Self-similar solutions of the p-Laplace heat equation: the case $p>2$.

Marie Françoise Bidaut-Véron*

October 3, 2008

Abstract

We study the self-similar solutions of the equation $$
u_{t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0,
$$ in \mathbb{R}^{N}, when $p>2$. We make a complete study of the existence and possible uniqueness of solutions of the form $$
u(x, t)=(\pm t)^{-\alpha / \beta} w\left((\pm t)^{-1 / \beta}|x|\right)
$$ of any sign, regular or singular at $x=0$. Among them we find solutions with an expanding compact support or a shrinking hole (for $t>0$), or a spreading compact support or a focussing hole (for $t<0$). When $t<0$, we show the existence of positive solutions oscillating around the particular solution $U(x, t)=C_{N, p}\left(|x|^{p} /(-t)\right)^{1 /(p-2)}$.

[^0]
1 Introduction and main results

Here we consider the self-similar solutions of the degenerate heat equation involving the p-Laplace operator

$$
\begin{equation*}
u_{t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 \tag{u}
\end{equation*}
$$

in \mathbb{R}^{N}, with $p>2$. This study is the continuation of the work started in [4], relative to the case $p<2$. It can be read independently. We set

$$
\begin{equation*}
\gamma=\frac{p}{p-2}, \quad \eta=\frac{N-p}{p-1} \tag{1.1}
\end{equation*}
$$

thus $\gamma>1, \eta<N$,

$$
\begin{equation*}
\frac{N+\gamma}{p-1}=\eta+\gamma=\frac{N-\eta}{p-2} \tag{1.2}
\end{equation*}
$$

If u is a solution, then for any $\alpha, \beta \in \mathbb{R}, u_{\lambda}(x, t)=\lambda^{\alpha} u\left(\lambda x, \lambda^{\beta} t\right)$ is a solution of $\left(\mathbf{E}_{u}\right)$ if and only if

$$
\begin{equation*}
\beta=\alpha(p-2)+p=(p-2)(\alpha+\gamma) \tag{1.3}
\end{equation*}
$$

notice that $\beta>0 \Longleftrightarrow \alpha>-\gamma$. Given $\alpha \in \mathbb{R}$ such that $\alpha \neq-\gamma$, we search self-similar solutions, radially symmetric in x, of the form:

$$
\begin{equation*}
u=u(x, t)=(\varepsilon \beta t)^{-\alpha / \beta} w(r), \quad r=(\varepsilon \beta t)^{-1 / \beta}|x| \tag{1.4}
\end{equation*}
$$

where $\varepsilon= \pm 1$. By translation, for any real T, we obtain solutions defined for any $t>T$ when $\varepsilon \beta>0$, or $t<T$ when $\varepsilon \beta<0$. We are lead to the equation

$$
\begin{equation*}
\left(\left|w^{\prime}\right|^{p-2} w^{\prime}\right)^{\prime}+\frac{N-1}{r}\left|w^{\prime}\right|^{p-2} w^{\prime}+\varepsilon\left(r w^{\prime}+\alpha w\right)=0 \quad \text { in }(0, \infty) \tag{w}
\end{equation*}
$$

Our purpose is to give a complete description of all the solutions, with constant or changing sign. Equation $\left(\mathbf{E}_{w}\right)$ is very interesting, because it is singular at any zero of w^{\prime}, since $p>2$, implying a nonuniqueness phenomena.

For example, concerning the constant sign solutions near the origin, it can happen that

$$
\lim _{r \rightarrow 0} w=a \neq 0, \quad \lim _{r \rightarrow 0} w^{\prime}=0
$$

we will say that w is regular, or

$$
\lim _{r \rightarrow 0} w=\lim _{r \rightarrow 0} w^{\prime}=0
$$

we say that w is flat. Or different kinds of singularities may occur, either at the level of w :

$$
\lim _{r \rightarrow 0} w=\infty,
$$

or at the level of the gradient:

$$
\begin{aligned}
& \lim _{r \rightarrow 0} w=a \in \mathbb{R}, \quad \lim _{r \rightarrow 0} w^{\prime}= \pm \infty, \quad \text { when } p>N>1, \\
& \lim _{r \rightarrow 0} w=a \in \mathbb{R}, \quad \lim _{r \rightarrow 0} w^{\prime}=b \neq 0 \quad \text { when } p>N=1 .
\end{aligned}
$$

We first show that any local solution w of $\left(\mathbf{E}_{w}\right)$ can be defined on $(0, \infty)$, thus any solution u of equation $\left(\mathbf{E}_{u}\right)$ associated to w by (1.4) is defined on $\mathbb{R}^{N} \backslash\{0\} \times(0, \pm \infty)$. Then we prove the existence of regular solutions, flat ones, and of all singular solutions mentioned above.

Moreover, for $\varepsilon=1$, there exist solutions w with a compact support $(0, \bar{r})$; then $u \equiv 0$ on the set

$$
D=\left\{(x, t): x \in \mathbb{R}^{N}, \quad \beta t>0, \quad|x|>(\beta t)^{1 / \beta} \bar{r}\right\} .
$$

For $\varepsilon=-1$, there exist solutions with a hole: $w(r)=0 \Longleftrightarrow r \in(0, \bar{r})$. Then $u \equiv 0$ on the set

$$
H=\left\{(x, t): x \in \mathbb{R}^{N}, \quad \beta t<0, \quad|x|<(-\beta t)^{1 / \beta} \bar{r}\right\} .
$$

The free boundary is of parabolic type for $\beta>0$, of hyperbolic type for $\beta<0$. This leads to four types of solutions, and we prove their existence:

- If $t>0$, with $\varepsilon=1, \beta>0$, we say that u has an expanding support; the support increases from $\{0\}$ as t increases from 0 .
- If $t>0$, with $\varepsilon=-1, \beta<0$, we say that u has a shrinking hole: the hole decreases from infinity as t increases from 0 ;
- If $t<0$, with $\varepsilon=1, \beta<0$, we say that u has a spreading support: the support increases to be infinite as t increases to 0 .
- If $t<0$, with $\varepsilon=-1, \beta>0$, we say that u has a focussing hole: the hole disappears as t increases to 0 .

Up to our knowledge, some of them seem completely new, as for example the solutions with a shrinking hole or a spreading support. In particular we find again and improve some results of [8] concerning the existence of focussing type solutions.

Finally for $t<0$ we also show the existence of positive solutions turning around the fundamental solution U given at (1.8) with a kind of periodicity, and also the existence of changing sign solutions doubly oscillating in $|x|$ near 0 and infinity.

As in [4] we reduce the problem to dynamical systems.
When $\varepsilon=-1$, a critical negative value of α is involved:

$$
\begin{equation*}
\alpha^{*}=-\gamma+\frac{\gamma(N+\gamma)}{(p-1)(N+2 \gamma)} . \tag{1.5}
\end{equation*}
$$

1.1 Explicit solutions

Obviously if w is a solution of $\left(\mathbf{E}_{w}\right),-w$ is also a solution. Some particular solutions are well-known.

The solution U. For any α such that $\varepsilon(\alpha+\gamma)<0$, that means $\varepsilon \beta<0$, there exist flat solutions of $\left(\mathbf{E}_{w}\right)$, given by

$$
\begin{equation*}
w(r)= \pm \ell r^{\gamma}, \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\ell=\left(\frac{|\alpha+\gamma|}{\gamma^{p-1}(\gamma+N)}\right)^{1 /(p-2)}>0 \tag{1.7}
\end{equation*}
$$

They correspond to a unique solution of $\left(\mathbf{E}_{u}\right)$ called U, defined for $t<0$, such that $U(0, t)=0$, flat, blowing up at $t=0$ for fixed $x \neq 0$:

$$
\begin{equation*}
U(x, t)=C\left(\frac{|x|^{p}}{-t}\right)^{1 /(p-2)}, \quad C=\left((p-2) \gamma^{p-1}(\gamma+N)\right)^{1 /(2-p)} \tag{1.8}
\end{equation*}
$$

The case $\alpha=N$. Then $\beta=\beta_{N}=N(p-2)+p>0$, and the equation has a first integral

$$
\begin{equation*}
w+\varepsilon r^{-1}\left|w^{\prime}\right|^{p-2} w^{\prime}=C r^{-N} \tag{1.9}
\end{equation*}
$$

All the solutions corresponding to $C=0$ are given by

$$
\begin{align*}
& w=w_{K, \varepsilon}(r)= \pm\left(K-\varepsilon \gamma^{-1} r^{p^{\prime}}\right)_{+}^{(p-1) /(p-2)}, \quad K \in \mathbb{R} \\
& u= \pm u_{K, \varepsilon}(x, t)= \pm\left(\varepsilon \beta_{N} t\right)^{-N / \beta_{N}}\left(K-\varepsilon \gamma^{-1}\left(\varepsilon \beta_{N} t\right)^{-p^{\prime} / \beta_{N}}|x|^{p^{\prime}}\right)_{+}^{(p-1) /(p-2)} \tag{1.10}
\end{align*}
$$

For $\varepsilon=1, K>0$, they are defined for $t>0$, called Barenblatt solutions, regular with a compact support. Given $c>0$, the function $u_{K, 1}$, defined on $\mathbb{R}^{N} \times(0, \infty)$, is the unique solution of equation $\left(\mathbf{E}_{u}\right)$ with initial data $u(0)=c \delta_{0}$, where δ_{0} is the Dirac mass at 0 , and K being linked by $\int_{\mathbb{R}^{N}} u_{K}(x, t) d t=c$. The $u_{K, 1}$ are the only nonnegative solutions defined on $\mathbb{R}^{N} \times(0, \infty)$, such that $u(x, 0)=0$ for any $x \neq 0$. For $\varepsilon=-1$, the $u_{K,-1}$ are defined for $t<0$; for $K>0, w$ does not vanish
on $(0, \infty)$; for $K<0, w$ is flat with a hole near 0 . For $K=0$, we find again the function w given at (1.6).
The case $\alpha=\eta \neq 0$. We exhibit a family of solutions of $\left(\mathbf{E}_{w}\right)$:

$$
\begin{equation*}
w(r)=C r^{-\eta}, \quad u(t, x)=C|x|^{-\eta}, \quad C \neq 0 . \tag{1.11}
\end{equation*}
$$

The solutions u, independent of t, are p-harmonic in \mathbb{R}^{N}; they are fundamental solutions when $p<N$. When $p>N$, watisfies $\lim _{r \rightarrow 0} w=0$, and $\lim _{r \rightarrow 0} w^{\prime}=\infty$ for $N>1, \lim _{r \rightarrow 0} w^{\prime}=b$ for $N=1$.
The case $\alpha=-p^{\prime}$. Equation $\left(\mathbf{E}_{w}\right)$ admits regular solutions of the form

$$
\begin{equation*}
w(r)= \pm K\left(N\left(K p^{\prime}\right)^{p-2}+\varepsilon r^{p^{\prime}}\right), \quad u(x, t)= \pm K\left(N\left(K p^{\prime}\right)^{p-2} t+|x|^{p^{\prime}}\right), \quad K>0 . \tag{1.12}
\end{equation*}
$$

Here $\beta>0$; in the two cases $\varepsilon=1, t>0$ and $\varepsilon=-1, t<0, u$ is defined for any $t \in \mathbb{R}$ and of the form $\psi(t)+\Phi(|x|)$ with Φ nonconstant, and $u(., t)$ has a constant sign for $t>0$ and changing sign for $t<0$.
The case $\alpha=0$. Equation $\left(\mathbf{E}_{w}\right)$ can be explicitely solved: either $w^{\prime} \equiv 0$, thus $w \equiv a \in \mathbb{R}, u$ is a constant solution of $\left(\mathbf{E}_{u}\right)$, or there exists $K \in \mathbb{R}$ such that

$$
\begin{equation*}
\left|w^{\prime}\right|=r^{-(\eta+1)}\left(K-\frac{\varepsilon}{\gamma+N} r^{N-\eta}\right)_{+}^{1 /(p-2)} ; \tag{1.13}
\end{equation*}
$$

and w follows by integration, up to a constant, and then $u(x, t)=w\left(|x| /(\varepsilon p t)^{1 / p}\right)$. If $\varepsilon=1$, then $t>0, K>0$ and w^{\prime} has a compact support; up to a constant, u has a compact support. If $\varepsilon=-1$, then $t<0$; for $K>0, w$ is strictly monotone; for $K<0, w$ is flat, constant near 0 ; for $K=0$, we find again (1.6). For $\varepsilon= \pm 1, K>0$, observe that $\lim _{r \rightarrow 0} w= \pm \infty$ if $p \leqq N$; and $\lim _{r \rightarrow 0} w=a \in \mathbb{R}$, $\lim _{r \rightarrow 0} w^{\prime}= \pm \infty$ if $p>N>1$; and $\lim _{r \rightarrow 0} w=a \in \mathbb{R}, \lim _{r \rightarrow 0} w^{\prime}=K$ if $p>N=1$. In particular we find solutions such that $w=c r^{|\eta|}(1+o(1))$ near 0 , with $c>0$.
(v) Case $N=1$ and $\alpha=-(p-1) /(p-2)<0$. Here $\beta=1$, and we find the solutions

$$
\begin{equation*}
w(r)= \pm\left(K r+\varepsilon|\alpha|^{p-1}|K|^{p}\right)_{+}^{(p-1) /(p-2)}, \quad u(x, t)= \pm\left(K|x|+|\alpha|^{p-1}|K|^{p} t\right)_{+}^{(p-1) /(p-2)} \tag{1.14}
\end{equation*}
$$

If $\varepsilon=1, t>0$, then w has a singularity at the level of the gradient, and either $K>0, w>0$, or $K<0$ and w has a compact support. If $\varepsilon=-1, t<0$ then $K>0, w$ has a hole.

1.2 Main results

In the next sections we provide an exhaustive study of equation $\left(\mathbf{E}_{w}\right)$. Here we give the main results relative to the function u. Let us show how to return from w to u. Suppose that the behaviour of w is given by

$$
\lim _{r \rightarrow 0} r^{\lambda} w(r)=c \neq 0, \quad \lim _{r \rightarrow \infty} r^{\mu} w(r)=c^{\prime} \neq 0, \quad \text { where } \lambda, \mu \in \mathbb{R}
$$

(i) Then for fixed $t \neq 0$, the function u has a behaviour in $|x|^{-\lambda}$ near $x=0$, and a behaviour in $|x|^{-\mu}$ for large $|x|$.

If $\lambda=0$, then u is defined on $\mathbb{R}^{N} \times(0, \pm \infty)$. Either w is regular, then $u(., t) \in C^{1}\left(\mathbb{R}^{N} \times(0, \infty)\right)$; we will say that u is regular; nevertheless the regular solutions u presents a singularity at time $t=0$ if and only if $\alpha<-\gamma$ or $\alpha>0$. Or a singularity can appear for u at the level of the gradient.

If $\lambda<0$, thus u is defined on $\mathbb{R}^{N} \times(0, \pm \infty)$ and $u(0, t)=0$; either w is flat, we also say that u is flat, or a singularity appears at the level of the gradient.

If $0<\lambda<N$, then $u(., t) \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right)$ for $t \neq 0$, we say that $x=0$ is a weak singularity. We will show that there exist no stronger singularity.

If $\lambda<N<\mu$; then $u(., t) \in L^{1}\left(\mathbb{R}^{N}\right)$.
(ii) For fixed $x \neq 0$, the behaviour of u near $t=0$, depends on the sign of β :

$$
\begin{array}{lll}
\lim _{t \rightarrow 0}|x|^{\mu}|t|^{(\alpha-\mu) / \beta} u(x, t)=C \neq 0 & \text { if } & \alpha>-\gamma \\
\lim _{t \rightarrow 0}|x|^{\lambda}|t|^{(\alpha-\lambda) / \beta} u(x, t)=C \neq 0 & \text { if } & \alpha<-\gamma .
\end{array}
$$

If $\mu<0, \alpha>-\gamma$ or $\lambda<0, \alpha<-\gamma$, then $\lim _{t \rightarrow 0} u(x, t)=0$.

1.2.1 Solutions defined for $t>0$

Here we look for solutions u of $\left(\mathbf{E}_{u}\right)$ of the form (1.4) defined on $\mathbb{R}^{N} \backslash\{0\} \times(0, \infty)$. That means $\varepsilon \beta>0$ or equivalently $\varepsilon=1,-\gamma<\alpha$ (see Section 6) or $\varepsilon=-1, \alpha<-\gamma$ see (Section 7). We begin by the case $\varepsilon=1$, treated at Theorem 6.1.

Theorem 1.1 Assume $\varepsilon=1$, and $-\gamma<\alpha$.
(1) Let $\alpha<N$.

All regular solutions on $\mathbb{R}^{N} \backslash\{0\} \times(0, \infty)$ have a strict constant sign, in $|x|^{-\alpha}$ near ∞ for fixed t, with initial data $L|x|^{-\alpha}(L \neq 0)$ in $\mathbb{R}^{N} ;$ thus $u(., t) \notin L^{1}\left(\mathbb{R}^{N}\right)$, and u is unbounded when $\alpha<0$.

There exist nonnegative solutions such that near $x=0$,

$$
\left.\begin{array}{ll}
\text { for } p<N, & \quad u \text { has a weak singularity in }|x|^{-\eta}, \\
\text { for } p=N, & u \text { has a weak singularity in } \ln |x|, \tag{1.15}\\
\text { for } p>N, & u \in C^{0}\left(\mathbb{R}^{N} \times(0, \infty), \quad u(0, t)=a>0, \text { with a singular gradient, },\right.
\end{array}\right\}
$$

and u has an expanding compact support for any $t>0$, with initial data $L|x|^{-\alpha}$ in $\mathbb{R}^{N} \backslash\{0\}$.
There exist positive solutions with the same behaviour as $x \rightarrow 0$, in $|x|^{-\alpha}$ near ∞ for fixed t; and also solutions such that u has one zero for fixed $t \neq 0$, and the same behaviour.

If $p>N$, there exist positive solutions satisfying (1.15), and also positive solutions such that

$$
\begin{equation*}
u \in C^{0}\left(\mathbb{R}^{N} \times(0, \infty), \quad u(0, t)=0, \text { in }|x|^{|\eta|} \text { near } 0\right. \text {, with a singular gradient, } \tag{1.16}
\end{equation*}
$$

in $|x|^{-\alpha}$ near ∞ for fixed t, with and initial data $L|x|^{-\alpha}$ in $\mathbb{R}^{N} \backslash\{0\}$.
(2) Let $\alpha=N$.

All regular (Barenblatt) solutions are nonnegative, have a compact support for any $t>0$. If $p \leqq N$, all the other solutions have one zero for fixed t, satisfy (1.15) or (1.16) and have the same behaviour at ∞.
(3) Let $N<\alpha$.

All regular solutions u have a finite number $m \geqq 1$ of simple zeros for fixed t, and $u(., t) \in$ $L^{1}\left(\mathbb{R}^{N}\right)$. Either they are in $|x|^{-\alpha}$ near ∞ for fixed t, then there exist solutions with m zeros, compact support, satisfying (1.15); or they have a compact support. All the solutions have m or $m+1$ zeros. There exist solutions satisfying (1.15) with $m+1$ zeros, and in $|x|^{-\alpha}$ near ∞. If $p>N$, there exist solutions satisfying (1.15) with m zeros; there exist also solutions with m zeros, $u(0, t)=0$, and a singular gradient, in $|x|^{-\alpha}$ near ∞.

Next we come to the case $\varepsilon=-1$, which is the subject of Theorem 7.1.
Theorem 1.2 Assume $\varepsilon=-1$ and $\alpha<-\gamma$.
All the solutions u on $\mathbb{R}^{N} \backslash\{0\} \times(0, \infty)$, in particular the regular ones, are oscillating around 0 for fixed $t>0$ and large $|x|$, and $r^{-\gamma} w$ is asymptotically periodic in $\ln r$. Moreover there exist
solutions such that $r^{-\gamma} w$ is periodic in $\ln r$, in particular $C_{1} t^{-|\alpha / \beta|} \leqq|u| \leqq C_{2} t^{-|\alpha / \beta|}$ for some $C_{1}, C_{2}>0$;
solutions $u \in C^{1}\left(\mathbb{R}^{N} \times[0, \infty)\right), u(x, 0) \equiv 0$, with a shrinking hole;
flat solutions $u \in C^{1}\left(\mathbb{R}^{N} \times[0, \infty)\right)$, in $|x|^{|\alpha|}$ near 0 , with initial data $L|x|^{|\alpha|}(L \neq 0)$;
solutions satisfying (1.15) near $x=0$, and if $p>N$, solutions satisfying (1.16) near 0 .

1.2.2 Solutions defined for $t<0$

We look for solutions u of $\left(\mathbf{E}_{u}\right)$ of the form (1.4) defined on $\mathbb{R}^{N} \backslash\{0\} \times(-\infty, 0)$. That means $\varepsilon \beta<0$ or equivalently $\varepsilon=1, \alpha<-\gamma$ (see Section 8 , Theorem 8.1) or $\varepsilon=-1, \alpha>-\gamma$ (see Section 9). In the case $\varepsilon=1$, we get the following:

Theorem 1.3 Assume $\varepsilon=1$, and $\alpha<-\gamma$.
The function $U(x, t)=C\left(\frac{|x|^{p}}{-t}\right)^{1 /(p-2)}$ is a positive flat solution on $\mathbb{R}^{N} \backslash\{0\} \times(-\infty, 0)$.
All regular solutions have a constant sign, are unbounded in $|x|^{\gamma}$ near ∞ for fixed t, and blow up at $t=0$ like $(-t)^{-|\alpha| /|\beta|}$ for fixed $x \neq 0$.

There exist flat positive solutions $u \in C^{1}\left(\mathbb{R}^{N} \times(-\infty, 0]\right)$, in $|x|^{\gamma}$ near ∞ for fixed t, with final data $L|x|^{|\alpha|}(L>0)$.

There exist nonnegative solutions satisfying (1.15) near 0 , with a spreading compact support, blowing up near $t=0$ (like $|t|^{-(\eta+|\alpha|) /|\beta|}$ for $p<N$, or $|t|^{-|\alpha| /|\beta|} \ln |t|$ for $p=N$, or $(-t)^{-|\alpha| /|\beta|}$ for $\left.p>N\right)$.

There exist positive solutions with the same behaviour near 0 , in $|x|^{\gamma}$ near ∞, blowing up as above at $t=0$, and solutions with one zero for fixed t, and the same behaviour. If $p>N$, there exist positive solutions satisfying (1.15) (resp. (1.16)) near 0 , in $|x|^{\gamma}$ near ∞ for fixed t, blowing up at $t=0$ like $|t|^{-|\alpha| /|\beta|}$ (resp. $\left.|t|^{(|\eta|-|\alpha|) /|\beta|}\right)$ for fixed x.

