore, we show that there exists a global positive solution
in RNn f0g ; large at 0; and we describe its behavior. We apply the results to the sign
changing solutions of the biharmonic equation

�2u = jxjb juj� :

Our results are based on a new dynamical approach of the radial system by means of a
quadratic system of order 4, introduced in [4], combined with the nonradial upper estimates
of [5].
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1 Introduction

This article is concerned with the nonnegative large solutions of the elliptic system�
�u = jxjav�
�v = jxjbu�; (1.1)

in two cases: solutions in a bounded domain 
 in RN , which blow up at the boundary, that is

lim
d(x;@
)!0

u(x) = lim
d(x;@
)!0

v(x) =1; (1.2)

where d(x; @
) is the distance from x to @
; or solutions in 
n f0g which blow up at 0 :

lim
x!0

u(x) =1 or lim
x!0

v(x) =1: (1.3)

We study the superlinear case, where �; � > 0, and

D = �� � 1 > 0; (1.4)

and a; b are real numbers such that

a; b > maxf�2;�Ng: (1.5)

First we recall some well-known results in the scalar case of the Emden-Fowler equation

�U = UQ (1.6)

with Q > 1: Concerning the boundary blow-up problem, there exists a unique solution U in 

such that limd(x;@
)!0 U(x) =1; and near @


U(x) = Cd(x; @
)�2=(Q�1)(1 + o(1));

where C = C(Q). Several researchs on the more general equation

�U = p(x)f(U)

have been done with di¤erent assumptions on f and on the weight p, with asymptotic expansions
near @
 , see for instance [2], [3], [7], [9], [16], [17], [19], [20], [23]; see also [1], [10] for quasilinear
equations. These results rely essentially on the comparison principle valid for this equation,
and the construction of supersolutions and subsolutions.

The existence and the behavior of solutions of (1.6) in 
n f0g which blow up at 0:

lim
x!0

U(x) =1;

called large (or singular) at 0, have also been widely investigated during the last decades, see for
example [24], and the references therein. There exists a particular solution in RNn f0g whenever
Q < N=(N � 2) or N = 1; 2; given by U�(x) = C� jxj�2=(Q�1) ; with C� = C�(Q;N): If Q �
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N=(N � 2), there is no large solution at 0, and the singularity is removable. If Q < N=(N � 2)
or N = 2, any large solution satis�es limjxj!0 jxj2=(Q�1) U = C�, or

lim
jxj!0

jxjN�2 U = � > 0 if N > 2; lim
jxj!0

jln jxjjU = � > 0; if N = 2: (1.7)

There exist solutions of each type, distinct from U�: Moreover, up to a scaling, there exists a
unique positive radial solution in RNn f0g, such that (1.7) holds and limjxj!1 jxj2=(Q�1) U = C�,
see [24] and also [4].

In Section 2 we consider the blow up problem of system (1.1) at the boundary.

Up to our knowledge all the known results for systems are related with systems for which
some comparison properties hold, for example�

�u = usv�;
�v = u�vm;

where s;m > 1, �; � > 0, and �� � (s � 1)(m � 1); of competitive type, see [13], or �; � < 0,
of cooperative type, see [8]; see also some extensions to problems with weights in [22], or with
quasilinear operators in [14], [25], [26], and cooperative systems of Lotka-Volterra in [12].

On the contrary the problem (1.1)-(1.2) has been the object of very few works, because it
brings many di¢ culties. The main one is the lack of a comparison principle for the system.
As a consequence all the methods of supersolutions, subsolutions and comparison, valid for the
case of a single equation fail.

Until now the existence of large solutions is an open question in the nonradial case. In the
radial case the problem was studied in [15], without weights: a = b = 0. It was shown that
there are in�nitely many nonnegative radial solutions to (1.1) which blow up at the boundary
of a ball provided that (1.4) holds, and no blow up occurs otherwise. In particular, there exist
solutions even in the case where either u or v vanishes at 0. This shows the lack of a Harnack
inequality, even in the radial case. The precise behavior of the solutions was obtained in [15]
for N = 1; a = b = 0, where system (1.1) is autonomous, with an elaborate proof wich could
not be extended to higher dimension:

Our �rst main result solves this problem in any dimension, with possible weights, and
moreover we give an expansion of order 1 of the solutions:

Theorem 1.1 Let (u; v) be any radial nonnegative solution of (1.1) de�ned for r 2 (r0; R),
r0 � 0, unbounded at r = R. Then lim

r!R
u(r) = lim

r!R
v(r) = 1, and u; v admit the following

expansions near R :

u(r) = A1d(r)
�(1 +O(d(r))); v(r) = B1d(r)

��(1 +O(d(r))); (1.8)

where d(r) = R� r is the distance to the boundary, and

 =
2(1 + �)

D
; � =

2(1 + �)

D
; (1.9)

A1 = (( + 1)(�(� + 1))
�)1=D; B1 = (�(� + 1)(( + 1))

�)1=D: (1.10)
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Our proof is essentially based on a new dynamical approach of system (1.1), initiated in [4]:
we reduce the problem to a quadratic, in general nonautonomous, system of order 4, which,
under the assumptions of Theorem 1.1, can be reduced to a nonautonomous perturbation of
a quadratic system of order 2. We then show the convergence of the solution of the original
system to a suitable �xed point by using the perturbation arguments of [18].

Theorem 1.1 can be applied to sign changing solutions of some elliptic systems, in particular
to the biharmonic equation, where � = 1:

Corollary 1.2 Let � > 1, b 2 R. Then any radial solution u of the problem

�2u = jxjb juj� in (r0; R); u(R) =1; (1.11)

satis�es
u(r) = Ad(r)�4=(��1)(1 +O(d(r))); (1.12)

with A��1 = 8(�+ 3)(�+ 1)(3�� 1)(�� 1)�4.

We notice here a case where we �nd an explicit solution: for N > 4 and � = N+4
N�4 , equation

�2u = u� admits the solution in the ball B(0; 1);

u(r) = C(1� r2)(4�N)=2; C8=(N�4) = N(N � 4)(N2 � 4);

and v = �u = C(N�4)(1�r2)�N=2(N�2r2) � 0, and (1.8) and (1.12) hold with  = N�4
2 ; � =

N
2 .

In Section 3 we consider the problem of large solutions at the origin, that is (1.1)-(1.3).

System (1.1) admits a particular radial positive solution (u�; v�), given by

u�(r) = ANr
�a;b ; v�(r) = BNr

��a;b ; r = jxj; (1.13)

where

a;b =
(2 + a) + (2 + b)�

D
> 0; �a;b =

(2 + b) + (2 + a)�

D
> 0; (1.14)

ADN = a;b(a;b �N + 2) (�a;b(�a;b �N + 2))� ; BDN = �a;b(�a;b �N + 2) (a;b(a;b �N + 2))� ;

whenever
min fa;b; �a;bg > N � 2; or N = 1; 2: (1.15)

Note that in particular 0;0 = ; �0;0 = �.

