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Abstract

We study the self-similar solutions of the equation

ut � div(jrujp�2ru) = 0;

in RN ; when p > 2: We make a complete study of the existence and possible uniqueness of
solutions of the form

u(x; t) = (�t)��=�w((�t)�1=� jxj)

of any sign, regular or singular at x = 0: Among them we �nd solutions with an expanding
compact support or a shrinking hole (for t > 0); or a spreading compact support or a focussing
hole (for t < 0): When t < 0; we show the existence of positive solutions oscillating around the
particular solution U(x; t) = CN;p(jxjp =(�t))1=(p�2):

.
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1 Introduction and main results

Here we consider the self-similar solutions of the degenerate heat equation involving the p-Laplace
operator

ut�div(jrujp�2ru) = 0: (Eu)

in RN ; with p > 2: This study is the continuation of the work started in [4], relative to the case
p < 2: It can be read independently. We set


 =
p

p� 2 ; � =
N � p
p� 1 ; (1.1)

thus 
 > 1; � < N;
N + 


p� 1 = � + 
 =
N � �
p� 2 : (1.2)

If u is a solution, then for any �; � 2 R; u�(x; t) = ��u(�x; ��t) is a solution of (Eu) if and only
if

� = �(p� 2) + p = (p� 2)(�+ 
); (1.3)

notice that � > 0 () � > �
: Given � 2 R such that � 6= �
; we search self-similar solutions,
radially symmetric in x; of the form:

u = u(x; t) = ("�t)��=�w(r); r = ("�t)�1=� jxj ; (1.4)

where " = �1: By translation, for any real T; we obtain solutions de�ned for any t > T when
"� > 0; or t < T when "� < 0: We are lead to the equation���w0��p�2w0�0+ N � 1

r

��w0��p�2w0+ "(rw0+�w) = 0 in (0;1) : (Ew)

Our purpose is to give a complete description of all the solutions, with constant or changing
sign. Equation (Ew) is very interesting, because it is singular at any zero of w0; since p > 2;
implying a nonuniqueness phenomena.

For example, concerning the constant sign solutions near the origin, it can happen that

lim
r!0

w = a 6= 0; lim
r!0

w0 = 0;

we will say that w is regular, or
lim
r!0

w = lim
r!0

w0 = 0;
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we say that w is �at. Or di¤erent kinds of singularities may occur, either at the level of w :

lim
r!0

w =1;

or at the level of the gradient:

lim
r!0

w = a 2 R; lim
r!0

w0 = �1; when p > N > 1;

lim
r!0

w = a 2 R; lim
r!0

w0 = b 6= 0 when p > N = 1:

We �rst show that any local solution w of (Ew) can be de�ned on (0;1) ; thus any solution
u of equation (Eu) associated to w by (1.4) is de�ned on RNn f0g � (0;�1) : Then we prove the
existence of regular solutions, �at ones, and of all singular solutions mentioned above.

Moreover, for " = 1, there exist solutions w with a compact support (0; �r); then u � 0 on the
set

D =
n
(x; t) : x 2 RN ; �t > 0; jxj > (�t)1=��r

o
:

For " = �1; there exist solutions with a hole: w(r) = 0() r 2 (0; �r). Then u � 0 on the set

H =
n
(x; t) : x 2 RN ; �t < 0; jxj < (��t)1=��r

o
:

The free boundary is of parabolic type for � > 0; of hyperbolic type for � < 0: This leads to four
types of solutions, and we prove their existence:

� If t > 0, with " = 1; � > 0, we say that u has an expanding support ; the support increases
from f0g as t increases from 0.

� If t > 0, with " = �1; � < 0, we say that u has a shrinking hole: the hole decreases from
in�nity as t increases from 0;

� If t < 0, with " = 1; � < 0, we say that u has a spreading support : the support increases to
be in�nite as t increases to 0:

� If t < 0, with " = �1; � > 0; we say that u has a focussing hole: the hole disappears as t
increases to 0:

Up to our knowledge, some of them seem completely new, as for example the solutions with a
shrinking hole or a spreading support. In particular we �nd again and improve some results of [8]
concerning the existence of focussing type solutions.

Finally for t < 0 we also show the existence of positive solutions turning around the fundamental
solution U given at (1.8) with a kind of periodicity, and also the existence of changing sign solutions
doubly oscillating in jxj near 0 and in�nity.

3



As in [4] we reduce the problem to dynamical systems.

When " = �1; a critical negative value of � is involved:

�� = �
 + 
(N + 
)

(p� 1)(N + 2
)
: (1.5)

1.1 Explicit solutions

Obviously if w is a solution of (Ew), �w is also a solution. Some particular solutions are well-known.

The solution U . For any � such that "(�+ 
) < 0; that means "� < 0; there exist �at solutions
of (Ew), given by

w(r) = �`r
 ; (1.6)

where

` =

�
j�+ 
j


p�1(
 +N)

�1=(p�2)
> 0: (1.7)

They correspond to a unique solution of (Eu) called U , de�ned for t < 0; such that U(0; t) = 0;
�at, blowing up at t = 0 for �xed x 6= 0 :

U(x; t) = C

�
jxjp

�t

�1=(p�2)
; C = ((p� 2)
p�1(
 +N))1=(2�p): (1.8)

The case � = N: Then � = �N = N(p� 2) + p > 0; and the equation has a �rst integral

w + "r�1
��w0��p�2w0 = Cr�N : (1.9)

All the solutions corresponding to C = 0 are given by

w = wK;"(r) = �
�
K � "
�1rp0

�(p�1)=(p�2)
+

; K 2 R;

u = �uK;"(x; t) = �("�N t)�N=�N
�
K � "
�1("�N t)�p

0=�N jxjp
0
�(p�1)=(p�2)
+

: (1.10)

For " = 1; K > 0; they are de�ned for t > 0; called Barenblatt solutions, regular with a compact
support. Given c > 0; the function uK;1; de�ned on RN � (0;1) ; is the unique solution of equa-
tion (Eu) with initial data u(0) = c�0; where �0 is the Dirac mass at 0; and K being linked byZ
RN

uK(x; t)dt = c. The uK;1 are the only nonnegative solutions de�ned on RN � (0;1) ; such that

u(x; 0) = 0 for any x 6= 0: For " = �1; the uK;�1 are de�ned for t < 0; for K > 0; w does not vanish
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on (0;1) ; for K < 0; w is �at with a hole near 0. For K = 0; we �nd again the function w given
at (1.6).

The case � = � 6= 0. We exhibit a family of solutions of (Ew) :

w(r) = Cr��; u(t; x) = C jxj�� ; C 6= 0: (1.11)

The solutions u; independent of t; are p-harmonic in RN ; they are fundamental solutions when
p < N . When p > N; w satis�es limr!0w = 0; and limr!0w0 = 1 for N > 1; limr!0w0 = b for
N = 1:

The case � = �p0: Equation (Ew) admits regular solutions of the form

w(r) = �K
�
N(Kp0)p�2 + "rp

0
�
; u(x; t) = �K

�
N(Kp0)p�2t+ jxjp

0
�
; K > 0: (1.12)

Here � > 0; in the two cases " = 1; t > 0 and " = �1; t < 0; u is de�ned for any t 2 R and of the
form  (t) + �(jxj) with � nonconstant, and u(:; t) has a constant sign for t > 0 and changing sign
for t < 0:

The case � = 0: Equation (Ew) can be explicitely solved: either w0 � 0; thus w � a 2 R; u is a
constant solution of (Eu); or there exists K 2 R such that��w0�� = r�(�+1)

�
K � "


 +N
rN��

�1=(p�2)
+

; (1.13)

and w follows by integration, up to a constant, and then u(x; t) = w(jxj =("pt)1=p): If " = 1; then
t > 0; K > 0 and w0 has a compact support; up to a constant, u has a compact support. If " = �1;
then t < 0; for K > 0; w is strictly monotone; for K < 0; w is �at, constant near 0; for K = 0; we
�nd again (1.6). For " = �1;K > 0; observe that limr!0w = �1 if p 5 N ; and limr!0w = a 2 R;
limr!0w0 = �1 if p > N > 1; and limr!0w = a 2 R; limr!0w0 = K if p > N = 1: In particular
we �nd solutions such that w = crj�j(1 + o(1)) near 0; with c > 0:

(v) Case N = 1 and � = �(p� 1)=(p� 2) < 0: Here � = 1; and we �nd the solutions

w(r) = �
�
Kr + " j�jp�1 jKjp

�(p�1)=(p�2)
+

; u(x; t) = �
�
K jxj+ j�jp�1 jKjp t

�(p�1)=(p�2)
+

; (1.14)

If " = 1; t > 0; then w has a singularity at the level of the gradient, and either K > 0; w > 0; or
K < 0 and w has a compact support: If " = �1; t < 0 then K > 0, w has a hole.

1.2 Main results

In the next sections we provide an exhaustive study of equation (Ew). Here we give the main results
relative to the function u: Let us show how to return from w to u. Suppose that the behaviour of
w is given by

lim
r!0

r�w(r) = c 6= 0; lim
r!1

r�w(r) = c0 6= 0; where �; � 2 R:
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(i) Then for �xed t 6= 0; the function u has a behaviour in jxj�� near x = 0; and a behaviour in
jxj�� for large jxj :

If � = 0; then u is de�ned on RN�(0;�1) : Either w is regular, then u(:; t) 2 C1
�
RN � (0;1)

�
;

we will say that u is regular; nevertheless the regular solutions u presents a singularity at time
t = 0 if and only if � < �
 or � > 0: Or a singularity can appear for u at the level of the gradient.