Up to a symmetry, all the solutions are described.
The most interesting case is $\varepsilon=-1,-\gamma<\alpha$. For simplicity we will assume that $p<N$. The case $p \geqq N$ is much more delicate, and the complete results can be read in terms of w at Theorems 9.4, 9.6, 9.9, 9.10, 9.11 and 9.12. We discuss according to the position of α with respect to $-p^{\prime}$ and α^{*} defined at (1.5). Notice that $\alpha^{*}<-p^{\prime}$.

Theorem 1.4 Assume $\varepsilon=-1$, and $-p^{\prime} \leqq \alpha \neq 0$. The function U is still a flat solution on $\mathbb{R}^{N} \backslash\{0\} \times(-\infty, 0)$.
(1) Let $0<\alpha$.

All regular solutions have a strict constant sign, in $|x|^{\gamma}$ near ∞ for fixed t, blowing up at $t=0$ like $(-t)^{-1 /(p-2)}$ for fixed $x \neq 0$.

There exist nonnegative solutions with a focussing hole: $u(x, t) \equiv 0$ for $|x| \leqq C|t|^{1 / \beta}, t>0$, in $|x|^{\gamma}$ near ∞ for fixed t, blowing up at $t=0$ like $(-t)^{-1 /(p-2)}$ for fixed $x \neq 0$.

There exist positive solutions u with a (weak) singularity in $|x|^{-\eta}$ at $x=0$, in $|x|^{-\alpha}$ near ∞ for fixed t, with $u(., t) \in L^{1}\left(\mathbb{R}^{N}\right)$ if $\alpha>N$, with final data $L|x|^{-\alpha}(L>0)$ in $\mathbb{R}^{N} \backslash\{0\}$.

There exist positive solutions u in $|x|^{-\eta}$ at $x=0$, in $|x|^{\gamma}$ near ∞ for fixed t, blowing up at $t=0$ like $(-t)^{-1 /(p-2)}$ for fixed $x \neq 0$; solutions with one zero and the same behaviour.
(2) Let $-p^{\prime}<\alpha<0$.

All regular solutions have one zero for fixed t, and the same behaviour. There exist solutions with one zero, in $|x|^{-\eta}$ at $x=0$, in $|x|^{|\alpha|}$ near ∞ for fixed t, with final data $L|x|^{-\alpha}(L>0)$ in $\mathbb{R}^{N} \backslash\{0\}$. There exist solutions with one zero, u in $|x|^{-\eta}$ at $x=0$, in $|x|^{\gamma}$ near ∞ for fixed t, blowing up at $t=0$ like $(-t)^{-1 /(p-2)}$ for fixed $x \neq 0$; solutions with two zeros and the same behaviour.
3) Let $\alpha=-p^{\prime}$.

All regular solutions have one zero and are in $|x|^{|\alpha|}$ near ∞ for fixed t, and with final data $L|x|^{|\alpha|}(L>0)$. The other solutions have one or two zeros, are in $|x|^{-\eta}$ at $x=0$, in $|x|^{\gamma}$ near ∞ for fixed t.

In any case, up to a symmetry, all the solutions are described.

Theorem 1.5 Assume $\varepsilon=-1,-\gamma<\alpha<-p^{\prime}$. Then U is still a flat solution on $\mathbb{R}^{N} \backslash\{0\} \times$ $(-\infty, 0)$.
(1)Let $\alpha \leqq \alpha^{*}$.

Then there exist positive flat solutions, in $|x|^{\gamma}$ near 0 , in $|x|^{|\alpha|}$ near ∞ for fixed t, with final data $L|x|^{-\alpha}(L>0)$ in \mathbb{R}^{N}.

All the other solutions, among them the regular ones, have an infinity of zeros: $u(t,$.$) is$ oscillating around 0 for large $|x|$. There exist solutions with a focussing hole, and solutions with a singularity in $|x|^{-\eta}$ at $x=0$. There exist solutions oscillating also for small $|x|$, such that $r^{-\gamma} w$ is periodic in $\ln r$.
(2) There exist a critical unique value $\alpha_{c} \in\left(\max \left(\alpha^{*},-p^{\prime}\right)\right.$ such that for $\alpha=\alpha_{c}$, there exists nonnegative solutions with a focussing hole near 0 , in $|x|^{|\alpha|}$ near ∞ for fixed t, with final data $L|x|^{-\alpha}(L>0)$ in \mathbb{R}^{N}. And $\alpha_{c}>-(p-1) /(p-2)$.
There exist positive flat solutions, such that $|x|^{-\gamma} u$ is bounded on \mathbb{R}^{N} for fixed t, blowing up at $t=0$ like $(-t)^{-1 /(p-2)}$ for fixed $x \neq 0$. The regular solutions are oscillating around 0 as above. There exist solutions oscillating around 0 , such that $r^{-\gamma} w$ is periodic $i n \ln r$. There are solutions with a weak singularity in $|x|^{-\eta}$ at $x=0$, and oscillating around 0 for large $|x|$.
(3) Let $\alpha^{*}<\alpha<\alpha_{c}$.

The regular solutions are as above. There exist solutions of the same types as above. Moreover there exist positive solutions, such that $r^{-\gamma} w$ is periodic in $\ln r$, thus there exist $C_{1}, C_{2}>0$ such that

$$
C_{1}\left(\frac{|x|^{p}}{|t|}\right)^{1 /(p-2)} \leqq u \leqq C_{2}\left(\frac{|x|^{p}}{|t|}\right)^{1 /(p-2)}
$$

There exist positive solutions, such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$ near 0 and in $|x|^{\gamma}$ near ∞ for fixed t; and also, solutions with a hole, and oscillating around 0 for large $|x|$. There exist solutions positive near 0 , oscillating near ∞, and $r^{-\gamma} w$ is doubly asymptotically periodic in $\ln r$.
4) Let $\alpha_{c}<\alpha<-p^{\prime}$.

There exist nonnegative solutions with a focussing hole near 0 , in $|x|^{\gamma}$ near ∞ for fixed t, blowing up at $t=0$ like $(-t)^{-1 /(p-2)}$ for fixed $x \neq 0$. Either the regular solutions have an infinity of zeros for fixed t, then the same is true for all the other solutions. Or they have a finite number $m \geqq 2$ of zeros, and can be in $|x|^{\gamma}$ or $|x|^{|\alpha|}$ near ∞ (in that case they have a final data $L|x|^{|\alpha|}$); all the other solutions have m or $m+1$ zeros.

In the case $\alpha=\alpha_{c}$, we find again the existence and uniqueness of the focussing solutions introduced in [8].

2 Different formulations of the problem

In all the sequel we assume

$$
\alpha \neq 0,
$$

recalling that the solutions w are given explicitely by (1.13) when $\alpha=0$. Defining

$$
\begin{equation*}
J_{N}(r)=r^{N}\left(w+\varepsilon r^{-1}\left|w^{\prime}\right|^{p-2} w^{\prime}\right), \quad J_{\alpha}(r)=r^{\alpha-N} J_{N}(r) \tag{2.1}
\end{equation*}
$$

equation $\left(\mathbf{E}_{w}\right)$ can be written in an equivalent way under the forms

$$
\begin{equation*}
J_{N}^{\prime}(r)=r^{N-1}(N-\alpha) w, \quad J_{\alpha}^{\prime}(r)=-\varepsilon(N-\alpha) r^{\alpha-2}\left|w^{\prime}\right|^{p-2} w^{\prime} . \tag{2.2}
\end{equation*}
$$

If $\alpha=N$, then J_{N} is constant, so we find again (1.9).
We mainly use logarithmic substitutions; given $d \in \mathbb{R}$, setting

$$
\begin{equation*}
w(r)=r^{-d} y_{d}(\tau), \quad Y_{d}=-r^{(d+1)(p-1)}\left|w^{\prime}\right|^{p-2} w^{\prime}, \quad \tau=\ln r, \tag{2.3}
\end{equation*}
$$

we obtain the equivalent system:

$$
\left.\begin{array}{rl}
y_{d}^{\prime} & =d y_{d}-\left|Y_{d}\right|^{(2-p) /(p-1)} Y_{d}, \tag{2.4}\\
Y_{d}^{\prime} & =(p-1)(d-\eta) Y_{d}+\varepsilon e^{(p+(p-2) d) \tau}\left(\alpha y_{d}-\left|Y_{d}\right|^{(2-p) /(p-1)} Y_{d}\right) .
\end{array}\right\}
$$

At any point τ where $w^{\prime}(\tau) \neq 0$, the functions y_{d}, Y_{d} satisfy the equations

$$
\begin{array}{r}
y_{d}^{\prime \prime}+(\eta-2 d) y_{d}^{\prime}-d(\eta-d) y_{d}+\frac{\varepsilon}{p-1} e^{((p-2) d+p) \tau}\left|d y_{d}-y_{d}^{\prime}\right|^{2-p}\left(y_{d}^{\prime}+(\alpha-d) y_{d}\right)=0, \\
Y_{d}^{\prime \prime}+(p-1)\left(\eta-2 d-p^{\prime}\right) Y_{d}^{\prime}+\varepsilon e^{((p-2) d+p) \tau}\left|Y_{d}\right|^{(2-p) /(p-1)}\left(Y_{d}^{\prime} /(p-1)+(\alpha-d) Y_{d}\right) \\
-(p-1)^{2}(\eta-d)\left(p^{\prime}+d\right) Y_{d}=0, \tag{2.6}
\end{array}
$$

The main case is $d=-\gamma$: setting $y=y_{-\gamma}$,

$$
\begin{equation*}
w(r)=r^{\gamma} y(\tau), \quad Y=-r^{(-\gamma+1)(p-1)}\left|w^{\prime}\right|^{p-2} w^{\prime}, \quad \tau=\ln r \tag{2.7}
\end{equation*}
$$

we are lead to the autonomous system

$$
\left.\begin{array}{l}
y^{\prime}=-\gamma y-|Y|^{(2-p) /(p-1)} Y, \tag{S}\\
Y^{\prime}=-(\gamma+N) Y+\varepsilon\left(\alpha y-|Y|^{(2-p) /(p-1)} Y\right)
\end{array}\right\}
$$

Its study is fundamental: its phase portrait allows to study all the signed solutions of equation $\left(\mathbf{E}_{w}\right)$. Equation (2.5) takes the form

$$
\begin{equation*}
(p-1) y^{\prime \prime}+(N+\gamma p) y^{\prime}+\gamma(\gamma+N) y+\varepsilon\left|\gamma y+y^{\prime}\right|^{2-p}\left(y^{\prime}+(\alpha+\gamma) y\right)=0, \tag{y}
\end{equation*}
$$

Notice that $J_{N}(r)=r^{N+\gamma}(y(\tau)-\varepsilon Y(\tau))$.
Remark 2.1 Since (\boldsymbol{S}) is autonomous, for any solution w of $\left(\boldsymbol{E}_{w}\right)$ of the problem, all the functions $w_{\xi}(r)=\xi^{-\gamma} w(\xi r), \xi>0$, are also solutions.

Notation 2.2 In the sequel we set $\varepsilon \infty:=+\infty$ if $\varepsilon=1, \varepsilon \infty:=-\infty$ if $\varepsilon=-1$.

2.1 The phase plane of system (S)

In the phase plane (y, Y) we denote the four quadrants by

$$
\mathcal{Q}_{1}=(0, \infty) \times(0, \infty), \quad \mathcal{Q}_{2}=(-\infty, 0) \times(0, \infty), \quad \mathcal{Q}_{3}=-\mathcal{Q}_{1}, \quad \mathcal{Q}_{4}=-\mathcal{Q}_{2}
$$

Remark 2.3 The vector field at any point $(0, \xi), \xi>0$ satisfies $y^{\prime}=-\xi^{1 /(p-1)}<0$, thus points to $\mathcal{Q}_{2} ;$ moreover $Y^{\prime}<0$ if $\varepsilon=1$. The field at any point $(\varphi, 0), \varphi>0$ satisfies $Y^{\prime}=\varepsilon \alpha \varphi$, thus points to \mathcal{Q}_{1} if $\varepsilon \alpha>0$ and to \mathcal{Q}_{4} if $\varepsilon \alpha<0$; moreover $y^{\prime}=-\gamma \varphi<0$.

If $\varepsilon(\gamma+\alpha) \geqq 0$, system (\mathbf{S}) has a unique stationary point $(0,0)$. If $\varepsilon(\gamma+\alpha)<0$, it admits three stationary points:

$$
\begin{equation*}
(0,0), \quad M_{\ell}=\left(\ell,-(\gamma \ell)^{p-1}\right) \in \mathcal{Q}_{4}, \quad M_{\ell}^{\prime}=-M_{\ell} \in \mathcal{Q}_{2}, \tag{2.8}
\end{equation*}
$$

where ℓ is defined at (1.7). The point $(0,0)$ is singular because $p>2$; its study concern in particular the solutions w with a double zero. When $\varepsilon(\gamma+\alpha)<0$, the point M_{ℓ} is associated to the solution $w \equiv \ell r^{\gamma}$ of equation (\mathbf{E}_{w}) given at (1.1).

Linearization around M_{ℓ}. Near the point M_{ℓ}, setting

$$
\begin{equation*}
y=\ell+\bar{y}, \quad Y=-(\gamma \ell)^{p-1}+\bar{Y} \tag{2.9}
\end{equation*}
$$

system (\mathbf{S}) is equivalent in \mathcal{Q}_{4} to

$$
\begin{equation*}
\bar{y}^{\prime}=-\gamma \bar{y}-\varepsilon \nu(\alpha) \bar{Y}+\Psi(\bar{Y}), \quad \bar{Y}^{\prime}=\varepsilon \alpha \bar{y}-(\gamma+N+\nu(\alpha)) \bar{Y}+\varepsilon \Psi(\bar{Y}) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu(\alpha)=-\frac{\gamma(N+\gamma)}{(p-1)(\gamma+\alpha)}, \text { and } \Psi(\vartheta)=\left((\gamma \ell)^{p-1}-\vartheta\right)^{1 /(p-1)}-\gamma \ell+\frac{(\gamma \ell)^{2-p}}{p-1} \vartheta, \quad \vartheta<(\gamma \ell)^{p-1}, \tag{2.11}
\end{equation*}
$$

thus $\varepsilon \nu(\alpha)>0$. The linearized problem is given by

$$
\bar{y}^{\prime}=-\gamma \bar{y}-\varepsilon \nu(\alpha) \bar{Y}, \quad \bar{Y}^{\prime}=\varepsilon \alpha \bar{y}-(\gamma+N+\nu(\alpha)) \bar{Y} .
$$

Its eigenvalues $\lambda_{1} \leqq \lambda_{2}$ are the solutions of equation

$$
\begin{equation*}
\lambda^{2}+(2 \gamma+N+\nu(\alpha)) \lambda+p^{\prime}(N+\gamma)=0 \tag{2.12}
\end{equation*}
$$

The discriminant Δ of the equation (2.12) is given by

$$
\begin{equation*}
\Delta=(2 \gamma+N+\nu(\alpha))^{2}-4 p^{\prime}(N+\gamma)=(N+\nu(\alpha))^{2}-4 \nu(\alpha) \alpha \tag{2.13}
\end{equation*}
$$

For $\varepsilon=1, M_{\ell}$ is a sink, and a node point, since $\nu(\alpha)>0$, and $\alpha<0$, thus $\Delta>0$. For $\varepsilon=-1$, we have $\nu(\alpha)<0$; the nature of M_{ℓ} depends on the critical value α^{*} defined at (1.5); indeed

$$
\alpha=\alpha^{*} \Longleftrightarrow \lambda_{1}+\lambda_{2}=0
$$

Then M_{ℓ} is a sink when $\alpha>\alpha^{*}$ and a source when $\alpha<\alpha^{*}$. Moreover α^{*} corresponds to a spiral point, and M_{ℓ} is a node point when $\Delta \geqq 0$, that means $\alpha \leqq \alpha_{1}$, or $\gamma>N / 2+\sqrt{p^{\prime}(N+\gamma)}$ and $\alpha_{2} \leqq \alpha$, where
$\alpha_{1}=-\gamma+\frac{\gamma(N+\gamma)}{(p-1)\left(2 \gamma+N+2\left(p^{\prime}(N+\gamma)\right)^{1 / 2}\right)}, \quad \alpha_{2}=-\gamma+\frac{\gamma(N+\gamma)}{(p-1)\left(2 \gamma+N-2\left(p^{\prime}(N+\gamma)\right)^{1 / 2}\right)}$.
When $\Delta>0$, and $\lambda_{1}<\lambda_{2}$, one can choose a basis of eigenvectors

$$
\begin{equation*}
e_{1}=\left(-\varepsilon \nu(\alpha), \lambda_{1}+\gamma\right) \quad \text { and } \quad e_{2}=\left(\varepsilon \nu(\alpha),-\gamma-\lambda_{2}\right) . \tag{2.15}
\end{equation*}
$$

Remark 2.4 One verifies that $\alpha^{*}<-1$; and $\alpha^{*}<-(p-1) /(p-2)$ if and only if $p>N$. Also $\alpha_{2} \leqq 0$, and $\alpha_{2}=0 \Longleftrightarrow N=p /\left((p-2)^{2}\right.$; and $\alpha_{2}>-p^{\prime} \Longleftrightarrow \gamma^{2}-7 \gamma-8 N<0$, which is not always true.

As in [4, Theorem 2.16] we prove that the Hopf bifurcation point is not degenerate, which implies the existence of small cycles near α^{*}.

Proposition 2.5 Let $\varepsilon=-1$, and $\alpha=\alpha^{*}>-\gamma$. Then M_{ℓ} is a weak source. If $\alpha>\alpha^{*}$ and $\alpha-\alpha^{*}$ is small enough, there exists a unique limit cycle in \mathcal{Q}_{4}, attracting at $-\infty$.

2.2 Other systems for positive solutions

When w has a constant sign, we define two functions associated to (y, Y) :

$$
\begin{equation*}
\zeta(\tau)=\frac{|Y|^{(2-p) /(p-1)} Y}{y}(\tau)=-\frac{r w^{\prime}(r)}{w(r)}, \quad \sigma(\tau)=\frac{Y}{y}(\tau)=-\frac{\left|w^{\prime}(r)\right|^{p-2} w^{\prime}(r)}{r w(r)} . \tag{2.16}
\end{equation*}
$$

Thus ζ describes the behaviour of w^{\prime} / w and σ is the slope in the phase plane (y, Y). They satisfy the system

$$
\left.\begin{array}{l}
\zeta^{\prime}=\zeta(\zeta-\eta)+\varepsilon|\zeta y|^{2-p}(\alpha-\zeta) /(p-1)=\zeta(\zeta-\eta+\varepsilon(\alpha-\zeta) /(p-1) \sigma), \tag{Q}\\
\sigma^{\prime}=\varepsilon(\alpha-N)+\left(|\sigma y|^{(2-p) /(p-1)} \sigma-N\right)(\sigma-\varepsilon)=\varepsilon(\alpha-\zeta)+(\zeta-N) \sigma .
\end{array}\right\}
$$

In particular, System (\mathbf{Q}) provides a short proof of the local existence and uniqueness of the regular solutions: they correspond to its stationary point $(0, \varepsilon \alpha / N)$, see Section 3.1.

Moreover, if w and w^{\prime} have a strict constant sign, that means in any quadrant \mathcal{Q}_{i}, we can define

$$
\begin{equation*}
\psi=\frac{1}{\sigma}=\frac{y}{Y} \tag{2.17}
\end{equation*}
$$

We obtain a new system relative to (ζ, ψ) :

$$
\left.\begin{array}{rl}
\zeta^{\prime} & =\zeta(\zeta-\eta+\varepsilon(\alpha-\zeta) \psi /(p-1)), \tag{P}\\
\psi^{\prime} & =\psi(N-\zeta+\varepsilon(\zeta-\alpha) \psi) .
\end{array}\right\}
$$

We are reduced to a polynomial system, thus with no singularity. System (P) gives the existence of singular solutions when $p>N$, corresponding to its stationary point $(\eta, 0)$, see Section 5 .

We will also consider another system in any \mathcal{Q}_{i} : setting

$$
\begin{equation*}
\zeta=-1 / g, \quad \sigma=-s, \quad d \tau=g s d \nu=|Y|^{(p-2) /(p-1)} d \nu \tag{2.18}
\end{equation*}
$$

we find

$$
\left.\begin{array}{l}
d g / d \nu=g(s(1+\eta g)+\varepsilon(1+\alpha g) /(p-1)) \tag{R}\\
d s / d \nu=-s(\varepsilon(1+\alpha g)+(1+N g) s) .
\end{array}\right\}
$$

System (R) allows to get the existence of solutions w with a hole or a compact support, and other solutions, corresponding to its stationary points $(0,-\varepsilon)$ and $(-1 / \alpha, 0)$; it provides a complete study of the singular point $(0,0)$ of system (\mathbf{S}), see Sections $3.3,5$; and of the focussing solutions, see Section 9.

Remark 2.6 The particular solutions can be found again in the different phase planes, where their trajectories are lines:

For $\alpha=N$, the solutions (1.10) correspond to $Y \equiv \varepsilon y$, that means $\sigma \equiv \varepsilon$.
For $\alpha=\eta \neq 0$ the solutions (1.11) correspond to $\zeta \equiv \eta$.
For $\alpha=-p^{\prime}$, the solutions (1.12) are given by $\zeta+\varepsilon N \sigma \equiv \alpha$.
For $N=1, \alpha=-(p-2) /(p-1)$, the solutions (1.14) satisfy $\alpha g+\varepsilon s \equiv-1$.

3 Global existence

3.1 Local existence and uniqueness

Proposition 3.1 Let $r_{1}>0$ and $a, b \in \mathbb{R}$. If $(a, b) \neq(0,0)$, there exists a unique solution w of equation $\left(\boldsymbol{E}_{w}\right)$ in a neighborhood \mathcal{V} of r_{1}, such that w and $\left|w^{\prime}\right|^{p-2} w^{\prime} \in C^{1}(\mathcal{V})$ and $w\left(r_{1}\right)=a$, $w^{\prime}\left(r_{1}\right)=b$. It extends on a maximal interval I where $\left(w(r), w^{\prime}(r)\right) \neq(0,0)$.