The problem has been initiated in [27] and [5], see also [28]. Let us recall an important
result of [5] giving upper estimates for system (1.1) in the nonradial case, stated for N � 3,
but its proof is valid for any N � 1. It is not based on supersolutions, but on estimates of the
mean value of u; v on spheres:

Keller-Osserman type estimates [5]. Let 
 be a domain of RN (N � 1), containing 0, and
u; v 2 C2(
n f0g) be any nonnegative subsolutions of (1.1), that is,�

��u+ jxjav� � 0;
��v + jxjbu� � 0;
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with �; � satisfying (1.4). Then there exists C = C(a; b; �; �;N) such that near x = 0;

u(x) � C jxj�a;b ; v(x) � C jxj��a;b : (1.16)

Moreover, one �nds in [5] a quite exhaustive study about all the possible behaviors of the
solutions (radial or not) in 
n f0g.

Here we complete those results by proving the existence of local radial solutions large at
0 of each of the types described in [5], see Propositions 3.2, 3.4 in Section 3. By using these
results, we obtain our second main result in this work, which is the following global existence
theorem:

Theorem 1.3 Assume that N � 2 and that (1.15) holds. Then there exists a radial positive
global solution of system (1.1) in RNn f0g, large near 0, unique up to a scaling, such that

lim
r!1

ra;bu = AN ; lim
r!1

r�a;bv = BN ; (1.17)

and, for N > 2, and up to a change of u; �; a, into v; �; b, when � < N+a
N�2 , it satis�es

lim
r!0

rN�2u = � > 0;

8>><>>:
lim
r!0

rN�2v = � > 0; if � < N+b
N�2 ;

lim
r!0

r(N�2)��(2+b)v = � > 0; if � > N+b
N�2 ;

lim
r!0

rN�2 jln rj�1 v = � > 0; if � = N+b
N�2 ;

and for N = 2,
lim
r!0

jln rj�1 u = � > 0; lim
r!0

jln rj�1 v = � > 0:

Our proof also relies on the dynamical approach of system (1.1) in dimension N by a
quadratic autonomous system of order 4, given in [4]. Finally we give an application to the
biharmonic equation:

Corollary 1.4 Let N > 2. Assume that 1 < � < N+2+b
N�2 . There exists a positive global solution,

unique up to a scaling, of equation
�2u = jxjbu�

in RNn f0g , such that

lim
r!0

rN�2u = � > 0; lim
r!1

r(4+b)=(��1)u = C;

where C��1 = (4 + b)(N + 2 + b� (N � 2)�) (2�+ 2 + b)(N + b� (N � 4)�) (�� 1)�4.

2 Large solutions at the boundary

This section is devoted to the study of the boundary blow up problem for nonnegative radial
solutions of (1.1). We begin by observing that system (1.1) admits a scaling invariance: if (u; v)
is a solution, then for any � > 0,

r 7! (�a;bu(�r); ��a;bv(�r)); (2.1)

where a;b; �a;b are de�ned in (1.14), is also a solution.
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2.1 Existence and estimates of large solutions

We say that a nonnegative solution (u; v) of (1.1) de�ned in (0; R) is regular at 0 if u; v 2
C2 (0; R) \ C([0; R)). Then u; v 2 C1([0; R)) when a; b � �1, and moreover u0(0) = v0(0) = 0
when a; b > �1, and u; v 2 C2([0; R)) when a; b � 0.

We �rst give an existence and uniqueness result for regular solutions:

Proposition 2.1 Assume (1.5) and only that D = ��� 1 6= 0. Then for any u0; v0 � 0; there
exists a unique local regular solution (u; v) with initial data (u0; v0).

We write the problem in the integral form

u(r) = u0 +

Z r

0
�1�N (

Z �

0
�N�1+av�(�)d�)d�; v(r) = v0 +

Z r

0
�1�N (

Z �

0
�N�1+bu�(�)d�)d� ;

(2.2)
by standard arguments the continuous solutions of (2.2) can be shown to be regular. When
u0; v0 > 0; the result follows from classical �xed point theorem. In the case u0 > 0 = v0,
the existence can be obtained from the Schauder �xed point theorem, and the uniqueness by
using monotonicity arguments as in [15]. We give an alternative proof in Section 3, using the
dynamical system approach introduced in [4], which can be extended to more general operators.

Next we show that all the nontrivial regular solutions blow up at some �nite R > 0, and
give the �rst upper estimates for any large solution. Our proofs are a direct consequence of
estimates (1.16).

Proposition 2.2 (i) Assume (1.4) and (1.5). For any regular nonnegative solution (u; v) 6�
(0; 0); there exists R such that u and v are unbounded near R.

(ii) Any solution (u; v) which is nonnegative in an interval (r0; R) and unbounded at R,
satis�es

lim
r!R

u = lim
r!R

v = lim
r!R

u0 = lim
r!R

v0 =1: (2.3)

and there exists C = C(N; �; �) > 0 such that near r = R,

u(r) � C(R� r)� ; v(r) � C(R� r)��: (2.4)

Proof. (i) Let (u; v) be any nontrivial regular solution. Suppose �rst that v0 > 0. Then from
(1.1), rN�1u0 is positive for small r, and nondecreasing, hence u is increasing. If the solution is
entire, then it satis�es (1.16) near 1: indeed by the Kelvin transform, the functions

u(x) = jxj2�N u(x= jxj2); v(x) = jxj2�N v(x= jxj2);

satisfy in B(0; 1)n f0g the system (
��u+ jxja v� = 0;
��v + jxjb u� = 0;
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where a = (N � 2)� � (N + 2 + a); b = (N � 2)� � (N + 2 + b), and a;b; �a;b are replaced by
N � 2� a;b; N � 2� �a;b. Then the estimate (1.16) for (u; v) implies the one for (u; v) and thus
u tends to 0 at 1, which is contradictory. Furthermore, from

u � u0 +
r2+a

(2 + a)(N + a)
v�; v � v0 +

r2+b

(2 + b)(N + b)
u�;

u and v blow up at the same point R > 0.

(ii) Since rN�1u0 is increasing, it has a limit as r ! R. If this limit is �nite, then u0 is
bounded, implying that u has a �nite limit; this contradicts our assumption. Thus (2.3) holds.
By (2.1) we can assume R = 1 and make the transformation

r = 	(s) =

�
(1 + (N � 2)s)�1=(N�2); if N 6= 2;

e�s; if N = 2;
(2.5)

(in particular r = 1� s if N = 1), so that s describes an interval (0; s0], s0 > 0, and we get the
system �

uss = F (s)v
�

vss = G(s)u
� (2.6)

with
F (s) = r2N�2+a; G(s) = r2N�2+b; (2.7)

hence lims!0 F = lims!0G = 1. Then�
�uss + 1

2v
� � 0

�vss + 1
2u
� � 0

in some interval (0; s1], thus from the Keller-Osserman estimates (1.16), there exists C =
C(N; �; �) > 0 such that u(s) � Cs� ; v(s) � Cs��; near s = 0 and (2.4) follows.

2.2 The precise behavior near the boundary

In this section we prove Theorem 1.1.