If � < 0; thus u is de�ned on RN � (0;�1) and u(0; t) = 0; either w is �at, we also say that u
is �at, or a singularity appears at the level of the gradient.

If 0 < � < N; then u(:; t) 2 L1loc
�
RN
�
for t 6= 0; we say that x = 0 is a weak singularity. We

will show that there exist no stronger singularity.

If � < N < �; then u(:; t) 2 L1
�
RN
�
:

(ii) For �xed x 6= 0; the behaviour of u near t = 0; depends on the sign of �:

lim
t!0

jxj� jtj(���)=� u(x; t) = C 6= 0 if � > �
;

lim
t!0

jxj� jtj(���)=� u(x; t) = C 6= 0 if � < �
:

If � < 0; � > �
 or � < 0; � < �
, then limt!0 u(x; t) = 0:

1.2.1 Solutions de�ned for t > 0

Here we look for solutions u of (Eu) of the form (1.4) de�ned on RNn f0g � (0;1) : That means
"� > 0 or equivalently " = 1; �
 < � (see Section 6) or " = �1; � < �
 see (Section 7). We begin
by the case " = 1; treated at Theorem 6.1.

Theorem 1.1 Assume " = 1; and �
 < �:

(1) Let � < N:

All regular solutions on RNn f0g� (0;1) have a strict constant sign, in jxj�� near 1 for �xed
t; with initial data L jxj�� (L 6= 0) in RN ; thus u(:; t) 62 L1

�
RN
�
, and u is unbounded when � < 0:

There exist nonnegative solutions such that near x = 0;

for p < N; u has a weak singularity in jxj�� ;
for p = N; u has a weak singularity in ln jxj ;
for p > N; u 2 C0(RN � (0;1) ; u(0; t) = a > 0; with a singular gradient;

9=; (1.15)

and u has an expanding compact support for any t > 0, with initial data L jxj�� in RNn f0g :
There exist positive solutions with the same behaviour as x ! 0; in jxj�� near 1 for �xed t;

and also solutions such that u has one zero for �xed t 6= 0; and the same behaviour.
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If p > N; there exist positive solutions satisfying (1.15), and also positive solutions such that

u 2 C0(RN � (0;1) ; u(0; t) = 0; in jxjj�j near 0; with a singular gradient, (1.16)

in jxj�� near 1 for �xed t; with and initial data L jxj�� in RNn f0g :
(2) Let � = N:

All regular (Barenblatt) solutions are nonnegative, have a compact support for any t > 0.
If p 5 N; all the other solutions have one zero for �xed t, satisfy (1.15) or (1.16) and have the
same behaviour at 1:
(3) Let N < �:

All regular solutions u have a �nite number m = 1 of simple zeros for �xed t, and u(:; t) 2
L1
�
RN
�
: Either they are in jxj�� near 1 for �xed t; then there exist solutions with m zeros,

compact support, satisfying (1.15); or they have a compact support. All the solutions have m or
m + 1 zeros. There exist solutions satisfying (1.15) with m + 1 zeros, and in jxj�� near 1: If
p > N; there exist solutions satisfying (1.15) with m zeros; there exist also solutions with m zeros,
u(0; t) = 0; and a singular gradient, in jxj�� near 1:

Next we come to the case " = �1; which is the subject of Theorem 7.1.

Theorem 1.2 Assume " = �1 and � < �
:
All the solutions u on RNn f0g�(0;1) ; in particular the regular ones, are oscillating around

0 for �xed t > 0 and large jxj ; and r�
w is asymptotically periodic in ln r. Moreover there exist

solutions such that r�
w is periodic in ln r; in particular C1t�j�=�j 5 juj 5 C2t
�j�=�j for some

C1; C2 > 0;
solutions u 2 C1(RN � [0;1)); u(x; 0) � 0; with a shrinking hole;
�at solutions u 2 C1(RN � [0;1)); in jxjj�j near 0; with initial data L jxjj�j (L 6= 0);
solutions satisfying (1.15) near x = 0; and if p > N; solutions satisfying (1.16) near 0:

1.2.2 Solutions de�ned for t < 0

We look for solutions u of (Eu) of the form (1.4) de�ned on RNn f0g�(�1; 0) : That means "� < 0
or equivalently " = 1; � < �
 (see Section 8, Theorem 8.1) or " = �1; � > �
 (see Section 9). In
the case " = 1; we get the following:

Theorem 1.3 Assume " = 1; and � < �
.

The function U(x; t) = C
�
jxjp
�t

�1=(p�2)
is a positive �at solution on RNn f0g � (�1; 0).

All regular solutions have a constant sign, are unbounded in jxj
 near 1 for �xed t; and blow
up at t = 0 like (�t)�j�j=j�j for �xed x 6= 0:
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There exist �at positive solutions u 2 C1(RN � (�1; 0]); in jxj
 near 1 for �xed t; with �nal
data L jxjj�j (L > 0).

There exist nonnegative solutions satisfying (1.15) near 0; with a spreading compact sup-
port, blowing up near t = 0 (like jtj�(�+j�j)=j�j for p < N; or jtj�j�j=j�j ln jtj for p = N , or
(�t)�j�j=j�jfor p > N):

There exist positive solutions with the same behaviour near 0; in jxj
 near 1; blowing up as
above at t = 0, and solutions with one zero for �xed t, and the same behaviour. If p > N; there
exist positive solutions satisfying (1.15) (resp. (1.16)) near 0, in jxj
 near 1 for �xed t; blowing
up at t = 0 like jtj�j�j=j�j ( resp. jtj(j�j�j�j)=j�j) for �xed x.

Up to a symmetry, all the solutions are described.

The most interesting case is " = �1;�
 < �: For simplicity we will assume that p < N: The
case p = N is much more delicate, and the complete results can be read in terms of w at Theorems
9.4, 9.6, 9.9, 9.10, 9.11 and 9.12. We discuss according to the position of � with respect to �p0 and
�� de�ned at (1.5). Notice that �� < �p0:

Theorem 1.4 Assume " = �1; and �p0 5 � 6= 0. The function U is still a �at solution on
RNn f0g � (�1; 0) :

(1) Let 0 < �:

All regular solutions have a strict constant sign, in jxj
 near 1 for �xed t; blowing up at t = 0
like (�t)�1=(p�2) for �xed x 6= 0:

There exist nonnegative solutions with a focussing hole: u(x; t) � 0 for jxj 5 C jtj1=� ; t > 0;
in jxj
 near 1 for �xed t; blowing up at t = 0 like (�t)�1=(p�2) for �xed x 6= 0:

There exist positive solutions u with a (weak) singularity in jxj��at x = 0; in jxj�� near 1
for �xed t; with u(:; t) 2 L1

�
RN
�
if � > N; with �nal data L jxj�� (L > 0) in RNn f0g :

There exist positive solutions u in jxj��at x = 0; in jxj
 near 1 for �xed t; blowing up at t = 0
like (�t)�1=(p�2) for �xed x 6= 0; solutions with one zero and the same behaviour.
(2) Let �p0 < � < 0:

All regular solutions have one zero for �xed t, and the same behaviour. There exist solutions
with one zero, in jxj��at x = 0; in jxjj�j near 1 for �xed t; with �nal data L jxj�� (L > 0) in
RNn f0g : There exist solutions with one zero, u in jxj��at x = 0; in jxj
 near 1 for �xed t; blowing
up at t = 0 like (�t)�1=(p�2) for �xed x 6= 0; solutions with two zeros and the same behaviour.
3) Let � = �p0:

All regular solutions have one zero and are in jxjj�j near 1 for �xed t; and with �nal data
L jxjj�j (L > 0). The other solutions have one or two zeros, are in jxj��at x = 0; in jxj
 near 1
for �xed t:

In any case, up to a symmetry, all the solutions are described.
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Theorem 1.5 Assume " = �1;�
 < � < �p0: Then U is still a �at solution on RNn f0g �
(�1; 0) :

(1)Let � 5 ��:

Then there exist positive �at solutions, in jxj
 near 0, in jxjj�j near 1 for �xed t; with �nal
data L jxj�� (L > 0) in RN :

All the other solutions, among them the regular ones, have an in�nity of zeros: u(t; :) is
oscillating around 0 for large jxj : There exist solutions with a focussing hole, and solutions with a
singularity in jxj��at x = 0: There exist solutions oscillating also for small jxj ; such that r�
w
is periodic in ln r:

(2) There exist a critical unique value �c 2 (max(��;�p0) such that for � = �c; there exists
nonnegative solutions with a focussing hole near 0, in jxjj�j near 1 for �xed t; with �nal data
L jxj�� (L > 0) in RN : And �c > �(p� 1)=(p� 2):
There exist positive �at solutions, such that jxj�
 u is bounded on RN for �xed t; blowing up at t = 0
like (�t)�1=(p�2) for �xed x 6= 0: The regular solutions are oscillating around 0 as above. There
exist solutions oscillating around 0; such that r�
w is periodic in ln r: There are solutions with
a weak singularity in jxj��at x = 0, and oscillating around 0 for large jxj :

(3) Let �� < � < �c:

The regular solutions are as above. There exist solutions of the same types as above. Moreover
there exist positive solutions, such that r�
w is periodic in ln r; thus there exist C1; C2 > 0 such
that

C1

�
jxjp

jtj

�1=(p�2)
5 u 5 C2

�
jxjp

jtj

�1=(p�2)
There exist positive solutions, such that r�
w is asymptotically periodic in ln r near 0 and in jxj

near 1 for �xed t; and also, solutions with a hole, and oscillating around 0 for large jxj. There
exist solutions positive near 0, oscillating near 1; and r�
w is doubly asymptotically periodic
in ln r:

4) Let �c < � < �p0:

There exist nonnegative solutions with a focussing hole near 0, in jxj
 near 1 for �xed t; blowing
up at t = 0 like (�t)�1=(p�2) for �xed x 6= 0: Either the regular solutions have an in�nity of zeros
for �xed t, then the same is true for all the other solutions. Or they have a �nite number m = 2
of zeros, and can be in jxj
 or jxjj�j near 1 (in that case they have a �nal data L jxjj�j); all the
other solutions have m or m+ 1 zeros.