Proof. If $b \neq 0$, the Cauchy theorem directly applies to system (S). If $b=0$ the system is a priori singular on the line $\{Y=0\}$ since $p>2$. In fact it is only singular at $(0,0)$. Indeed near any point $(\xi, 0)$ with $\xi \neq 0$, one can take Y as a variable, and

$$
\frac{d y}{d Y}=F(Y, y), \quad F(Y, y):=\frac{\gamma y+|Y|^{(2-p) /(p-1)} Y}{(\gamma+N) Y+\varepsilon\left(|Y|^{(2-p) /(p-1)} Y-\alpha y\right)}
$$

where F is continuous in Y and C^{1} in y, hence local existence and uniqueness hold.
Notation 3.2 For any point $P_{0}=\left(y_{0}, Y_{0}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}$, the unique trajectory in the phase plane (y, Y) of system (\boldsymbol{S}) going through P_{0} is denoted by $\mathcal{T}_{\left[P_{0}\right]}$. By symmetry, $\mathcal{T}_{\left[-P_{0}\right]}=-\mathcal{T}_{\left[P_{0}\right]}$.

Next we show the existence of regular solutions. Our proof is short, based on phase plane portrait, and not on a fixed point method, rather delicate because $p>2$, see [3].

Theorem 3.3 For any $a \in \mathbb{R}, a \neq 0$, there exists a unique solution $w=w(., a)$ of equation (\boldsymbol{E}_{w}) in an interval $\left[0, r_{0}\right)$, such that w and $\left|w^{\prime}\right|^{p-2} w^{\prime} \in C^{1}\left(\left[0, r_{0}\right)\right)$ and

$$
\begin{equation*}
w(0)=a, \quad w^{\prime}(0)=0 ; \tag{3.1}
\end{equation*}
$$

and then $\lim _{r \rightarrow 0}\left|w^{\prime}\right|^{p-2} w^{\prime} / r w=-\varepsilon \alpha / N$. In other words in the phase plane (y, Y) there exists a unique trajectory \mathcal{T}_{r} such that $\lim _{\tau \rightarrow-\infty} y=\infty$, and $\lim _{\tau \rightarrow-\infty} Y / y=\varepsilon \alpha / N$.

Proof. We have assumed $\alpha \neq 0$ (when $\alpha=0, w \equiv a$ from (1.13)). If such a solution w exists, then from (2.1) and (2.2), $J_{N}^{\prime}(r)=r^{N-1}(N-\alpha) a(1+o(1))$ near 0 . Thus $J_{N}(r)=r^{N-1}(1-$ $\alpha / N) a(1+o(1))$, hence $\lim _{r \rightarrow 0}\left|w^{\prime}\right|^{p-2} w^{\prime} / r w=-\varepsilon \alpha / N$; in other words, $\lim _{\tau \rightarrow-\infty} \sigma=\varepsilon \alpha / N$. And
$\lim _{\tau \rightarrow-\infty} y=\infty$, thus $\lim _{\tau \rightarrow-\infty} \zeta=0$, and $\varepsilon \alpha \zeta>0$ near $-\infty$. Reciprocally consider system (Q). The point $(0, \varepsilon \alpha / N)$ is stationary. Setting $\sigma=\varepsilon \alpha / N+\bar{\sigma}$, the linearized system near this point is given by

$$
\zeta^{\prime}=p^{\prime} \zeta, \quad \bar{\sigma}^{\prime}=\varepsilon \zeta(\alpha-N) / N-N \bar{\sigma} .
$$

One finds is a saddle point, with eigenvalues $-N$ and p^{\prime}. Then there exists a unique trajectory \mathcal{T}_{r}^{\prime} in the phase-plane (ζ, σ) starting at $-\infty$ from $(0, \varepsilon \alpha / N)$ with the slope $\varepsilon(\alpha-N) / N(N+$ $\left.p^{\prime}\right) \neq 0$ and $\varepsilon \alpha \zeta>0$. It corresponds to a unique trajectory \mathcal{T}_{r} in the phase plane (y, Y), and $\lim _{\tau \rightarrow-\infty} y=\infty$, since $\left.y=|\sigma||\zeta|^{1-p}\right)^{1 /(p-2)}$. For any solution (ζ, σ) describing \mathcal{T}_{r}^{\prime}, the function $w(r)=r^{\gamma}\left(|\sigma||\zeta|^{1-p}(\tau)\right)^{1 /(p-2)}$ satisfies $\lim _{r \rightarrow 0}\left|w^{\prime}\right|^{p-2} w^{\prime} / r w=-\varepsilon \alpha / N$. As a consequence, $w^{(p-2) /(p-1)}$ has a finite nonzero limit, and $\lim _{r \rightarrow 0} w^{\prime}=0$; thus w is regular. Local existence and uniqueness follows for any $a \neq 0$, by Remark 2.1.

Definition 3.4 The trajectory \mathcal{T}_{r} in the plane (y, Y) and its opposite $-\mathcal{T}_{r}$ will be called regular trajectories. We shall say that y is regular. Observe that \mathcal{T}_{r} starts in \mathcal{Q}_{1} if $\varepsilon \alpha>0$, and in \mathcal{Q}_{4} if $\varepsilon \alpha<0$.

Remark 3.5 From Theorem 3.3 and Remark 2.1, all regular solutions are obtained from one one of them: $w(r, a)=a w\left(a^{-1 / \gamma} r, 1\right)$. Thus they have the same behaviour near ∞.

3.2 Sign properties

Next we give informations on the zeros of w or w^{\prime}, by using the monotonicity properties of the functions y_{d}, Y_{d}, in particular y, Y, and ζ and σ. At any extremal point τ, they satisfy respectively

$$
\begin{gather*}
y_{d}^{\prime \prime}(\tau)=y_{d}(\tau)\left(d(\eta-d)+\frac{\varepsilon(d-\alpha)}{p-1} e^{((p-2) d+p) \tau}\left|d y_{d}(\tau)\right|^{2-p}\right), \tag{3.2}\\
Y_{d}^{\prime \prime}(\tau)=Y_{d}(\tau)\left((p-1)^{2}(\eta-d)\left(p^{\prime}+d\right)+\varepsilon(d-\alpha) e^{((p-2) d+p) \tau}\left|Y_{d}(\tau)\right|^{(2-p) /(p-1)}\right), \tag{3.3}\\
(p-1) y^{\prime \prime}(\tau)=\gamma^{2-p} y(\tau)\left(-\gamma^{p-1}(N+\gamma)-\varepsilon(\gamma+\alpha)|y(\tau)|^{2-p}\right)=-|Y(\tau)|^{(2-p) /(p-1)} Y^{\prime}(\tau), \tag{3.4}\\
Y^{\prime \prime}(\tau)=Y(\tau)\left(-\gamma(N+\gamma)-\varepsilon(\gamma+\alpha)|Y(\tau)|^{(2-p) /(p-1)}\right)=\varepsilon \alpha y^{\prime}(\tau), \tag{3.5}\\
(p-1) \zeta^{\prime \prime}(\tau)=-\varepsilon(p-2)\left((\alpha-\zeta)|\zeta|^{2-p}|y|^{-p} y y^{\prime}\right)(\tau)=\varepsilon(p-2)\left((\alpha-\zeta)(\gamma+\zeta)|\zeta y|^{2-p}\right)(\tau), \tag{3.6}\\
(p-1) \sigma^{\prime \prime}(\tau)=-(p-2)\left((\sigma-\varepsilon)|\sigma|^{(2-p) /(p-1)} Y|y|^{(4-3 p) /(p-1)} y^{\prime}\right)(\tau)=\zeta^{\prime}(\tau)(\sigma(\tau)-\varepsilon) . \tag{3.7}
\end{gather*}
$$

Proposition 3.6 Let $w \not \equiv 0$ be any solution of $\left(\boldsymbol{E}_{w}\right)$ on an interval I.
(i) If $\varepsilon=1$ and $\alpha \leqq N$, then w has at most one simple zero; if $\alpha<N$ and w is regular, it has no zero. If $\alpha=N$ it has no simple zero and a compact support. If $\alpha>N$ and w is regular, it has at least one simple zero.
(ii) If $\varepsilon=-1$ and $\alpha \geqq \min (0, \eta)$, then w has at most one simple zero. If $w \not \equiv 0$ has a double zero, then it has no simple zero. If $\alpha>0$ and w is regular, it has no zero.
(iii) If $\varepsilon=-1$ and $-p^{\prime} \leqq \alpha<\min (0, \eta)$, then w^{\prime} has at most one simple zero, consequently w has at most two simple zeros, and at most one if w is regular. If $\alpha<-p^{\prime}$, the regular solutions have at least two zeros.

Proof. (i) Let $\varepsilon=1$. Consider two consecutive simple zeros $\rho_{0}<\rho_{1}$ of w, with $w>0$ on (ρ_{0}, ρ_{1}) ; hence $w^{\prime}\left(\rho_{1}\right)<0<w^{\prime}\left(\rho_{0}\right)$. If $\alpha \leqq N$, we find from (2.1),

$$
J_{N}\left(\rho_{1}\right)-J_{N}\left(\rho_{0}\right)=-\rho_{1}^{N-1}\left|w^{\prime}\left(\rho_{1}\right)\right|^{p-2}-\rho_{0}^{N-1} w^{\prime}\left(\rho_{0}\right)^{p-1}=(N-\alpha) \int_{\rho_{0}}^{\rho_{1}} s^{N-1} w d s
$$

which is contradictory; thus w has at most one simple zero. The contradiction holds as soon as ρ_{0} is simple, even if ρ_{1} is not. If w is regular with $w(0)>0$, and ρ_{1} is a first zero, and $\alpha<N$,

$$
J_{N}\left(\rho_{1}\right)=-\rho_{1}^{N-1}\left|w^{\prime}\left(\rho_{1}\right)\right|^{p-1}=(N-\alpha) \int_{0}^{\rho_{1}} s^{N-1} w d s>0
$$

which is still impossible. If $\alpha=N$, the (Barenblatt) solutions are given by (1.10). Next suppose $\alpha>N$ and w regular. If $w>0$, then $J_{N}<0$, thus $w^{-1 /(p-1)} w^{\prime}+r^{1 /(p-1)}<0$. Then the function $r \mapsto r^{p^{\prime}}+\gamma w^{(p-2) /(p-1)}$ is non increasing and we reach a contradiction for large r. Thus w has a first zero ρ_{1}, and $J_{N}\left(\rho_{1}\right)<0$, thus $w^{\prime}\left(\rho_{1}\right) \neq 0$.
(ii) Let $\varepsilon=-1$ and $\alpha \geqq \min (\eta, 0)$. Here we use the substitution (2.3) from some $d \neq 0$. If y_{d} has a maximal point, where it is positive, and is not constant, then (3.2) holds. Taking $d \in(0, \min (\alpha, \eta))$ if $\eta>0, d=\eta$ if $\eta \leqq 0$, we reach a contradiction. Hence y_{d} has at most a simple zero, and no simple zero if it has a double one. Suppose w regular and $\alpha>0$. Then $w^{\prime}>0$ near 0 , from Theorem 3.3. As long as w stays positive, any extremal point r is a strict minimum, from $\left(\mathbf{E}_{w}\right)$, thus in fact w^{\prime} stays positive.
(iii) Let $\varepsilon=-1$ and $-p^{\prime} \leqq \alpha<\min (0, \eta)$. Suppose that w^{\prime} and has two consecutive zeros $\rho_{0}<\rho_{1}$, and one of them is simple, and use again (2.3) with $d=\alpha$. Then the function Y_{α} has an extremal point τ, where it is positive and is not constant; from (3.3),

$$
\begin{equation*}
Y_{\alpha}^{\prime \prime}(\tau)=(p-1)^{2}(\eta-\alpha)\left(p^{\prime}+\alpha\right) Y_{\alpha}(\tau), \tag{3.8}
\end{equation*}
$$

thus $Y_{\alpha}^{\prime \prime}(\tau) \geqq 0$, which is contradictory. Next consider the regular solutions. They satisfy $Y_{\alpha}(\tau)=$ $e^{(\alpha(p-1)+p) \tau}(|\alpha| a / N)\left(1+o(1)\right.$ near $-\infty$, from Theorem 3.3 and (2.3), thus $\lim _{\tau \rightarrow-\infty} Y_{\alpha}=0$. As above Y_{α} cannot have any extremal point, then Y_{α} is positive and increasing. In turn $w^{\prime}<0$ from (2.3), hence w has at most one zero.

Proposition 3.7 Let $w \not \equiv 0$ be any solution of $\left(\boldsymbol{E}_{w}\right)$ on an interval I. If $\varepsilon=1$, then w has a finite number of isolated zeros. If $\varepsilon=-1$, it has a finite number of isolated zeros in any interval $[m, M] \cap I$ with $0<m<M<\infty$.

Proof. Let Z be the set of isolated zeros on I. If w has two consecutive isolated zeros $\rho_{1}<\rho_{2}$, and $\tau \in\left(e^{\rho_{1}}, e^{\rho_{2}}\right)$ is a maximal point of $\left|y_{d}\right|$, from (3.2), it follows that

$$
\begin{equation*}
\varepsilon e^{((p-2) d+p) \tau}\left|d y_{d}(\tau)\right|^{2-p}(d-\alpha) \leqq(p-1) d(d-\eta) \tag{3.9}
\end{equation*}
$$

That means with $\rho=e^{\tau} \in\left(\rho_{1}, \rho_{2}\right)$,

$$
\begin{equation*}
\varepsilon \rho^{p}|w(\rho)|^{2-p}(d-\alpha) \leqq(p-1) d^{p-1}(d-\eta) \tag{3.10}
\end{equation*}
$$

First suppose $\varepsilon=1$ and fix $d>\alpha$. Consider the energy function

$$
E(r)=\frac{1}{p^{\prime}}\left|w^{\prime}\right|^{p}+\frac{\alpha}{2} w^{2} .
$$

It is nonincreasing since $E^{\prime}(r)=-(N-1) r^{-1}\left|w^{\prime}\right|^{p}-r w^{\prime 2}$, thus bounded on $I \cap\left[\rho_{1}, \infty\right)$. Then w is bounded, ρ_{2} is bounded, Z is a bounded set. If Z is infinite, there exists a sequence of zeros $\left(r_{n}\right)$ converging to some point $\bar{r} \in[0, \infty)$, and a sequence $\left(\tau_{n}\right)$ of maximal points of $\left|y_{d}\right|$ converging to $\bar{\tau}=\ln \bar{r}$. If $\bar{r}>0$, then $w(\bar{r})=w^{\prime}(\bar{r})=0$; we get a contradiction by taking $\rho=\rho_{n}=e^{\tau_{n}}$ in (3.10), because the left-hand side tends to ∞. If $\bar{r}=0$, fixing now $d<\eta$, there exists a sequence $\left(\tau_{n}\right)$ of maximal points of $\left|y_{d}\right|$ converging to $-\infty$. Then $w\left(\rho_{n}\right)=O\left(\rho_{n}^{p /(p-2)}\right)$, and $w^{\prime}\left(\rho_{n}\right)=-d \rho_{n}^{-1} w\left(\rho_{n}\right)=O\left(\rho_{n}^{2 /(p-2)}\right)$, thus $E\left(\rho_{n}\right)=o(1)$. Since E is monotone, it implies $\lim _{r \rightarrow 0} E(r)=0$, hence $E \equiv 0$, and $w \equiv 0$, which is contradictory. Next suppose $\varepsilon=-1$ and fix $d<\alpha$. If $Z \cap[m, M]$ is infinite, we construct a sequence converging vers some $\bar{r}>0$ and reach a contradiction as above.

Proposition 3.8 Let y be any non constant solution of $\left(\boldsymbol{E}_{y}\right)$, on a maximal interval I where $(y, Y) \neq(0,0)$, and s be an extremity of I.
(i) If y has a constant sign near s, then the same is true for Y.
(ii) If $y>0$ is strictly monotone near s, then Y, ζ, σ are monotone near s.
(iii) If $y>0$ is not strictly monotone near s, then $s= \pm \infty, \varepsilon(\gamma+\alpha)<0$ and y oscillates around ℓ.
(iv) If y is oscillating around 0 near s, then $\varepsilon=-1, s= \pm \infty, \alpha<-p^{\prime}$; if $\alpha>-\gamma$, then $|y|>\ell$ at the extremal points.

Proof. (i) The function w has at most one extremal point on I : at such a point, it satisfies $\left(\left|w^{\prime}\right|^{p-2} w^{\prime}\right)^{\prime}=-\varepsilon \alpha w$ with $\alpha \neq 0$. From (2.7), Y has a constant sign near s.
(ii) Suppose y strictly monotone near s. At any extremal point τ of Y, we find $Y^{\prime \prime}(\tau)=\varepsilon \alpha y^{\prime}(\tau)$ from (3.5). Then $y^{\prime}(\tau) \neq 0, Y^{\prime \prime}(\tau)$ has a constant sign. Thus τ is unique, and Y is strictly monotone near s. Next consider ζ. If there exists τ_{0} such that $\zeta\left(\tau_{0}\right)=\alpha$, then $\zeta^{\prime}\left(\tau_{0}\right)=\alpha(\alpha-\eta)$, from system (Q). If $\alpha \neq \eta$, then τ_{0} is unique, thus $\alpha-\zeta$ has a constant sign near s. Then $\zeta^{\prime \prime}(\tau)$ has a constant
sign at any extremal point τ of ζ, from (3.6), thus ζ is strictly monotone near s. If $\alpha=\eta$, then $\zeta \equiv \alpha$. At last consider σ. If there exists τ_{0} such that $\sigma\left(\tau_{0}\right)=\varepsilon$, then $\sigma^{\prime}\left(\tau_{0}\right)=\varepsilon(\alpha-N)$ from System (Q). If $\alpha \neq N$, then τ_{0} is unique, and $\sigma-\varepsilon$ has a constant sign near s. Thus $\sigma^{\prime \prime}(\tau)$ has a constant sign at any extremal point τ of σ, from (3.7) and assertion (i). If $\alpha=N$, then $\sigma \equiv \varepsilon$.
(iii) Let y be positive and not strictly monotone near s. There exists a sequence $\left(\tau_{n}\right)$ strictly monotone, converging to $\pm \infty$, such that $y^{\prime}\left(\tau_{n}\right)=0, y^{\prime \prime}\left(\tau_{2 n}\right)>0>y^{\prime \prime}\left(\tau_{2 n+1}\right)$. Since $y\left(\tau_{n}\right)=$ $\gamma^{-1}|Y|^{(2-p) /(p-1)} Y\left(\tau_{n}\right)$, we deduce $Y<0$ near s, from (i). From (3.5),

$$
\begin{equation*}
\left.-\varepsilon(\gamma+\alpha) y\left(\tau_{2 n+1}\right)^{2-p} \leqq \gamma^{p-1}(N+\gamma) \leqq-\varepsilon(\gamma+\alpha)\right) y\left(\tau_{2 n}\right)^{2-p}, \tag{3.11}
\end{equation*}
$$

thus $\varepsilon(\gamma+\alpha)<0$ and $y\left(\tau_{2 n}\right)<\ell<y\left(\tau_{2 n+1}\right)$, and $Y\left(\tau_{2 n+1}\right)<-(\gamma \ell)^{p-1}<Y\left(\tau_{2 n}\right)$. If s is finite, then $y(s)=y^{\prime}(s)=0$, which is impossible; thus $s= \pm \infty$.
(iv) If y is changing sign, then $\varepsilon=-1$ and $\alpha<-p^{\prime}$, from Propositions 3.6 and 3.7. At any extremal point τ,

$$
(\alpha+\gamma)|y(\tau)|^{2-p} \leqq \gamma^{p-1}(N+\gamma)
$$

from (3.4); if $\alpha>-\gamma$ it means $|y|>\ell$.

3.3 Double zeros and global existence

Theorem 3.9 For any $\bar{r}>0$, there exists a unique solution w of (\boldsymbol{E}_{w}) defined in a interval $[\bar{r}, \bar{r} \pm h)$ such that

$$
w>0 \quad \text { on }(\bar{r}, \bar{r} \pm h) \quad \text { and } \quad w(\bar{r})=w^{\prime}(\bar{r})=0 .
$$

Moreover $\varepsilon h<0$ and

$$
\begin{equation*}
\lim _{r \rightarrow \bar{r}}|(\bar{r}-r)|^{(p-1) /(2-p)} \bar{r}^{1 /(2-p)} w(r)= \pm((p-2) /(p-1))^{(p-1) /(p-2)} \tag{3.12}
\end{equation*}
$$

In other words in the phase plane (y, Y) there exists a unique trajectory $\mathcal{T}_{\varepsilon}$ converging to $(0,0)$ at $\varepsilon \infty$. It has the slope ε and converges in finite time; it depends locally continuously of α.

Proof. Suppose that a solution $w \not \equiv 0$ exists on $[\bar{r}, \bar{r} \pm h)$ with $w(\bar{r})=w^{\prime}(\bar{r})=0$. From Propositions 3.7 and 3.8 , up to a symmetry, $y>0,|Y|>0$ near $\bar{\tau}=\ln \bar{r}$, and $\lim _{\tau \rightarrow \ln \bar{r}} y=0$, and σ, ζ are monotone near $\ln r$. Let μ and λ be their limits. If $|\mu|=\infty$, then $|\lambda|=\infty$, because $\zeta=|Y|^{(2-p) /(p-1)} \sigma,|\zeta|^{p-2} \zeta=\sigma y^{2-p}$; then $f=1 / \zeta$ tends to 0 ; but

$$
\begin{equation*}
f^{\prime}=-1+\eta f+\varepsilon \frac{1-\alpha f}{(p-1) \sigma}, \tag{3.13}
\end{equation*}
$$

thus f^{\prime} tends to -1 , which is impossible. Thus μ is finite. If λ is finite, then $\mu=0$, thus $\lambda=\alpha$, from system $(\mathbf{Q}), \ln w$ is integrable at \bar{r}, which is not true. Then $\lambda=\varepsilon \infty$, hence

$$
\mu=\lim _{\tau \rightarrow \ln \bar{r}} \sigma=\varepsilon,
$$

from system (\mathbf{Q}). Then $\varepsilon Y>0$ near $\bar{\tau}$, then $\varepsilon w^{\prime}<0$ near \bar{r}, thus $\varepsilon h<0$. Consider system (\mathbf{R}): as τ tends to $\bar{\tau}, \nu$ tends to $\pm \infty$, and (g, s) converges to the stationary point $(0,-\varepsilon)$.