2.2.1 Scheme of the proof

Consider a solution blowing up at R = 1. In the case of dimension N = 1, and a = b = 0, we
have that F � G � 1 in (2.7), and we are concerned with the system�

uss = v
�

vss = u
�:

(2.8)

Following the ideas of [4], we are led to make the substitution

X(t) = �sus
u
; Y (t) = �svs

v
; Z(t) =

sv�

us
; W (t) =

su�

vs
;
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where t = ln s, t describes (�1; t0], and we obtain the autonomous system8>><>>:
Xt = X [X + 1 + Z] ;
Yt = Y [Y + 1 +W ] ;
Zt = Z [1� �Y � Z] ;
Wt = W [1� �X �W ] :

(2.9)

We study the solutions in the region where X;Y � 0 and Z;W � 0. In this region system (2.9)
admits two �xed points

O = (0; 0; 0; 0); M0;1 = (; �;�1� ;�1� �) (2.10)

where  and � are de�ned in (1.9). We intend to show that trajectories associated to the large
solutions converge to M0;1. Observe that system (2.8) has a �rst integral, which is a crucial
point in what follows:

usvs �
u�+1

�+ 1
� v�+1

� + 1
= C;

equivalently

e�2tuv(XY +
XZ

� + 1
+
YW

�+ 1
) = C:

Since any large solution at r = 1 satis�es limr!1 u = limr!1 v =1, we obtain

XY +
XZ

� + 1
+
YW

�+ 1
= o(e2t)

as t! �1. Thus, eliminating W , we get the nonautonomous system of order 38<:
Xt = X [X + 1 + Z] ;

Yt = Y [Y + 1]� (�+ 1)X(Y + Z
�+1) + o(e

2t);

Zt = Z [1� �Y � Z] :
(2.11)

which appears as a perturbation of system8<:
Xt = X [X + 1 + Z] ;

Yt = Y [Y + 1]� (�+ 1)X(Y + Z
�+1);

Zt = Z [1� �Y � Z] :
(2.12)

Moreover, by using a suitable change of variables, system (2.11) reduces to a nonautonomous
system of order 2, and we can show that the last system behaves like an autonomous one. Then
we come back to the initial system and deduce the convergence.

In the case N � 1 or a; b not necessarily equal to 0, we �rst reduce the problem to a system
similar to (2.9), but nonautonomous, and we prove that it is a perturbation of (2.9). Moreover
we produce an identity that plays the role of a �rst integral, allowing us to reduce to a double
perturbation of (2.12). We manage with the two perturbations in order to conclude.
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2.2.2 Steps of the proof

Our proof relies strongly in a result due to Logemann and Ryan, see [18]. We state it below for
the convenience of the reader.

Theorem 2.3 [18, Corollary 4.1] Let h : R+ � RM ! RM be of Carathéodory class. Assume
that there exists a locally Lipschitz continuous function h� : RM ! RM such that for all compact
C � RM and all " > 0, there exists T � 0 such that

sup
x2C

ess sup
��T

jjh(�; x)� h�(x)jj < "

Assume that x is a bounded solution of equation x� = h(�; x) on R+ such that x(0) = x0:
Then the !-limit set of x is non empty, compact and connected, and invariant under the �ow
generated by h�.

The proof of Theorem 1.1 requires some important lemmas. By scaling we still assume that
R = 1.

Lemma 2.4 Let (u; v) be any �xed solution of system (1.1) in [r0; 1), unbounded at 1. Let us
set t = log s, where s = 	�1(r) is de�ned in (2.5). Let F;G be de�ned by (2.7). Then the
functions

X(t) = �sus
u
> 0; Y (t) = �svs

v
> 0; Z(t) =

sF (s)v�

us
< 0; W (t) =

sG(s)u�

vs
< 0; (2.13)

satisfy the (in general nonautonomous) system8>><>>:
Xt = X [X + 1 + Z] ;
Yt = Y [Y + 1 +W ] ;
Zt = Z [1� �Y � Z � �(t)] ;
Wt = W [1� �X �W � �(t)] ;

(2.14)

where

�(t) =
2N � 2 + a
1 + (N � 2)et e

t; �(t) =
2N � 2 + b
1 + (N � 2)et e

t: (2.15)

Moreover we recover u; v by the relations

u = s�F�
1
DG�

�
D (jZjX)

1
D (jW jY )

�
D ; v = s��F�

�
DG�

1
D (jW jY )

1
D (jZjX)

�
D : (2.16)

Proof. Since (u; v) is unbounded, (2.3) holds. We make the substitution (2.5), which leads
to system (2.6), with F;G given by (2.7). Clearly we can assume that us < 0 and vs < 0 on
(0; s0], lims!0 jusj = lims!0 jvsj = lims!0 u = lims!0 v = 1. Then we can de�ne X;Y; Z;W
by (2.13) and we obtain system (2.14) with

�(t) = �sF
0(s)

F (s)
; �(t) = �sG

0(s)

G(s)
;

then (2.15) follows, and we deduce (2.16) by straight computation.

Next we prove that system (2.14) is a perturbation of the corresponding autonomous system
(2.9):
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Lemma 2.5 Let N � 1. Under the assumptions of Theorem 1.1, there exist k > 0 and �t < t0
such that

1=k � X;Y; jZj; jW j � k for t � �t: (2.17)

Moreover, setting

XY +
XZ

� + 1
+
YW

�+ 1
=
$(t)

�+ 1
; (2.18)

we have $(t) = O(et) as t! �1:

Proof. We establish some integral inequalities, playing the role of a �rst integral, then we use
them to prove (2.17), and �nally we deduce the behavior of $.

(i) Integral inequalities. Let �, � 2 R and set

H�;�(s) = r
2�N

�
usvs � F (s)

v�+1

� + 1
�G(s) u

�+1

�+ 1
� �vus + �uvs
1 + (N � 2)s

�
= r2�Nuve�2t

�
XY +

X(Z + ��(t))

� + 1
+
Y (W + ��(t))

�+ 1

�
;

where

��(t) =
�(� + 1)s

1 + (N � 2)s and ��(t) =
�(�+ 1)s

1 + (N � 2)s:

It can be easily veri�ed that

H 0
�;�(s) = (N�2����)usvs+F (s)

v�+1

� + 1
(N+a��(�+1))+G(s) u

�+1

�+ 1
(N+b��(�+1)): (2.19)

By choosing �rst the constants � = �1 > 0 and � = �1 > 0 large enough, we obtain that
H 0
�1;�1

(s) < 0 and thus H�1;�1(s) � �C1 for some C1 > 0; next choosing � = �2 < 0 and � =
�2 < 0 and large enough in absolute value, we obtain that H 0

�2;�2
(s) > 0 and thus H�2;�2(s) � C2

for some C2 > 0. Hence, there exists functions ��i(t); ��i(t); i = 1; 2; which are O(et) as t! �1,
and such that

XY +
X(Z + ��1(t))

� + 1
+
Y (W + ��1(t))

�+ 1
� �C1rN�2

e2t

uv
(2.20)

XY +
X(Z + ��2(t))

� + 1
+
Y (W + ��2(t))

�+ 1
� C2rN�2

e2t

uv
: (2.21)

(ii) Estimates from below in (2.17). Using that uss � v� and multiplying by 2us < 0 we obtain

(u2s)s � 2v�us = (2v�u)s � 2�v��1uvs > (2v�u)s

since vs < 0 in (0; s0], hence u2s � 2v�u � C = (u2s � 2v�u)(s0); since lims!0 v�u =1, it follows
that u2s � (5=2)v�u on (0; s1] , for su¢ ciently small s1. Using the same method for the second
equation, we obtain from (2.13) that

X(t) � 3 jZ(t)j ; Y (t) � 3 jW (t)j ; on (�1; t1] : (2.22)
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Also, from the generalized L�Hôpital�s rule,

lim
s!0

jZj
F
= lim
s!0

sv�

�us
� lim
s!0

�sv��1vs + v�

�uss
= lim
s!0

�
�Y � 1
F

�
;

and by symmetry
� lim
s!0

Y � 1 + lim
s!0

jZj; �lim
s!0

X � 1 + lim
s!0

jW j: (2.23)