In the case � = �c; we �nd again the existence and uniqueness of the focussing solutions
introduced in [8].
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2 Di¤erent formulations of the problem

In all the sequel we assume
� 6= 0;

recalling that the solutions w are given explicitely by (1.13) when � = 0: De�ning

JN (r) = rN
�
w + "r�1

��w0��p�2w0� ; J�(r) = r��NJN (r); (2.1)

equation (Ew) can be written in an equivalent way under the forms

J 0N (r) = rN�1(N � �)w; J 0�(r) = �"(N � �)r��2
��w0��p�2w0: (2.2)

If � = N; then JN is constant, so we �nd again (1.9).

We mainly use logarithmic substitutions; given d 2 R; setting

w(r) = r�dyd(�); Yd = �r(d+1)(p�1)
��w0��p�2w0; � = ln r; (2.3)

we obtain the equivalent system:

y0d = dyd � jYdj(2�p)=(p�1) Yd;

Y 0d = (p� 1)(d� �)Yd + "e(p+(p�2)d)� (�yd � jYdj
(2�p)=(p�1) Yd):

9>=>; (2.4)

At any point � where w0(�) 6= 0; the functions yd; Yd satisfy the equations

y00d + (� � 2d)y0d � d(� � d)yd +
"

p� 1e
((p�2)d+p)� ��dyd � y0d��2�p �y0d + (�� d)yd� = 0; (2.5)

Y 00d + (p� 1)(� � 2d� p0)Y 0d + "e((p�2)d+p)� jYdj
(2�p)=(p�1) (Y 0d=(p� 1) + (�� d)Yd)

�(p� 1)2(� � d)(p0 + d)Yd = 0;
(2.6)

The main case is d = �
: setting y = y�
 ;

w(r) = r
y(�); Y = �r(�
+1)(p�1)
��w0��p�2w0; � = ln r; (2.7)

we are lead to the autonomous system

y0 = �
y � jY j(2�p)=(p�1) Y;

Y 0 = �(
 +N)Y + "(�y � jY j(2�p)=(p�1) Y ):

9>=>; (S)
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Its study is fundamental: its phase portrait allows to study all the signed solutions of equation
(Ew). Equation (2.5) takes the form

(p�1)y00+(N+
p)y0+
(
+N)y+"
��
y + y0��2�p �y0 + (�+ 
)y� = 0; (Ey)

Notice that JN (r) = rN+
(y(�)� "Y (�)):

Remark 2.1 Since (S) is autonomous, for any solution w of (Ew) of the problem, all the functions
w�(r) = ��
w(�r); � > 0; are also solutions.

Notation 2.2 In the sequel we set "1 := +1 if " = 1; "1 := �1 if " = �1:

2.1 The phase plane of system (S)

In the phase plane (y; Y ) we denote the four quadrants by

Q1 = (0;1)� (0;1) ; Q2 = (�1; 0)� (0;1) ; Q3 = �Q1; Q4 = �Q2:

Remark 2.3 The vector �eld at any point (0; �) ; � > 0 satis�es y0 = ��1=(p�1) < 0; thus points to
Q2; moreover Y 0 < 0 if " = 1. The �eld at any point ('; 0) ; ' > 0 satis�es Y 0 = "�'; thus points
to Q1 if "� > 0 and to Q4 if "� < 0; moreover y0 = �
' < 0:

If "(
+�) = 0; system (S) has a unique stationary point (0; 0): If "(
+�) < 0; it admits three
stationary points:

(0; 0); M` = (`;�(
`)p�1) 2 Q4; M 0
` = �M` 2 Q2; (2.8)

where ` is de�ned at (1.7). The point (0; 0) is singular because p > 2; its study concern in particular
the solutions w with a double zero. When "(
 + �) < 0; the point M` is associated to the solution
w � `r
 of equation (Ew) given at (1.1).

Linearization around M`: Near the point M`; setting

y = `+ y; Y = �(
`)p�1 + Y ; (2.9)

system (S) is equivalent in Q4 to

y0 = �
y � "�(�)Y +	(Y ); Y
0
= "�y � (
 +N + �(�))Y + "	(Y ); (2.10)

where

�(�) = � 
(N + 
)

(p� 1)(
 + �) ; and 	(#) = ((
`)
p�1�#)1=(p�1)�
`+(
`)

2�p

p� 1 #; # < (
`)p�1; (2.11)
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thus "�(�) > 0: The linearized problem is given by

y0 = �
y � "�(�)Y ; Y
0
= "�y � (
 +N + �(�))Y :

Its eigenvalues �1 5 �2 are the solutions of equation

�2 + (2
 +N + �(�))�+ p0(N + 
) = 0 (2.12)

The discriminant � of the equation (2.12) is given by

� = (2
 +N + �(�))2 � 4p0(N + 
) = (N + �(�))2 � 4�(�)�: (2.13)

For " = 1; M` is a sink, and a node point, since �(�) > 0; and � < 0; thus � > 0. For " = �1; we

have �(�) < 0; the nature of M` depends on the critical value �� de�ned at (1.5); indeed

� = �� () �1 + �2 = 0:

Then M` is a sink when � > �� and a source when � < ��: Moreover �� corresponds to a spiral
point, and M` is a node point when � = 0; that means � 5 �1; or 
 > N=2 +

p
p0(N + 
) and

�2 5 �; where

�1 = �
 +

(N + 
)

(p� 1)(2
 +N + 2(p0(N + 
))1=2)
; �2 = �
 +


(N + 
)

(p� 1)(2
 +N � 2(p0(N + 
))1=2)
:

(2.14)
When � > 0, and �1 < �2; one can choose a basis of eigenvectors

e1 = (�"�(�); �1 + 
) and e2 = ("�(�);�
 � �2): (2.15)

Remark 2.4 One veri�es that �� < �1; and �� < �(p � 1)=(p � 2) if and only if p > N: Also
�2 5 0; and �2 = 0() N = p=((p�2)2; and �2 > �p0 () 
2�7
�8N < 0; which is not always
true.

As in [4, Theorem 2.16] we prove that the Hopf bifurcation point is not degenerate, which
implies the existence of small cycles near ��:

Proposition 2.5 Let " = �1; and � = �� > �
: Then M` is a weak source. If � > �� and ����
is small enough, there exists a unique limit cycle in Q4; attracting at �1:
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2.2 Other systems for positive solutions

When w has a constant sign, we de�ne two functions associated to (y; Y ) :

�(�) =
jY j(2�p)=(p�1) Y

y
(�) = �rw

0(r)

w(r)
; �(�) =

Y

y
(�) = �jw

0(r)jp�2w0(r)
rw(r)

: (2.16)

Thus � describes the behaviour of w0=w and � is the slope in the phase plane (y; Y ) : They satisfy
the system

� 0 = �(� � �) + " j�yj2�p (�� �)=(p� 1) = �(� � � + "(�� �)=(p� 1)�);

�0 = "(��N) +
�
j�yj(2�p)=(p�1) � �N

�
(� � ") = "(�� �) + (� �N)�:

9>=>; (Q)

In particular, System (Q) provides a short proof of the local existence and uniqueness of the regular
solutions: they correspond to its stationary point (0; "�=N), see Section 3.1.

Moreover, if w and w0 have a strict constant sign, that means in any quadrant Qi; we can de�ne

 =
1

�
=

y

Y
(2.17)

We obtain a new system relative to (�;  ) :

� 0 = �(� � � + "(�� �) =(p� 1));

 0 =  (N � � + " (� � �) ) :

9=; (P)

We are reduced to a polynomial system, thus with no singularity. System (P) gives the existence
of singular solutions when p > N; corresponding to its stationary point (�; 0); see Section 5.