Reciprocally, setting $s=-\varepsilon / \beta+h$, the linearized system of system (\mathbf{R}) at this point is given by

$$
\frac{d g}{d \nu}=-\varepsilon \frac{p-2}{p-1} g, \quad \frac{d h}{d \nu}=(\alpha-N) g+\varepsilon h .
$$

The eigenvalues are $-\varepsilon(p-2) /(p-1)$ and ε, thus we find a saddle point. There are two trajectories converging to $(0,-\varepsilon)$. The first one satisfies $g \equiv 0$, it does not correspond to a solution of the initial problem. Then there exists a unique trajectory converging to $(0,-\varepsilon)$, as ν tends to $\varepsilon \infty$, with $g>0$ near $\varepsilon \infty$. It is associated to the eigenvalue $-\varepsilon(p-2) /(p-1)$ and the eigenvector $((2 p-3) /(p-1), \varepsilon(N-\alpha))$. It satisfies $d g / d \nu=-\varepsilon((p-2) /(p-1)) g(1+o(1))$, thus $d g / d \tau=$ $((p-2) /(p-1))(1+o(1))$. Then τ has a finite limit $\bar{\tau}$, and τ increases to $\bar{\tau}$ if $\varepsilon=1$ and decreases to $\bar{\tau}$ if $\varepsilon=-1$. In turn $|Y|^{(p-2) /(p-1)}=g s$ tends to 0 , and s tends to ε, thus (y, Y) tends to $(0,0)$ as τ tends to $\bar{\tau}$. Then w and w^{\prime} converges to 0 at $\bar{r}=e^{\bar{\tau}}$. And $w^{\prime} w^{-1 /(p-1)}+(\varepsilon+o(1)) r^{1 /(p-1)}=0$, which implies (3.12).

Corollary 3.10 Let $r_{1}>0$, and $a, b \in \mathbb{R}$ and w be any local solution such that $w\left(r_{1}\right)=a$, $w^{\prime}\left(r_{1}\right)=b$.
(i) If $(a, b)=(0,0)$, then w has a unique extension by 0 on $\left(r_{1}, \infty\right)$ if $\varepsilon=1$, on $\left(0, r_{1}\right)$ if $\varepsilon=-1$.
(ii) If $(a, b) \neq(0,0)$, w has a unique extension to $(0, \infty)$.

Proof. (i) Assume $a=b=0$, the function $w \equiv 0$ is a solution. Let w be any local solution near r_{1}, defined in an interval $\left(r_{1}-h_{1}, r_{1}+h_{1}\right)$ with $w\left(r_{1}\right)=w^{\prime}\left(r_{1}\right)=0$. Suppose that there exists $h_{2} \in\left(0, h_{1}\right)$ such that $w\left(r_{1}+\varepsilon h_{1}\right) \neq 0$. Let $\bar{h}=\inf \left\{h \in\left(0, h_{1}\right): w\left(r_{1}+\varepsilon h\right) \neq 0\right\}$, and $\bar{r}=r_{1}+\varepsilon \bar{h}$, thus $w(\bar{r})=w^{\prime}(\bar{r})=0$, and for example $w>0$ on some interval $(\bar{r}, \bar{r}+\varepsilon k)$) with $k>0$. This contradicts theorem 3.9. Thus $w \equiv 0$ on ($r_{1}, r_{1}+\varepsilon h_{1}$).
(ii) From Theorems 3.9 and 3.3, w has no double zero for $\varepsilon\left(r-r_{1}\right)<0$, and has a unique extension to a maximal interval with no double zero. From (i) it has a unique extension to $(0, \infty)$. In particular any local regular solution is defined on $[0, \infty)$.

4 Asymptotic behaviour

Next the function y is supposed to be monotone, thus w has a constant sign near 0 or ∞, we can assume that $w>0$.

Proposition 4.1 Let y be any solution of $\left(\boldsymbol{E}_{y}\right)$ strictly monotone and positive near $s= \pm \infty$.
(1) Then (ζ, σ) has a limit (λ, μ) near s, given by is some of the values

$$
\begin{align*}
A_{\gamma} & =\left(-\gamma, \varepsilon \frac{\alpha+\gamma}{N+\gamma}\right), \quad A_{r}=(0, \varepsilon \alpha / N), \quad A_{\alpha}=(\alpha, 0) \\
L_{\eta} & =\eta(1, \infty)(\text { if } p \neq N), \quad L_{+}=(0, \infty)(\text { if } p \geqq N), \quad L_{-}=(0,-\infty)(\text { if } p>N) . \tag{4.1}
\end{align*}
$$

(2) More precisely,
(i) Either $\varepsilon(\gamma+\alpha)<0$ and (y, Y) converges to $\pm M_{\ell}$. Then $(\lambda, \mu)=A_{\gamma}$ and $(\varepsilon=1, s=\infty)$ or $\left(\varepsilon=-1, s=-\infty\right.$ for $\alpha \leqq \alpha^{*}, s=\infty$ for $\left.\alpha>\alpha^{*}\right)$.
(ii) Or (y, Y) converges to $(0,0)$. Then $(s=\infty$ and $-\gamma<\alpha)$ or ($s=-\infty$ and $\alpha<-\gamma$), or ($s=\varepsilon \infty$ and $\alpha=-\gamma)$ and $(\lambda, \mu)=A_{\alpha}$.
(iii) Or $\lim _{\tau \rightarrow s} y=\infty$. Then $s=-\infty$. If $p<N$, then $(\lambda, \mu)=A_{r}$ or L_{η}. If $p=N$, then $(\lambda, \mu)=A_{r}$ or L_{+}. If $p>N$, then $(\lambda, \mu)=A_{r}, L_{\eta}, L_{+}$or L_{-}.

Proof. (1) The functions Y, σ, ζ are also monotone, and by definition $\zeta \sigma>0$. Thus ζ has a limit $\lambda \in[-\infty, \infty]$ and σ has a limit $\mu \in[-\infty, \infty]$, and $\lambda \mu \geqq 0$.
(i) λ is finite. Indeed if $\lambda= \pm \infty$, then $f=1 / \zeta$ tends to 0 . From (3.13), either $\mu= \pm \infty$, then f^{\prime} tends to -1 , which is imposible; or μ is finite, thus $\mu=\varepsilon$ from system (\mathbf{Q}), then f^{\prime} tends to $(2-p) /(p-1)$, which is still contradictory.
(ii) Either μ is finite, thus (λ, μ) is a stationary point of system (Q), equal to A_{γ}, A_{r} or A_{α}.
(iii) $0 \mathrm{r} \mu= \pm \infty$ and $(\lambda, 0)$ is a stationary point of system (\mathbf{P}).

- If $p \neq N$, either $\lambda=\eta \neq 0$ and $(\lambda, \mu)=L_{\eta}$; or $\lambda=0$ and $(\lambda, \mu)=L_{+}$or L_{-}. In the last case (ζ, ψ) converges to $(0,0)$, and $\zeta^{\prime} / \psi^{\prime}=-(\eta \zeta / N \psi)(1+o(1))$, thus $\eta<0$, that means $p>N$.
- If $p=N$, then again (ζ, ψ) converges to $(0,0)$, thus $\mu= \pm \infty$, and $\psi^{\prime}=N \psi(1+o(1))$, and necessarily $s=-\infty$. We make the substitution (2.4) with $d=0$. Then $y_{0}(\tau)=w(r)$, and y_{0} satisfies

$$
y_{0}^{\prime}=-\left|Y_{0}\right|^{(2-p) /(p-1)} Y_{0}=-\zeta y_{0}=o\left(y_{0}\right), \quad Y_{0}^{\prime}=\varepsilon e^{p \tau} y_{0}(\alpha-\zeta)=\varepsilon e^{p \tau} y_{0} \alpha(1+o(1) .
$$

Thus for any $v>0$, we get $y_{0}=O\left(e^{-v \tau}\right)$ and $1 / y_{0}=O\left(e^{v \tau}\right)$. Then Y_{0}^{\prime} is integrable, and Y_{0} has a finite limit $|k|^{p-2} k$. Suppose that $k=0$. Then $Y_{0}=O\left(e^{(p-v) \tau}\right)$, and y_{0} has a finite limit $a \geqq 0$. If $a \neq 0$, then $Y_{0}^{\prime}=\varepsilon \alpha a e^{p \tau}(1+o(1))$; in turn $Y_{0}=p^{-1} \varepsilon \alpha a e^{p \tau}(1+o(1))$, and $\psi=e^{p \tau} y_{0} / Y_{0}$ does not tend to 0 . If $a=0$, then $y_{0}=O\left(e^{p^{\prime} \tau}\right)$, which contradicts the estimate of $1 / y_{0}$. Thus $k>0$ and

$$
\begin{equation*}
y_{0}=-k \tau\left(1+o(1), \quad Y_{0}=k^{p-1}(1+o(1)) ;\right. \tag{4.2}
\end{equation*}
$$

hence $(\lambda, \mu)=L_{+}$.
(2) Since y is monotone, we encounter one of the three following cases:
(i) (y, Y) converges to $\pm M_{\ell}$. Then $(\lambda, \mu)=A_{\gamma}$ and M_{ℓ} is a source (or a weak source) for $\alpha \leqq \alpha^{*}$, a sink for $\alpha>\alpha^{*}$.
(ii) y tends to 0 . Since λ is finite, (y, Y) converges to $(0,0)$. And $|\sigma|=|\zeta|^{p-1} y^{p-2}$ tends to 0 , thus $(\lambda, \mu)=A_{\alpha}$. If $-\gamma<\alpha$, seeing that $y^{\prime}=-y(\gamma+\zeta)<0$ we find $s=\infty$. If $\alpha<-\gamma$, then $s=-\infty$. If $\alpha=-\gamma<0$, then $\varepsilon(\gamma+\zeta)>0$, from the first equation of (\mathbf{Q}), thus $\varepsilon y^{\prime}<0$, hence $s=\varepsilon \infty$.
(iii) y tends to ∞. Either $\lambda \neq 0$, thus $|\sigma|=|\zeta|^{p-1} y^{p-2}$ tends to ∞, and $\lambda=\eta$ from system (Q), thus $p \neq N,(\lambda, \mu)=L_{\eta}$. Or $\lambda=0$ and μ is finite, thus $\mu=\varepsilon \alpha / N,(\lambda, \mu)=A_{r}$. Or $(\lambda, \mu)=L_{0}$; then either $p=N, L_{0}=L_{\eta}$, or $p>N$. In any case, $y^{\prime}=-y(\gamma+\zeta)<0$, from (1.2), hence $s=-\infty$.

Next we apply these results to the functions w :
Proposition 4.2 We keep the assumptions of Proposition 4.1. Let w be the solution of (\boldsymbol{E}_{w}) associated to y by (2.7).
(i) If $(\lambda, \mu)=A_{\gamma}$ (near 0 or ∞), then

$$
\begin{equation*}
\lim r^{-\gamma} w=\ell \tag{4.3}
\end{equation*}
$$

(ii) If $(\lambda, \mu)=A_{\alpha}$ (near 0 or $\left.\infty\right)$, then

$$
\begin{array}{ll}
\lim r^{\alpha} w=L>0 & \text { if } \alpha \neq-\gamma \\
\lim r^{-\gamma}(\ln r)^{1 /(p-2)} w=\left((p-2) \gamma^{p-1}(N+\gamma)\right)^{-1 /(p-2)} & \text { if } \alpha=-\gamma \tag{4.5}
\end{array}
$$

(iii) If $p<N$ and $(\lambda, \mu)=L_{\eta}$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{\eta} w=c>0 \tag{4.6}
\end{equation*}
$$

(iv) If $p>N$ and $(\lambda, \mu)=L_{\eta}$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{-|\eta|} w=c>0 \tag{4.7}
\end{equation*}
$$

(v) If $p=N$ and $(\lambda, \mu)=L_{+}$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0}|\ln r|^{-1} w=k>0, \quad \lim _{r \rightarrow 0} r w^{\prime}=-k \quad \text { if } p=N . \tag{4.8}
\end{equation*}
$$

(vi) If $p>N$ and $(\lambda, \mu)=L_{+}$, or L_{-}, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} w=a>0, \quad \lim _{r \rightarrow 0}\left(-r^{(N-1) /(p-1)} w^{\prime}\right)=c>0 \tag{4.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{r \rightarrow 0} w=a>0, \quad \lim _{r \rightarrow 0}\left(-r^{(N-1) /(p-1)} w^{\prime}\right)=c<0 . \tag{4.10}
\end{equation*}
$$

Proof. (i) This follows directly from (2.7).
(ii) From (2.16), $r w^{\prime}(r)=-\alpha w(r)(1+o(1)$. We are lead to three cases.
\bullet Either $-\gamma<\alpha$, and $s=\infty$. For any $v>0$, we find $w=O\left(r^{-\alpha+v}\right)$ and $1 / w=O\left(r^{\alpha+v}\right)$ near ∞ and $w^{\prime}=O\left(r^{-\alpha-1+v}\right)$. Then $J_{\alpha}^{\prime}(r)=O\left(r^{\alpha(2-p)-p-1+v}\right)$, hence J_{α}^{\prime} is integrable, J_{α} has a limit L. And $\lim r^{\alpha} w=L$, seeing that $J_{\alpha}(r)=r^{\alpha} w(1+o(1))$. If $L=0$, then $r^{\alpha} w=O\left(r^{\alpha(2-p)-p+v}\right)$, which contradicts the estimate of $1 / w=O\left(r^{\alpha+v}\right)$ for v small enough. Thus $L>0$.

- Or $\alpha<-\gamma$ and $s=-\infty$. For any $v>0$, we find $w=O\left(r^{-\alpha-v}\right)$ and $1 / w=O\left(r^{\alpha+v}\right)$ near 0 and $w^{\prime}=O\left(r^{-\alpha-1-v}\right)$. Then $J_{\alpha}^{\prime}(r)=O\left(r^{\alpha(2-p)-p-1-v}\right)$, and J_{α}^{\prime} is still integrable, J_{α} has a limit L, and $\lim r^{\alpha} w=L$. If $L=0$, then $r^{\alpha} w=O\left(r^{\alpha(2-p)-p-v}\right)$, which contradicts the estimate of $1 / w$. Thus again $L>0$.
- Or $\alpha=-\gamma$ and $s=\varepsilon \infty$. Then $Y=-\gamma^{p-1} y^{p-1}(1+o(1))$, and $\mu=0$, thus $y-\varepsilon Y=$ $y(1+o(1))$. From System (S),

$$
(y-\varepsilon Y)^{\prime}=\varepsilon(N+\gamma) Y=-\varepsilon(N+\gamma) \gamma^{p-1}(y-\varepsilon Y)^{p-1}(1+o(1))
$$

Then $\left.y=(N+\gamma) \gamma^{p-1}(p-2)|\tau|\right)^{-1 /(p-2)}(1+o(1))$, which is equivalent to (4.5).
(iii) From (2.16), we get $r w^{\prime}(r)=-\eta w(r)\left(1+o(1)\right.$. We use (2.3) with $d=\eta$, thus $y_{\eta}=r^{\eta} w$. We find $y_{\eta}=O\left(e^{-v \tau}\right), 1 / y_{\eta}=O\left(e^{-v \tau}\right)$, in turn $Y_{\eta}=O\left(e^{-v \tau}\right)$. From (2.4), $Y_{\eta}^{\prime}=O\left(e^{(p+(p-2) \eta-v) \tau}\right)$, thus Y_{η}^{\prime} is integrable, hence Y_{η} has a finite limit. Now $\left(e^{-\eta \tau} y_{\eta}\right)^{\prime}=-e^{-\eta \tau} Y_{\eta}^{1 /(p-1)}$, and $\eta>0$, thus y_{η} has a limit c. If $c=0$, then $Y_{\eta}=O\left(e^{(p+(p-2) \eta-v) \tau}\right), y_{\eta}=O\left(e^{((p+(p-2) \eta) /(p-1)-v) \tau}\right)$, which contradicts $1 / y_{\eta}=O\left(e^{-v \tau}\right)$ for v small enough. Then (4.6) holds.
(iv) As above, Y_{η} has a finite limit. In turn $r^{-|\eta|+1} w^{\prime}=\left|Y_{\eta}\right|^{(2-p) /(p-1)} Y_{\eta}$ has a limit $c|\eta|$ and w has a limit $a \geqq 0$. From (2.16), $r w^{\prime}=|\eta| w(1+o(1)$, hence $a=0$. Then $c \geqq 0$; if $b=0$, then $Y<0$, the function $v=-e^{(\gamma+N) \tau} Y>0$ tends to 0 and

$$
v^{\prime}=-e^{(\gamma+N) \tau} \varepsilon(\alpha-\eta) y(1+o(1))=-\varepsilon(\alpha-\eta)|\eta| e^{-(\gamma+N)(p-2) /(p-1) \tau} v^{1 /(p-1)} ;
$$

we reach again a contradiction. Thus $a=0$ and $c>0$, and (4.7) holds.
(v) Assertion (4.8) follows from (4.2).
(vi) Here $r w^{\prime}=o(w)$, thus $w+\left|w^{\prime}\right|=O\left(r^{-k}\right)$ for any $k>0$. Then J_{N}^{\prime} is integrable, J_{N} has a limit at 0 , and $\lim _{r \rightarrow 0} r^{N} w=0$. Thus $\lim _{r \rightarrow 0} r^{(N-1) /(p-1)} w^{\prime}=-c \in \mathbb{R}, \lim _{r \rightarrow 0} J_{N}=-\varepsilon|c|^{p-2} c$, $\lim _{r \rightarrow 0} w=a \geq 0$. If $c=0$, then $J_{N}(r)=\int_{0}^{r} J_{N}^{\prime}(s) d s$, implying that $\lim _{r \rightarrow 0} w^{\prime}=0$. Either $a>0$ and then w is regular, then $\lim _{\tau \rightarrow-\infty} \sigma=\varepsilon$; or $a=0$, then $w^{\prime}>0$ and $\left(w^{\prime}\right)^{p-1}=O(r w)$; in both cases we get a contradiction. Thus $c \neq 0$. If $a=0$, we find $\lim _{\tau \rightarrow-\infty} \zeta=\eta$, which is not true, hence $a>0$. In any case (4.9) or (4.10) holds.

Now we study the cases where y is not monotone, and eventually changing sign.

Proposition 4.3 Suppose $\varepsilon=-1$. Let $w \not \equiv 0$ be any solution of $\left(\boldsymbol{E}_{w}\right)$.
(i) If $\alpha \leqq-\gamma$, then w is oscillating near 0 at ∞.
(ii) If $\alpha<0$, then y and Y are bounded at ∞.

Proof. (i) Suppose by contradiction that $w \geqq 0$ for large r, then $y \geqq 0$ for large τ. If $y>0$ near ∞, then from Proposition 3.8, either y is constant, which is impossible since $(0,0)$ is the unique stationary point; or y is strictly monotone, which contradicts Proposition 4.1. Then there exists a sequence $\left(\tau_{n}\right)$ tending to ∞ such that $y\left(\tau_{n}\right)=y^{\prime}\left(\tau_{n}\right)=0$; from Theorem $3.10, y \equiv 0$ on $\left(-\infty, \tau_{n}\right)$, thus $y \equiv 0$.
(ii) Consider the function

$$
\tau \mapsto R(\tau)=\frac{y^{2}}{2}+\frac{|Y|^{p^{\prime}}}{p^{\prime}|\alpha|} ;
$$

it satisfies

$$
R^{\prime}(\tau)=-\gamma y^{2}+\frac{1}{|\alpha|}|Y|^{2 /(p-1)}-\frac{N+\gamma}{|\alpha|}|Y|^{p^{\prime}} .
$$

From the Young inequality,

$$
|\alpha|\left(R^{\prime}(\tau)+\gamma R(\tau)\right)=|Y|^{2 /(p-1)}-\left(N+\frac{1}{p-2}\right)|Y|^{p^{\prime}} \leqq\left(\frac{2}{N p+\gamma}\right)^{(p-2) / 2} \leqq 1
$$

thus $R(\tau)$ is bounded for large τ, at least by $1 /|\alpha| \gamma$.
Proof.
Proposition 4.4 (i) Assume $\varepsilon=1$, or $\varepsilon=-1, \alpha \notin\left(\alpha_{2}, \alpha_{1}\right)$. Then for any trajectory of system (S) in \mathcal{Q}_{4} near $\pm \infty, y$ is strictly monotone near $\pm \infty$.
(ii) Assume $\varepsilon=1$, and $\alpha \leqq \alpha^{*}$ or $-p^{\prime} \leqq \alpha$. Then system (\boldsymbol{S}) admits no cycle in \mathcal{Q}_{4} (or \mathcal{Q}_{2}).

Proof. (i) In any case M_{ℓ} is a node point. Following [4, Theorem 2.24], we use the linearization defined by (2.9). Consider the line L given by the equation $A \bar{y}+\bar{Y}=0$, where A is a real parameter. The points of L are in \mathcal{Q}_{4} whenever $\bar{Y}<(\gamma \ell)^{p-1}$ and $-\ell<\bar{y}$. We get

$$
A \bar{y}^{\prime}+\bar{Y}^{\prime}=\left(\varepsilon \nu(\alpha) A^{2}+(N+\nu(\alpha)) A+\varepsilon \alpha\right) \bar{y}+(A+\varepsilon) \Psi(\bar{Y}) .
$$

From (2.13), apart from the case $\varepsilon=1, \alpha=N$, we can find an A such that

$$
\varepsilon \nu(\alpha) A^{2}+(N+\nu(\alpha)) A+\varepsilon \alpha=0
$$

and $A+\varepsilon \neq 0$. Moreover $\Psi(\bar{Y}) \leqq 0$ on $L \cap \mathcal{Q}_{4}$. Indeed $(p-1) \Psi^{\prime}(t)=-\left((\gamma \ell)^{p-1}-t\right)^{(2-p) /(p-1)}+$ $(\gamma \ell)^{2-p}$, thus Ψ has a maximum 0 on $\left(-\infty,(\delta \ell)^{p-1}\right)$ at point 0 . Then the orientation of the vector
field does not change along $L \cap \mathcal{Q}_{4}$. In particular y cannot oscillate around ℓ, thus y is monotone, from Proposition 3.8. If $\varepsilon=1, \alpha=N$, then $Y \equiv y \in(\ell, \infty)$ defines the trajectory \mathcal{T}_{r}, corresponding to the solutions given by (1.10) with $K>0$. No solution y can oscillate around ℓ, since the trajectory cannot meet \mathcal{T}_{r}.
(ii) Suppose that there exists a cycle in \mathcal{Q}_{4}.

