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Abstract

In this article we study quasilinear systems of two types, in a domain € of RV : with
absorption terms, or mixed terms:

(A){ Ay = o7, (M){ A =,

Aqv =ut, —Agv =ut,

where §,1 > 0 and 1 < p,g < N, and D = éu — (p — 1)(¢ — 1) > 0; the model case is
A, =Ap, Ay = A, Despite of the lack of comparison principle, we prove a priori estimates
of Keller-Osserman type:

_ pla=1)+4qé _alp=D+pp
D

u(z) < Cd(z, 09) v(z) < Cd(x,00) D

Concerning system (M), we show that v always satisfies Harnack inequality. In the case
2 = B(0,1)\ {0}, we also study the behaviour near 0 of the solutions of more general
weighted systems, giving a priori estimates and removability results. Finally we prove the
sharpness of the results.
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1 Introduction

In this article we study the nonnegative solutions of quasilinear systems in a domain  of RY,
either with absorption terms, or mixed terms, that is,

Apu = 7)5, Apu = 'Uéa
(4) { Agv = ut, (M) { —Aqv =ut, (1.1)
where
oup>0 and 1<p,qg<AN.

The operators are given in divergence form by
Apu = div [Ap(z,u, Vu)], Agv = div [Ay(z, v, Vv)],

where A, and A, are Carathéodory functions. In our main results, we suppose that A, is S-p-C
(strongly-p-coercive), that means (see [8])

Ap(z,u,m)n > Kip [0l > Koy |Ap(z,u,n)l”,  Y(w,u,m) € 2 x RT x RV,
for some K ;, K2, > 0, and similarly for 4,. The model type for A, is the p-Laplace operator
u— Apu = div(|VulP2Vu).

We prove a priori estimates of Keller-Osserman type for such operators, under a natural con-
dition of "superlinearity":

D=ép—(p—1)(g—1)>0, (1.2)
and we deduce Liouville type results of nonexistence of entire solutions. We also study the
behaviour near 0 of nonnegative solutions of possibly weighted systems of the form

(Au) { Apu = |z|* 00, (M,) { Apu = |z]* 00,

Agv = |z]Put, —Agv = |z|Put,
in O\ {0}, where
a,beR, a>—-p, b>-—q.

In particular we discuss about the Harnack inequality for u or v.

Recall some classical results in the scalar case. For the model equation with an absorption
term

Apu = u?, (1.3)

in Q, with @ > p—1, the first estimate was obtained by Keller [19] and Osserman [24] for p = 2,
and extended to the case p # 2 in [29]: any nonnegative solution u € C? (Q2) satisfies

w(z) < Cd(x, 9Q) P/ (Q-rH), (1.4)

where d(z,09) is the distance to the boundary, and C' = C(N,p, Q). For the equation with a

source term

—Apu = u®,



up to now estimate (1.4), valid for any @@ > p — 1 in the radial case, has been obtained only
for Q < Q*, where Q* = N(?Vfij;ﬂ’ is the Sobolev exponent, with difficult proofs, see [18], [9]
in the case p = 2 and [27] in the general case p > 1. For p = 2, the estimate, with a universal

constant, is not true for Q) = %—fé, and the problem is open between Q* and %—f?)

Up to our knowledge all the known estimates for systems are related with systems for which
some comparison properties hold, of competitive type, see [16], or of cooperative type, see [11];
or with quasilinear operators in [17], [32]. Problems (A) and (M) have been the object of very
few works because such properties do not hold. The main ones concern systems (A,,) and (M)
in the linear case p = ¢ = 2, see [5] and [6]; the proofs rely on the inequalities satisfied by the
mean values w and v on spheres of radius r, they cannot be extended to the quasilinear case.
A radial study of system (A) was introduced in [15], and recently in [7].

The problem with two source terms

(S) { —Apu = |z|%°,

—Agv = |z|PuH,

was analyzed in [8]. The results are based on integral estimates, still valid under weaker
assumptions: from (8], A, is called W-p-C (weakly-p-coercive) if

Ap(xv u, 77)77 > KP ’Ap(l‘»u;n”p, ’ V(.CC, u?”) SROBS R+ X RN (15)
for some K, > 0; similarly for A,. When 9§, < Q1, where Q1 = %__;), punctual estimates
were deduced for S-p-C, S-¢-C operators and it was shown that u and v satisfy the Harnack
inequality.

In Section 2, we give our main tools for obtaining a priori estimates. First we show that
the technique of integral estimates if fundamental, and can be used also for systems (A) and
(M). In Proposition 2.1 we consider both equations with absorption or source terms

-Apu+f=0, or —Au=/f, (1.6)
in a domain 2, where f € L}OC(Q), f >0, and obtain local integral estimates of f with respect

to w in a ball B(zg,p). When A, is S-p-C, they imply minorizations by the Wolf potential of

f in the ball
1
P Pt
W, (Bao. ) = | (tp ¢ f) 2 (1.7)
0 B(zo,t)

extending the first results of [20], [21]. The second tool is the well known weak Harnack
inequalities for solutions of (1.6) in case of S-p-C operators, and a more general version in case
of equation with absorption, which appears to be very useful. The third one is a boostrap
argument given in [5] which remains essential.

In Section 3 we study both systems (A) and (M). When A, = A, and A, = A, they
admit particular radial solutions

uw(z) = A" [z v*(r) = B |a|*,



where

plg—1)+4qd q(p—1) +pp
_ _ 1.8
gl D .8 o) ; (1.8)
whenever
v > __f and  £> — for system (A),
v > 7f and £ < —— for system (M).

Our main result for the system with absorption term (A) extends precisely the Osserman-
Keller estimate of the scalar case (1.3):

Theorem 1.1 Assume that
Ay, is S-p-C, Ay is S-q-C, (1.9)

and (1.2) holds. Let u € Wli’f QNC(Q),ve Wli’cq (Q)NC(Q) be nonnegative solutions of

—Apu + v < 0, )
{—Aqv—i—u“SO, in €.
Then for any x € (2
u(z) < Cd(x,00)7, v(z) < Cd(z,00) ¢, (1.10)

with C = C(N,p, q, (5,,[1,, Kl,pa KQJ;, Kl,q,Kg’q).