We will also consider another system in any Qi : setting

� = �1=g; � = �s; d� = gsd� = jY j(p�2)=(p�1) d�; (2.18)

we �nd

dg=d� = g(s(1 + �g) + "(1 + �g)=(p� 1));

ds=d� = �s("(1 + �g) + (1 +Ng)s):

9=; (R)

System (R) allows to get the existence of solutions w with a hole or a compact support, and other
solutions, corresponding to its stationary points (0;�") and (�1=�; 0); it provides a complete study
of the singular point (0; 0) of system (S), see Sections 3.3, 5; and of the focussing solutions, see
Section 9.
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Remark 2.6 The particular solutions can be found again in the di¤erent phase planes, where their
trajectories are lines:

For � = N; the solutions (1.10) correspond to Y � "y; that means � � ":
For � = � 6= 0 the solutions (1.11) correspond to � � �:
For � = �p0; the solutions (1.12) are given by � + "N� � �:
For N = 1; � = �(p� 2)=(p� 1); the solutions (1.14) satisfy �g + "s � �1:

3 Global existence

3.1 Local existence and uniqueness

Proposition 3.1 Let r1 > 0 and a; b 2 R: If (a; b) 6= (0; 0), there exists a unique solution w of
equation (Ew) in a neighborhood V of r1, such that w and jw0jp�2w0 2 C1 (V) and w(r1) = a;
w0(r1) = b: It extends on a maximal interval I where (w(r); w0(r)) 6= (0; 0):

Proof. If b 6= 0; the Cauchy theorem directly applies to system (S). If b = 0 the system is a
priori singular on the line fY = 0g since p > 2: In fact it is only singular at (0; 0): Indeed near any
point (�; 0) with � 6= 0; one can take Y as a variable, and

dy

dY
= F (Y; y); F (Y; y) :=


y + jY j(2�p)=(p�1) Y
(
 +N)Y + "(jY j(2�p)=(p�1) Y � �y)

;

where F is continuous in Y and C1 in y; hence local existence and uniqueness hold.

Notation 3.2 For any point P0 = (y0; Y0) 2 R2n f(0; 0)g ; the unique trajectory in the phase plane
(y; Y ) of system (S) going through P0 is denoted by T[P0]: By symmetry, T[�P0] = �T[P0].

Next we show the existence of regular solutions. Our proof is short, based on phase plane
portrait, and not on a �xed point method, rather delicate because p > 2; see [3].

Theorem 3.3 For any a 2 R; a 6= 0; there exists a unique solution w = w(:; a) of equation (Ew)
in an interval [0; r0) ; such that w and jw0jp�2w0 2 C1 ([0; r0)) and

w(0) = a; w0(0) = 0; (3.1)

and then limr!0 jw0jp�2w0=rw = �"�=N: In other words in the phase plane (y; Y ) there exists a
unique trajectory Tr such that lim�!�1 y =1; and lim�!�1 Y=y = "�=N:

Proof. We have assumed � 6= 0 (when � = 0; w � a from (1.13)). If such a solution w
exists, then from (2.1) and (2.2), J 0N (r) = rN�1(N ��)a(1+ o(1)) near 0: Thus JN (r) = rN�1(1�
�=N)a(1 + o(1)); hence limr!0 jw0jp�2w0=rw = �"�=N ; in other words, lim�!�1 � = "�=N: And
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lim�!�1 y = 1; thus lim�!�1 � = 0; and "�� > 0 near �1: Reciprocally consider system (Q).
The point (0; "�=N) is stationary. Setting � = "�=N + ��; the linearized system near this point is
given by

� 0 = p0�; ��0 = "�(��N)=N �N ��:

One �nds is a saddle point, with eigenvalues �N and p0: Then there exists a unique trajectory
T 0r in the phase-plane (�; �) starting at �1 from (0; "�=N) with the slope "(� � N)=N(N +
p0) 6= 0 and "�� > 0: It corresponds to a unique trajectory Tr in the phase plane (y; Y ); and
lim�!�1 y = 1; since y = j�j j�j1�p)1=(p�2). For any solution (�; �) describing T 0r , the func-
tion w(r) = r
(j�j j�j1�p (�))1=(p�2) satis�es limr!0 jw0jp�2w0=rw = �"�=N: As a consequence,
w(p�2)=(p�1) has a �nite nonzero limit, and limr!0w0 = 0; thus w is regular. Local existence and
uniqueness follows for any a 6= 0; by Remark 2.1.

De�nition 3.4 The trajectory Tr in the plane (y; Y ) and its opposite �Tr will be called regular
trajectories. We shall say that y is regular. Observe that Tr starts in Q1 if "� > 0; and in Q4 if
"� < 0:

Remark 3.5 From Theorem 3.3 and Remark 2.1, all regular solutions are obtained from one one
of them: w(r; a) = aw(a�1=
r; 1): Thus they have the same behaviour near 1:

3.2 Sign properties

Next we give informations on the zeros of w or w0; by using the monotonicity properties of the
functions yd; Yd; in particular y; Y; and � and �. At any extremal point � , they satisfy respectively

y00d(�) = yd(�)

�
d(� � d) + "(d� �)

p� 1 e((p�2)d+p)� jdyd(�)j2�p
�
; (3.2)

Y 00d (�) = Yd(�)
�
(p� 1)2(� � d)(p0 + d) + "(d� �)e((p�2)d+p)� jYd(�)j(2�p)=(p�1)

�
; (3.3)

(p� 1)y00(�) = 
2�py(�)
�
�
p�1(N + 
)� "(
 + �) jy(�)j2�p

�
= � jY (�)j(2�p)=(p�1) Y 0(�); (3.4)

Y 00(�) = Y (�)
�
�
(N + 
)� "(
 + �) jY (�)j(2�p)=(p�1)

�
= "�y0(�); (3.5)

(p� 1)� 00(�) = �"(p� 2)((�� �) j�j2�p jyj�p yy0)(�) = "(p� 2)((�� �)(
 + �) j�yj2�p)(�); (3.6)

(p� 1)�00(�) = �(p� 2)((� � ") j�j(2�p)=(p�1) Y jyj(4�3p)=(p�1) y0)(�) = � 0(�)(�(�)� "): (3.7)

Proposition 3.6 Let w 6� 0 be any solution of (Ew) on an interval I.

(i) If " = 1 and � 5 N; then w has at most one simple zero; if � < N and w is regular, it has no
zero. If � = N it has no simple zero and a compact support. If � > N and w is regular, it has at
least one simple zero.
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(ii) If " = �1 and � = min(0; �); then w has at most one simple zero. If w 6� 0 has a double zero,
then it has no simple zero. If � > 0 and w is regular, it has no zero.

(iii) If " = �1 and �p0 5 � < min(0; �); then w0 has at most one simple zero, consequently w has
at most two simple zeros, and at most one if w is regular. If � < �p0; the regular solutions have at
least two zeros.

Proof. (i) Let " = 1: Consider two consecutive simple zeros �0 < �1 of w; with w > 0 on
(�0; �1) ; hence w0(�1) < 0 < w0(�0). If � 5 N; we �nd from (2.1),

JN (�1)� JN (�0) = ��N�11

��w0(�1)��p�2 � �N�10 w0(�0)
p�1 = (N � �)

Z �1

�0

sN�1wds;

which is contradictory; thus w has at most one simple zero. The contradiction holds as soon as �0
is simple, even if �1 is not. If w is regular with w(0) > 0; and �1 is a �rst zero, and � < N;

JN (�1) = ��N�11

��w0(�1)��p�1 = (N � �)
Z �1

0
sN�1wds > 0;

which is still impossible. If � = N; the (Barenblatt) solutions are given by (1.10): Next suppose
� > N and w regular. If w > 0; then JN < 0; thus w�1=(p�1)w0 + r1=(p�1) < 0: Then the function
r 7! rp

0
+ 
w(p�2)=(p�1) is non increasing and we reach a contradiction for large r: Thus w has a

�rst zero �1; and JN (�1) < 0; thus w0(�1) 6= 0:
(ii) Let " = �1 and � = min(�; 0): Here we use the substitution (2.3) from some d 6= 0: If yd has a
maximal point, where it is positive, and is not constant, then (3.2) holds. Taking d 2 (0;min(�; �))
if � > 0, d = � if � 5 0; we reach a contradiction. Hence yd has at most a simple zero, and no
simple zero if it has a double one. Suppose w regular and � > 0: Then w0 > 0 near 0; from Theorem
3.3. As long as w stays positive, any extremal point r is a strict minimum, from (Ew), thus in fact
w0 stays positive.

(iii) Let " = �1 and �p0 5 � < min(0; �): Suppose that w0 and has two consecutive zeros �0 < �1,
and one of them is simple, and use again (2.3) with d = �. Then the function Y� has an extremal
point � , where it is positive and is not constant; from (3.3),

Y 00� (�) = (p� 1)2(� � �)(p0 + �)Y�(�); (3.8)

thus Y 00� (�) = 0; which is contradictory. Next consider the regular solutions. They satisfy Y�(�) =
e(�(p�1)+p)� (j�j a=N)(1 + o(1) near �1; from Theorem 3.3 and (2.3), thus lim�!�1 Y� = 0: As
above Y� cannot have any extremal point, then Y� is positive and increasing. In turn w0 < 0 from
(2.3), hence w has at most one zero.