Suppose now that limt!�1X = 0. From (2.23), limt!�1X � 1=�, hence there is a sequence
ftng ! �1 of local minima of X such that limn!1X(tn) = 0, and from the de�nition of
X in (2.13), X(tn) > 0 for all n su¢ ciently large. At each tn we have that Xt(tn) = 0 and
Xtt(tn) � 0. From (2.14), using that X(tn) 6= 0, we have that X(tn) + 1 = jZ(tn)j and hence
jZ(tn)j > 1. Since Xtt(tn) = X(tn)Zt(tn), it follows that Zt(tn) � 0, and thus, from the third
equation in (2.14), 1� �Y (tn) + jZ(tn)j � �(tn) � 0, implying

1 � 1 + jZ(tn)j � �Y (tn) + �(tn): (2.24)

From (2.20) and (2.22), we deduce

Y 2 � 3Y ( ��1(t) + (�+ 1)X) + 3(�+ 1)
X ��1(t)

� + 1
+O(e2t);

hence limn!1 Y (tn) = 0, which contradicts (2.24). We conclude that limt!�1X > 0, and
similarly for Y , thus X;Y; jZj; jW j are bounded from below.

(iii) Estimates from above. From (2.4), su and s�v are bounded as s! 0; thus from (2.16) and
(2.22), X2Y 2� is bounded as t ! 1. Since X;Y are bounded from below, they are bounded
from above, and then also jZj and jW j, from (2.23), hence (2.17) holds.

(iv) Conclusion. From (2.20), (2.21), since X;Y are bounded and j��i(t)j; j��i(t)j � Cet,

XY � XjZj
� + 1

+
Y jW j
�+ 1

� C3et and XY � XjZj
� + 1

+
Y jW j
�+ 1

+ C4e
t; (2.25)

for some C3; C4 > 0. Then we deduce (2.18).

Next we show that a convenient combination of our solution (X;Y; Z;W ) satis�es a system
of order 2. We have

Lemma 2.6 Under the assumptions of Theorem 1.1, and with the above notations, let

x(�) = �X(t)
Z(t)

; y = �Y (t)
Z(t)

; � = �
Z �t

t
Z(�)d�: (2.26)

Then (x; y) lies in the region

R0 := f(x; y) j 1=k2 � x � k2;
1

� + 1
+

1

2(�+ 1)k4
� y � k2g

for � � ~� > 0, and satis�es�
x� = x(�x� �y + 2) +$1(�)
y� = ( 1

�+1 � y)((� + 1)y � (�+ 1)x) +$2(�);
(2.27)

where $1(�) = O(e�K� ) and $2(�) = O(e�K� ) for some K > 0, as � !1.
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Proof. We �rst reduce system (2.14) to a system of order 3: from relation (2.18) we eliminate
W in the system (2.14) and obtain8<:

Xt = X [X + 1 + Z] ;

Yt = Y [Y + 1]� (�+ 1)X(Y + Z
�+1) +$(t);

Zt = Z [1� �Y � Z � �(t)] ;

which is a perturbation of system (2.12). Next, de�ning x = �X
Z ; y = �Y

Z , we get the system(
xt = Z [x(2� x� �y) +$1]
yt = Z

h
( 1
�+1 � y)((� + 1)y � (�+ 1)x) +$2

i
with

$1 = �
�(t)X

Z2
= O(et); $2 =

$(t)� �(t)Y
Z2

= O(et); (2.28)

from Lemma 2.5, and then
Zt = Z(1 + Z(�y � 1) + �(t)): (2.29)

and �(t) de�ned by (2.26) for t � �t describes [0;1) as t describes (�1; �t], and �=2k � jtj � 2k�
for t � �t. Hence we deduce (2.27), and the estimates of $1; $2. Notice that 1=k2 � x; y � k2
for any � � 0 from (2.17), and from (2.18), for � � ~� > 0;

y � 1

� + 1
=

1

XZ
(
YW

�+ 1
+ o(1)) � 1

2(�+ 1)k4
;

ending the proof.

Hence system (2.27) appears as an exponential perturbation of an autonomous system that
we study now:

Lemma 2.7 Consider the system�
x� = x(2� x� �y)
y� = (y � 1

�+1)((�+ 1)x� (� + 1)y):
(2.30)

The �xed points of system (2.30) are O = (0; 0), and

j0 =

�
0;

1

� + 1

�
; `0 =

�
� + 2

� + 1
;
1

� + 1

�
; m0 = (x0; y0) =

�
2(� + 1)

�� + 2� + 1
;
2(�+ 1)

�� + 2� + 1

�
;

and m0 is a sink. Any solution of the system (2.30) which stays in the region R0 converges to
the �xed point m0 as � !1.

Proof. The point m0 is a sink: the eigenvalues of the linearized system of (2.30) at m0 are the
roots `1; `2 of equation

`2 +
��+ 3 + 2�+ 2�

�� + 2� + 1
`+ 2

�� + 2�+ 1

�� + 2� + 1
= 0;

equivalently
( + 1)`2 + ( + � + 1)`+ 2(� + 1) = 0; (2.31)
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and they have negative real part. Next we show that (2.30) has no limit cycle in (0;1) �
(1=(� + 1);1). Let B = xp(y � 1

�+1)
�q, where p; q are parameters. Writing (2.30) under the

form x� = F(x; y), yt = G(x; y), we obtain

r � (B(F ;G)) = Bxx� + B�y� + B(Fx + Gy) :=MB; where

M = (�� 1� p� q(�+ 1))x� (p� � q(� + 1) + 3� + 2) (y � 1

� + 1
) +

p(� + 2) + q(� + 1) + 1

� + 1
:

Choosing q = ��+2�+2
��+2�+1 and p = �� 1� q(�+ 1), we �nd that

(� + 1)M = �(�� + 2�+ 1
�� + 2� + 1

+ � + 2) < 0:

Hence, by the Bendixson-Dulac Theorem, system (2.30) has no limit cycle. From the Poincaré-
Bendixon Theorem, the !-limit set � of any solution of (2.30) lying in R0 is �xed point, of a
union of �xed points and connecting orbits. But m0 is the unique �xed point in R0: Then any
solution in R0 converges to m0 as � !1.

Remark 2.8 It is easy to prove that there exists a connecting orbit joining the two points `0
and m0, see the �gure below, where we have set � = 2 and � = 3 in (2.30), but it is not located
in R0.

We can now conclude.

Proof of Theorem 1.1. (i) Convergence for system (2.27). From Theorem 2.3, the !-limit
set � of our solution (x; y) of (2.27) is nonempty, compact, connected and contained in R0, and
invariant relative to (2.30). From Lemma 2.7, the only such invariant set in R0 is fm0g ; thus
(x; y) converges to m0.
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(ii) Convergence for system (2.14). By setting g(t) = 1=Z, we �nd from (2.29) that g0+(1��)g =
1� �y; hence by L�Hôpital�s rule,

lim
t!�1

Z = lim
t!�1

(e
R t
�t (1��))0

(ge
R t
�t (1��))0

= lim
t!�1

1� �
1� �y = �

�� + 2� + 1

�� � 1 = �(1 + ) = Z0:

Hence

lim
t!�1

X = � lim
t!�1

xZ =
2(� + 1)

�� � 1 =  = X0; lim
t!�1

Y = lim
t!�1

yZ =
2(�+ 1)

�� � 1 = � = Y0:

Finally, from (2.18), we obtain limt!�1W = �(1 + �) = W0. That means (X;Y; Z;W )
converges to M0;1 de�ned at (2.10). Then from (2.16) we deduce the estimates

u(r) = A1d
�(1 + o(1)); v(r) = B1d

��(1 + o(1))

where A1; B1 are given by (1.10).