Our second result shows that the mixed system (M) also satisfies the Osserman-Keller
estimate, without any restriction on & and p, and moreover the second function v always
satisfies Harnack inequality:

Theorem 1.2 Assume (1.2),(1.9). Letu € T/Vli’f QNC),ve I/Vli’cq (Q)NC (2) be nonneg-
ative solutions of

_ 6 <
{ Apu +0v° <0, in Q.

—Agv 2 ut,
Then (1.10) still holds for any z € .

Moreover, if u,v are any nonnegative solution of system (M), then v satisfies Harnack inequality
in Q, and there exists another C > 0 as above, such that the punctual inequality holds

uh () < Col™(2)d(x, 09) 7. (1.11)

Notice that the results are new even for p = ¢ = 2. As a consequence we deduce Liouville
properties:

Corollary 1.3 Assume (1.2),(1.9). Then there exist no entire nonnegative solutions of systems
(A) or (M).



Section 4 concerns the behaviour near 0 of systems with possible weights (A4,,) and (M,,),
where v, £ are replaced by

o = (p+a)(q —11)) + g+ 6)57 fup = (g +0)(p —11)) +(p+ a)u’ (1.12)

in other terms 08,5 = (P — 1)Yap + 0+ @y fYap = (¢ — 1)&p + g +b. We set B, = B(0,7) and
Bl = B,\ {0} for any r > 0. Our results extend and simplify the results of [5], [6] in a significant
way':

Theorem 1.4 Assume (1.2),(1.9). Let w € W5 (B}) N C(B}), v € W' (B;) N C(BY) be
nonnegative solutions of
—Apu + |z[*0? <0,
—Agv + |z|Put <0,

Then there exists C = C(N,p,q,a,b,d, u, K1 p, Ko p, K14, K24) > 0 such that

in B, (1.13)

w(z) < Cla| e, w(z) < Clz| %t in B}, (1.14)
2

Theorem 1.5 Assume (1.2),(1.9). Let u € WP (B)) N C(B}), v € Wu?(B}) N C (B}) be
nonnegative solutions of

_ a0 <
{ Apu+ |z v® < 0, in B, (1.15)

—Agv > |x|Put,

in Bj. Then there exists C > 0 as in theorem 1.4 such that
N—
u(z) < C|z| Tt v(z) < C min(|z| 5 | |:U\7qu), in B'. (1.16)
2

Moreover if (u,v) is any nonnegative solution of (M), then v satisfies Harnack inequality in

B, and there exist another C > 0 as above, such that
2

2Pt (2) < Co?™L(z), in Bh. (1.17)
2

Moreover we give removability results for the two systems (A,) and (M,,), see Theorems
4.1, 4.2, whenever A, and A, satisfy monotonicity and homogeneity properties, extending to
the quasilinear case [5, Corollary 1.2] and [6, Theorem 1.1].

In Section 5 we show that our results on Harnack inequality are optimal, even in the radial
case. And we prove the sharpness of the removability conditions.

2 Main tools

For any z € RY and r > 0, we set B(z,r) = {y € R/ |y — z| <r} and B, = B(0,r).
For any function w € L'(2), and for any weight function ¢ € L>() such that ¢ > 0, ¢ # 0,

we denote by
o
w=-— [ wp
f{p fQ‘P Q



the mean value of w with respect to ¢ and by

fe=m =g

For any function g € Li, (), we say that a function u € VVl})f(Q) satisfies
-Ayu =g in , (resp. =, resp. =)

if Ap(z,u,Vu) € LY (Q) and

loc
—/Ap(a:,u,Vu).Vqﬁg/qu, (resp. =, resp. =) (2.1)
Q Q

for any nonnegative ¢ € WH*°() with compact support in Q.

2.1 Integral estimates under weak conditions

Next we prove integral inequalities on the second member f of equations (1.6) in terms of the
function wu, for either with source or with absorption terms, obtained by multiplication by u®
with a < 0 for the source case, @ > 0 for the absorption case. The method is now classical,
initiated by Serrin [26] and Trudinger [28], leading to Harnack inequalities for S-p-C operators.
These estimates were developped for the p-Laplace operator in [20]. Under weak conditions
on the operator, this technique of multiplication by u® was used with specific f for obtaining
Liouville results in [23]. It was developped for general f in [8, Proposition 2.1] where the notion
of W-p-C operator was introduced. More recent Liouville results were given in [10, Theorem
2.1], and in [14] for the case of absorption terms.

Proposition 2.1 Let A, be W-p-C. Let f € LL (), f > 0 and let u € VVllof(Q) be any
nonnegative solution of inequality

—Apu 2 f, in Q, (2.2)
or of inequality
—Ayu+ f =0, in Q. (2.3)
Let € € D(Q), with values in [0,1], and o = &, A > 0, and Se =supp|VE]|.

Then for any £ > p — 1, there exists N(p,€) such that for A\ > X(p,{), there exists C =
C(N,p, Kp,¢,\) > 0 such that

p—1

' [
/Q fip < C|8¢| max |VelP ( fs K 90) . (2.4)