Proposition 3.7 Let w 6� 0 be any solution of (Ew) on an interval I. If " = 1; then w has a
�nite number of isolated zeros. If " = �1; it has a �nite number of isolated zeros in any interval
[m;M ] \ I with 0 < m < M <1:
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Proof. Let Z be the set of isolated zeros on I. If w has two consecutive isolated zeros �1 < �2,
and � 2 (e�1 ; e�2) is a maximal point of jydj, from (3.2), it follows that

"e((p�2)d+p)� jdyd(�)j2�p (d� �) 5 (p� 1)d(d� �): (3.9)

That means with � = e� 2 (�1; �2) ;

"�p jw(�)j2�p (d� �) 5 (p� 1)dp�1(d� �): (3.10)

First suppose " = 1 and �x d > �: Consider the energy function

E(r) =
1

p0
��w0��p + �

2
w2:

It is nonincreasing since E0(r) = �(N � 1)r�1 jw0jp � rw02; thus bounded on I \ [�1;1) : Then
w is bounded, �2 is bounded; Z is a bounded set. If Z is in�nite, there exists a sequence of
zeros (rn) converging to some point r 2 [0;1) ; and a sequence (�n) of maximal points of jydj
converging to � = ln r. If r > 0; then w(r) = w0(r) = 0; we get a contradiction by taking
� = �n = e�n in (3.10), because the left-hand side tends to 1: If r = 0; �xing now d < �, there
exists a sequence (�n) of maximal points of jydj converging to �1. Then w(�n) = O(�

p=(p�2)
n );

and w0(�n) = �d��1n w(�n) = O(�
2=(p�2)
n ); thus E(�n) = o(1): Since E is monotone, it implies

limr!0E(r) = 0; hence E � 0; and w � 0; which is contradictory. Next suppose " = �1 and �x
d < �: If Z \ [m;M ] is in�nite, we construct a sequence converging vers some r > 0 and reach a
contradiction as above.

Proposition 3.8 Let y be any non constant solution of (Ey), on a maximal interval I where
(y; Y ) 6= (0; 0); and s be an extremity of I:

(i) If y has a constant sign near s; then the same is true for Y .

(ii) If y > 0 is strictly monotone near s, then Y; �; � are monotone near s:

(iii) If y > 0 is not strictly monotone near s; then s = �1; "(
+�) < 0 and y oscillates around `:

(iv) If y is oscillating around 0 near s, then " = �1; s = �1; � < �p0; if � > �
; then jyj > ` at
the extremal points.

Proof. (i) The function w has at most one extremal point on I : at such a point, it satis�es
(jw0jp�2w0)0 = �"�w with � 6= 0: From (2.7), Y has a constant sign near s:

(ii) Suppose y strictly monotone near s: At any extremal point � of Y; we �nd Y 00(�) = "�y0(�) from
(3.5). Then y0(�) 6= 0; Y 00(�) has a constant sign. Thus � is unique, and Y is strictly monotone
near s. Next consider �. If there exists �0 such that �(�0) = �; then � 0(�0) = �(�� �); from system
(Q). If � 6= �; then �0 is unique, thus �� � has a constant sign near s: Then � 00(�) has a constant
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sign at any extremal point � of �; from (3.6), thus � is strictly monotone near s: If � = �; then
� � �. At last consider �. If there exists �0 such that �(�0) = "; then �0(�0) = "(� � N) from
System (Q). If � 6= N , then �0 is unique, and � � " has a constant sign near s: Thus �00(�) has a
constant sign at any extremal point � of �; from (3.7) and assertion (i). If � = N , then � � ":

(iii) Let y be positive and not strictly monotone near s: There exists a sequence (�n) strictly
monotone, converging to �1; such that y0(�n) = 0; y00(�2n) > 0 > y00(�2n+1): Since y(�n) =

�1 jY j(2�p)=(p�1) Y (�n); we deduce Y < 0 near s; from (i). From (3.5),

�"(
 + �)y(�2n+1)2�p 5 
p�1(N + 
) 5 �"(
 + �))y(�2n)2�p; (3.11)

thus "(
 + �) < 0 and y(�2n) < ` < y(�2n+1); and Y (�2n+1) < � (
`)p�1 < Y (�2n): If s is �nite,
then y(s) = y0(s) = 0; which is impossible; thus s = �1:
(iv) If y is changing sign, then " = �1 and � < �p0; from Propositions 3.6 and 3.7. At any extremal
point �;

(�+ 
) jy(�)j2�p 5 
p�1(N + 
)

from (3.4); if � > �
 it means jyj > `:

3.3 Double zeros and global existence

Theorem 3.9 For any r > 0; there exists a unique solution w of (Ew) de�ned in a interval
[r; r � h) such that

w > 0 on (r; r � h) and w(r) = w0(r) = 0:

Moreover "h < 0 and

lim
r!r

j(r � r)j(p�1)=(2�p) r1=(2�p)w(r) = �((p� 2)=(p� 1))(p�1)=(p�2): (3.12)

In other words in the phase plane (y; Y ) there exists a unique trajectory T" converging to (0; 0) at
"1: It has the slope " and converges in �nite time; it depends locally continuously of �:

Proof. Suppose that a solution w 6� 0 exists on [r; r � h) with w(r) = w0(r) = 0: From
Propositions 3.7 and 3.8, up to a symmetry, y > 0; jY j > 0 near �� = ln r; and lim�!ln r y = 0;
and �; � are monotone near ln r. Let � and � be their limits. If j�j = 1; then j�j = 1; because
� = jY j(2�p)=(p�1) �, j�jp�2 � = �y2�p; then f = 1=� tends to 0; but

f 0 = �1 + �f + " 1� �f
(p� 1)� ; (3.13)

thus f 0 tends to �1; which is impossible. Thus � is �nite. If � is �nite, then � = 0; thus � = �;
from system (Q), lnw is integrable at r, which is not true. Then � = "1; hence

� = lim
�!ln r

� = ";
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from system (Q). Then "Y > 0 near �� ; then "w0 < 0 near r; thus "h < 0: Consider system (R): as
� tends to �� ; � tends to �1; and (g; s) converges to the stationary point (0;�"):

Reciprocally, setting s = �"=� + h; the linearized system of system (R) at this point is given
by

dg

d�
= �"p� 2

p� 1g;
dh

d�
= (��N)g + "h:

The eigenvalues are �"(p�2)=(p�1) and "; thus we �nd a saddle point. There are two trajectories
converging to (0;�"): The �rst one satis�es g � 0; it does not correspond to a solution of the
initial problem. Then there exists a unique trajectory converging to (0;�"); as � tends to "1;
with g > 0 near "1: It is associated to the eigenvalue �"(p � 2)=(p � 1) and the eigenvector
((2p � 3)=(p � 1); "(N � �)): It satis�es dg=d� = �"((p � 2)=(p � 1))g(1 + o(1)); thus dg=d� =
((p� 2)=(p� 1))(1 + o(1)): Then � has a �nite limit �� ; and � increases to �� if " = 1 and decreases
to �� if " = �1: In turn jY j(p�2)=(p�1) = gs tends to 0; and s tends to "; thus (y; Y ) tends to (0; 0)
as � tends to �� : Then w and w0 converges to 0 at r = e�� : And w0w�1=(p�1)+("+ o(1))r1=(p�1) = 0;
which implies (3.12).

Corollary 3.10 Let r1 > 0; and a; b 2 R and w be any local solution such that w(r1) = a;
w0(r1) = b:

(i) If (a; b) = (0; 0); then w has a unique extension by 0 on (r1;1) if " = 1; on (0; r1) if " = �1:

(ii) If (a; b) 6= (0; 0), w has a unique extension to (0;1) :

Proof. (i) Assume a = b = 0; the function w � 0 is a solution. Let w be any local solution
near r1, de�ned in an interval (r1 � h1; r1 + h1) with w(r1) = w0(r1) = 0. Suppose that there exists
h2 2 (0; h1) such that w(r1+ "h1) 6= 0: Let �h = inf fh 2 (0; h1) : w(r1 + "h) 6= 0g ; and �r = r1+ "�h;
thus w(�r) = w0(�r) = 0, and for example w > 0 on some interval (�r; �r + "k)) with k > 0: This
contradicts theorem 3.9. Thus w � 0 on (r1; r1 + "h1) :

(ii) From Theorems 3.9 and 3.3, w has no double zero for " (r � r1) < 0; and has a unique extension
to a maximal interval with no double zero. From (i) it has a unique extension to (0;1) : In
particular any local regular solution is de�ned on [0;1).