- Assume $\alpha \leqq \alpha^{*}$. Here M_{ℓ} is a source, or a weak source, from Proposition 2.5. Any trajectory starting from M_{ℓ} at $-\infty$ has a limit cycle in \mathcal{Q}_{1}, which is attracting at ∞. Writing System (\mathbf{S}) under the form $y^{\prime}=f_{1}(y, Y), Y^{\prime}=f_{2}(y, Y)$, the mean value of the Floquet integral on the period $[0, \mathcal{P}]$ is given by

$$
\begin{equation*}
I=\oint\left(\frac{\partial f_{1}}{\partial y}(y, Y)+\frac{\partial f_{2}}{\partial Y}(y, Y)\right) d \tau=\oint\left(\frac{|Y|^{(2-p) /(p-1)}}{p-1}-2 \gamma-N\right) d \tau \tag{4.11}
\end{equation*}
$$

Such a cycle is not unstable, thus $I \leqq 0$. Now

$$
\oint\left(\alpha y^{\prime}-\gamma Y^{\prime}\right) d \tau=0=(\alpha+\gamma) \oint|Y|^{1 /(p-1)} d \tau-\gamma(\gamma+N) \oint|Y| d \tau
$$

From the Jensen and Hölder inequalities, since $1 /(p-1)<1$,

$$
\begin{gathered}
\gamma(\gamma+N)\left(\oint|Y|^{1 /(p-1)} d \tau\right)^{p-2} \leqq \alpha+\gamma \\
\left.1 \leqq\left(\oint|Y|^{(2-p) /(p-1)}\right) d \tau\right)\left(\oint|Y|^{1 /(p-1)} d \tau\right)^{p-2} \leqq \frac{(p-1)(2 \gamma+N)}{\gamma(\gamma+N)}(\alpha+\gamma),
\end{gathered}
$$

then $\alpha^{*}<\alpha$, which is contradictory.

- Assume $-p^{\prime} \leqq \alpha<0$. Consider the functions $y_{\alpha}=e^{(\alpha+\gamma) \tau} y$ and $Y_{\alpha}=e^{(\alpha+\gamma)(p-1) \tau} Y$ defined by (2.3) with $d=\alpha$. They vary respectively from 0 to ∞ and from 0 to $-\infty$. They have no extremal point. Indeed at such a point, from (3.2) and (3.3) $y_{\alpha}^{\prime \prime}$ or $Y_{\alpha}^{\prime \prime}$ have a strict constant sign for $\alpha \neq \eta, p^{\prime}$, which is contradictory. If $\alpha=\eta$ or p^{\prime}, from uniqueness y_{α} or Y_{α} is constant, thus y or Y is monotone, which is impossible. In any case $y_{\alpha}^{\prime}>0>Y_{\alpha}^{\prime}$ on $(-\infty, \infty)$. Next, from (2.5) and (2.6),

$$
\begin{gather*}
\frac{y_{\alpha}^{\prime \prime}}{y_{\alpha}^{\prime}}+\eta-2 \alpha-\frac{1}{p-1} Y^{(2-p) /(p-1)}=\alpha(\eta-\alpha) \frac{y_{\alpha}}{y_{\alpha}^{\prime}} \tag{4.12}\\
\frac{Y_{\alpha}^{\prime \prime}}{Y_{\alpha}^{\prime}}+(p-1)\left(\eta-2 \alpha-p^{\prime}\right)-\frac{1}{p-1} Y^{(2-p) /(p-1)}=(p-1)^{2}(\eta-\alpha)\left(p^{\prime}+\alpha\right) \frac{Y_{\alpha}}{Y_{\alpha}^{\prime}} \tag{4.13}
\end{gather*}
$$

Let us integrate on the period \mathcal{P}. If $\eta \leqq \alpha<0$, then $\eta-N-2(\alpha+\gamma) \geqq 0$ from (4.12), which is contradictory. If $-p^{\prime} \leqq \alpha<\eta$, then $-2\left(\alpha+p^{\prime}+\gamma\right)>0$ from (4.13), still contradictory.

5 New local existence results

At Proposition 4.1 we gave all the possible behaviours of the positive solutions near $\pm \infty$. Next we prove their existence, and uniqueness or multiplicity. The case $p>N$ is very delicate.

Theorem 5.1 (i) Suppose $p<N$. In the phase plane (y, Y) of system (\boldsymbol{S}) there exist an infinity of trajectories \mathcal{T}_{η} such that $\lim _{\tau \rightarrow-\infty}(\zeta, \sigma)=L_{\eta}$; the corresponding w satisfy (4.6).
(ii) Suppose $p>N$. There exist a unique trajectory \mathcal{T}_{u} such that $\lim _{\tau \rightarrow-\infty}(\zeta, \sigma)=L_{\eta}$; in other words for any $c \neq 0$, there exists a unique solution w of equation $\left(\boldsymbol{E}_{w}\right)$ such that (4.7) holds.

Proof. Suppose that such a trajectory exists in the plane (y, Y). In the phase plane (ζ, ψ) of System (P), ζ and ψ keep a strict constant sign, because the two axes $\zeta=0$ and $\psi=0$ contain particular trajectories, and (ζ, ψ) converges to $(\eta, 0)$ at $-\infty$. Reciprocally, setting $\zeta=\eta+\bar{\zeta}$, the linearized problem at point $(\eta, 0)$

$$
\bar{\zeta}^{\prime}=\eta \bar{\zeta}+\eta(\alpha-\eta) \varepsilon \psi /(p-1), \quad \psi^{\prime}=(N-\eta) \psi,
$$

admits the eigenvalues η and $N-\eta$. The trajectories linked to the eigenvalue η are tangent to the line $\psi=0$.
(i) Case $p<N$. Then $\eta>0$, and $(\eta, 0)$ is a source. In the plane (ζ, ψ) there exist an infinity of trajectories, starting from this point at $-\infty$, such that $\psi>0$, and $\lim _{\tau \rightarrow-\infty} \zeta=\eta$, thus $\zeta>0$. In the phase plane (y, Y), setting $y=\left(\psi|\zeta|^{p-2} \zeta\right)^{2-p}$ and $Y=y / \psi$, they correspond to an infinity of trajectories in the plane (y, Y) such that $\lim _{\tau \rightarrow-\infty}(\zeta, \sigma)=L_{\eta}$, and (4.6) holds from Proposition (4.2).
(ii) Case $p>N$. Then $\eta<0$, and $(\eta, 0)$ is a saddle point. In the plane (ζ, ψ), there exists a unique trajectory starting from $(\eta, 0)$, tangentially to the vector $(\eta(\alpha-\eta) \varepsilon /(p-1), N-\eta)$, with $\psi<0$; it defines a unique trajectory \mathcal{T}_{u} in the plane (y, Y), and (4.7) holds. From Remark 2.1, we get a solution for any $c \neq 0$.

Theorem 5.2 (i) Suppose $p=N$. In the phase plane (y, Y), there exists an infinity of trajectories \mathcal{T}_{+}such that $\lim _{\tau \rightarrow-\infty}(\zeta, \sigma)=L_{+}$; then w satisfies (4.8).
(ii) Suppose $p>N$. Then there exist an infinity of trajectories \mathcal{T}_{+}(resp. \mathcal{T}_{-}) such $\lim _{\tau \rightarrow-\infty}(\zeta, \sigma)=$ L_{+}(resp. $\left.L_{-}\right)$; then the corresponding solutions w of $\left(\boldsymbol{E}_{w}\right)$ satisfy (4.9) (resp. (4.10).

More precisely for any $k>0$ (for $p=N$) or any $a>0$ and $c \neq 0($ for $p>N)$ there exists a unique function w satisfying those conditions.

Proof. If $\lim _{\tau \rightarrow-\infty}(\zeta, \sigma)=L_{ \pm}$, then $\lim _{\tau \rightarrow-\infty}(\zeta, \psi)=(0,0)$, with $\zeta \psi>0$ in case of $L_{+}, \zeta \psi<0$ in case of L_{-}. The linearization of System (\mathbf{P}) near $(0,0)$ is given by

$$
\zeta^{\prime}=|\eta| \zeta, \quad \psi^{\prime}=N \psi
$$

(i) Case $p=N$. The phase plane study is delicate because 0 is a center, thus we use a fixed method. Suppose that such a trajectory exists, and consider the substitution (2.3) with $d=0$. From (4.2), there exists $k>0$ such that $\zeta=\left|Y_{0}\right|^{(2-p) /(p-1)} / y_{0}=-\tau^{-1}(1+o(1))>0$, and $\psi=-k^{2-p} \tau e^{N \tau}(1+o(1))>0$. Then $\zeta^{\prime}=\tau^{-2}(1+o(1))$ from System (\mathbf{P}). The function

$$
V=\psi e^{-N / \zeta} \zeta
$$

satisfies $\lim _{\tau \rightarrow-\infty} V=k^{2-p}$, and

$$
V^{\prime}=\frac{V e^{N / \zeta}}{(N-1) \zeta^{2}}\left(\varepsilon(\alpha-\zeta)(N-(N-2) \zeta) V+2 N(N-1) \zeta^{2} e^{-N / \zeta}\right)
$$

Thus $\varepsilon \alpha\left(V-k^{2-p}\right)>0$ near $-\infty$. Moreover $\lim _{\tau \rightarrow-\infty} \zeta^{\prime} / V^{\prime}=0$, so that ζ can be considered as a function of V near k^{2-p}, with $\lim _{V \rightarrow k^{2-p}} \zeta=0$ and

$$
\frac{d \zeta}{d V}=K(V, \zeta), \quad K(V, \zeta):=\frac{\zeta^{2}}{V} \frac{\varepsilon(\alpha-\zeta) V+(N-1) \zeta^{2} e^{-N / \zeta}}{\varepsilon(\alpha-\zeta)(N-(N-2) \zeta) V+2 N(N-1) \zeta^{2} e^{-N / \zeta}}
$$

Reciprocally, extending the function $\zeta^{2} e^{-N / \zeta}$ by 0 for $\zeta \leqq 0$, the function K is of class C^{1} near $\left(k^{2-p}, 0\right)$. For any $k>0$, there exists a unique local solution $V \mapsto \zeta(V)$ on a interval \mathcal{V} where $\varepsilon \alpha\left(V-k^{2-p}\right)>0$, such that $\zeta\left(k^{2-p}\right)=0$. And $d \zeta / d V=\left(\zeta^{2} / N k^{2-p}\right)(1+o(1))$ near 0 , thus $\zeta>0$. In the plane (ζ, ψ), taking one point P on the curve $\mathcal{C}=\left\{\left(\zeta(V), V \zeta(V) e^{N / \zeta(V)}\right): v \in \mathcal{V}\right\}$, there exists a unique solution of System (\mathbf{P}) issued from P at time 0 . Its trajectory is on \mathcal{C}, thus it converges to $(0,0)$, with $\zeta, \psi>0$. It corresponds to a unique trajectory \mathcal{T}_{+}in the plane (y, Y), and (ζ, σ) converges to L_{+}, as τ tends to $-\infty$, from Proposition 4.1. The corresponding functions w satisfy (4.8) from Proposition (4.2).
(ii) Case $p>N$. Here $(0,0)$ is a source for $\operatorname{System}(\mathbf{P})$. The lines $\zeta=0$ and $\psi=0$ contain trajectories. There exists an infinity of trajectories converging to $(0,0)$, with $\zeta \psi \neq 0$; moreover, if $N \geqq 2$, then $|\eta|<N$, thus $\lim _{\tau \rightarrow-\infty}(\psi / \zeta)=0$. Our claim is more precise. Given $a>0$ and $c \neq 0$, we look for a solution w of $\left(\mathbf{E}_{w}\right)$ such that $\lim _{r \rightarrow 0} w=a, \lim _{r \rightarrow 0} r^{\eta+1} w^{\prime}=-c$. By scaling we can assume $a=1$. If w_{1} is a such a solution, then ζ and ψ have the sign of c near 0 , and $\zeta(\tau)=c e^{|\eta| \tau}(1+o(1))$ and $|c|^{p-2} c \psi(\tau)=e^{N \tau}(1+o(1))$. The function

$$
v=c\left(|c|^{p-2} c \psi\right)^{1 / \kappa} / \zeta, \quad \text { with } \kappa=N /|\eta|>1
$$

satisfies $\lim _{\tau \rightarrow-\infty} v=1$, and can be expressed locally as a function of ζ, and

$$
\frac{d v}{d \zeta}=H(\zeta, v), \quad H(\zeta, v):=-\frac{v}{\kappa} \frac{(p-1)(\kappa+1)+\varepsilon(\kappa-p+1)|c|^{1-p-\kappa}(\zeta-\alpha)|\zeta|^{\kappa-1} v^{\kappa}}{(p-1)(\zeta-\eta)+\varepsilon|c|^{1-p-\kappa}(\alpha-\zeta)|\zeta|^{\kappa-1} \zeta v^{\kappa}}
$$

Reciprocally, there exists a unique solution $\zeta \mapsto v(\zeta)$ of this equation on a small interval $[0, h c)$, with $h>0$, such that $v(0)=1$. Indeed H is locally continuous in ξ and C^{1} in v. Taking one
point P on the curve $\mathcal{C}^{\prime}=\left\{\left(\zeta,|c|^{1-p-\kappa}|\zeta|^{\kappa-1} \zeta v(\zeta)\right): \zeta \in[0, h c)\right\}$, there exists a unique solution of System (\mathbf{P}) issued from P at time 0 . Its trajectory is on \mathcal{C}^{\prime}, thus converges to $(0,0)$ with $\zeta \psi>0$. It corresponds to a solution (y, Y) of System (\mathbf{S}), such that (ζ, σ) converges to L_{+}, as τ tends to $-\infty$, from Proposition 4.1. The corresponding function, called w_{2}, satisfies $\lim _{r \rightarrow 0} r^{\eta+1} w_{2}^{\gamma^{-1}|\eta|-1} w_{2}^{\prime}=-c$; thus w_{2} has a limit a_{2}, and $\lim _{r \rightarrow 0} r^{\eta-1} w_{2}^{\prime}=a_{2}^{1-s} b$. Moreover $a_{2} \neq 0$, because $a_{2}=0$ implies that $r^{-\gamma} w_{2}$ has a nonzero limit, thus (ζ, σ) converges to A_{γ}. The function $w(r)=a_{2}^{-1} w_{2}\left(a_{2}^{1 / \gamma} r\right)$ satisfies $\lim _{r \rightarrow 0} w=1$, and $\lim _{r \rightarrow 0} r^{\eta-1} w^{\prime}=-c$, and the proof is done.

Theorem 5.3 (i) In the phase plane (y, Y), for any $\alpha \neq 0$ there exists at least a trajectory \mathcal{T}_{α} converging to $(0,0)$ with $y>0$, and $\lim (\zeta, \sigma)=A_{\alpha}$. The convergence holds at ∞ if $-\gamma<\alpha$, or $-\infty$ if $\alpha<-\gamma$, or $\varepsilon \infty$ if $\alpha=-\gamma$.
(ii) If $\varepsilon(\gamma+\alpha)<0, \mathcal{T}_{\alpha}$ is unique, it is the unique trajectory converging to $(0,0)$ at $-\varepsilon \infty$ with $y>0$, and it depends locally continuously of α.

Proof. (i) Suppose that such a trajectory exists. Then τ tends to ∞ if $-\gamma<\alpha$, or $-\infty$ if $\alpha<-\gamma$, or $\varepsilon \infty$ if $\alpha=-\gamma$, from Proposition 4.1. Consider System (R), where g, s and ν are defined by (2.18). Then (g, s) converges to $(-1 / \alpha, 0)$, with $g s>0$, and ν tends to the same limits as τ, since Y converges to 0 . Reciprocally, in the plane (g, s), let us show the existence of a trajectory converging to $(-1 / \alpha, 0)$, different from the line $s=0$. Setting $g=-1 / \alpha+\bar{g}$, the linearized system at this point is

$$
\frac{d \bar{g}}{d \nu}=-\frac{\varepsilon}{p-1} \bar{g}+\frac{\eta-\alpha}{\alpha^{2}} s, \quad \frac{d s}{d \nu}=0,
$$

thus we find a center: the eigenvalues are 0 and $\lambda=\varepsilon /(p-1)$. Since the system is polynomial, it is known that System (\mathbf{R}) admits a trajectory, depending locally continuously of α, such that $s g>0$, and tangent to the eigenvector $\left((p-1)(\eta-\alpha), \varepsilon \alpha^{2}\right)$. It satisfies $d s / d \nu=(p-2)(\alpha+\gamma) s^{2}(1+o(1))$. Then $d s / d \tau=-(p-2) \alpha(\alpha+\gamma) s(1+o(1))$, thus τ tends to $\pm \infty$. And $|y|^{p-2}=|s||g|^{1 /(p-1)}$, then y tends to $0,(y, Y)$ converges to $(0,0)$, and $\lim (\zeta, \sigma)=A_{\alpha}$.
(ii) Suppose $\varepsilon(\gamma+\alpha)<0$. Consider two trajectories $\mathcal{T}_{1}, \mathcal{T}_{2}$ in the plane (y, Y), converging to $(0,0)$ at $-\varepsilon \infty$, with $y>0$. They are different from $\mathcal{T}_{\varepsilon}$ which converges at $\varepsilon \infty$, thus $\lim \left(\zeta_{i}, \sigma_{i}\right)=(\alpha, 0)$ from Proposition 4.1. Then ζ_{1}, ζ_{2} can locally be expressed as a function of y, and

$$
y \frac{d\left(\zeta_{1}-\zeta_{2}\right)^{2}}{d y}=2\left(F\left(\zeta_{1}, y\right)-F\left(\zeta_{2}, y\right)\right)\left(\zeta_{1}-\zeta_{2}\right)
$$

near 0 , where

$$
F(\zeta, y)=\frac{1}{\gamma+\zeta}\left(-\zeta(\zeta-\eta)+\frac{\varepsilon}{p-1}|\zeta y|^{2-p}(\zeta-\alpha)\right) .
$$

Then $\left(\zeta_{1}-\zeta_{2}\right)^{2}$ is nonincreasing, seeing that $\partial F / \partial \zeta(\zeta, y)=-((p-1) \varepsilon(\gamma+\alpha))^{-1}|\alpha y|^{2-p}(1+o(1))$. Hence $\zeta_{1} \equiv \zeta_{2}$ near 0 , and $\mathcal{T}_{1} \equiv \mathcal{T}_{2}$.

6 The case $\varepsilon=1,-\gamma \leqq \alpha$

In that Section and in Sections 7, 8 and 9 we describe the solutions of $\left(\mathbf{E}_{w}\right)$. When we give a uniqueness result, we mean that w is unique, up to a scaling, from Remark 2.1.

Theorem 6.1 Assume $\varepsilon=1,-\gamma \leqq \alpha(\alpha \neq 0)$.
Any solution w of $\left(\boldsymbol{E}_{w}\right)$ has a finite number of simple zeros, and satisfies (4.4) or (4.5) near ∞ or has a compact support. Either w is regular, or $|w|$ satisfies (4.6),(4.8), (4.7),(4.9) or (4.10) near 0 , and there exist solutions of each type.
(1) Case $\alpha<N$. All regular solutions have a strict constant sign, and satisfy (4.4) or (4.5) near ∞. Moreover there exist (and exhaustively, up to a symmetry)
(i) a unique nonnegative solution with (4.6) or (4.8) or (4.9)) near 0 , and compact support;
(ii) positive solutions with the same behaviour at 0 and (4.4) or (4.5) near ∞;
(iii) solutions with one simple zero, and $|w|$ has the same behaviour at 0 and ∞;
(iv) for $p>N$, a unique positive solution with (4.7) near 0 , and (4.4) or (4.5) near ∞;
(v) for $p>N$, positive solutions with (4.10) near 0 , and (4.4) or (4.5) near ∞.
(2) Case $\alpha=N$. Then the regular (Barenblatt) solutions have a constant sign with compact support. If $p \leqq N$, all the other solutions are of type (iii). If $p>N$, there exist also solutions of type (iv) and (v).
(3) Case $\alpha>N$.

Either the regular solutions have m simple zeros and satisfy satisfies (4.4) near ∞. Then there exist
(vi) a unique solution with m simple zeros, $|w|$ satisfies (4.6), (4.8) or(4.9) near 0 , with compact support;
(vii) solutions with $m+1$ simple zeros, $|w|$ satisfies (4.6), (4.8) or (4.9) near 0 , and (4.4) or (4.5) near ∞;
(viii) for $p>N$, solutions with m simple zeros, $|w|$ satisfies (4.9),(4.7) or (4.10) near 0 , and (4.4) or (4.5) near ∞.

Or the regular solutions have m simple zeros and a compact support. Then the other solutions are of type (vii) or (viii).

th 6.1 ,fig1: $\varepsilon=1, N=2, p=3, \alpha=-2$

th 6.1 ,fig3: $\varepsilon=1, N=2, p=3, \alpha=2$

th 6.1,fig2: $\varepsilon=1, N=2, p=3, \alpha=1$

th 6.1,fig4: $\varepsilon=1, N=2, p=3, \alpha=50$

Proof. All the solutions w have a finite number of simple zeros, from Proposition 3.7 and Theorem 3.9. Either they have a compact support. Or y has a strict constant sign and is monotone near ∞, and converge to $(0,0)$ at ∞, and (4.4) or (4.5) holds, from Propositions 3.8, 4.1.

In the phase plane (y, Y), system (\mathbf{S}) admits only one stationary point $(0,0)$. The trajectory \mathcal{T}_{r} starts in \mathcal{Q}_{4} when $\alpha<0$, in \mathcal{Q}_{1} when $\alpha>0$, and $\lim _{\tau \rightarrow-\infty} y=\infty$, with an asymptotical direction of slope α / N. From Propositions 4.1 and 4.2 all the nonregular solutions $\pm w$ satisfy (4.6), (4.8),
(4.7), (4.9) or (4.10) near $-\infty$. The existence of solutions of any kind is proved at Theorems 5.1 and 5.2. When $p \leqq N$, they correspond to trajectories $\pm \mathcal{T}_{\eta}$ such that \mathcal{T}_{η} starts in \mathcal{Q}_{1} with an infinite slope, in any case above \mathcal{T}_{r}. When $p>N$, there is a unique trajectory \mathcal{T}_{u} satisfying (4.7), starting in \mathcal{Q}_{4}, under \mathcal{T}_{r}; the trajectories \mathcal{T}_{+}start from \mathcal{Q}_{1}, above \mathcal{T}_{r}; the trajectories \mathcal{T}_{-}start in \mathcal{Q}_{4} under \mathcal{T}_{r}. From Theorem 3.9, there exists a unique trajectory $\mathcal{T}_{\varepsilon}$ converging to $(0,0)$ in \mathcal{Q}_{1} at ∞, with the slope 1 .
(1) Case $\alpha<N$. From Proposition 3.6, all the solutions w have at most one simple zero.