Proof. (i) First assume that ¢ > p — 1 + a, with a € (1 —p,0) in case of equation (2.2),
a € (0,1) (any > 0 if u € L{2 (€)) in case of equation (2.3). We claim that there exists
A(p, a, £) such that for any A > A(p, a, {)

p—1l4+a
£
/fuagpi C'|S¢g| max |VEP 7{ ugtp , (2.5)
Q { Se

6



for some C' = C(N,p, K, a, £, \). For proving (2.5), one can assume that ul € LY(B(xo, p)).
Let o = ¢, where A > 0 will be chosen after. Let § > 0,k > 1, and (7,) be a sequence of
mollifiers; we set us = u + 6, us = min(u, k) + 6 and approximate u by us k., = sk * 7y, and
we take ¢ = uf, ¢ as a test function. Then in any case, from (1.5) and Holder inequality,

ol [ uheAn(e,u, Vu) Fusin + [ i
Q Q
< /S U €Y A, u, V) | VE]
3

< AKUY / & (A, u, V). V) V7 |V
Se

1 1
p’ p
< AK;l/p, (/S ug"g’}ig’\Ap(x,u, Vu).Vu) (/s ?ZI;L LeA= pwa;o) _
3 3

Otherwise (VU5kn) tends to Xgu<pyVu in L} (Q), and up to subsequence a.e. in Q, and
Ay(z,u,Vu) € Lloc(Q)’ By letting n — oo, we obtain

|| ug, LA, (2, u, Vu) Vu—l—/ fu(;ktfA
{usk}

1
p’ P
<AV ( /S ugglgAAp(x,u,vu).vu> ( /S ug;p‘lé—pyvgv’)
£ 13

|a| / 5’\A (z,u, Vu). Vu+C’/ O‘+p 15)‘7P\V§|p,

with €' = C(a, Kp, p, A); otherwise, for a <1 (or u € Lj7 (Q2) and taking k > supg, u)

/Quékl§)‘A (z,u, Vu). Vu—/

uéklﬁ)‘A (x,u, Vu). Vu—i—/ uMl@A (x,u, Vu).Vu
{usk}

{u>k}

</ ug A (2, u, V). Vu + M
{u<k}

where M = fQ f)‘Ap(a:,u, Vu).Vu (or M = 0) is independent of k£ and §. Then, for any 6 > 1,

lo] ug A (1, V) Vu—i—/ fugp & < c/ SIPTIETPIVER + M |of ko
{u<k}

1
7

1
0 0
<C (/ ug?;c+pl)9€A> (/ gA—pQ/’vﬂp@’) + M|Oé| ka—l'
Se Se



Choosing 8 = ¢/(a+p—1) > 1, and A > A\(p, a, £) = pb’, we find

M ug‘;lﬁ)‘Ap(w,u,Vu).Vu—i-/fuf{kf)‘
2 Jru<iy © Q

a+p—1

1
¢ o7
§C< / uf%,w) ( / \vsrp9’> + M |af ko
Se Se

a+p—1
£

< C'|S§|% mgx|V§|p (/ ufégo) + M || k27,
Se

with a new constant C' = C(N, p, K, «, ¢). As k — oo, we deduce

at+p—1
¢

‘Z'/u?_lapAp(x,u, Vu).Vu+/ fu§¢§0|55\$mgx\vf|p (/ ug@) . (26)
Q Q Se

Finally as 6 — 0 we get (2.5) with a new constant C. Moreover we deduce an estimate of the
gradient terms:

a+p—1

[
M/ u* oAy (z,u, Vu).Vu < C\Sg]é max |VEP (/ ufgo) . (2.7)
2 Q Q Q

(ii) Next we only assume that ¢ > p — 1, u* € LY(B(zo,p)). Let ¢ as above, and fix some
a = a(p, ) such that « € (1 —p,0) and (1 —a)(p—1) < £ for (2.2), « € (0,1) and a+p—1 <
¢ for (2.3). In any case 7 = /(1 —a)(p—1) > 1, and 1/0p' + 1/p7 = (p — 1)/L. Let A >
Ap, a(p,£),0) > pr’'. We take @ as a test function and from (2.6) we deduce successively, with
new constants C,

1—a

a-1 1l-a
/Qfgo < )\/Qﬁ’\_1|Ap(:n,u, Vu)||VEl < C/Qf’\_1|Ap(x,u, Vu)] |V£|u5”/ ué”l

1
p’ p
gc( / u§1|Ap<x,u,w>\p’so) ( / u§1“><“)€—p|w|p>
Se Se
1 1 1
I pT ) , pr!
§C< / u?‘lsoApm,u,Vu)-Vu) ( / uf%s@) ( | e rva’”>
Se Se Se
U ‘
§C|S§‘9'P’ pr! m&x’Vﬂp /u(;go
Se

A
< C|Sel' "7 max|Vep ( /S uﬁso) ;
13

and (2.4) follows as 6 — 0. m



Corollary 2.2 Under the assumptions of Proposition 2.1, consider any ball B(xg,2p) C €,
and any € € (0, %] . Let ¢ = & with & such that

€—1inB(wop), €=0inO\Blao,p(l+e)  |VEl < f;’. (2.8)

Then for any £ > p — 1, there exists X(p,€) > 0 such that for A > A(p,£), there exists C =
C(N,p,K,l,\) > 0 such that

7{0 f < Clep)” ( f; M) ) (2.9)

Remark 2.3 If S¢ = ulesg where the Sé' are 2 by 2 disjoint, then (2.4) can be replaced by

p—1

k v
< i X p ¢ . .
/Qﬂp_C;‘Sé‘Hg% V| (élu> (2.10)

£

2.2 Punctual estimates under strong conditions

When A, is S-p-C, the estimate (2.7) of the gradient is the beginning of the proof of the
well-known weak Harnack inequalities:

Theorem 2.4 ([25], [28]) (i) Let A, be S-p-C, and u € VVZE’S (Q) be nonnegative, such that
- Apu =0 in €

then for any ball B(xg,3p) C 2, and any £ >p — 1,

sup u<C (]4 u£> , (2.11)
B(zo,p) B(z0,2p)

)=

with C' = C(N,p,g, KLIH K2’p).

(ii) Let w € VVllo’f (Q) be nonnegative, such that
- A,w >0 in €Q;

then for any ball B(xg,3p) C Q, for any £ € (0,N(p—1)/(N —p))

7{ o' | <C inf o (2.12)
B(x0,2p) B(wo,p)

Next we give a more precise version of weak Harnack inequality (2.11). Such a kind of
inequality was first established in the parabolic case in [12].