4 Asymptotic behaviour

Next the function y is supposed to be monotone, thus w has a constant sign near 0 or 1; we can
assume that w > 0:

Proposition 4.1 Let y be any solution of (Ey) strictly monotone and positive near s = �1.
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(1) Then (�; �) has a limit (�; �) near s; given by is some of the values

A
 =

�
�
; " �+ 


N + 


�
; Ar = (0; "�=N) ; A� = (�; 0) ;

L� = � (1;1) (if p 6= N); L+ = (0;1) (if p = N); L� = (0;�1) (if p > N): (4.1)

(2) More precisely,

(i) Either " (
 + �) < 0 and (y; Y ) converges to �M`: Then (�; �) = A
 and (" = 1; s = 1) or
(" = �1; s=-1 for � 5 ��; s =1 for � > ��):

(ii) Or (y; Y ) converges to (0; 0): Then (s =1 and �
 < �) or (s = �1 and � < �
), or (s = "1
and � = �
) and (�; �) = A�:

(iii) Or lim�!s y =1: Then s = �1: If p < N; then (�; �) = Ar or L�. If p = N; then (�; �) = Ar
or L+: If p > N; then (�; �) = Ar; L�; L+ or L�:

Proof. (1) The functions Y; �; � are also monotone, and by de�nition �� > 0. Thus � has a
limit � 2 [�1;1] and � has a limit � 2 [�1;1], and �� = 0:
(i) � is �nite. Indeed if � = �1; then f = 1=� tends to 0: From (3.13), either � = �1; then
f 0 tends to �1; which is imposible; or � is �nite, thus � = " from system (Q), then f 0 tends to
(2� p)=(p� 1); which is still contradictory.

(ii) Either � is �nite, thus (�; �) is a stationary point of system (Q), equal to A
 ; Ar or A�:

(iii) 0r � = �1 and (�; 0) is a stationary point of system (P).

� If p 6= N; either � = � 6= 0 and (�; �) = L�; or � = 0 and (�; �) = L+ or L�: In the last case
(�;  ) converges to (0; 0); and � 0= 0 = �(��=N )(1 + o(1)); thus � < 0; that means p > N:

� If p = N; then again (�;  ) converges to (0; 0); thus � = �1; and  0 = N (1 + o(1)); and
necessarily s = �1:We make the substitution (2.4) with d = 0: Then y0(�) = w(r), and y0 satis�es

y00 = � jY0j
(2�p)=(p�1) Y0 = ��y0 = o(y0); Y 00 = "ep�y0(�� �) = "ep�y0�(1 + o(1):

Thus for any � > 0; we get y0 = O(e��� ) and 1=y0 = O(e�� ): Then Y 00 is integrable, and Y0 has a
�nite limit jkjp�2 k: Suppose that k = 0: Then Y0 = O(e(p��)� ); and y0 has a �nite limit a = 0: If
a 6= 0; then Y 00 = "�aep� (1 + o(1)); in turn Y0 = p�1"�aep� (1 + o(1)); and  = ep�y0=Y0 does not
tend to 0: If a = 0; then y0 = O(ep

0� ); which contradicts the estimate of 1=y0: Thus k > 0 and

y0 = �k�(1 + o(1); Y0 = kp�1(1 + o(1)); (4.2)

hence (�; �) = L+:

(2) Since y is monotone, we encounter one of the three following cases:
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(i) (y; Y ) converges to �M`: Then (�; �) = A
 and M` is a source (or a weak source) for � 5 ��; a
sink for � > ��.

(ii) y tends to 0: Since � is �nite, (y; Y ) converges to (0; 0): And j�j = j�jp�1 yp�2 tends to 0; thus
(�; �) = A�: If �
 < �; seeing that y0 = �y(
 + �) < 0 we �nd s = 1: If � < �
; then s = �1:
If � = �
 < 0; then " (
 + �) > 0; from the �rst equation of (Q), thus "y0 < 0; hence s = "1:

(iii) y tends to 1: Either � 6= 0; thus j�j = j�jp�1 yp�2 tends to 1; and � = � from system (Q),
thus p 6= N; (�; �) = L�. Or � = 0 and � is �nite, thus � = "�=N; (�; �) = Ar. Or (�; �) = L0;
then either p = N; L0 = L�; or p > N: In any case, y0 = �y(
+ �) < 0; from (1.2), hence s = �1:

Next we apply these results to the functions w :

Proposition 4.2 We keep the assumptions of Proposition 4.1. Let w be the solution of (Ew)
associated to y by (2.7).

(i) If (�; �) = A
 (near 0 or 1); then

lim r�
w = `: (4.3)

(ii) If (�; �) = A� (near 0 or 1); then

lim r�w = L > 0 if � 6= �
; (4.4)

lim r�
(ln r)1=(p�2)w = ((p� 2)
p�1(N + 
))�1=(p�2) if � = �
: (4.5)

(iii) If p < N and (�; �) = L�; then
lim
r!0

r�w = c > 0: (4.6)

(iv) If p > N and (�; �) = L�; then

lim
r!0

r�j�jw = c > 0: (4.7)

(v) If p = N and (�; �) = L+; then

lim
r!0

jln rj�1w = k > 0, lim
r!0

rw0 = �k if p = N: (4.8)

(vi) If p > N and (�; �) = L+, or L�; then

lim
r!0

w = a > 0; lim
r!0

(�r(N�1)=(p�1)w0) = c > 0; (4.9)

or
lim
r!0

w = a > 0; lim
r!0

(�r(N�1)=(p�1)w0) = c < 0: (4.10)
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Proof. (i) This follows directly from (2.7).

(ii) From (2.16), rw0(r) = ��w(r)(1 + o(1): We are lead to three cases.
� Either �
 < �; and s =1. For any � > 0; we �nd w = O(r��+�) and 1=w = O(r�+�) near

1 and w0 = O(r���1+�). Then J 0�(r) = O(r�(2�p)�p�1+�); hence J 0� is integrable, J� has a limit
L: And lim r�w = L; seeing that J�(r) = r�w(1 + o(1)): If L = 0; then r�w = O(r�(2�p)�p+�);
which contradicts the estimate of 1=w = O(r�+�) for � small enough. Thus L > 0.

� Or � < �
 and s = �1. For any � > 0; we �nd w = O(r����) and 1=w = O(r�+�) near 0
and w0 = O(r���1��). Then J 0�(r) = O(r�(2�p)�p�1��); and J 0� is still integrable, J� has a limit
L; and lim r�w = L: If L = 0; then r�w = O(r�(2�p)�p��); which contradicts the estimate of 1=w.
Thus again L > 0.

� Or � = �
 and s = "1: Then Y = �
p�1yp�1(1 + o(1)); and � = 0; thus y � "Y =
y(1 + o(1)): From System (S),

(y � "Y )0 = "(N + 
)Y = �"(N + 
)
p�1 (y � "Y )p�1 (1 + o(1)):

Then y = (N + 
)
p�1(p� 2) j� j)�1=(p�2)(1 + o(1)); which is equivalent to (4.5).
(iii) From (2.16), we get rw0(r) = ��w(r)(1+o(1):We use (2.3) with d = �; thus y� = r�w:We �nd
y� = O(e��� ); 1=y� = O(e��� ); in turn Y� = O(e��� ). From (2.4), Y 0� = O(e(p+(p�2)���)� ); thus Y 0�
is integrable, hence Y� has a �nite limit. Now (e���y�)0 = �e���Y 1=(p�1)� ; and � > 0; thus y� has
a limit c: If c = 0; then Y� = O(e(p+(p�2)���)� ); y� = O(e((p+(p�2)�)=(p�1)��)� ); which contradicts
1=y� = O(e��� ) for � small enough. Then (4.6) holds.

(iv) As above, Y� has a �nite limit. In turn r�j�j+1w0 = jY�j(2�p)=(p�1) Y� has a limit c j�j and w
has a limit a = 0: From (2.16), rw0 = j�jw(1+ o(1); hence a = 0: Then c = 0; if b = 0; then Y < 0;
the function v = �e(
+N)�Y > 0 tends to 0 and

v0 = �e(
+N)�"(�� �)y(1 + o(1)) = �"(�� �) j�j e�(
+N)(p�2)=(p�1)�v1=(p�1);

we reach again a contradiction.Thus a = 0 and c > 0; and (4.7) holds.

(v) Assertion (4.8) follows from (4.2).

(vi) Here rw0 = o(w); thus w + jw0j = O(r�k) for any k > 0: Then J 0N is integrable, JN has a
limit at 0; and limr!0 rNw = 0: Thus limr!0 r(N�1)=(p�1)w0 = �c 2 R; limr!0 JN = �" jcjp�2 c;

limr!0w = a � 0: If c = 0; then JN (r) =

rZ
0

J 0N (s)ds; implying that limr!0w
0 = 0: Either a > 0

and then w is regular, then lim�!�1 � = "; or a = 0; then w0 > 0 and (w0)p�1 = O(rw); in both
cases we get a contradiction. Thus c 6= 0: If a = 0; we �nd lim�!�1 � = �; which is not true, hence
a > 0: In any case (4.9) or (4.10) holds.

Now we study the cases where y is not monotone, and eventually changing sign.
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Proposition 4.3 Suppose " = �1: Let w 6� 0 be any solution of (Ew).

(i) If � 5 �
; then w is oscillating near 0 at 1:

(ii) If � < 0; then y and Y are bounded at 1:

Proof. (i) Suppose by contradiction that w = 0 for large r; then y = 0 for large �: If y > 0 near
1; then from Proposition 3.8, either y is constant, which is impossible since (0; 0) is the unique
stationary point; or y is strictly monotone, which contradicts Proposition 4.1. Then there exists a
sequence (�n) tending to 1 such that y(�n) = y0(�n) = 0; from Theorem 3.10, y � 0 on (�1; �n) ;
thus y � 0.