The regular solutions stay positive, and \mathcal{T}_{r} stays in its quadrant, \mathcal{Q}_{4} or \mathcal{Q}_{1}, from Remark 2.3 (see figures 1 and 2). Then $\mathcal{T}_{\varepsilon}$ stays in \mathcal{Q}_{1}, because it cannot meet \mathcal{T}_{r} for $\alpha>0$, or the line $\{Y=0\}$ for $\alpha<0$, from Remark 2.3; and the corresponding w is of type (i).

Consider any trajectory $\mathcal{T}_{[P]}$ with $P \in \mathcal{Q}_{1}$ above $\mathcal{T}_{\varepsilon}$. It cannot stay in \mathcal{Q}_{1} because it does not meet $\mathcal{T}_{\varepsilon}$ and converges to $(0,0)$ with a slope 0 . Thus it enters \mathcal{Q}_{2} from Remark 2.3. Then y has a unique zero, and $\mathcal{T}_{[P]}$ stays in \mathcal{Q}_{1} before P, and in $\mathcal{Q}_{2} \cup \mathcal{Q}_{3}$ after P. Since $\mathcal{T}_{[P]}$ cannot meet $\pm \mathcal{T}_{\varepsilon}$, and $\lim _{\tau \rightarrow \infty} \zeta=\alpha, \mathcal{T}_{[P]}$ ends up in \mathcal{Q}_{3} if $\alpha>0$, in \mathcal{Q}_{2} if $\alpha<0$. It has the same behaviour as $\mathcal{T}_{\varepsilon}$ at $-\infty$, and w is of type (iii).

Next consider $\mathcal{T}_{[P]}$ for any $P \in \mathcal{Q}_{1} \cup \mathcal{Q}_{4}$ between $\mathcal{T}_{\varepsilon}$ and \mathcal{T}_{r}. Then y stays positive, and $\mathcal{T}_{[P]}$ necessarily starts from \mathcal{Q}_{1}, and w is of type (ii).

At least take any $P \in \mathcal{Q}_{1} \cup \mathcal{Q}_{4}$ under \mathcal{T}_{r}. If $p \leqq N, \mathcal{T}_{[P]}$ starts from \mathcal{Q}_{3} and y has a unique zero, and $-w$ is of type (iii). If $p>N$, either $-w$ is of type (iii), or $\mathcal{T}_{[P]}$ stays in \mathcal{Q}_{4}. From Theorems 5.1, 5.2, either $\mathcal{T}_{[P]}$ coincides with \mathcal{T}_{u}, and w is of type (iv), or with one of the trajectories \mathcal{T}_{-}, thus w is of type (v).
(2) Case $\alpha=N$. All the solutions are given by (1.9), which is equivalent to $J_{N} \equiv C$, where J_{N} is defined by (2.1). For $C=0$, the regular (Barenblatt) solutions, given by (1.10), are nonnegative, with a compact support. In other words the trajectory $\mathcal{T}_{\varepsilon}$ given by Theorem 5.3 coincides with \mathcal{T}_{r}, it is given by $y \equiv Y, y>0$ (see figure 3). The only change in the phase plane is the nonexistence of solutions of type (ii).
(3) Case $\alpha>N$.

The regular solutions have a number $m \geqq 1$ of simple zeros, from Proposition 3.6 (see figure 4). As above, \mathcal{T}_{r} starts from \mathcal{Q}_{1} with a finite slope α / N.

Either $\mathcal{T}_{r} \neq \mathcal{T}_{\varepsilon}$. Then the regular solutions satisfy $\lim _{r \rightarrow \infty} r^{\alpha} w=L \neq 0$. Since $\mathcal{T}_{\varepsilon}$ cannot meet $\mathcal{T}_{r}, \mathcal{T}_{\varepsilon}$ also cuts the line $\{y=0\}$ at m points, and the corresponding w is of type (vi). For any $P \in \mathcal{Q}_{1}$ above \mathcal{T}_{r}, the trajectory $\mathcal{T}_{[P]}$ cuts the line $\{y=0\}$ at $m+1$ points and w is of type (vii). If $p>N$, there exist trajectories starting from \mathcal{Q}_{1} between $\mathcal{T}_{\varepsilon}$ and \mathcal{T}_{r}, with (4.9), such that w has m simple zeros, and trajectories with (4.7) or (4.10), m zeros, and $\lim _{r \rightarrow \infty} r^{\alpha} w=L \neq 0$.

Or $\mathcal{T}_{r}=\mathcal{T}_{\varepsilon}$, the regular solutions have a compact support, and we only find solutions of type (vii), (viii).

Remark 6.2 In the case $\alpha=\eta<0$, the solutions (iv) are given by (1.11). In the case $N=1$, $\alpha=-(p-1) /(p-2)$, the solutions of types (i) and (v) are given by (1.14).

Remark 6.3 We conjecture that there exists an increasing sequence $\left(\bar{\alpha}_{m}\right)$, with $\bar{\alpha}_{0}=N$ such that the regular solutions w have m simple zeros for $\alpha \in\left(\bar{\alpha}_{m-1}, \bar{\alpha}_{m}\right)$, with $\lim _{r \rightarrow \infty} r^{\alpha} w=L \neq 0$, and m simple zeros and a compact support for $\alpha=\bar{\alpha}_{m}$, in which case $\mathcal{T}_{r}=\mathcal{T}_{\varepsilon}$.

7 The case $\varepsilon=-1, \alpha \leqq-\gamma$

Theorem 7.1 Assume $\varepsilon=-1, \alpha \leqq-\gamma$. Then all the solutions w of $\left(\boldsymbol{E}_{w}\right)$, among them the regular ones, are ocillating near ∞ and $r^{-\gamma} w$ is asymptotically periodic in $\ln r$. There exist
(i) solutions such that $r^{-\gamma} w$ is periodic in $\ln r$;
(ii) a unique solution with a hole;
(iii) flat solutions w with (4.4) or (4.5) near 0 ;
(iv) solutions with (4.6) or(4.8) or (4.9) or also (4.10) near 0 ;
(v) for $p>N$, a unique solution with (4.7) near 0 .

Proof. Here again, $(0,0)$ is the unique stationary point in the plane (y, Y). Any solution y of $\left(\mathbf{E}_{y}\right)$ oscillates near ∞, and (y, Y) is bounded from Proposition 4.3. From the strong form of the Poincaré-Bendixon theorem, see [7, p.239], all the trajectories have a limit cycle or are periodic. In particular \mathcal{T}_{r} starts in \mathcal{Q}_{1}, since $\varepsilon \alpha>0$, with the asymptotical direction $\varepsilon \alpha / N$. and it has a limit cycle \mathcal{O}. There exists a periodic trajectory of orbit \mathcal{O}, thus w is of type (i) (see figure 5).

From Theorem 5.2 there exists a unique trajectory $\mathcal{T}_{\varepsilon}$ starting from $(0,0)$ with the slope -1 , $y>0$; it has a limit cycle $\mathcal{O}_{\varepsilon} \subset \mathcal{O}$, and w is of type (ii). For any P in the bounded domain delimitated by $\mathcal{O}_{\varepsilon}$, not located on $\mathcal{T}_{\varepsilon}$, the trajectory $\mathcal{T}_{[P]}$ does not meet $\mathcal{T}_{\varepsilon}$, and admits $\mathcal{O}_{\varepsilon}$ as limit
cycle; near $-\infty, y$ has a constant sign, is monotone and converges to $(0,0)$ from Propositions 3.8 and 4.1, and $\lim _{\tau \rightarrow-\infty} \zeta=\alpha$. This show again the existence of such trajectories, proved at Theorem 5.1, and there is an infinity of them; and w is if type (iii).

From Theorems 5.1 and 5.2, there exist trajectories starting from infinity, with \mathcal{O} as limit cycle, and w is of type (iv) or (v). If $\mathcal{O}=\mathcal{O}_{\varepsilon}$, all the solutions are described.

8 Case $\varepsilon=1, \alpha<-\gamma$.

Theorem 8.1 Assume $\varepsilon=1, \alpha<-\gamma$. Then $w \equiv \pm \ell r^{\gamma}$ is a solution of (\boldsymbol{E}_{w}). All regular solutions have a strict constant sign, and satisfy (4.3) near ∞. Moreover there exist (exhaustively, up to a symmetry)
(i) a unique positive flat solution with (4.4) near 0 and (4.3) near ∞;
(ii) a unique nonnegative solution with (4.6) or (4.8) or (4.9) near 0, and compact support;
(iii) positive solutions with the same behaviour near 0 and (4.3) near ∞;
(iv) solutions with one zero and the same behaviour near 0, and $|w|$ satisfies (4.3) near ∞;
(v) for $p>N$, positive solutions with (4.7) near 0 and (4.3) near ∞;
(vi) for $p>N$, positive solutions with (4.10) near 0 and (4.3) near ∞.

th 8.1, fig6: $\varepsilon=1, N=2, p=3, \alpha=-6$
Proof. Here system (\mathbf{S}) admits three stationary points in the plane (y, Y), given at (2.8), thus $w \equiv \pm \ell r^{\gamma}$ is a solution; and M_{ℓ} is a sink (see figure 6). Any solution y of $\left(\mathbf{E}_{y}\right)$ has at most one zero, and is strictly monotone near $\pm \infty$, from Propositions 3.6 and 3.8.

From Theorems 3.9 and 5.3 , there exists a unique trajectory $\mathcal{T}_{\varepsilon}$ converging to $(0,0)$ in \mathcal{Q}_{1} at ∞, and a unique trajectory \mathcal{T}_{α} converging to $(0,0)$ in \mathcal{Q}_{4} at $-\infty$. The trajectory \mathcal{T}_{r} starts in \mathcal{Q}_{4} with the asymptotical direction $-|\alpha| / N$. From Remark $2.3, \mathcal{Q}_{4}$ is positively invariant, and \mathcal{Q}_{1} negatively invariant. Then $\mathcal{T}_{\varepsilon}$ stays in \mathcal{Q}_{1}, and \mathcal{T}_{α} and \mathcal{T}_{r} in \mathcal{Q}_{4}. From Proposition 4.1, all the trajectories, apart from $\pm \mathcal{T}_{\varepsilon}$, converge to $\pm M_{\ell}$ at ∞. Then \mathcal{T}_{r} converges to M_{ℓ}, and w satisfies (4.3) near ∞. And \mathcal{T}_{α} also converges to M_{ℓ}, and w is of type (i).

From Propositions 4.1, Theorems 5.1 and 5.2, all the nonregular solutions which are positive near $-\infty$ satisfy (4.6), (4.8), (4.9), (4.10) or (4.7), and there exist such solutions. For $p<N$ (resp. $p=N$), they correspond to trajectories \mathcal{T}_{η} (resp. \mathcal{T}_{+}) starting in \mathcal{Q}_{1}. For $p>N$, there is a unique trajectory \mathcal{T}_{u} satisfying (4.7), starting in \mathcal{Q}_{4} under \mathcal{T}_{r}; and the trajectories \mathcal{T}_{+}satisfying (4.9) start from \mathcal{Q}_{1}; the trajectories \mathcal{T}_{-}satisfying (4.10) and the unique trajectory \mathcal{T}_{u} satisfying (4.7) start from \mathcal{Q}_{4}, under \mathcal{T}_{r}. Since $\mathcal{T}_{\varepsilon}$ stays in \mathcal{Q}_{1}, it defines solutions w of type (ii).

Consider the basis of eigenvectors $\left(e_{1}, e_{2}\right)$ defined at (2.15), where $\nu(\alpha)>0$, associated to the eigenvalues $\lambda_{1}<\lambda_{2}$. One verifies that $\lambda_{1}<-\gamma<\lambda_{2}$; thus e_{1} points towards \mathcal{Q}_{3} and e_{2} points towards \mathcal{Q}_{4}. There exist unique trajectories $\mathcal{T}_{e_{1}}$ and $\mathcal{T}_{-e_{1}}$ converging to M_{ℓ}, tangentially to e_{1} and $-e_{1}$. All the other trajectories converging to M_{ℓ} at ∞ are tangent to $\pm e_{2}$. Let

$$
\mathcal{M}=\left\{|Y|^{(2-p) /(p-1)} Y=-\gamma y\right\}, \quad \mathcal{N}=\left\{(N+\gamma) Y+\varepsilon|Y|^{(2-p) /(p-1)} Y=\varepsilon \alpha y\right\}
$$

be the sets of extremal points of y and Y.
The trajectory \mathcal{T}_{r} starts above the curves \mathcal{M} and \mathcal{N}, thus $y^{\prime}<0$ and $Y^{\prime}>0$ near $-\infty$. And \mathcal{T}_{r} converges to M_{ℓ} at ∞, tangentially to e_{2}. Indeed if $\mathcal{T}_{r}=\mathcal{T}_{e_{1}}$, then y has a minimal point such that $y<\ell$ and $Y<-(\gamma \ell)^{p-1}$, then (y, Y) cannot be on \mathcal{M}. If $\mathcal{T}_{r}=\mathcal{T}_{-e_{1}}$, then Y has a maximal point such that $y>\ell$ and $Y<-(\gamma \ell)^{p-1}$, then also (y, Y) cannot be on \mathcal{N}. Finally \mathcal{T}_{r} cannot end up tangentially to $-e_{2}$, it would intersect $\mathcal{T}_{e_{1}}$ or $\mathcal{T}_{-e_{1}}$.

The trajectory \mathcal{T}_{α} converge to M_{ℓ} tangentially to $-e_{2}$. Indeed if $\mathcal{T}_{\alpha}=\mathcal{T}_{e_{1}}$, then Y has a maximal point such that $y<\ell$ and $Y<-(\gamma \ell)^{p-1}$; if $\mathcal{T}_{\alpha}=\mathcal{T}_{-e_{1}}$, then y has a maximal point such that $y>\ell$ and $Y>-(\gamma \ell)^{p-1}$. In any case we reach a contradiction. Moreover $\mathcal{T}_{e_{1}}$ does not stay in \mathcal{Q}_{4} : y would have a minimal point such that $y<\ell$ and $Y<-(\gamma \ell)^{p-1}$, which is impossible; thus $\mathcal{T}_{e_{1}}$ starts in \mathcal{Q}_{3}, and enters \mathcal{Q}_{4} at some point $\left(\xi_{1}, 0\right)$ with $\xi_{1}<0$. And $-w$ is of type (iv).

Any trajectory $\mathcal{T}_{[P]}$, with P in the domain of $\mathcal{Q}_{1} \cup \mathcal{Q}_{4}$ delimitated by $\mathcal{T}_{r}, \mathcal{T}_{\alpha}$ and $\mathcal{T}_{\mathcal{\varepsilon}}$, comes from \mathcal{Q}_{1}, and converges to M_{ℓ} in \mathcal{Q}_{4}, in particular $\mathcal{T}_{-e_{1}}$; the corresponding w are of type (iii).

Any trajectory $\mathcal{T}_{[P]}$, with P in the domain of $\mathcal{Q}_{3} \cup \mathcal{Q}_{4}$ delimitated by $\mathcal{T}_{e_{1}}, \mathcal{T}_{\alpha}$ and $-\mathcal{T}_{\varepsilon}$, goes from \mathcal{Q}_{3} to \mathcal{Q}_{4}, and $\mathcal{T}_{[P]}$ converges to M_{ℓ} at ∞, and $-w$ is of type (iv). For any $\xi<\xi_{1}$, the trajectory $\mathcal{T}_{[(0, \xi)]}$ is of the same type. If $p \leqq N$, any trajectory in the domain under \mathcal{T}_{r}, and $\mathcal{T}_{e_{1}}$ is of the same type.

If $p>N$, moreover in this domain there exists a the unique trajectory \mathcal{T}_{u} and trajectories of the type \mathcal{T}_{-}corresponding to solutions w of type (v) and (vi), from Theorems 5.1 and 5.2. Up to a symmetry, all the solutions are described, and all of them do exist.

$9 \quad$ Case $\varepsilon=-1,-\gamma<\alpha$

Here again System (S) admits the three stationary points (2.8), thus $w \equiv \pm \ell r^{\gamma}$ is a solution of $\left(\mathbf{E}_{w}\right)$. The behaviour is very rich: it depends on the position of α with respect to α^{*} defined at (1.5), and $0,-p^{\prime}$, and η (in case $p>N$), and also α_{1}, α_{2} defined at (2.14). We start from some general remarks.

Remark 9.1 (i) There exists a unique trajectory $\mathcal{T}_{\varepsilon}$ starting from $(0,0)$ in \mathcal{Q}_{4} with the slope -1 , from Theorem 3.9.
(ii) There exists a unique trajectory \mathcal{T}_{α} converging to $(0,0)$ at ∞, in \mathcal{Q}_{1} if $\alpha>0$, in \mathcal{Q}_{4} if $\alpha<0$, with a slope 0 at $(0,0)$, and $\lim _{\tau \rightarrow \infty} \zeta=\alpha$, from Theorem 5.3.
(iii) From Remark 2.3, if $\alpha>0, \mathcal{Q}_{4}$ is positively invariant and \mathcal{Q}_{1} negatively invariant. If $\alpha<0$, at any point $(0, \xi), \xi<0$, the vector field points to \mathcal{Q}_{4}, and at any point $(\varphi, 0), \varphi>0$, it points to \mathcal{Q}_{1}. Thus if $\mathcal{T}_{\varepsilon}$ does not stay in \mathcal{Q}_{1}, then \mathcal{T}_{α} stays in the bounded domain delimitated by $\mathcal{Q}_{4} \cap \mathcal{T}_{\varepsilon}$. If \mathcal{T}_{α} does not stay in \mathcal{Q}_{4}, then $\mathcal{T}_{\varepsilon}$ stays in the bounded domain delimitated by $\mathcal{Q}_{4} \cap \mathcal{T}_{\alpha}$. If $\mathcal{T}_{\varepsilon}$ is homoclinic, in other words $\mathcal{T}_{\varepsilon}=\mathcal{T}_{\alpha}$, it stays in \mathcal{Q}_{4}.

Remark 9.2 From Propositions 4.1, Theorems 5.1 and 5.2, all the nonregular solutions positive near $-\infty$ satisfy (4.6) for $p<N$, (4.8) for $p=N$, corresponding to trajectories $\mathcal{T}_{\eta}, \mathcal{T}_{+}$starting from \mathcal{Q}_{1}; and (4.9), (4.10) or (4.7) for $p>N$, corresponding to trajectories \mathcal{T}_{+}starting from \mathcal{Q}_{1}, and $\mathcal{T}_{-}, \mathcal{T}_{u}$ starting from \mathcal{Q}_{4}.

Remark 9.3 Any trajectory \mathcal{T} is bounded near ∞ from Proposition 4.3. From the strong form of the Poincaré-Bendixon theorem, any trajectory \mathcal{T} bounded at $\pm \infty$ converges to $(0,0)$ or $\pm M_{\ell}$, or its limit set $\Gamma_{ \pm}$at $\pm \infty$ is a cycle, or it is homoclinic, namely $\mathcal{T}_{\varepsilon}=\mathcal{T}_{\alpha}$. If there exists a limit cycle surrounding (0,0), it also surrounds the points $\pm M_{\ell}$, from Proposition 3.8.

The simplest case is $\alpha>0$.
Theorem 9.4 Assume $\varepsilon=-1, \alpha>0$.
Then $w \equiv \ell_{r}^{\gamma}$ is a solution w of (\boldsymbol{E}_{w}). All regular solutions have a strict constant sign; and satisfy (4.3) near ∞. There exist (exhaustively, up to a symmetry)
(i) a unique nonnegative solution with a hole, and (4.3) near ∞;
(ii) a unique positive solution with (4.6), or (4.8) or (4.9), and (4.4) near ∞;
(iii) positive solutions with the same behaviour near 0, and (4.3) near ∞;
(iv) solutions with one zero, the same behaviour near 0 , and $|w|$ satisfies (4.3) near ∞;
(v) for $p>N$, a unique positive solution with (4.7) near 0 , and (4.3) near ∞;
(vi) for $p>N$, positive solutions with (4.10) near 0 , and (4.3) near ∞.

th 9.4, fig7: $\varepsilon=-1, N=1, p=3, \alpha=0.7$

th 9.4, fig8: $\varepsilon=-1, N=1, p=3, \alpha=1$

Proof. Any solution y of $\left(\mathbf{E}_{y}\right)$ has at most one zero, and y is strictly monotone near ∞, from Propositions 3.6 and 4.4. The point M_{ℓ} is a sink and a node point, since $\alpha>0 \geqq \alpha_{2}$ (see figure 7). Consider the basis eigenvectors $\left(e_{1}, e_{2}\right)$, defined at (2.15), where $\nu(\alpha)<0$, associated to the eigenvalues $\lambda_{1}<\lambda_{2}<0$. One verifies that $\lambda_{1}<-\gamma<\lambda_{2}$, thus e_{1} points towards \mathcal{Q}_{3} and e_{2} points towards \mathcal{Q}_{4}. There exist unique trajectories $\mathcal{T}_{e_{1}}$ and $\mathcal{T}_{-e_{1}}$ tangent to e_{1} and $-e_{1}$ at ∞. All the other trajectories which converge to M_{ℓ} end up tangentially to $\pm e_{1}$.

The trajectory \mathcal{T}_{α} stays in \mathcal{Q}_{1} from Remark 9.1 ; near $-\infty$ it is of type \mathcal{T}_{η} for $p<N$, and \mathcal{T}_{+} for $p \geqq N$; it defines the solution of type (ii). Since \mathcal{T}_{α} is the unique trajectory converging to (0,0) at ∞, all the trajectories, apart from $\pm \mathcal{T}_{\alpha}$, converge to $\pm M_{\ell}$ at ∞, from Propositions 3.8 and 4.1.

The trajectories \mathcal{T}_{r} and $\mathcal{T}_{\varepsilon}$ start in \mathcal{Q}_{4}, and stay in it from Remark 9.1 , and both converge to M_{ℓ} at ∞, then w satisfies (4.3); and \mathcal{T}_{r} starts with the asymptotical direction $-\alpha / N$. And $\mathcal{T}_{\varepsilon}$ defines the solution of type (i).

As in the proof of Theorem 8.1, \mathcal{T}_{r} ends up tangentially to e_{2}, and $\mathcal{T}_{\varepsilon}$ tangentially to $-e_{2}$. Moreover $\mathcal{T}_{e_{1}}$ does not stay in \mathcal{Q}_{4}, it starts in \mathcal{Q}_{3}, and converges to M_{ℓ} in \mathcal{Q}_{4}, and $-w$ is of type (iv). Any trajectory $\mathcal{T}_{[P]}$, with P in the domain of \mathcal{Q}_{4} between $\mathcal{T}_{e_{1}}, \mathcal{T}_{\varepsilon}$, starts from \mathcal{Q}_{3}, enters \mathcal{Q}_{4} at some point $(0, \xi), \xi>\xi_{1}$, and has the same type as $\mathcal{T}_{e_{1}}$. Any trajectory $\mathcal{T}_{[(0, \xi)]}$ with $\xi<\xi_{1}$ is of the same type.