[



Lemma 2.5 Let A, be S-p-C, and u € Wli’f (Q) be nonnegative, such that
- A,us0 in €

then for any s > 0, there exists a constant C = C(N,p,s, K1p, Kap), such that for any ball
B(xo,2p) C Q and any ¢ € (0’ %] ’

sz s
sup u < (Ce 52 7{ u’| . (2.13)
B(zo,p) B(zo,p(1+¢))

Proof. From a slight adaptation of the usual case where ¢ = %, for any £ > p — 1, there exists
C = C(N, ) > 0 such that for any € € (0, 3) ,

sup u < Ce (7{ ué> . (2.14)
B(zo,p) B(zg,p(1+¢))

Thus we can assume s < p — 1. We fix for example ¢ = p, and define a sequence (p,,) by po = p,
and p, = p(1+ § + ... + (5)") for any n > 1, and we set M, = supp(y, ) u’- From (2.14) we
obtain, with new constants C' = C(N, p),

[

M, £ C(BEL _q)=hr f u? < C(5) =N 7{ .
a Pn B(z0,0n+1) 2 B(z0,pn+1)

From the Young inequality, for any § € (0,1), and any r < 1, we obtain

g, _ —
M, g 0(5) (n-i-l)NpM%Jr?l" fB( ) )upr
Z0,Pn+1

S OMpt1 + msl*l/?“(o(g)*(nH)Np)% ( ]ﬁ ( | upr>
Z0,Pn+1

3=

Defining x = ré=1/rCv and b = (%)_Np/r, we find

M, <My + 0"k j{ T
B(z0,pn+1)

Taking § = % and iterating, we obtain

1
T

Mo = sup u? <" M, + me(csb)i <j{ upT>
B(xo,p) i=0 B(z0,pn+1)

< 6" M, 0+ 26k f uP" | .
B(z0,pn+1)

10



Since B(zg, pnt+1) C B(xo, p(1+¢)), going to the limit as n — oo, and returning to u, we deduce

1

rp
sup u < (2bk)'/P (% upr> ,
B(zo,p) B(zo0,p(1+¢))

and the conclusion follows by taking r = s/p. m

It is interesting to make the link between Proposition 2.1, with the powerful estimates issued
from the potential theory, involving W4lf potentials, proved in [20], [21] and [22]. Here we show
that the lower estimates hold for any S-p-C operator.

Corollary 2.6 Suppose that A, is S-p-C. Let f € LL (Q), f > 0 and u € Wlif(Q) be any

nonnegative such that

loc

- pu Z fa in Q’
then for any ball B(zg,2p) C £,
C’Wlfp(B(a:o,p)) + inf < liminf u(x), (2.15)
’ B(z0,2p) T—T0

where Wf is the Wolf potential of f defined at (1.7), and C = C(N,p, K1, K2 ). If u satisfies
(2.3), then
Cleip(B(a:O,p)) + limsup u(z) < sup u. (2.16)
T—T0 B(z0,2p)
Proof. (i) The function w = u— my,, where m, = infp
and satisfies the inequality —B,w > f, where

z0,p) Us 18 nONNeEgative in B(zo,2p),

w — Bpw = div Ap(z, w + ma,, Vw)

is also a S—p—C operator. Then from Proposition 2.1 with £ as in (2.8), fixing ¢ € (0, st,p__pl)>
and € = , and applying Harnack inequality (2.12), there exists C = C(N, p, K1, K2 p) such

that
_1 1
p—1 L
20 (pl_N/ f) S P_l (% (u - me)é) S p_l(mp - m2p)-
B(zo,p) B(z0,2p)

Setting p; = 217 p, as in [20],

(o]
ow/ B(zo, p E My, — M = limm inf w= liminfu— inf .
1 p P pt Pj Pj— 1 2 B(z0,2p) T B(z0,2p)

(ii) The function y = M, — u where My, = SUP B(g,2p) U Satisfies the inequality —Cpw > f in
B(xg,2p), where
w — Cpw = div [Ap(z, M2, — w, Vw)]
is still S-p-C. Then
W{p(B(!L’o,P) <C( sup u— limsup u),
B(z0,2p) T—T0

and (2.16) follows. m

11



Remark 2.7 The minorizations by Wolf potentials (2.15) and (2.16) have been proved in [20]
and [22] for S-p-C operators of type Apu := div[A,(x, Vu)| independent of u, satisfying more-
over monotonicity and homogeneity properties, in particular Ap(—u) = —Apu. The solutions
are defined in the sense of potential theory, and may not belong to Wli’f (Q), f can be a Radon
measure; majorizations by Wolf potentials are also given, with weighted operators, see [21] and
[22]. In the same way Proposition 2.1 can also be extended to weighted operators, see [8, Re-
mark 2.4] and [14], or to the case of a Radon measure when A, is S-p-C by using the notion
of local renormalized solution introduced in [3].

2.3 A bootstrap result

Finally we give a variant of a result of [5, Lemma 2.2]:

Lemma 2.8 Let d,h € R with d € (0,1) and y,® be two positive functions on some interval
(0, R], and y is nondecreasing. Assume that there exist some K, M > 0 and ¢y € (O, %] such
that, for any € € (0,¢e0],

y(p) S Koy [p(1+e)]  and max B(r) S M &(p),  Vpe (o, ﬂ
T€[p,35]

Then there exists C = C(K,M,d, h,eo) > 0 such that
1 R
y(p) = CO(p)=7,  Vpe <0, 26] : (2.17)

Proof. Let &, = ¢9/2™(m € N), and P,, = (1 +¢1)..(1 + &€). Then (P,,) has a finite limit
P > 0, and more precisely P < 20 < e. For any p € (0, Q—Re and any m > 1,

Y(pPr-1) < Kep ' ®(pPr1)y" (0Prm)-
By induction, for any m > 1,
y(p) < KHHaEAd" g rhe hd e b9 (p)0 (pPy). " (0P )y (pPom).
Hence from the assumption on ®,

_ m—1 m—1 2 _ m—1 m—1 m
y(p) < (KEO h)1+d+..+d 2k(1+2d+..+md )Md+2d +.4+(m—-1)d (I)(p)1+d+..+d yd (me)’

and y¥" (pPy,) < y@" (ep) < y?" (&), and limy?" (§) = 1, because d < 1. Hence (2.17) follows

with C = (Keg ")t/ (1=d)gh/(1=d)* ppd/(1-d)* g
3 Keller-Osserman estimates

3.1 The scalar case

First consider the solutions of inequality

—Ayu + cu® <0, in Q, (3.1)