(ii) Consider the function

� 7! R(�) =
y2

2
+
jY jp

0

p0 j�j ;

it satis�es

R0 (�) = �
y2 + 1

j�j jY j
2=(p�1) � N + 


j�j jY jp
0
:

From the Young inequality,

j�j (R0 (�) + 
R(�)) = jY j2=(p�1) � (N +
1

p� 2) jY j
p0 5 ( 2

Np+ 

)(p�2)=2 5 1

thus R(�) is bounded for large �; at least by 1= j�j 
:
Proof.

Proposition 4.4 (i) Assume " = 1; or " = �1; � 62 (�2; �1) : Then for any trajectory of system
(S) in Q4 near �1; y is strictly monotone near �1.

(ii) Assume " = 1; and � 5 �� or �p0 5 �: Then system (S) admits no cycle in Q4 (or Q2):

Proof. (i) In any caseM` is a node point. Following [4, Theorem 2.24], we use the linearization
de�ned by (2.9). Consider the line L given by the equation Ay+Y = 0, where A is a real parameter.
The points of L are in Q4 whenever Y < (
`)p�1 and �` < y: We get

Ay0 + Y
0
=
�
"�(�)A2 + (N + �(�))A+ "�

�
y + (A+ ")	(Y ):

From (2.13), apart from the case " = 1; � = N; we can �nd an A such that

"�(�)A2 + (N + �(�))A+ "� = 0;

and A + " 6= 0. Moreover 	(Y ) 5 0 on L \ Q4: Indeed (p � 1)	0(t) = �((
`)p�1 � t)(2�p)=(p�1) +
(
`)2�p; thus 	 has a maximum 0 on

�
�1; (�`)p�1

�
at point 0. Then the orientation of the vector
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�eld does not change along L \ Q4: In particular y cannot oscillate around `; thus y is monotone,
from Proposition 3.8. If " = 1; � = N; then Y � y 2 (`;1) de�nes the trajectory Tr, corresponding
to the solutions given by (1.10) with K > 0. No solution y can oscillate around `; since the
trajectory cannot meet Tr:

(ii) Suppose that there exists a cycle in Q4.

� Assume � 5 ��: Here M` is a source, or a weak source, from Proposition 2.5. Any trajectory
starting from M` at �1 has a limit cycle in Q1; which is attracting at 1: Writing System (S)
under the form y0 = f1(y; Y ); Y

0 = f2(y; Y ); the mean value of the Floquet integral on the period
[0;P] is given by

I =

I
(
@f1
@y
(y; Y ) +

@f2
@Y

(y; Y ))d� =

I
(
jY j(2�p)=(p�1)

p� 1 � 2
 �N)d�: (4.11)

Such a cycle is not unstable, thus I 5 0: NowI
(�y0 � 
Y 0)d� = 0 = (�+ 
)

I
jY j1=(p�1) d� � 
(
 +N)

I
jY j d�:

From the Jensen and Hölder inequalities, since 1=(p� 1) < 1;


(
 +N)(

I
jY j1=(p�1) d�)p�2 5 �+ 
;

1 5
�I

jY j(2�p)=(p�1))d�
��I

jY j1=(p�1) d�
�p�2

5 (p� 1)(2
 +N)

(
 +N)

(�+ 
);

then �� < �; which is contradictory.

� Assume �p0 5 � < 0: Consider the functions y� = e(�+
)�y and Y� = e(�+
)(p�1)�Y de�ned
by (2.3) with d = �: They vary respectively from 0 to1 and from 0 to �1: They have no extremal
point. Indeed at such a point, from (3.2) and (3.3) y00� or Y

00
� have a strict constant sign for � 6= �; p0;

which is contradictory. If � = � or p0; from uniqueness y� or Y� is constant, thus y or Y is monotone,
which is impossible. In any case y0� > 0 > Y 0� on (�1;1) : Next, from (2.5) and (2.6),

y00�
y0�
+ � � 2�� 1

p� 1Y
(2�p)=(p�1) = �(� � �)y�

y0�
; (4.12)

Y 00�
Y 0�

+ (p� 1)(� � 2�� p0)� 1

p� 1Y
(2�p)=(p�1) = (p� 1)2(� � �)(p0 + �)Y�

Y 0�
: (4.13)

Let us integrate on the period P: If � 5 � < 0; then � � N � 2(� + 
) = 0 from (4.12), which is
contradictory. If �p0 5 � < �; then �2(�+ p0 + 
) > 0 from (4.13), still contradictory.

24



5 New local existence results

At Proposition 4.1 we gave all the possible behaviours of the positive solutions near �1: Next we
prove their existence, and uniqueness or multiplicity. The case p > N is very delicate.

Theorem 5.1 (i) Suppose p < N: In the phase plane (y; Y ) of system (S) there exist an in�nity
of trajectories T� such that lim�!�1(�; �) = L�; the corresponding w satisfy (4.6).

(ii) Suppose p > N: There exist a unique trajectory Tu such that lim�!�1(�; �) = L�; in other
words for any c 6= 0; there exists a unique solution w of equation (Ew) such that (4.7) holds.

Proof. Suppose that such a trajectory exists in the plane (y; Y ). In the phase plane (�;  ) of
System (P), � and  keep a strict constant sign, because the two axes � = 0 and  = 0 contain
particular trajectories, and (�;  ) converges to (�; 0) at �1: Reciprocally, setting � = � + ��; the
linearized problem at point (�; 0)

�� 0 = ��� + �(�� �)" =(p� 1);  0 = (N � �) ;

admits the eigenvalues � and N � �: The trajectories linked to the eigenvalue � are tangent to the
line  = 0:

(i) Case p < N: Then � > 0; and (�; 0) is a source. In the plane (�;  ) there exist an in�nity of
trajectories, starting from this point at �1; such that  > 0; and lim�!�1 � = �; thus � > 0: In
the phase plane (y; Y ); setting y = ( j�jp�2 �)2�p and Y = y= ; they correspond to an in�nity of
trajectories in the plane (y; Y ) such that lim�!�1(�; �) = L�; and (4.6) holds from Proposition
(4.2).

(ii) Case p > N: Then � < 0; and (�; 0) is a saddle point. In the plane (�;  ) ; there exists a unique
trajectory starting from (�; 0); tangentially to the vector (�(�� �)"=(p� 1); N � �) ; with  < 0;
it de�nes a unique trajectory Tu in the plane (y; Y ), and (4.7) holds. From Remark 2.1, we get a
solution for any c 6= 0:

Theorem 5.2 (i) Suppose p = N: In the phase plane (y; Y ); there exists an in�nity of trajectories
T+ such that lim�!�1(�; �) = L+; then w satis�es (4.8).

(ii) Suppose p > N: Then there exist an in�nity of trajectories T+ (resp. T�) such lim�!�1(�; �) =
L+ (resp. L�); then the corresponding solutions w of (Ew) satisfy (4.9) (resp. (4.10).

More precisely for any k > 0 (for p = N) or any a > 0 and c 6= 0 (for p > N) there exists a
unique function w satisfying those conditions.

Proof. If lim�!�1(�; �) = L�; then lim�!�1(�;  ) = (0; 0); with � > 0 in case of L+; � < 0
in case of L�:: The linearization of System (P) near (0; 0) is given by

� 0 = j�j �;  0 = N :
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(i) Case p = N: The phase plane study is delicate because 0 is a center, thus we use a �xed
method. Suppose that such a trajectory exists, and consider the substitution (2.3) with d = 0:

From (4.2), there exists k > 0 such that � = jY0j(2�p)=(p�1) =y0 = ���1(1 + o(1)) > 0, and
 = �k2�p�eN� (1 + o(1)) > 0: Then � 0 = ��2(1 + o(1)) from System (P). The function

V =  e�N=��

satis�es lim�!�1 V = k2�p; and

V 0 =
V eN=�

(N � 1)�2 (" (�� �) (N � (N � 2)�)V + 2N(N � 1)�2e�N=�):

Thus "�(V � k2�p) > 0 near �1: Moreover lim�!�1 � 0=V 0 = 0; so that � can be considered as a
function of V near k2�p; with limV!k2�p � = 0 and

d�

dV
= K(V; �); K(V; �) :=

�2

V

" (�� �)V + (N � 1)�2e�N=�

" (�� �) (N � (N � 2)�)V + 2N(N � 1)�2e�N=�
:

Reciprocally, extending the function �2e�N=� by 0 for � 5 0; the function K is of class C1 near
(k2�p; 0): For any k > 0; there exists a unique local solution V 7! �(V ) on a interval V where
"�(V �k2�p) > 0; such that �(k2�p) = 0: And d�=dV = (�2=Nk2�p)(1+o(1)) near 0; thus � > 0: In
the plane (�;  ), taking one point P on the curve C =

�
(�(V ); V �(V )eN=�(V )) : v 2 V

	
; there exists

a unique solution of System (P) issued from P at time 0: Its trajectory is on C; thus it converges
to (0; 0); with �;  > 0: It corresponds to a unique trajectory T+ in the plane (y; Y ); and (�; �)
converges to L+; as � tends to �1; from Proposition 4.1. The corresponding functions w satisfy
(4.8) from Proposition (4.2).