Any trajectory $\mathcal{T}_{[P]}$, with P in the domain of $\mathcal{Q}_{1} \cup \mathcal{Q}_{4}$ above $\mathcal{T}_{r} \cup \mathcal{T}_{\varepsilon}$, starts from \mathcal{Q}_{1}, and converges to M_{ℓ} in \mathcal{Q}_{4}, in particular $\mathcal{T}_{-e_{1}}$; the corresponding w are of type (iii). If $p \leqq N$, all the solutions are described. If $p>N$, moreover there exist trajectories staying in $\mathcal{Q}_{4}: \mathcal{T}_{u}$ and the \mathcal{T}_{-}, starting under \mathcal{T}_{r}, corresponding to types (v) and (vi).

Remark 9.5 For $\alpha=N, \mathcal{T}_{r}$ and $\mathcal{T}_{\varepsilon}$ are given by (1.10), respectively with $K>0$ and $K<0$. The trajectory $\mathcal{T}_{\varepsilon}$ describes the portion $0 M_{\ell}$ of the line $\{Y=-y\}$, and \mathcal{T}_{r} the complementary half-line in \mathcal{Q}_{4} (see figure 8).

Next we assume $-p^{\prime} \leqq \alpha<0$. The case $p>N$ is delicate: indeed the special value $\alpha=\eta$ is involved, because $\eta<0$.

Theorem 9.6 Assume $\varepsilon=-1, p \leqq N$, and $-p^{\prime} \leqq \alpha<0$. Then $w \equiv \ell r^{\gamma}$ is a solution w of $\left(\boldsymbol{E}_{w}\right)$.
There exist a unique nonnegative solution with a hole, satisfying (4.3) at ∞.
(1) If $\alpha \neq-p^{\prime}$, all regular solutions have one zero, and $|w|$ satisfies (4.3) near ∞. There exist (exhaustively, up to a symmetry)

- for $p \leqq N$,
(i) a unique solution with one zero, with (4.6) or (4.8) near 0 , and (4.4) near ∞;
(ii) solutions with one zero, with (4.6) or (4.8) near 0 , and $|w|$ satisfies (4.3) near ∞;
(iii) solutions with two zeros, with (4.6) or (4.8) near 0 , and (4.3) near ∞;
- for $p>N, \eta<\alpha$,
(iv) a unique positive solution, with (4.10) near 0 , and (4.4) near ∞;
(v) a unique positive solution, with (4.7) near 0 , and (4.3) near ∞;
(vi) positive solutions, with (4.10) near 0 , and (4.3) near ∞;
(vii) solutions with one zero with (4.10) or (4.9) near 0 , and (4.3) near ∞;
- for $p>N, \alpha<\eta$,
(viii) a unique solution with one zero, with (4.9) near 0 , and (4.4) near ∞;
(ix) a unique solution with one zero, with (4.7) near 0 , and $|w|$ satisfies (4.3) near ∞;
(x) solutions with one zero, with (4.9) or (4.9) near 0 , and $|w|$ satisfies (4.3) near ∞;
(xi) solutions with two zeros, with (4.9) near 0 , and (4.3) near ∞.
- for $p>N, \alpha=\eta$, solutions of the form $w=c r^{|\eta|}(c>0)$. The other solutions are of type (vii).
(2) If $\alpha=-p^{\prime}$, all regular solutions have one zero and satisfy (4.4) near ∞. The solutions without hole are of types (ii), (iii) for $p \leqq N$, (ix), (x), (xi) for $p>N$.

th 9.6, fig9: $\varepsilon=-1, N=1, p=3, \alpha=-0.7$

th 9.6, fig10: $\varepsilon=-1, N=1, p=3, \alpha=-1.49$
th 9.6, fig11: $\varepsilon=-1, N=1, p=3, \alpha=-3 / 2$
Proof. Here again M_{ℓ} is a sink; but it is a node point only if $\alpha \geqq \alpha_{2}$. The phase plane (y, Y) does not contain any cycle, from Proposition 4.4. From Proposition 3.6, any solution y has at most two zeros, and Y at most one.

The unique trajectory \mathcal{T}_{α} ends up in \mathcal{Q}_{4} with the slope 0 . From the uniqueness of \mathcal{T}_{α} and $\mathcal{T}_{\varepsilon}$, all the trajectories, apart from $\pm \mathcal{T}_{\alpha}$, converge to $\pm M_{\ell}$ at ∞, from Proposition 4.1 and Remark 9.3. Since $\varepsilon \alpha>0$, the trajectory \mathcal{T}_{r} starts in \mathcal{Q}_{1}, and y has at most one zero. Then \mathcal{T}_{r} converges to $-M_{\ell}$ in \mathcal{Q}_{2}, or $\mathcal{T}_{r}=-\mathcal{T}_{\alpha}$.

The trajectory $\mathcal{T}_{\varepsilon}$ starts in \mathcal{Q}_{4} with the slope -1 , satisfies $y \geqq 0$ from Proposition 3.6. If $\mathcal{T}_{\varepsilon}$ converge to $(0,0)$, then $\mathcal{T}_{\varepsilon}=\mathcal{T}_{\alpha}$, thus it is homoclinic. Then M_{ℓ} is in the bounded component defined by $\mathcal{T}_{\varepsilon}$, and $\mathcal{T}_{\varepsilon}$ meets \mathcal{T}_{r}, which is impossible. Hence $\mathcal{T}_{\varepsilon}$ converges to M_{ℓ} in \mathcal{Q}_{4}, and w is nonnegative with a hole and satisfies (4.3) near ∞.

If $\alpha \neq-p^{\prime}$, we claim that $\mathcal{T}_{r} \neq-\mathcal{T}_{\alpha}$. Indeed suppose $\mathcal{T}_{r}=-\mathcal{T}_{\alpha}$. Consider the functions y_{α}, Y_{α}, defined by (2.3) with $d=\alpha$. Then Y_{α} stays positive, and $Y_{\alpha}=O\left(e^{(\alpha(p-1)+p) \tau}\right)$ at ∞, thus

$$
\lim _{\tau \rightarrow \infty} Y_{\alpha}=0, \quad \lim _{\tau \rightarrow \infty} Y_{\alpha}=c>0, \quad \lim _{\tau \rightarrow-\infty} y_{\alpha}=\infty, \quad \lim _{\tau \rightarrow \infty} y_{\alpha}=L<0
$$

Moreover y_{α}, Y_{α} have no extremal point: at such a point, from (3.2), (3.3) the second derivatives have a strict constant sign; then $Y_{\alpha}^{\prime}>0>y_{\alpha}^{\prime}$. If $\alpha<\eta$ (in particular if $p \leqq N$), from (4.13), near ∞,

$$
(p-1) Y_{\alpha}^{\prime \prime} / Y_{\alpha}^{\prime} \geqq|Y|^{(2-p) /(p-1)}(1+o(1)),
$$

thus $Y_{\alpha}^{\prime \prime}>0$ near ∞, which is contradictory; if $\alpha>\eta$, from (4.12)

$$
(p-1) y_{\alpha}^{\prime \prime} / y_{\alpha}^{\prime} \geqq|Y|^{(2-p) /(p-1)}(1+o(1)),
$$

thus $y_{\alpha}^{\prime \prime}<0$ near ∞, still contradictory. If $\alpha=\eta, \mathcal{T}_{\alpha}=\mathcal{T}_{u}$ from (1.11), thus again $\mathcal{T}_{r} \neq-\mathcal{T}_{\alpha}$.
If $p>N$ and $\alpha \neq \eta$, we claim that $\mathcal{T}_{\alpha} \neq \mathcal{T}_{u}$. Indeed suppose $\mathcal{T}_{\alpha}=\mathcal{T}_{u}$. This trajectory stays \mathcal{Q}_{4}, the function ζ stays negative, and $\lim _{\tau \rightarrow-\infty} \zeta=\eta, \lim _{\tau \rightarrow \infty} \zeta=\alpha$. If ζ has an extremal point ϑ, then $\vartheta \in(\alpha, \eta)$ from System (\mathbf{Q}), and $\zeta^{\prime \prime}$ has a constant sign, the sign of $\alpha-\zeta$; it is impossible. Thus ζ is monotone; then $(\alpha-\eta) \zeta^{\prime}>0$, which contradicts System (\mathbf{Q}).
(1) Case $\alpha \neq-p^{\prime}$. Since $\mathcal{T}_{r} \neq-\mathcal{T}_{\alpha}, \mathcal{T}_{r}$ converges to $-M_{\ell}$, and y has one zero, and $|w|$ satisfies (4.3).

- Case $p \leqq N$. All the other trajectories start in \mathcal{Q}_{3} or \mathcal{Q}_{1}, from Remarks 9.1 and 9.2. For any $\varphi>0$, the trajectory $\mathcal{T}_{[(\varphi, 0)]}$ goes from \mathcal{Q}_{4} into \mathcal{Q}_{1}, and converges to $-M_{\ell}$ in \mathcal{Q}_{2}, since it cannot meet \mathcal{I}_{r} and $-\mathcal{T}_{\varepsilon}$; thus y has two zeros, and w is of type (iii). The trajectory \mathcal{T}_{α} cannot meet $\mathcal{T}_{[(\varphi, 0)]}$, thus y has one zero, and it has the same behaviour at $-\infty$, and w is of type (i). All the trajectories $\mathcal{T}_{[P]}$ with P in the interior domain of \mathcal{Q}_{1} delimitated by $-\mathcal{T}_{\varepsilon}$ and \mathcal{T}_{r} start from \mathcal{Q}_{1} and converge to $-M_{\ell}, y$ has precisely one zero, and has the same behaviour at $-\infty$, and w is of type (ii).
- Case $p>N, \eta<\alpha$ (see figure 9). Any solution y has at most one simple zero. The trajectory \mathcal{T}_{α} stays in \mathcal{Q}_{4}. Indeed if it started in \mathcal{Q}_{3}, then for any trajectory $\mathcal{T}_{[(0, \xi)]}$ with $(0, \xi)$ above $-\mathcal{T}_{\alpha}$, the function y would have two zeros. Since $\mathcal{T}_{\alpha} \neq \mathcal{T}_{u}$, we have $\mathcal{T}_{\alpha} \in \mathcal{T}_{-}$, and w is of type (iv). The trajectory \mathcal{T}_{u} necessarily stays in \mathcal{Q}_{4} and converges to M_{ℓ}, and w is of type (v). The trajectories $\mathcal{T}_{[P]}$, with P in the domain delimitated by $\mathcal{T}_{u}, \mathcal{T}_{\alpha}$ and $\mathcal{T}_{\varepsilon}$, are of type \mathcal{T}_{-}and converge in \mathcal{Q}_{4} to M_{ℓ}, and w is of type (vi). The trajectories $\mathcal{T}_{[P]}$, with P in the domain delimitated by $\mathcal{T}_{r}, \mathcal{T}_{\alpha}$ and $-\mathcal{T}_{\varepsilon}$, are of type \mathcal{T}_{-}, and converge to $-M_{\ell}$, and y has one zero. The trajectories $\mathcal{T}_{[P]}$, with P in
the domain delimitated by \mathcal{T}_{r} and $-\mathcal{T}_{u}$, are of type \mathcal{T}_{+}, converge to $-M_{\ell}$, and y has one zero. Both define solutions w of type (vii).
- Case $p>N, \alpha<\eta$ (see figure 10). We have seen that $\mathcal{T}_{r} \neq-\mathcal{T}_{\alpha}$. If $\mathcal{T}_{\alpha} \in \mathcal{T}_{+}$, then ζ decreases from 0 to α, which contradicts System (\mathbf{Q}) at ∞. Then \mathcal{T}_{α} does not stay in \mathcal{Q}_{4}, it starts in \mathcal{Q}_{3} and $-\mathcal{T}_{\alpha} \in \mathcal{T}_{-}$, hence y has a zero, and w is of type (viii). Then \mathcal{T}_{u} and the trajectories \mathcal{T}_{-}converge to $-M_{\ell}$, and y has one zero. The trajectories $\mathcal{T}_{[P]}$, with P in the domain delimitated by $\mathcal{T}_{r},-\mathcal{T}_{\alpha}$ and $-\mathcal{I}_{\varepsilon}$, are of type \mathcal{T}_{+}and converge to $-M_{\ell}, y$ has one zero. They correspond to w is of type (ix) or (x). The trajectories $\mathcal{T}_{[P]}$, with P in \mathcal{Q}_{4} above \mathcal{T}_{r}, cut the line $\{y=0\}$ twice, and converge to M_{ℓ}, and w is of type (xi).
- Case $p>N, \alpha=\eta$. Then $\mathcal{T}_{\alpha}=\mathcal{T}_{u}$, the functions $w=c r^{-\eta}(c>0)$ are particular solutions. The phase plane study is the same, and gives only solutions of type (vii).
(2) Case $\alpha=-p^{\prime}$ (see figure 11). Here $\mathcal{T}_{r}=-\mathcal{T}_{\alpha}$, since the regular solutions are given by (1.12). Thus there exist no more solutions of type (ii) or (viii).

Next we study the behaviour of all the solutions when $\alpha<-p^{\prime}$. In particular we prove the existence and uniqueness of an α_{c} for which there exists an homoclinic trajectory. Thus we find again some results obtained in [8], with new detailed proofs. We also improve the bounds for α_{c}, in particular $\alpha^{*}<\alpha_{c}$.

Lemma 9.7 Let

$$
\alpha_{p}:=-(p-1) /(p-2) .
$$

If $N=1$, for $\alpha=\alpha_{p}$, then there exists an homoclinic trajectory in the phase plane (y, Y). If $N \geqq 2$, for $\alpha=\alpha_{p}$, there is no homoclinic trajectory, moreover \mathcal{T}_{α} converges to M_{ℓ} at $-\infty$ or has a limit cycle in \mathcal{Q}_{4}.

Proof. In the case $N=1, \alpha=\alpha_{p}$, the explicit solutions (1.14) define an homoclinic trajectory in the phase plane (y, Y), namely $\mathcal{T}_{\varepsilon}=\mathcal{T}_{\alpha}$. In the phase plane (g, s) of System (\mathbf{R}), from Remark 2.6, they correspond to the line $s \equiv 1+\alpha g$, joining the stationary points $(0,1)$ and $(-1 / \alpha, 0)$.

Next assume $N \geqq 2$ and consider the trajectory \mathcal{T}_{α} in the plane (y, Y). In the plane (g, s) of System (\mathbf{R}), the corresponding trajectory $\mathcal{T}_{\alpha}^{\prime}$ ends up at ($-1 / \alpha, 0$), as ν tends to ∞ from (2.18), with the slope $-k_{p}$. If \mathcal{T}_{α} is homoclinic, then $\mathcal{T}_{\alpha}^{\prime}$ converges to $(0,1)$ as ν tends to $-\infty$. Consider the segment

$$
T=\left\{\left(g,-k\left(g+1 / \alpha_{p}\right): g \in\left[0,1 /\left|\alpha_{p}\right|\right]\right\}, \quad \text { with } \quad k=p^{\prime} \alpha_{p}^{2} /(N+2 /(p-2))>k_{p} .\right.
$$

Its extremity $\left(0, k /\left|\alpha_{p}\right|\right)$ is strictly under $(0,1)$. The domain \mathcal{R} delimitated by the axes, which are particular orbits, and T, is negatively invariant: indeed, at any point of T, we find

$$
k \frac{d g}{d \nu}+\frac{d s}{d \nu}=(N-1) p^{\prime} k s\left(g-\frac{1}{\gamma}\right)^{2} .
$$

The trajectory $\mathcal{T}_{\alpha}^{\prime}$ ends up in \mathcal{R}, thus it stays in it, hence $\mathcal{T}_{\alpha}^{\prime}$ cannot join $(0,1)$. In the phase plane $(y, Y), \mathcal{T}_{\alpha}$ is not homoclinic, and \mathcal{T}_{α} stays in \mathcal{Q}_{4}, and Remark 9.3 applies.

Remark 9.8 Notice that $\alpha^{*} \leqq \alpha_{p} \Leftrightarrow N \leqq p$.
Theorem 9.9 Assume $\varepsilon=-1$, and $\alpha<-p^{\prime}$. There exists a unique $\alpha_{c}<0$ such that there exists an homoclinic trajectory in the plane (y, Y); in other words $\mathcal{T}_{\varepsilon}=\mathcal{T}_{\alpha}$. If $N=1$, then $\alpha_{c}=\alpha_{p}$. If $N \geqq 2$, then

$$
\begin{equation*}
\max \left(\alpha^{*}, \alpha_{p}\right)<\alpha_{c}<\min \left(\alpha_{2},-p^{\prime}\right) \tag{9.1}
\end{equation*}
$$

Proof. In order to prove the existence of an homoclinic orbit for System (S), we could consider a Poincaré application as in [4], but it does not give uniqueness. Thus we consider the system (\mathbf{R}_{β}) obtained from (R) by setting $s=\beta S$:

$$
\left.\begin{array}{ll}
\frac{d g}{d \nu}=g F(g, S), & F(g, S):=\beta S(1+\eta g)-\frac{1}{p-1}(1+\alpha g), \\
\frac{d S}{d \nu}=S G(g, S), & G(g, S):=1+\alpha g-\beta(1+N g) S .
\end{array}\right\}
$$

Its stationary points are

$$
(0,0), \quad A^{\prime}=(1 /|\alpha|, 0), \quad B^{\prime}=(0,1 / \beta), \quad M^{\prime}=(1 / \gamma, 1 /(N+\gamma)(p-2)),
$$

where M^{\prime} corresponds to M_{ℓ}. The existence of homoclinic trajectory for System (S) resumes to the existence of a trajectory for System $\left(\mathbf{R}_{\beta}\right)$ in the plane (g, S), starting from B^{\prime} and ending at A^{\prime}.
(i) Existence. We can assume that $\alpha \in\left(\alpha_{1}, \min \left(\alpha_{2},-p^{\prime}\right)\right)$, from Proposition 4.4. In the plane (g, S), consider the trajectories $\mathcal{T}_{\varepsilon}^{\prime}$ and $\mathcal{T}_{\alpha}^{\prime}$ corresponding to $\mathcal{T}_{\varepsilon} \cap \mathcal{Q}_{4}$ and $\mathcal{T}_{\alpha} \cap \mathcal{Q}_{4}$ in the plane (y, Y). Then $\mathcal{T}_{\varepsilon}^{\prime}$ starts from B^{\prime} and $\mathcal{T}_{\alpha}^{\prime}$ ends up at A^{\prime}. From Remark 9.1, for any $\alpha \in\left(\alpha_{1}, \alpha_{2}\right)$, with $\alpha \leqq-p^{\prime}$, we have three possibilities:

- $\mathcal{T}_{\varepsilon}^{\prime}$ is converging to M^{\prime} as ν tends to ∞ and turns around this point, since α is a spiral point, or it has a limit cycle in \mathcal{Q}_{1} around M^{\prime}. And $\mathcal{T}_{\alpha}^{\prime}$ admits the line $g=0$ as an asymptote as ν tends to $-\infty$, which means that \mathcal{T}_{α} does not stay in \mathcal{Q}_{4} in the plane (y, Y). Then $\mathcal{T}_{\varepsilon}^{\prime}$ meats the line

$$
L:=\{g=1 / \gamma\}
$$

at a first point $\left(1 / \gamma, S_{0}(\alpha)\right)$. And $\mathcal{T}_{\alpha}^{\prime}$ meats L at a last point $\left(1 / \gamma, S_{1}(\alpha)\right)$, such that $S_{0}(\alpha)-S_{1}(\alpha)<$ 0 ;

- $\mathcal{T}_{\alpha}^{\prime}$ is converging to M^{\prime} at $-\infty$ or it has a limit cycle in \mathcal{Q}_{1} around M^{\prime}. And $\mathcal{T}_{\varepsilon}^{\prime}$ admits the line $S=0$ as an asymptote at ∞, which means that $\mathcal{T}_{\mathcal{\varepsilon}}$ does not stay in \mathcal{Q}_{4}. Then with the same notations, $S_{0}(\alpha)-S_{1}(\alpha)>0$.
- $\mathcal{T}_{\varepsilon}^{\prime}=\mathcal{T}_{\alpha}^{\prime}$, equivalently $S_{0}(\alpha)-S_{1}(\alpha)=0$.

The function $\alpha \mapsto \varphi(\alpha)=S_{0}(\alpha)-S_{1}(\alpha)$ is continuous, from Theorems 3.9 and 5.3. If $-p^{\prime}<\alpha_{2}$, then $\varphi\left(-p^{\prime}\right)$ is well defined and $\varphi\left(-p^{\prime}\right)<0$; indeed $\mathcal{T}_{\alpha}=-\mathcal{T}_{r}$, thus \mathcal{T}_{α} does not stay in \mathcal{Q}_{4} from Theorem 9.6. If $\alpha_{2} \leqq-p^{\prime}$, in the plane (y, Y), the trajectory $\mathcal{T}_{\alpha_{2}}$ leaves \mathcal{Q}_{4}, from Proposition 4.4, because α_{2} is a sink, and transversally from Remark 9.1. The same happens for $\mathcal{T}_{\alpha_{2-v}}$ for $v>0$ small enough, by continuity, thus $\varphi\left(\alpha_{2}-v\right)<0$. From Lemma $9.7, \varphi\left(\alpha_{p}\right)>0$ if $N \geqq 2$, and $\varphi\left(\alpha_{p}\right)=0$ if $N=1$. In any case there exists at least an α_{c} satisfying (9.1), such that $\varphi\left(\alpha_{c}\right)=0$.
(ii) Uniqueness. First observe that $1+\eta g>0$; indeed $1+\eta /|\alpha|>\left(p^{\prime}+\eta\right) /|\alpha|>0$. Now

$$
(p-1) F+G=p \beta S(1 / \gamma-g)=(p-2) \beta S(1-\gamma g),
$$

hence the curves $\{F=0\}$ and $\{G=0\}$ intersect at M^{\prime} and $A^{\prime},\{G=0\}$ contains B^{\prime} and is above $\{F=0\}$ for $g \in(0,1 / \gamma)$ and under it for $g \in(1 / \gamma, 1 /|\alpha|)$. Moreover $\mathcal{T}_{\varepsilon}^{\prime}$ has a negative slope at B^{\prime}, thus $F>0>G$ near 0 from $\left(\mathbf{R}_{\beta}\right)$. And $\mathcal{T}_{\varepsilon}^{\prime}$ cannot meet $\{G=0\}$ for $(0,1 / \gamma)$, because on this curve the vector field is $(g F, 0)$ and $F>0$. Thus $\mathcal{T}_{\varepsilon}^{\prime}$ satisfies $F>0>G$ on $(0,1 / \gamma)$. In the same way $\mathcal{T}_{\alpha}^{\prime}$ has a negative slope $-\theta \alpha^{2} /(p-1)(\eta+|\alpha|)<0$ at $1 /|\alpha|$, thus $F>0>G$ near $1 /|\alpha|$. And $\mathcal{T}_{\alpha}^{\prime}$ cannot meet $\{F=0\}$, because the vector field on this curve is $(0, S G)$ and $G<0$. Thus $\mathcal{T}_{\alpha}^{\prime}$ satisfies $F>0>G$ on $(1 / \gamma, 1 /|\alpha|)$.