12



with @ > p— 1 and ¢ > 0. From the integral estimates of Proposition 2.1 we get easily Keller-
Osserman estimates in the scalar case of the equation with absorption, without any hypothesis
of monotonicity on the operator:

Proposition 3.1 Let Q@ > p—1, ¢ > 0. If A, is Sp-C, and u € I/Vlif (QNCQ) isa
nonnegative solution of (3.1), there exists a constant C = C(N,p, K1 p, K2p, Q) > 0 such that,
for any x € Q,

u(z) < Ce™ Y @FLI=P) (5 o) P/ (@+1=P) (3.2)

Proof. Let B(zo,po) C 2, and u € WP (B(zg, po)) . From Corollary 2.2 with p < £, ¢ = %,
and ¢ = @ and a function ¢ satisfying (2.8), we obtain for A = A\(p, Q)

p—1

ZiuQ <clcpP <7{0 uQ> < (3.3)

where C' = C(N, p, K1, K2, Q). Then with another C' > 0 as above,

1

Q __1 ___p
f uQ < (Cc¢ @ti-p p QFi-r,
B(zo,p)

Since A, is S-p-C, from the weak Harnack inequality (2.11), with another constant C' as above,

b

Q T O+1—p *%

u(xg) < C ]{ U <c @Fl-pp QFl-p,
B(zo,p)

and (3.2) follows by taking pg = d(xg,02). m

3.2 The systems (A) and (M)

Here we prove theorems 1.1, 1.2, and Corollary 1.3. We recall that v and & are defined by (1.8)
under the condition (1.2) of superlinearity:

q(p—1) + pu

- 5
_pem U _dRm DA oy 1yg- 1) >0

D 9

Proof of Theorem 1.1. Consider a ball B(zg, po) C Q, ¢ € (0, %] , and a function ¢ satisfying
(2.8) with A large enough.

(i) Case p > p—1, 6 > ¢ — 1. Here C denotes different constants which only depend on
N,p,q,0,p, and Ky p, Koy, K14, K2 4. We take ¢ = % and apply Corollary 2.2 with p < %0 to
the solution u with f = v, and with £ = > p — 1. since Ay is W-p-C, from (2.9), we obtain

p—1

jiqﬁ <Cp? <£ u“) . , (3.4)

13



and similarly we apply it to the solution v with now f = «* and £ =6 > ¢ — 1 : since A is
W-¢-C, we obtain

Ziu” < Cp1 <7£ zﬁ) B . (3.5)

We can assume that f(p u” > 0. Indeed if f(p ut = 0, then v = 0 in B(xg, pg). Then Vu = 0,
thus v = 0 and then the estimates are trivially verified. Replacing (3.5) in (3.4) we deduce

(¢=1)(p—1)

_ us
7{2}5 < Cp—p—q% <% Ua) . :
@ @
and similarly for u, hence

(fi U‘;); <Cp~§, <7i u”)i <Cp. (3.6)

Moreover, since Ay is S-¢-C, then from the usual weak Harnack inequality, since v € LS (€2),
and ¢(x) =1 in B(zo, p), with values in [0, 1],

; ;
sup v<C (% v5> < (7{ v5> < Cpfg.
B(zo,5) B(wo,p) ®

sup u < Cp™7,
B(z0,%)

Similarly

because A, is S-p-C.

(ii) Case p>p—1, and § < g — 1. Here we still apply Corollary 2.2 with p < 2, ¢ € (0,1/4],
and a function ¢ satisfying (2.8). Since p > p — 1, we still obtain (3.4); and for any k& > ¢ — 1,

and A large enough,
(q—1)/k
fuscen(f4) (3.7)
® ©
and from Lemma 2.5,

1/k Na?
<?{ vk> < sup v< (Ceg o2 ?{ v?
® B(zo,p(1+4¢)) B(zo,p(1+2¢))

Then with new constants C, setting m = g+ 0 2Nq?>(¢ — 1), and h = (p — 1)~ 'm,

=

(¢—1)

o
%u“ < Ce™Mp <7{ '06> , (3.8)
) B(zo,p(142¢))

hence from (3.4) and (3.8),

p—1 (pflé)(qfl)
T +a(p—1) "
7{ v° < C}I{ v° <Cp™® (% u“) ! < C’s_hp_w a % v° ,
B(zo,p) ® ® B(zo,p(1+42¢))
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for any p < 2. Next we apply the boostrap Lemma 2.8 with R = po, y(p) = fB(xmp) V0,

_ppta(p—1)

O(r)=r » and 2e. We deduce that

1/6
( f{ va) <Cp§,
B(zo,p)

for any p < e, and thus also

1 1/p
B
sup v <C (7{ v5> < C’pfé, sup u<C (qu u“) <Cp.
B(zo,5) B(zo,p) B(zo,5) B(xo,p)

In particular
u(wo) < Cpy”,  w(zo) < Cpp*, (3.9)

for any ball B(xg, po) C €2, and the estimates (1.10) follow by taking py = d(zo,0S2). m

Proof of Theorem 1.2. We consider a ball B(xg, pg) such that B(zg,2pg) C Q. From Propo-
sition 2.1, we have the same estimates: for any £ > p— 1,k >q— 1, p < pg,

q-1 p—1

k L
j{u“ <Cp1 (}1{ vk) , j{v‘s <Cp™® (jq{ ué> .
@ @ ® @

From Lemma 2.5 (even if u < p — 1), we have

sup u* < C'j{ ut.
B(xo,5) B(zo,p)
N(g—1)

Taking k < =, and using the weak Harnack inequality for v, we obtain
g N—q

g—1
k
sup ut <C u”ﬁCfu“SCpq(y{vk>
B(wo,5 B(xo,p) @ @

q—1

k
<Cp™1 f o < Cp~9 inf oY,
B(x0,2p) B(wo,p)

hence (1.11) holds in B(zo, §). Moreover if v(zg) = 0, then v = 0 in B(zo, §), then also v = 0
in B(xg, §). Since Q is connected, it implies that v = 0, and then v = 0. If v # 0, then v stays
positive in 2, and we can write