(iii) Expansion of u and v: We �rst consider system (2.27). Setting x = x0 + ~x; y0 + ~y; we �nd
a system of the form

(~x� ; ~y� ) = A(~x; ~y) +Q(~x; ~y) + ($1; $2)
where (~x; ~y)! (0; 0) ; the eigenvalues `1; `2 ofA satisfymax(Re(`1; `2)) = �m < �1=(+1); and
Q is quadratic and $1(�); $2(�) = O(e�K� ): There exists an euclidean structure with a scalar
product where hA(~x; ~y); (~x; ~y)i � �m k(~x; ~y)k2 . Then the function � 7! �(�) = k(~x; ~y)k (�)
satis�es an inequality of the type �� � �(m� ")� + Ce�K� for any " > 0 and � large enough.
Then

�(�) = O(e�K� ) +O(e�(m�")� ): (2.32)

Then the convergence of (x; y) to (x0; y0) is exponential. From (2.29), the convergence of Z to
Z0 is exponential. Writing � under the form

� = c+ Z0t+

Z 1

t
(Z0 � Z);

we deduce that � = c + Z0t + O(e
kt) for some k > 0: From (2.28) we obtain that $1; $2 =

O(e�K0� ) with K0 = 1= jZ0j ; taking K = K0 = 1=( + 1) in (2.32), we �nd that �(�) =
O(e�K0� ) = O(et); because m > K0: Then from (2.29) we deduce that jZ � Z0j = O(et); and
then from (2.26), jX �X0j + jY � Y0j = O(et); and in turn jW �W0j = O(et) from (2.18).
Finally we come back to u and v by means of (2.16): recalling that s = et and r = 1+O(s) as
s! 0; we deduce that

u(r) = A1s
�(1 +O(s)); v(r) = B1s

��(1 +O(s))

and the expansion (1.8) follows from (2.5).

Proof of Corollary 1.2. Let u be a radial solution of (1.11). Then u and v = �u satisfy�
�u = v
�v = jxjb juj�

and then u(r) > 0 in (r0; R) and u(R) = 1. Integrating twice the second equation in this
system, we have that lim

r!R
v(r) =1 and Theorem 1.1 applies.
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2.3 The set of initial data for blow up

Here we suppose a = b = 0. By scaling, for any � > 0 there exists solutions which blow up at
�. Let us call �(u0; v0) the blow-up radius of a regular solution with initial data (u0; v0). From
(2.1), we �nd

�(�u0; �
�v0) = �

�1�(u0; v0):

Then for any (u0; v0) 2 S1 there is a unique � such that �(�u0; ��v0) = 1: Thus there exist
in�nitely many solutions blowing up at R = 1, including in particular two unique solutions with
respective initial data (�u0; 0) and (0; �v0). Using monotonicity properties, it was shown in [15]
that the set

S =
n
(u0; v0) 2 [0;1)� [0;1) : lim

r!1
u = lim

r!1
v =1

o
is contained in [0; �u0]� [0; �v0]. Next we give some properties of S extending some results of [15]
to higher dimensions.

Proposition 2.9 Let N � 1 and �� > 1, then S is a simple curve joining the two points (�u0; 0)
and (0; �v0).

Proof. We claim that the mapping (u0; v0) 2 [0;1)� [0;1) n f0; 0g 7! �(u0; v0) is continuous.
As in [11] this will follow from our global estimates. We consider our problem written in the
form

(rN�1u0)0 = rN�1v�; (rN�1v0)0 = rN�1u�; u(0) = u0; v(0) = v0; u0(0) = v0(0) = 0;
(2.33)

or equivalently (2.2) with a = b = 0, with (u0; v0) 6= (0; 0).

Step 1. If (u0;n; v0;n) converges to (u0; v0) as n ! 1, then there exists �0 > 0 such that
�(u0;n; v0;n) � �0 > 0 for n su¢ ciently large. This follows from the monotonicity property: if
u0 � �u0 and v0 � �v0, then, with obvious notation, u(r) � �u(r) and v(r) � �v(r) in the interval
where they are all de�ned.

Step 2. Let (un; vn) be the solution associated to (u0;n; v0;n). Here we show that If (un; vn)
are de�ned in some �xed interval [0; �), then (u; v) is also de�ned in [0; �) and un ! u, vn ! v,
u0n ! u0 and v0n ! v uniformly in [0; �] for any � < �. Indeed, we can assume � = 1 and
make the change of variables (2.5) to obtain solutions of system (2.6) in some interval (0; s0],
satisfying with C0 = C0(s0; N), �

�(un)ss + C0v�n � 0
�(vn)ss + C0u�n � 0

with u and v decreasing in s. Then there exists C = C(C0; N; �; �) > 0 such that

un(s) � Cs� ; vn(s) � Cs�� for s � s0;

which in the variable r imply that un and vn are uniformly bounded on [r0; 1� "] for some
r0 2 (0; 1) ; and any " 2 (0; 1� r0). Since un and vn are increasing in r, the functions are
uniformly bounded in [0; 1� "] = [0; � � "]. From (2.2) with (u0;n; v0;n) instead of (u0; v0), this
implies that the sequence of (un; vn) is equicontinuous in [0; ��"], and thus, from Ascoli-Arzela�s
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theorem, it contains a subsequence which converges uniformly to some solution (U; V ) of (2.2)
in [0; ��"]. From the uniqueness shown in Proposition 2.1, we �nd that (U; V ) = (u; v) and the
whole sequence converges on [0; �); moreover, the sequence of derivatives converges uniformly
to (u0; v0) in [0; � � "].

Step 3. The function � is upper semi-continuous: if this were not true, then there exists a
sequence (u0;n; v0;n)! (u0; v0) such that �(u0;n; ~vn) � �(u0; v0)+0, 0 > 0, contradicting Step
2 by taking � = �(u0; v0) + 0.

Step 4. The function � is lower semi-continuous: if this were not true, then there exists a
sequence (u0;n; v0;n) ! (u0; v0) such that �(u0;n; ~vn) � �(u0; v0) � 0, 0 > 0. From Step 1,
there exists �0 > 0 such that �(u0;n; v0;n) � �0 > 0, and from Step 2, (un; vn; u0n; v

0
n) converges

uniformly to (u; v; u0; v0) in [0; �0=2]. In particular it converges at the point �0=4, hence by
writing the system in the form

u0 = rN�1z; v0 = rN�1w; z0 = rN�1v�; w0 = rN�1u�

we deduce from [6, Theorem 3] that the solutions (un; vn; zn; wn) starting from the point �0=4
are de�ned in [�0=4; �(u0; v0)) contradicting our assumption.

Thus S is a curve with

(u0; v0) =
h
� (cos �; sin �) cos �; �� (cos �; sin �) sin �

i
; � 2 [0; �=2]

as a parametric representation.