Let $\alpha<\bar{\alpha}$. Then $\mathcal{T}_{\varepsilon}^{\prime}$ is above $\overline{\mathcal{T}}_{\varepsilon}^{\prime}$ near $g=0$, and $\mathcal{T}_{\alpha}^{\prime}$ is at the left of $\mathcal{T}_{\bar{\alpha}}^{\prime}$ near $S=0$. We show that $\varphi(\alpha)>\varphi(\bar{\alpha})$. First suppose that $\mathcal{T}_{\varepsilon}^{\prime}$ and $\overline{\mathcal{T}}_{\varepsilon}^{\prime}$ (or $\mathcal{T}_{\alpha}^{\prime}$ and $\overline{\mathcal{T}}_{\bar{\alpha}}^{\prime}$) intersect at a first point P_{1} (or a last point) such $g \neq 1 / \gamma$. Then at this point

$$
\begin{equation*}
\frac{1}{p-1} \frac{g}{S} \frac{d S}{d g}+1=\frac{(p-2)(1-\gamma g) S}{(p-1) S(1+\eta g)-\beta^{-1}(1+\alpha g)}=\frac{(p-2)(1-\gamma g) S}{h_{S}(g)-\beta^{-1}(1-\gamma g)} \tag{9.2}
\end{equation*}
$$

with $h_{S}(g)=(p-1) S(1+\eta g)-g /(p-2)$. Thus the denominator, which is positive, is increasing in α on $(0,1 / \gamma)$, decreasing on $(1 / \gamma, 1 /|\alpha|)$; in any case $d S / d g>d \bar{S} / d g$ at P_{1}, which is contradictory. Next suppose that there is an intersection on L. At such a point $P_{1}=\left(1 / \gamma, S_{1}\right)=\left(1 / \gamma, \bar{S}_{1}\right)$ the derivatives are equal from (9.2), and P_{1} is above M^{\prime}, because $F>0$. At any points $(g, S(g)) \in \mathcal{T}_{\varepsilon}^{\prime}$ (or $\left.\mathcal{T}_{\alpha}^{\prime}\right),(g, \bar{S}(g)) \in \overline{\mathcal{T}}_{\varepsilon}^{\prime}\left(\right.$ or $\left.\overline{\mathcal{T}}_{\bar{\alpha}}^{\prime}\right)$, setting $g=1 / \gamma+u$,

$$
\begin{aligned}
& \Phi(u)=\left(\frac{1}{p-1} \frac{g}{S} \frac{d S}{d g}+1\right) \frac{1}{(p-2) S}=-\frac{\gamma}{h_{S}(1 / \gamma)} u+\frac{1}{h_{S}^{2}(1 / \gamma)}\left(\frac{\gamma}{\beta}+h_{S}^{\prime}(1 / \gamma)\right) u^{2}(1+o(1)) \\
& \bar{\Phi}(u)=\left(\frac{1}{p-1} \frac{g}{\bar{S}} \frac{d \bar{S}}{d g}+1\right) \frac{1}{(p-2) \bar{S}}=-\frac{\gamma}{h_{\bar{S}}(1 / \gamma)} u+\frac{1}{h_{\bar{S}}^{2}(1 / \gamma)}\left(\frac{\gamma}{\beta}+h_{\bar{S}}^{\prime}(1 / \gamma)\right) u^{2}(1+o(1))
\end{aligned}
$$

And $h_{S}(1 / \gamma)=h_{\bar{S}}(1 / \gamma)>0$, and $h_{S}^{\prime}(1 / \gamma)=h_{\bar{S}}^{\prime}(1 / \gamma)$, then

$$
(\Phi-\bar{\Phi})(u)=\frac{\gamma u^{2}(1 / \beta-1 / \bar{\beta})}{h(1 / \gamma)}(1+o(1)) .
$$

This implies $d^{2}(S-\bar{S}) / d g^{2}=0$ and $d^{3}(S-\bar{S}) / d g^{3}=2 S_{1} \gamma^{2}(p-1)(p-2)(1 / \beta-1 / \bar{\beta})>0$, which is a contradiction. Then $\mathcal{T}_{\varepsilon}^{\prime}$ and $\overline{\mathcal{T}}_{\varepsilon}^{\prime}$ cannot intersect on this line, similarly for $\mathcal{T}_{\alpha}^{\prime}$ and $\overline{\mathcal{T}}_{\bar{\alpha}}^{\prime}$. Hence $\varphi(\alpha)>\varphi(\bar{\alpha})$, which proves the uniqueness.

As a consequence, for $\alpha<\alpha_{c}, \varphi(\alpha)>0$, in the plane $(y, Y), \mathcal{T}_{\varepsilon}$ does not stay in \mathcal{Q}_{4}; for $\alpha>\alpha_{c}$, $\varphi(\alpha)<0, \mathcal{T}_{\alpha}$ does not stay in \mathcal{Q}_{4}. From Lemma 9.7, it follows that $\alpha_{p}<\alpha_{c}$ if $N \geqq 2$. Moreover $\alpha^{*}<\alpha_{c}$. Indeed α^{*} is a weak source from Proposition 2.5, thus for $\alpha>\alpha^{*}$ small enough, there exists a unique cycle \mathcal{O} around M_{ℓ}, which is unstable. For such an $\alpha, \mathcal{T}_{\varepsilon}$ cannot stay in \mathcal{Q}_{4} : it would have \mathcal{O} as a limit cycle at ∞, which contradicts the unstability.

Next we discuss according to the position of α with respect to α^{*} and α_{c}.
Theorem 9.10 Assume $\varepsilon=-1$, and $\alpha \leqq \alpha^{*}$. Then
(i) there exist a unique flat positive solution w of $\left(\boldsymbol{E}_{w}\right)$ with (4.3) near 0 , and (4.4) near ∞;
(ii) All the other solutions are oscillating at ∞, among them the regular ones, and $r^{-\gamma} w$ is asymptotically periodic in $\ln r$. There exist solutions with a hole, also with (4.3), (4.6) or (4.9) or (4.9) or (4.7) near 0 . There exist solutions such that $r^{-\gamma} w$ is periodic in $\ln r$.

th 9.10 ,fig $12: \varepsilon=-1, N=1, p=3, \alpha=-2.53$

th 9.10 , fig $13: \varepsilon=-1, N=1, p=3, \alpha=-2.2$

Proof. Here $\alpha<\alpha_{c}$, from Theorem 9.9, and the trajectory \mathcal{T}_{α} stays in \mathcal{Q}_{4}. From Proposition 4.4, it converges at $-\infty$ to M_{ℓ}, and w is of type (i).

The trajectory $\mathcal{T}_{\varepsilon}$ leaves \mathcal{Q}_{4}, and cannot converge either to $(0,0)$ since $\mathcal{T}_{\varepsilon} \neq \mathcal{T}_{\alpha}$, or to $\pm M_{\ell}$, because this point is a source, or a weak source. Recall that M_{ℓ} is a node point for $\alpha \leqq \alpha_{1}$ (see
figure 12 , where $\alpha_{1} \cong-2.50$), or a spiral point (see figure 13). And $\mathcal{T}_{\varepsilon}$ is bounded at ∞ from Proposition 4.3. Then it has a limit cycle $\mathcal{O}_{\varepsilon}$ surrounding $(0,0)$ from Proposition 4.4 , and $\pm M_{\ell}$ from Remark 9.3. Thus w is oscillating around 0 near $\infty, r^{-\gamma} w$ is asymptotically periodic in $\ln r$.

The solutions w corresponding to $\mathcal{O}_{\varepsilon}$ are oscillating and $r^{-\gamma} w$ is periodic in $\ln r$. Any trajectory $\mathcal{I}_{[P]}$ with P in the interior domain delimitated by $\mathcal{O}_{\varepsilon}$ converges to M_{ℓ} at $-\infty$ and has the same limit cycle at ∞. The trajectory \mathcal{T}_{r} starts in \mathcal{Q}_{1}, with $\lim _{\tau \rightarrow-\infty} y=\infty$ and cannot converge to any stationary point at ∞. It is bounded, thus has a limit cycle \mathcal{O}_{r} surrounding \mathcal{O}_{0}. For any $P \notin \mathcal{I}_{r}$ in the exterior domain to \mathcal{O}_{r}, the trajectory $\mathcal{T}_{[P]}$ admits \mathcal{O}_{r} as a limit cycle at ∞, and y is necessarily monotone at $-\infty$, thus (4.6) or (4.9) or (4.9) or (4.7) near 0 ; all those solutions exist. The question of the uniqueness of the cycle $\left(\mathcal{O}_{r}=\mathcal{O}_{\varepsilon}\right)$ is open.

Theorem 9.11 Let α_{c} be defined by Theorem 9.9.
(1) Let $\alpha^{*}<\alpha<\alpha_{c}$. Then all regular solutions w of $\left(\boldsymbol{E}_{w}\right)$ are oscillating around 0 near ∞, and $r^{-\gamma} w$ is asymptotically periodic in $\ln r$. There exist
(i) positive solutions, such that $r^{-\gamma} w$ is periodic in $\ln r$;
(ii) a unique positive solution such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$ near 0 , with (4.4) near ∞;
(iii) positive solutions such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$ near 0 , with (4.3) near ∞;
(iv) solutions oscillating around 0 such that $r^{-\gamma} w$ is periodic in $\ln r$;
(v) solutions with a hole, oscillating near ∞, such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$;
(vi) solutions satisfying (4.6) or (4.9) or (4.9) or (4.7) near 0 , oscillating around 0 near ∞, such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$;
(vii) solutions positive near 0 , oscillating near ∞, such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$ near 0 and ∞.
(2) Let $\alpha=\alpha_{c}$.
(viii) There exist a unique nonnegative solution with a hole, with (4.4) near ∞. The regular solutions are as above. There exist solutions of types (iv), (vi), and
(ix) positive solutions such that $r^{-\gamma} w$ is bounded from above near 0 , with (4.3) near ∞.

th 9.11,fig 14: $\varepsilon=-1, N=1, p=3, \alpha=-2.1$

Proof. (1) Let $\alpha^{*}<\alpha<\alpha_{c}$ (see figure 14). Then \mathcal{T}_{α} stays in \mathcal{Q}_{4}, but cannot converge neither to M_{ℓ} which is a sink, nor to $(0,0)$ since $\mathcal{T}_{\alpha} \neq \mathcal{T}_{\varepsilon}$. It has a limit cycle \mathcal{O}_{α} in \mathcal{Q}_{4} at $-\infty$, surrounding M_{ℓ}, and w is of type (ii). The orbit \mathcal{O}_{α} corresponds to solutions of type (i). There exist positive solutions converging to M_{ℓ} at ∞, with a limit cycle \mathcal{O}_{ℓ} at $-\infty$ surrounded by \mathcal{O}_{α}, and w is of type (iii). This cycle is unique $\left(\mathcal{O}_{\ell}=\mathcal{O}_{\alpha}\right)$ for $\alpha-\alpha^{*}$ small enough, from Proposition 2.5. The trajectory $\mathcal{T}_{\varepsilon}$ still cannot stay in \mathcal{Q}_{4}. As in the case $\alpha \leqq \alpha^{*}, \mathcal{T}_{\varepsilon}$ has a limit cycle $\mathcal{O}_{\varepsilon}$ surrounding the three stationary points, w is of type (v), and \mathcal{T}_{r} is oscillating around 0 , and there exist solutions of type (vi). Any trajectory $\mathcal{I}_{[P]}$ with $P \notin \mathcal{I}_{\varepsilon}$ in \mathcal{Q}_{4} in the domain delimitated by \mathcal{O}_{α} and $\mathcal{O}_{\varepsilon}$ admits \mathcal{O}_{α} as a limit cycle at $-\infty$ and $\mathcal{O}_{\varepsilon}$ at ∞, and w is of type (vii).
(2) Let $\alpha=\alpha_{c}$ (see figure 15). The homoclinic trajectory $\mathcal{T}_{\varepsilon}=\mathcal{T}_{\alpha}$ corresponds to the solution w of type (viii). The trajectory \mathcal{T}_{r} has a limit cycle \mathcal{O}_{r} surrounding the three points. Thus there exist solutions of types (iv) or (vi). Any trajectory ending up at M_{ℓ} at ∞ is bounded, contained in the domain delimitated by $\mathcal{T}_{\varepsilon}$, and its limit set at $-\infty$ is the homoclinic trajectory $\mathcal{T}_{\varepsilon}$, or a cycle around M_{ℓ}, and w is of type (ix).

Theorem 9.12 Assume $\varepsilon=-1$, and $\alpha_{c}<\alpha<-p^{\prime}$.
There exist a unique nonnegative solution w of $\left(\boldsymbol{E}_{w}\right)$ with a hole, with $r^{-\gamma} w$ bounded from above and below at ∞. The regular solutions have at least two zeros.
(1) Either there exist oscillating solutions such that $r^{-\gamma} w$ is periodic in $\ln r$. Then the regular solutions have an infinity of zeros, and $r^{-\gamma} w$ is asymptotically periodic in $\ln r$. There exist
(i) solutions satisfying (4.6) or (4.9) or (4.9) or (4.7) near 0 , oscillating near ∞, such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$;
(ii) a unique solution oscillating near 0, such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$, and with (4.4) near ∞;
(iii) solutions positive near 0 , with $r^{-\gamma} w$ bounded, and oscillating near ∞, such that $r^{-\gamma} w$ is asymptotically periodic in $\ln r$.
(2) Or all the solutions have a finite number of zeros, and at least two. Two cases may occur:

- Either regular solutions have m zeros and $r^{-\gamma} w$ bounded from above and below at ∞. Then there exist
(iv) solutions with m zeros, with (4.6) or (4.9), with (4.4) near ∞;
(v) solutions with m zeros with (4.6) or (4.9) and $r^{-\gamma} w$ bounded from above and below at ∞;
(vi) solutions with $m+1$ zeros with (4.6) or (4.9) and $r^{-\gamma} w$ bounded from above and below at ∞;
(vii) (for $p>N$) a unique solution with m zeros, with (4.7) or (4.10) and $r^{-\gamma} w$ bounded from above and below at ∞.
- Or regular solutions have m zeros and (4.4) holds near ∞. Then there exist solutions of type (vi) or (vii).

th 9.12 ,fig 16: $\varepsilon=-1, N=1, p=3, \alpha=-1.98$ th 9.12 , fig $17: \varepsilon=-1, N=1, p=3, \alpha=-1.90$
Proof. Here $\mathcal{T}_{\varepsilon}$ stays in \mathcal{Q}_{4}, converges to M_{ℓ} or has a limit cycle around M_{ℓ}, thus w has a hole and $r^{-\gamma} w$ bounded from above and below at ∞. If $\alpha \geqq \alpha_{2}$, there is no cycle in \mathcal{Q}_{4}, from Proposition 4.4, thus $\mathcal{T}_{\varepsilon}$ converges to M_{ℓ}.
(1) Either there exists a cycle surrounding $(0,0)$ and $\pm M_{\ell}$, thus solutions w oscillating around 0 , such that $r^{-\gamma} w$ is periodic in $\ln r$. Then \mathcal{T}_{r} has such a limit cycle \mathcal{O}_{r}, and w is oscillating around 0 . The trajectory \mathcal{T}_{α} has a limit cycle at $-\infty$ of the same type $\mathcal{O}_{\alpha} \subset \mathcal{O}_{r}$, and w is of type (ii). For any $P \notin \mathcal{T}_{\varepsilon}$ in the interior domain in $\mathcal{O}_{\alpha}, \mathcal{T}_{[P]}$ admits \mathcal{O}_{α} as a limit cycle at $-\infty$ and converges to M_{ℓ} at ∞, or has a limit cycle in \mathcal{Q}_{4}; and w is of type (iii). For any $P \notin \mathcal{T}_{r}$, in the domain exterior to $\mathcal{O}_{r}, \mathcal{T}_{[P]}$ has \mathcal{O}_{α} as limit cycle at ∞, and w is of type (i).
(2) Or no such cycle exists. Then any trajectory converges at ∞, any trajectory, apart from $\pm \mathcal{T}_{\alpha}$, converges to $\pm M_{\ell}$ or has a limit cycle in \mathcal{Q}_{1}. All the trajectories end up in \mathcal{Q}_{2} or \mathcal{Q}_{4}. Since \mathcal{T}_{r} starts in \mathcal{Q}_{1}, y has at least one zero. Suppose that it is unique. Then \mathcal{T}_{r} converges to $-M_{\ell}$, thus Y stays positive. Consider the function $Y_{\alpha}=e^{(\alpha+\gamma)(p-1) \tau} Y$ defined by (2.3) with $d=\alpha$. From Theorem 3.3, $Y_{\alpha}=(a|\alpha| / N) e^{(\alpha(p-1)+p) \tau}(1+o(1))$ near $-\infty$; thus Y_{α} tends to ∞, since $\alpha<p^{\prime}$. And $Y_{\alpha}=(\gamma \ell)^{p-1} e^{(\alpha+\gamma)(p-1) \tau}$ near ∞, thus also Y_{α} tends to ∞; then it has a minimum point τ, and from (2.6), $Y_{\alpha}^{\prime \prime}(\tau)=(p-1)^{2}(\eta-\alpha)\left(p^{\prime}+\alpha\right) Y_{\alpha}<0$, which is contradictory. Thus y has a number $m \geqq 2$ of zeros.

Either $\mathcal{T}_{r} \neq \mathcal{T}_{\alpha}$. Since the slope of \mathcal{T}_{α} near $-\infty$ is infinite and the slope of \mathcal{T}_{r} is finite, \mathcal{T}_{α} cuts the line $\{y=0\}$ at m points, starts from \mathcal{Q}_{1}, and w is of type (iv). For any P in the domain of \mathcal{Q}_{1} between \mathcal{T}_{r} and $\mathcal{T}_{\alpha}, \mathcal{I}_{[P]}$ cuts $\{y=0\}$ at $m+1$ points, and w is of type (v). For any P in the domain of \mathcal{Q}_{1} above $\mathcal{T}_{r}, \mathcal{T}_{[P]}$ cuts the line $\{y=0\}$ at $m+1$ points, and w is of type (vi). If $p>N$, the trajectories \mathcal{T}_{-}and \mathcal{T}_{u} cut the line $\{y=0\}$ at m points, and w is of type (vii).

Or $\mathcal{T}_{r}=\mathcal{T}_{\alpha}$, and then we find only trajectories with w of type (vi) or (vii).

Remark 9.13 Consider the regular solutions in the range $\alpha_{c}<\alpha<-p^{\prime}$. We conjecture that there exists a decreasing sequence $\left(\bar{\alpha}_{n}\right)$, with $\bar{\alpha}_{0}=-p^{\prime}$ and $\alpha_{c}<\bar{\alpha}_{n}$ such that for $\alpha \in\left(\bar{\alpha}_{m}, \bar{\alpha}_{m-1}\right)$, y has m zeros and converges to $\pm M_{\ell}$; and for $\alpha=\bar{\alpha}_{m}$, y has $m+1$ zeros and converges to (0,0), thus $\mathcal{T}_{r}=\mathcal{T}_{\alpha}$. We presume that $\left(\bar{\alpha}_{m}\right)$ has a limit $\bar{\alpha}>\alpha_{c}$. And for $\alpha<\bar{\alpha}$, y has an infinity of zeros, in other words there exists a cycle \mathcal{O}_{r} surrounding $\{0\}$ and $\pm M_{\ell}$.

Numerically, for $\alpha=\alpha_{c}$, the cycle \mathcal{O}_{r} seems to be the unique cycle surrounding the three points. But for $\alpha>\alpha_{c}$ and $\alpha-\alpha_{c}$ small enough, there exist two different cycles $\mathcal{O}_{\alpha} \subset \mathcal{O}_{r}$ (see figure 15). As α increases, we observe the coalescence of those cycles; they disappear after some value $\bar{\alpha}$ (see figure 16).

References

[1] D.G. Aronson and J. Graveleau, A self-similar solution to the focusing problem for the porous medium equation, Euro. J. Applied Math. 4 (1993), 65-81.
[2] D.G. Aronson, 0. Gil and J.L. Vazquez, Limit behaviour of focussing solutions to nonlinear diffusions, Comm. Partial Diff. Equ. 23 (1998), 307-332.
[3] M.F. Bidaut-Véron, The p-Laplace heat equation with a source term: self-similar solutions revisited, Advances Nonlinear Studies, 6 (2006), 69-108.
[4] M.F. Bidaut-Véron, Self-similar solutions of the p-Laplace heat equation: the fast diffusion case, Pacific Journal, 227, N${ }^{\circ} 2$ (2006), 201-269.
[5] C. Chicone, Ordinary Differential Equations with Applications, Texts Applied Maths 34, Springer-Verlag (1999).
[6] C. Chicone and T. Jinghuang, On general properties of quadratic systems, Amer. Math. Monthly, 89 (1982), 167-178.
[7] J.H. Hubbard and B.H. West, Differential equations: A dynamical systems approach, Texts Applied Maths 18, Springer-Verlag (1995).
[8] O. Gil and J.L. Vazquez, Focusing solutions for the p-Laplacian evolution equation, Advances Diff. Equ., 2 (1997), 183-202.
[9] Y. A. Kuznetzov, Elements of Applied Bifurcation Theory, Applied Math Sciences 112, Springer-Verlag (1995).
[10] S. Kamin and J.L. Vazquez, Singular solutions of some nonlinear parabolic equations, J. Anal. Math. 59 (1992), 51-74.

[^0]: *Laboratoire de Mathématiques et Physique Théorique, CNRS UMR 6083, Faculté des Sciences, Parc Grandmont, 37200 Tours, France. e-mail:veronmf@univ-tours.fr