~ A = dv?h in Q, (3.10)
with d(z) = u* /0@ < Cp~9 in B(x, £); in particular

ut(z)

d(wo) = m

< Cp9, (3.11)
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thus (1.11) holds and v satisfies Harnack inequality in €2 : there exists a constant C' > 0 such
that

sup v < C inf .
B(x0,p) B(wo,p)

Therefore

p—1
4
Ud(l‘o) < sup v° <O inf o < C% v < CpP <% uz)
¥ ¢

B(zo,p) B(wo,p)
_gb=L (¢=1)(p—=1)
<CpP sup wP 1< CpPp T
B(z0,2p) B(zo,4p)
_ p=1y (@=D(=1
< Cp P, (1), (3.12)

and (3.9) follows again from (3.12) and (3.11). m

Remark 3.2 Once we have proved (3.11) we can obtain the estimate on u in another way: we
have the relation in the ball

Apu = v° > cua—1 in B(xo, po),

qd

with ¢ = Cipd~"; then from Osserman-Keller estimates of Proposition 3.1 with Q = (f_—”l >p—1,
we deduce that

___Dp
u(w) < Coe 2, T = Cap”,in Blao, 5).

The Liouville results are a direct consequence of the estimates:

Proof of Corollary 1.3. Let x € RY be arbitrary. Applying the estimates in a ball B(z, R),
we deduce that u(z) < CR™7,v(z) < CR™¢. Then we get u(z) = v(z) = 0 by making R tend
to co. m

Remark 3.3 In the scalar case of inequality (3.1) it was proved in [14] that the Liouville result
is also wvalid for a W-p-C operator. In the case of systems (A) or (M), the question is open.
Indeed the method is based on the multiplication of the inequality by u® with « large enough,
and cannot be extended to the system.

4 Behaviour near an isolated point

4.1 The systems (A,) and (M,).

Here we prove theorems 1.4 and 1.5. We recall that v,; and &, are defined by (1.12) under
condition (1.2) :

(p+a)(g—1)+(qg+b)

5
Yab = 5 , Eap = M,D=5u—(p—1)(q—1)>0-

(g+b)(p—1)+(p+a)
D
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Proof of Theorem 1.4. It is a variant of Theorem 1.1: we consider Q = B} and z¢ € B’, and
2

take pg = lzo] °| Here we apply Proposition 2.1 in the ball B(zo, p) with p < & and € € (0, %] .
The estlmates (3.4) and (3.7) are replaced by

f{ |z v® < C(ep) P <iu€)[1 fi|x|buﬂ < Clep)@ <7ivk)k1 (4.1)

for any ¢ >p—1,k > q—1; and 2pg < |z| < 6pg in B(zp,2p0), then in any of the cases a <0
or a > 0, with a new constant C,

-1

p—1 g—-1
fvé < Cs—pp—(l)-i-a) <% uﬁ) ¢ ’ ?{uu < Cg—qp—(‘H—b) (% Uk> F _ (4‘2)
® ® ® ®

Then all the proof is the same up to the change from p, ¢ into p 4+ a and ¢ + . We deduce the
same estimates with «, { replaced by V4.1, &ap :

u(zo) < C'lxo| >0, v(zg) < C|mo| S0, (4.3)
where C depends on N,p,q,a,b,6, i, and K1 p, Ko, K1 4, Ko 4. B

Proof of theorem 1.5. In the same way we obtain estimate (4.3), then we only need to prove
N—q
the estimate with respect to || =1 . We can apply to the function v the results of [2], recalled
in [8, Propositions 2.2 and 2.3]: ]x|bu“ e L' (B;) , and for any k € ( ,N]S;{ 1)) ,and p > 0
2

q

k _N—q
j{ v <Cp 1. (4.4)
B(0,p)

Moreover, arguing as in the proof of (1.11), we obtain the punctual inequality

small enough,

=

ut(zg) < C |x0|_(q+b) v (), in B, (4.5)
2
which implies that

ut(x _

Then v satisfies the Harnack inequality in B’ , hence, from (4.4),
2

% v
v(zp) < 7{ o < Clag| o1,
B(zo, 20l

and (1.16) follows. m
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4.2 Removability results

Here we suppose that

Apu = div [Ap(z, Vu)], A,y is S-p-C,
(Cp){ (Ap(2,8) = Ap(2,¢))- (€ =€) >0, for £ # ¢,

Ap(,A) = [AP2AAL(2,8),  for A #0,

and similarly for A,. We give sufficient conditions ensuring that at least one of the functions

u,v or both are bounded. We obtain the two following results, relative to systems (A,,) and
(My):

Theorem 4.1 Assume (1.2), (Cp),(Cq). Let u € W, . P (Bl), v e W, L9 (B} be nonnegative
solutions of

—Apu + |z v <0, o
{ —Agv + |z|Put <0, m By
(1) If Yap < = ~=, then u is bounded near 0; if £, < < Y29 then v is bounded.
(i) If moreover (u,v) is a solution of (Ay) and u is bounded near 0 and 6 > % (or
0 = M if A, = A,) then v is also bounded. In the same way if v is bounded and

"> M (or = %ﬁpp_l) if Ag = Ay) then u is also bounded.

Theorem 4.2 Assume (1.2), (Cp),(Cy). Let u € Wlo’cp (B))NC(B}),ve VVlo’cq (B)) N C (BY)
be nonnegative solutions of

o a 5<
{ Apu + |z|* v <0, in B,

—Agv > |x|Put,

(N+b)(p—

p z 1), then u is bounded.

If’Yab< = l,orlf’yab>];—1andu>

The proofs require some lemmas, adapted to subsolutions of equation A,u = 0.
Lemma 4.3 Assume (Cp). Let u € Wl})’f (By) N C(BY) be nonnegative, such that
—A,u =<0 in Bj.