3 Behavior of system (1.1) near the origin

3.1 Formulation as a dynamical system

In [4] the authors study general quasilinear elliptic systems, and in particular the system�
��u = �(urr + N�1

r ur) = "1r
av�;

��v = �(vrr + N�1
r vr) = "2r

bu�;
(3.1)

where "1 = �1, "2 = �1. Near any point r where u(r) 6= 0; u0(r) 6= 0 and v(r) 6= 0, v0(r) 6= 0;
they de�ne

X(t) = �rur
u
; Y (t) = �rvr

v
; Z(t) = �"1

r1+av�

ur
; W (t) = �"2

r1+bu�

vr
; (3.2)

with t = ln r, so system (3.1) becomes8>><>>:
Xt = X [X � (N � 2) + Z] ;
Yt = Y [Y � (N � 2) +W ] ;
Zt = Z [N + a� �Y � Z] ;
Wt = W [N + b� �X �W ] :

(3.3)

One recovers u and v by the formulas

u=r�a;b( jZXj)1=D( jWY j)�=D; v=r��a;b jWY j)1=D jZXj�=D ; (3.4)
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and we notice the relations a;b + 2 + a = ��a;b and �a;b + 2 + b = �a;b:

As mentioned in [4], system (3.3) is independent of "i, i = 1; 2, and thus it allows to
study system (3.1) in a uni�ed way. In our case "1 = "2 = �1, then XZ = �ra+2v�=u and
YW = �rb+2u�=v; thus we are led to study (3.3) in the region

R = f(X;Y; Z;W ) j XZ � 0; Y W � 0g:

This system is quadratic, and it admits four invariant hyperplanes: X = 0; Y = 0; Z =
0;W = 0. The trajectories located on these hyperplanes do not correspond to a solution of
system (3.1), and they are called nonadmissible. System (3.3) has sixteen �xed points, including
O = (0; 0; 0; 0). The main one is

M0 = (X0; Y0; Z0;W0) = (a;b; �a;b; N � 2� a;b; N � 2� �a;b) ;

which is interior to R whenever (1.15) holds; it corresponds to the particular solution (u�; v�)
given in (1.13). Among the other �xed points, as we see below,

N0 = (0; 0; N + a;N + b);

R0 = (0;�(2 + b); N + a+ (2 + b)�;N + b) ; S0 = (�(2 + a); 0; N + a;N + b+ (2 + a)�) ;

are linked to the regular solutions, and

A0 = (N�2; N�2; 0; 0); G0 = (N�2; 0; 0; N+b�(N�2)�); H0 = (0; N�2; N+a�(N�2)�; 0);

P0 = (N � 2; (N � 2)�� 2� b; 0; (N + b� (N � 2)�));
Q0 = ((N � 2)� � 2� a;N � 2; N + a� (N � 2)�; 0);

and M0are linked to the large solutions near 0: Notice that P0 62 R for 2+b
N�2 < � < N+b

N�2 and
Q0 62 R for 2+a

N�2 < � <
N+a
N�2 . We are not concerned by the other �xed points

I0 = (N � 2; 0; 0; 0); J0= (0; N � 2; 0; 0); K0= (0; 0; N + a; 0); L0= (0; 0; 0; N + b);

which correspond to non admissible solutions, from [4], and

C0 = (0;�(2 + b); 0; N + b) ; D0 = (�(2 + a); 0; N + a; 0) ;

which can be shown as non admissible as t! �1:

3.2 Regular solutions

First we give an alternative proof of Proposition 2.1.

Proposition 3.1 Assume (1.5) and D 6= 0: Then a solution (u; v) is regular with initial data
(u0; v0); u0; v0 > 0 (resp. (u0; 0),u0 > 0; resp. (0; v0); v0 > 0), if and only the corresponding
solution (X;Y; Z;W ) converges to N0 (resp. R0; resp. S0) as t! �1. For any u0; v0 � 0; not
both 0, there exists a unique local regular solution (u; v) with initial data (u0; v0):
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Proof. In the case u0; v0 > 0; the local existence and uniqueness is proved in [4, Proposition
4.4]. Suppose u0 > 0 = v0; and consider any regular solution (u; v) with initial data (u0; 0): As
r ! 0; we �nd

v0 =
u�0
N + b

r1+b(1 + o(1)); v =
u�0

(N + b)(2 + b)
r2+b(1 + o(1));

(rN�1u0)0 =
u��0 r

N�1+a+(2+b)�

(N + b)�(2 + b)�
(1 + o(1)); u0 =

u��0 r
1+a+(2+b)�

(N + b)�(2 + b)�(N + a+ (2 + b)�)
(1 + o(1));

then from (3.2) the corresponding trajectory (X;Y; Z;W ) converges to R0 as t ! �1: Next
we show that there exists a unique trajectory converging to R0: We write

R0 =
�
0; �Y ; �Z; �W

�
= (0;�(2 + b); N + a+ (2 + b)�;N + b) :

Under our assumptions it lies in R. Setting Y = �Y + ~Y ;Z = �Z + ~Z;W = �W + ~W; the
linearization at R0 gives

Xt = �1X; ~Yt = �Y
h
~Y + ~W

i
; ~Zt = �Z

h
�� ~Y � ~Z

i
; ~Wt = �W

h
��X � ~W

i
;

the eigenvalues are

�1 = 2 + a+ �(2 + b) > 0; �2 = �(2 + b) < 0; �3 = � �Z < 0; �4 = �(N + b) < 0:

The unstable manifold Vu has dimension 1 and Vu \ fX = 0g = ;, hence there exist precisely
one admissible trajectory such that X < 0 and Z > 0. Moreover, from the �rst equation in
(3.3), there exists m > 0 such that X(t) = O(emt) as t ! �1. Then, replacing in the fourth
equation written in terms of ~W , and multiplying this equation by ~W , we obtain that

( ~W 2)0 + 2( ~W + �W )( ~W )2 = O(emt);

and thus
( ~W 2e2

R t
�1(

~W+ �W )ds)0 = e2
R t
�1(

~W+ �W )ds �O(emt):
Integrating again over (�1; t) we obtain that ~W 2 = O(emt); then ~W and similarly ~Y and then
~Z are of exponential growth. Coming back to the �rst equation, we get Xt = X(�1 + O(emt))
and thus

lim
t!�1

e��1tX = �C1; lim
t!�1

Y = �Y ; lim
t!�1

Z = �Z; lim
t!�1

W = �W:

In turn from (3.4) u has a positive limit u0, and v=O(e2t); thus v tends to 0; then (u; v) is
regular with initial data (u0; 0). By (2.1) we obtain existence for any (u0; 0) and uniqueness
still holds. Similarly the solutions with initial data (0; v0) correspond to S0:

3.3 Local existence of large solutions near 0

Next we prove the existence of di¤erent types of local solutions large at 0, by linearization
around the �xed points A0; G0;H0; P0; Q0. For simplicity we do not consider the limit cases,
where one of the eigenvalues of the linearization is 0, corresponding to behaviors of u; v of
logarithmic type. All the following results extend by symmetry, after exchanging u; �; a; a;b
and v; �; b; �a;b.
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Proposition 3.2 Assume N > 2.

(i) If � < N+a
N�2 and � <

N+b
N�2 , then there exist solutions (u; v) to (1.1) such that

lim
r!0

rN�2u = � > 0; lim
r!0

rN�2v = � > 0: (3.5)

If � > N+a
N�2 or � >

N+b
N�2 , there exist no such solutions.