Then, either there exists C > 0 and r € (0, %) such that

_N
sup u > C’p];’j, for any p € (0,7), (4.6)
|lz|=p

or u 1s bounded near 0.
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Proof. From our assumptions on 4,, there exists at least a solution £ of the Dirichlet problem
—ApE = (50, in Bl,

where 0 is the Dirac mass at 0, in the renormalized sense, see [13, Theorem 3.1]. In particular
it satisfies the equation in D’(By), and it is a smooth solution of equation A,E = 0 in B]. From
N— N—
[25], [26], there exists C1,Cy > 0 such that C; \x|7rlp < E(z) £ Cy \x!fﬁ near 0. Assume
that (4.6) does not hold. Then there exists r, < min(1/n,r,_1) such that
p=N 1

sup u < —rft < ——E(ry).

|z|=rn

n nCh

Next we use the comparison theorem in the annulus C,= {x ERYN :pr, <|z|] < %} for functions

in W% (€) N C(Cy), and we find that

loc

u(r) < —E(z) + max u, in C,.

Going to the limit as n — oo, we deduce that u is bounded. m
Our next lemma complements the results of [8, Proposition 2.2]:
Lemma 4.4 Assume that A, is W-p-C. Let f € L} (B}),f = 0. Let u € Wli’f(Bi) be nonneg-

loc
ative, such that
—Apyu+f=0 in Bj.
N—
If |x|ﬁ u is bounded near 0, then f € L} (By).

loc

Proof. Let 0 < p < % Here we apply Proposition 2.1 with ¢ = ¢* given by

o 1 o P > 3 Co
f—lforp<\:c|<2, £ =0 for \x!§20r ]w\:4, ]Vf\gp.
From Remark 2.3, we find with for example ¢ = p,
-1 p—1
[ [
/ f<opNP (% u€> +C (7{ u£> . (4.7)
p=la|< 3 g<lzl<p 1|3

Hence from our assumption on u, the integral is bounded, then f € L'(B

N—
Proof of Theorem 4.1. (i) Suppose that 7,5 < %. Then u(zg) < C ]w0|7?1p . Let us show
that u is bounded. If 7y, 5 < % it is a direct consequence of Lemma 4.3. Then we can assume
Yo b = %. If u is not bounded, then (4.6) holds for some C' > 0. Let us set f = |z|*v?. From

(4.2) with e = 1 then for any ro < § and any zo such that |zo| = ro, and Lemma 2.5, taking
p="7,

q—1

q—1 KR
ut(xo) < C ut < Cro_(q+b)_NT (/ v‘;)
B($0:p) B(.’L‘(),Zp)

< Oy larD-(Nta) 45t / ! o
- "0 <jaf< 30 ’



then

q—1

a=1
) o N q—1
CTO HYab _ C’TO (@ Deepma=b < sup v < Cr "o o O </ e f> 7
< |g|< 2
2

Cro—(q—l)%,b%%—(]\/-&-a)

=Cry=0C< / f
P <zl 30

o<,
Sle|s

3"_

then for any n € N,

—1

By summation it contradicts Lemma 4.4. Similarly for .

+a)(qg—1
5 > o)

(ii) Suppose that (u,v) is a solution of (A,) and w is bounded and . Here v

satisfies equation A, = g with g = |z’ u* < C z|°, thus g € LY/77<(Q) for some € > 0, then
from [25], [26], if v is not bounded near 0, then there exist C1,C2 > 0 such that

N— N—q

Crla|” ot v £ Cola| o

near 0. If 6 > M then

— a0 a—s¥=a —p—¢
Apu = [x]*0° = Chfz[™ 771 = Cyfa[ 777,

for some ¢ > 0, then from (4.1),

p—1
13
prESC el < Cp ( ¢ uf> <cp,
4 L2

which is a contradiction. If § = M , then

Cylz|™P > Apu = |z|%° > Cy|z| P

Otherwise u is bounded by some M in a ball B... Then the function w = M — u is nonnegative
and bounded and satisfies
—A,w > Cy|z|™?  in B].

But for A, = A, there is no bounded solution of this inequality, from [8, Proposition 2.7], we
reach a contradiction. m

Remark 4.5 The results obviously apply to the scalar case, finding again and improving a
result of [31].
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Proof of Theorem 4.2. (i) Assume 7, < NP The proof of part (i) of Theorem 4.1 is still
valid and shows that u is bounded.

(ii) Assume 45 > —_ and > M Then &,p > ]Z 1 thus the estimate (1.16) for v

N
gives v(xo) < C'|xg| a1, then
u (w0) < C o]~ 017D (@g) < O~V
N—
Then prlp Sup|y|—, w tends to 0, hence u is bounded from Lemma 4.3. m

Remark 4.6 Let us give an alternative proof of (i): the punctual inequality (4.5) implies that

near 0,
Apu > |z|%0° > O|z|*Toath)/ (=) yné/(a-1),

then we are reduced to a simple scalar inequality:
—Ayu + |z[™u® <0, (4.8)

5(q+b)

with Q = “6 >p—1and m=a+ > —p. And vgp = Qrfl'fp < ]I\f—l ; applying Theorem

4.1 to the scalar inequality (4.8), we ﬁnd again that u is bounded.

5 Sharpness of the results

In this last section we show the optimality of our results by constructing some radial solutions
of systems (A,) or (M,) in case A, = A, A; = A,. They are based on the transformation
introduced in [4], valid for systems with any sign:

{ —Apu = —div(|VulP 2 Vu) = e |2|* 0,

—Agv = —div(|Vo|T? Vu) = g |z|° uH,
with €1 = —1 = gy for the system with absorption, and €; = —1,e2 = 1 for the mixed system:
setting
_ ru/ _ v’ _ 14a, s, 0 u' _ 14+b, u, m v’
X(t) = L Y(t) = — Z(t) = —e1r v pd W(t) = —eqr " utv Ik

where t = Inr, and we obtain the system

— Z
X=X |X -2+ 5],
Y T A S

Zi=Z[N+a—6Y — 7],
Wy =W [N +b—puX — W],

»QZ.B

And u,v are recovered from X, Y, Z, W by the relations

w=r b ( ’X’p—l Z)(q—l)/D( ‘y‘q—l W)tS/D7 /U:T_fa,b( |X’p—1 Z)M/D( ‘y‘q—l W)(p—l)/D'
(5.1)
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5.1 About Harnack inequality

Here we show that Harnack inequality can be false in case of system (A,) and also for the
function u of system (M,,), even in the radial case; indeed we construct nonnegative radial
solutions of system (A, ) in a ball such that u(0) = 0 < v(0), or by symmetry «(0) > 0 = v(0)
and solutions of system (M,,) such that u(0) = 0 < v(0). Such solutions were constructed in
[15] by using Schauder theorem, and in [7] in the case of system (Ay) for p = ¢ = 2 by using
system (X). Here we show that the construction of [7] extends to the general case. We consider
the radial regular solutions, which are C? if a,b > 0, and C" if a,b > —1.

Proposition 5.1 Suppose that A, = A, and A; = A,. For any vo > 0, there exists a regular
radial solution of (Aw) and (M) such that u(0) =0 < v(0) = vp.

Proof. The regular solutions (u,v) with nonnegative initial data (ug, vg) # (0,0) are increasing
for system (A, ), hence X, Y < 0 < Z, W and u is increasing and v is decreasing for system
(My), hence X < 0 <Y and Z,W > 0. As shown in [4], the solutions (u,v) with u(0) =
up > 0 and v(0) = vy > 0 correspond to the trajectories of system (X) converging to the
fixed point Ng = (0,0, N + a, N +b) as t — —oo, and local existence and uniqueness holds
as in [4, Proposition 4.4]. As in [7] the solutions such that up = 0 < vy correspond to a

trajectory converging to the point Sy = (X,O, Z, W) = (—%,O,N +a,N+b+ u%) . The

linearization at Sy gives the eigenvalues
— 1 p+a - -
A =X <0, )\2271(Q+b+/i71)>0, A3=—-2<0, M=-W<O.
q— p—

Then the unstable manifold V,, has dimension 1 and V,,N{Y = 0} = (), thus there exists a unique
trajectory such that Y < 0 (resp. Y > 0) and Z, W > 0. There holds lim;_, o, e 'Y = ¢ > 0,
limX = X, limZ = Z, im W = W, then from (5.1) v has a positive limit vy, and u tends to
0. By scaling we obtain the existence and uniqueness of solutions for any vg > 0. =

5.2 About removability

Here also we show that the results of Theorems 4.1 and 4.2 are optimal, by constructing singular
solutions when the assumptions are not satisfied. We begin by system (A,), extending [7,

Proposition 3.2]. Obviously it admits a particular singular solution when ~,; > % and

§ap > %. Moreover we find other types of singular solutions:
Proposition 5.2 Consider system (Ay) with A, = A, and Ay = A,.

(i) If n < %, there exist solutions such that

N-—p .
limpr=Tu=a>0, limv=p>0.
p—0 p—0

(i) If § < % and (1 < %, there exist solutions such that

. 7N7p . 7N7q
limpr—tu=a>0, 11H(1)p4*11}:,6>0.
p—

p—0
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(111) If Yo p > Nop P and either p > M(gl) or p < % there exist solutions such that
Fl)ll%pp 1u_a>0 [l)gnpqll(p:f:“’_(‘ﬁrb))v:ﬁ(a)>0‘

The results extend by symmetry, after exchanging u,v,a,vqp and v,u,b,&qp-

Proof. As in [5], [7] we prove the existence of trajectories of system (X) and return to u,v by
using (5.1).

(1) Such solutions correspond to trajectories converging to the fixed point Gy = (2=2,0,0, N +

p—17
b— ~=p) of (X). The linearization at Go gives the eigenvalues
N — 1 N — N —
M= P 0, o= (b P, M=Nta>0, =Ly N
p—1 q—1 p—1 p—1

If p < W then A2, Ay < 0. Then V, has dimension 3, and V,,N{Y = 0} and V,N{Z = 0}
have dimension 2. This implies that V,, must contain trajectories such that Y, Z < 0 < X, W.

(ii) Such solutions correspond to the fixed point Ay = (Zfl = —£,0, O) . All the eigenvalues are
positive:
N — N — N — N —
A\ = p,)\2=7q,)\3:N+G—57q,)\4=N+b—u P
p—1 qg—1 qg—1 p—1

The unstable manifold V), has dimension 4, then there exists an infinity of trajectories converging
to Ag with X; Y, Z, W < 0.

iii) Such solutions correspond to the fixed point Py = @, Y,,0,W, ), with
p—1

1 N-p

— —p
g—1 p—1

* —

N
p—(g+0)), wq=N+b—p

The eigenvalues are given by

N—p D N—p
>0, =Y, I=—(v—
_1 ) 2 3 q_1(7 p—l

A1 =

w then A2, A4 > 0 and thus V, has dimension 4, then there exist trajectories,

If p >
with XY, Z, W < 0, converging to Py. If p < %ﬁ%ﬁl), then Xg, Ay < 0, V,, has dimension
2, and V,, N {Z = 0} has dimension 1, thus there also exist trajectories with X, Z, W <0 <Y

converging to Fy. m

In the same way, system (M,) has a particular singular solution when ~,; > % and

Eab < Mg 1 and we find other singular solutions:
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Proposition 5.3 Consider system (M,,) with A, = Ap, Aqg = A,.

(i) If Yo p > %, and &g p > %, there exist solutions such that

N— N—
lin%,o iy =8>0, lin%ppil( 10 (ata)), B(a) > 0.
p— p—

(ii) If 6 < % and p < %, there exist solutions such that

. 7]\]71) . 7N7q
limpr—tu=a>0, limpato=p8>0.
p—0 p—0
Proof. (i) These solutions correspond to the fixed point Q)9 deduced from Py by symmetry, and

our assumptions imply ¢ > %, hence there exist trajectories, such that X, Y, Z <0 < W
converging to Qg.

(ii) The conclusion follows as in Proposition 5.2, (ii). m
We refer to [5] and [6] for a description of all the (various) possible behaviours of the solutions
in the case p = q = 2.
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