(ii) Let a;b > N �2 and let � < 2+b
N�2 or � >

N+b
N�2 . Then there exist solutions (u; v) of (1.1)

such that
lim
r!0

rN�2u = � > 0; lim
r!0

r(N�2)��(2+b)v = �(�) > 0; (3.6)

with �(�) = ��=((N � 2)� � N � b)((N � 2)� � 2 � b). If a;b < N � 2, there exist no such
solutions.

(iii) If � < 2+b
N�2 then there exist solutions (u; v) of (1.1) such that

lim
r!0

rN�2u = � > 0; lim
r!0

v = � > 0: (3.7)

If � > 2+b
N�2 there exist no such solutions.

Proof. (i) We study the behaviour of the solutions of (3.3) near A0 as t! �1. The lineariza-
tion at A0 gives, with X = N � 2 + ~X;Y = N � 2 + ~Y ;

~Xt = (N � 2)
h
~X + Z

i
; ~Yt = (N � 2)

h
~Y +W

i
; Zt = �3Z; Wt = �4W; (3.8)

with eigenvalues

�1 = �2 = (N � 2) > 0; �3 = N + a� (N � 2)�; �4 = N + b� (N � 2)�: (3.9)

If � < N+a
N�2 and � <

N+b
N�2 , then we have �3; �4 > 0; the unstable manifold Vu has dimension

4; then there exists an in�nity of trajectories converging to A0 as t ! �1, interior to R;
then admissible, with Z;W < 0. As in the proof of Proposition 3.1, the solutions satisfy
lim
t!�1

e��3tZ = Z0 < 0 and lim
t!�1

e��4tW = W0 < 0, with lim
t!�1

X = lim
t!�1

Y = N � 2: Hence

from (3.4), the corresponding solutions (u; v) of (1.1) satisfy (3.5). If � > N+a
N�2 or � >

N+b
N�2 ,

then �3 < 0 or �4 < 0, respectively, and Vu has at most dimension 3, and it satis�es Z = 0 or
W = 0 respectively. Therefore there is no admissible trajectory converging at �1.

(ii) Here we study the behaviour near P0. Setting P0 = (N � 2; Y�; 0;W�), with

Y� = (N � 2)�� 2� b; W� = N + b� (N � 2)�;

the linearization at P0 gives, with X = N � 2 + ~X;Y = Y� + ~Y , W =W� + ~W ,

~Xt = (N � 2)
h
~X + Z

i
; ~Yt = Y�

h
~Y + ~W

i
; Zt = �3Z; ~Wt =W�

h
�� ~X � ~W

i
:

By direct computation we obtain that the eigenvalues are

�1 = N � 2 > 0; �2 = Y�; �3 = N + a� �Y� = D(a;b � (N � 2)); �4 = �W�:
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Assume �rst that a;b > N � 2. Then �3 > 0. If � > N+b
N�2 , then also �2; �4 > 0 and thus Vu has

dimension 4, then there exist an in�nity of admissible trajectories, with Z < 0; converging as
t! �1. If � < 2+b

N�2 , then �2; �4 < 0, thus Vu has dimension 2, and Vu\fZ = 0g has dimension
1, thus there also exist an in�nity of admissible trajectories with Z < 0 converging when
t ! �1. Then lim

t!�1
e��3tZ = C3 < 0, lim

t!�1
X = N � 2, lim

t!�1
Y = Y� and lim

t!�1
W = W�,

thus (3.4), (u; v) satisfy (3.6). If a;b < N � 2, then �3 < 0 and Vu = Vu \ fZ = 0g and there
is no admissible trajectory converging when t! �1.

(iii) We consider the behaviour near G0. The linearization at G0 gives, with X = N � 2 +
~X;W = N + b� (N � 2)�+ ~W ,

~Xt = (N � 2)
h
~X + Z

i
; Yt = (2 + b� (N � 2)�)Y;

Zt = (N + a)Z; ~Wt = (N + b� (N � 2)�)
h
�� ~X � ~W

i
;

and the eigenvalues are

�1 = N � 2 > 0; �2 = 2 + b� (N � 2)�; �3 = N + a > 0; �4 = (N � 2)��N � b:

If � < 2+b
N�2 , then �2; �4 < 0. Then Vu has dimension 3, and Vu \ fY = 0g and Vu \ fZ = 0g

have dimension 2. This implies that Vu must contain admissible trajectories such that X > 0
(because N � 2 > 0), Y < 0, Z < 0 and W > 0 (because N + b � (N � 2)� > 0). Clearly,
lim
t!�1

X = N � 2 and lim
t!�1

W = N + b � (N � 2)� > 0. Moreover, lim
t!�1

e��2tY = C2 < 0

and lim
t!�1

e��3tZ = C3 < 0, thus (3.7) follows from (3.4). Let now � > 2+b
N�2 , so that �2 < 0. If

� < N+b
N�2 , then �4 < 0, Vu has dimension 2, and also Vu \ fY = 0g, hence Vu = Vu \ fY = 0g,

and there exists no admissible trajectory. If � > N+b
N�2 , then �4 > 0, Vu has dimension 3 and

also Vu \ fY = 0g, there is no admissible trajectory.

Remark 3.3 If � > N+b
N�2 ; in (ii) the two functions u; v are large near 0: If � <

2+b
N�2 ; then u is

large near 0 and v tends to 0:

Next we study the behavior near M0; which is the most interesting one.

Proposition 3.4 Assume N � 1 and (1.15). Then (up to a scaling) there exist in�nitely many
solutions de�ned near r = 0 such that

lim
r!0

ra;bu = AN ; lim
r!0

r�a;bv = BN :

Proof. Setting X = X0 + ~X;Y = Y0 + ~Y ;Z = Z0 + ~Z;W =W0 + ~W , the linearized system is8>><>>:
~Xt = X0( ~X + ~Z);
~Yt = Y0( ~Y + ~W );
~Zt = Z0(�� ~Y � ~Z);
~Wt = W0(�� ~X � ~W ):
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As described in [4], the eigenvalues are the roots �1; �2; �3; �4, of the characteristic polynomial

f(�) = det

0BB@
X0 � � 0 X0 0
0 Y0 � � 0 Y0
0 � jZ0j jZ0j � � 0

� jW0j 0 0 jW0j � �

1CCA
= (��X0)(�+ Z0)(�� Y0)(�+W0)� ��X0Y0Z0W0; (3.10)

where we recall that X0; Y0 > 0 and Z0;W0 < 0. We write f in the form

f(�) = �4 + E0�
3 + F0�

2 +G0��H0;

with 8>><>>:
E0 = Z0 �X0 +W0 � Y0;
F0 = (Z0 �X0)(W0 � Y0)�X0Z0 � Y0W0;
G0 = �Y0W0(Z0 �X0)�X0Z0(W0 � Y0);
H0 = DX0Y0Z0W0:

We note that E0 < 0; F0 > 0 and 2G0 = �E0 [Y0Z0 +X0W0] < 0. From (1.4) we have H0 > 0,
hence �1�2�3�4 < 0. Hence there exist two real roots �3 < 0 < �4, with

�4 > max(fX0; Y0; jZ0j ; jW0jg

from (3.10), and two roots �1; �2, which may be real or complex. From the form of f(�) in
(3.10), we also see easily that if the roots �1; �2 are real, they are positive. Next we claim that
Re�1 > 0. Suppose Re�1 = 0. Then f(i Im�1) = 0; then G20 = E0F0G0 + E

2
0H0, and thus,

dividing by E0,

0 = G20 � E0F0G0 + E20H0 =
E20
4

�
[Y0Z0 +X0W0]

2 + 2 [Y0Z0 +X0W0]F0 � 4H0
�
;

hence [Y0Z0 +X0W0 + F0]
2 = F 20 + 4H0 > F

2
0 ; but

Y0Z0 +X0W0 + F0 = (X0 �W0)(Y0 � Z0) 2 (0; F0)

which is a contradiction. Since Re�1 is a continuous function of (�; �), it is su¢ cient to �nd a
value (�; �) satisfying (1.15) for which it is positive. Taking � = �, the equation in � reduces
to two equations of order 2:

f(�) = (��X0)2(�� jZ0j)2 � �2X2
0Z

2
0

=
�
�2 � (X0 + jZ0j)�� (� � 1)X0 jZ0j

� �
�2 � (X0 + jZ0j)�+ (1 + �)X0 jZ0j

�
;

and X0 + jZ0j > 0, thus the claim is proved. Then Vu has dimension 3 and Vs has dimension
1. Hence the result follows.

Remark 3.5 In the case N = 1, two roots are explicit: �3 = �1; �4 = 2 +  + �, and �1; �2
are the roots of equation

�2 � (1 +  + �)�+ 2(1 + )(1 + �) = 0: (3.11)
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The 4 roots are real if (1 +  + �)2 � 8(1 + )(1 + �) � 0, that means

(��+ 3 + 2�+ 2�)2 � 8(�� + 2� + 1)(�� + 2�+ 1) � 0;

which is not true for � = �, but is true for example when �=� is large enough. The roots of
equation (3.11) and the roots of equation (2.31) relative to the linearization of system (2.30) at
m0 are linked by the relations `1 = �1= jZ0j ; `2 = �2= jZ0j : Indeed M0 =M0;1 de�ned at (2.10)
satis�es relation (2.18) with $ = 0, thus (X0; Y0; Z0) is a �xed point of system (2.12) and the
linearization of (2.12) at this point gives the eigenvalues �1; �1; �2. The point m0 is the image
of (X0; Y0; Z0) by the transformation (2.26), which divides the eigenvalues by jZ0j, due to the
change in time t 7! � .

3.4 Global results

Here we prove our second main result.

Proof of Theorem 1.3. From the proof of Proposition 3.4, the linearization at M0 admits
a unique real eigenvalue �3 < 0. From (3.10) a generating eigenvector (u1; u2; u3; u4) satis�es
u1u3 < 0 and u2u4 < 0, and hence it is of the form ~u = (��2;��2; �2; �2), or �~u. There
exist precisely two trajectories T~u and T�~u converging to M0 as t ! 1 and the convergence
of X;Y; Z;W is monotone near t =1; from (3.4), the corresponding solutions (u; v) of system
(1.1) satisfy (1.17).

We consider the trajectory T~u corresponding to ~u: Let us show that the convergence is
monotone in all R. Notice that neither of the components can vanish, since system (1.1) is of
Kolmogorov type. Near t = 1, X and Y are increasing, and Z;W are decreasing. Suppose
that there exists a greatest value t1 such that X has a minimum local at t1, hence

Xtt(t1) = X(t1)Zt(t1) � 0; Z(t1) = N � 2�X(t1);

thus Zt(t1) � 0 . Then there exists t2 � t1 such that Zt(t2) = 0, and

Ztt(t2) = ��Z(t2)Yt(t2) � 0; Z(t2) = N + a� �Y (t2);

then Yt(t2) � 0. There exists t3 � t2 such that Yt(t3) = 0, and

Ytt(t3) = Y (t3)Wt(t3) � 0; Y (t3) = N � 2�W (t3):

There exists t4 � t3 such that Wt(t4) = 0 and Wtt(t4) = ��W (t4)Xt(t4) � 0. From the de�ni-
tion of t1; this implies t4 = t1; and then all the conditions above imply that (X;Y; Z;W )(t1) =
M0; which is impossible. Hence X stays strictly monotone, and similarly Y; Z;W also stay
strictly monotone. Since X;Y > 0, and Z;W < 0, then T~u is bounded, hence de�ned on R
and converges to some �xed point L = (l1; l2; l3; l4) of the system as t ! �1 and necessarily
l1 < X0; l2 < Y0; l3 > Z0; l4 > W0.

� Case N > 2. First we note that along T~u we always have X;Y > N � 2. Indeed, if at
some point t we have X(t) = N � 2, then Xt(t) = (N � 2)Z(t) < 0, which is contradictory.
Hence the possible values for L are A0, or P0 when � � N+b

N�2 , or Q0 when � �
N+a
N�2 ; since I0 is

nonadmissible. By hypothesis, a;b > N � 2; then either � < N+b
N�2 or � <

N+a
N�2 : We can assume
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that � < N+a
N�2 . Then Q0 62 R, then L = A0 or P0. When � < N+b

N�2 , then L = A0. When
� > N+b

N�2 , from Proposition 3.2(i), we have L 6= A0, thus L = P0. In the limit case � = N+b
N�2 ,

we �nd P0 = A0. Making again the linearization at A0, with X = N � 2 + ~X;Y = N � 2 + ~Y ;
we �nd from (3.8), (3.9) the eigenvalues

�1 = �2 = N � 2 > 0; �3 = N + a� (N � 2)� > 0; �4 = 0:

Coming back to the proof of Proposition 3.2(i), we �nd that the convergence of Z and ~X to 0 are
exponential. From the fourth equation in (3.3) we see that Wt +W

2 > 0, hence �1=W � Cjtj
near �1. Then, there exists m > 0 such that

Wt =W
2(�1� �W�1 ~X) =W 2(�1 +O(emt);

integrating over (t; t0), t0 < 0, we obtain that W (t) = t�1 + O(t�2). In turn we estimate Y ;
setting Y = ~Y +W = Y � (N � 2) +W , then Y t = (N � 2)Y + Y (Y �W ) +W (�� ~X �W );
and thus

Y t = ((N � 2) + "(t))Y +O(t�2);
implying Y = O(t�2) and thus Y = N � 2� t�1+O(t�2): Next we �nd that Zt=Z = �3+ t�1+
O(t�2); which yields limt!�1 e��3tjtj��jZj = C > 0: Finally, by replacing in (3.4), and deduce
the behavior of u and v as claimed:

lim
r!0

rN�2u = C1 > 0 and lim
r!0

rN�2j log(r)j�1v = C2 > 0:

� Case N = 2. Then necessarily L = O = (0; 0; 0; 0). The eigenvalues of the linearized
problem at this point are 0; 0; 2+a; 2+ b. Since Zt = Z(2+a� �Y �Z) and Y and Z tend to 0
as t tends to �1, Z converges exponentially to 0, and similarly W . Since Xt � X2, it follows
that X � C jtj�1 near �1. Then

Xt = X
2(1 + Z=X) = X2(1 +O(emt))

for some m > 0, hence X = �1=t + O(t�2), then the function t 7! ' = u(t)=t satis�es
't=' = O(t�2), then ' has a �nite limit, hence u(r)= ln r has a �nite positive limit, and
similarly for v:
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