(ii) Case p > N: Here (0; 0) is a source for System (P). The lines � = 0 and  = 0 contain
trajectories. There exists an in�nity of trajectories converging to (0; 0); with � 6= 0; moreover,
if N = 2; then j�j < N; thus lim�!�1( =�) = 0: Our claim is more precise. Given a > 0 and
c 6= 0; we look for a solution w of (Ew) such that limr!0w = a; limr!0 r�+1w0 = �c: By scaling
we can assume a = 1: If w1 is a such a solution, then � and  have the sign of c near 0; and
� (�) = cej�j� (1 + o(1)) and jcjp�2 c (�) = eN� (1 + o(1)): The function

v = c(jcjp�2 c )1=�=�; with � = N= j�j > 1;

satis�es lim�!�1 v = 1; and can be expressed locally as a function of �; and

dv

d�
= H(�; v); H(�; v) := �v

�

(p� 1)(�+ 1) + "(�� p+ 1) jcj1�p�� (� � �) j�j��1 v�

(p� 1)(� � �) + " jcj1�p�� (�� �) j�j��1 �v�
:

Reciprocally, there exists a unique solution � 7! v(�) of this equation on a small interval [0; hc) ;
with h > 0; such that v(0) = 1: Indeed H is locally continuous in � and C1 in v: Taking one
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point P on the curve C0 =
n
(�; jcj1�p�� j�j��1 �v(�)) : � 2 [0; hc)

o
; there exists a unique solution of

System (P) issued from P at time 0: Its trajectory is on C0; thus converges to (0; 0) with � > 0: It
corresponds to a solution (y; Y ) of System (S), such that (�; �) converges to L+; as � tends to �1;
from Proposition 4.1. The corresponding function, called w2; satis�es limr!0 r�+1w


�1j�j�1
2 w02 = �c;

thus w2 has a limit a2, and limr!0 r��1w02 = a1�s2 b: Moreover a2 6= 0; because a2 = 0 implies that
r�
w2 has a nonzero limit, thus (�; �) converges to A
 : The function w(r) = a�12 w2(a

1=

2 r) satis�es

limr!0w = 1; and limr!0 r��1w0 = �c; and the proof is done.

Theorem 5.3 (i) In the phase plane (y; Y ); for any � 6= 0 there exists at least a trajectory T�
converging to (0; 0) with y > 0; and lim(�; �) = A�: The convergence holds at 1 if �
 < �; or �1
if � < �
, or "1 if � = �
:
(ii) If "(
+�) < 0; T� is unique, it is the unique trajectory converging to (0; 0) at �"1 with y > 0;
and it depends locally continuously of �:

Proof. (i) Suppose that such a trajectory exists. Then � tends to 1 if �
 < �; or �1 if
� < �
, or "1 if � = �
; from Proposition 4.1. Consider System (R), where g; s and � are de�ned
by (2.18). Then (g; s) converges to (�1=�; 0), with gs > 0; and � tends to the same limits as � ,
since Y converges to 0: Reciprocally, in the plane (g; s); let us show the existence of a trajectory
converging to (�1=�; 0); di¤erent from the line s = 0: Setting g = �1=�+ �g; the linearized system
at this point is

d�g

d�
= � "

p� 1�g +
� � �
�2

s;
ds

d�
= 0;

thus we �nd a center: the eigenvalues are 0 and � = "=(p� 1). Since the system is polynomial, it is
known that System (R) admits a trajectory, depending locally continuously of �; such that sg > 0;
and tangent to the eigenvector ((p� 1)(���); "�2). It satis�es ds=d� = (p� 2)(�+ 
)s2(1+ o(1)):
Then ds=d� = �(p� 2)�(�+ 
)s(1 + o(1)); thus � tends to �1: And jyjp�2 = jsj jgj1=(p�1) ; then
y tends to 0; (y; Y ) converges to (0; 0); and lim(�; �) = A�:

(ii) Suppose "(
 + �) < 0. Consider two trajectories T1; T2 in the plane (y; Y ); converging to (0; 0)
at �"1; with y > 0: They are di¤erent from T" which converges at "1; thus lim(�i; �i) = (�; 0)
from Proposition 4.1. Then �1; �2 can locally be expressed as a function of y; and

y
d(�1 � �2)2

dy
= 2(F (�1; y)� F (�2; y)) (�1 � �2)

near 0; where

F (�; y) =
1


 + �
(��(� � �) + "

p� 1 j�yj
2�p (� � �)):

Then (�1� �2)2 is nonincreasing, seeing that @F=@�(�; y) = �((p� 1)"(
+�))�1 j�yj2�p (1+ o(1)):
Hence �1 � �2 near 0; and T1 � T2:
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6 The case " = 1; �
 5 �
In that Section and in Sections 7, 8 and 9 we describe the solutions of (Ew). When we give a
uniqueness result, we mean that w is unique, up to a scaling, from Remark 2.1.

Theorem 6.1 Assume " = 1; �
 5 � (� 6= 0).

Any solution w of (Ew) has a �nite number of simple zeros, and satis�es (4.4) or (4.5) near
1 or has a compact support. Either w is regular, or jwj satis�es (4.6),(4.8), (4.7),(4.9) or (4.10)
near 0, and there exist solutions of each type.

(1) Case � < N: All regular solutions have a strict constant sign, and satisfy (4.4) or (4.5)
near 1: Moreover there exist (and exhaustively, up to a symmetry)

(i) a unique nonnegative solution with (4.6)or (4.8) or (4.9)) near 0, and compact support;
(ii) positive solutions with the same behaviour at 0 and (4.4) or (4.5) near 1;
(iii) solutions with one simple zero, and jwj has the same behaviour at 0 and 1;
(iv) for p > N; a unique positive solution with (4.7) near 0, and (4.4) or (4.5) near 1;
(v) for p > N; positive solutions with (4.10) near 0, and (4.4) or (4.5) near 1:

(2) Case � = N: Then the regular (Barenblatt) solutions have a constant sign with compact
support. If p 5 N; all the other solutions are of type (iii). If p > N; there exist also solutions of
type (iv) and (v).

(3) Case � > N:

Either the regular solutions have m simple zeros and satisfy satis�es (4.4) near 1: Then there
exist
(vi) a unique solution with m simple zeros, jwj satis�es (4.6), (4.8) or(4.9) near 0; with compact
support;
(vii) solutions with m+1 simple zeros, jwj satis�es (4.6), (4.8) or (4.9) near 0; and (4.4) or (4.5)
near 1;
(viii) for p > N; solutions with m simple zeros, jwj satis�es (4.9),(4.7) or (4.10) near 0; and (4.4)
or (4.5) near 1:

Or the regular solutions have m simple zeros and a compact support. Then the other solutions
are of type (vii) or (viii).
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th 6.1,�g1: " = 1; N = 2; p = 3; � = �2 th 6.1,�g2: " = 1; N = 2; p = 3; � = 1

th 6.1,�g3: " = 1; N = 2; p = 3; � = 2 th 6.1,�g4: " = 1; N = 2; p = 3; � = 50

Proof. All the solutions w have a �nite number of simple zeros, from Proposition 3.7 and
Theorem 3.9. Either they have a compact support. Or y has a strict constant sign and is monotone
near 1, and converge to (0; 0) at 1; and (4.4) or (4.5) holds; from Propositions 3.8, 4.1.

In the phase plane (y; Y ); system (S) admits only one stationary point (0; 0). The trajectory Tr
starts in Q4 when � < 0; in Q1 when � > 0; and lim�!�1 y =1; with an asymptotical direction
of slope �=N . From Propositions 4.1 and 4.2 all the nonregular solutions �w satisfy (4.6), (4.8),
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(4.7), (4.9) or (4.10) near �1: The existence of solutions of any kind is proved at Theorems 5.1 and
5.2. When p 5 N; they correspond to trajectories �T� such that T� starts in Q1 with an in�nite
slope, in any case above Tr: When p > N; there is a unique trajectory Tu satisfying (4.7), starting
in Q4; under Tr; the trajectories T+ start from Q1; above Tr; the trajectories T� start in Q4 under
Tr: From Theorem 3.9, there exists a unique trajectory T" converging to (0; 0) in Q1 at 1; with
the slope 1:

(1) Case � < N: From Proposition 3.6, all the solutions w have at most one simple zero.
The regular solutions stay positive, and Tr stays in its quadrant, Q4 or Q1; from Remark 2.3

(see �gures 1 and 2). Then T" stays in Q1, because it cannot meet Tr for � > 0; or the line fY = 0g
for � < 0; from Remark 2.3; and the corresponding w is of type (i).

Consider any trajectory T[P ] with P 2 Q1 above T": It cannot stay in Q1 because it does not
meet T" and converges to (0; 0) with a slope 0. Thus it enters Q2 from Remark 2.3. Then y has a
unique zero, and T[P ] stays in Q1 before P; and in Q2 [ Q3 after P: Since T[P ] cannot meet �T";
and lim�!1 � = �; T[P ] ends up in Q3 if � > 0; in Q2 if � < 0: It has the same behaviour as T" at
�1; and w is of type (iii).

Next consider T[P ] for any P 2 Q1[ Q4 between T" and Tr: Then y stays positive, and T[P ]
necessarily starts from Q1; and w is of type (ii).

At least take any P 2 Q1 [Q4 under Tr: If p 5 N; T[P ] starts from Q3 and y has a unique zero,
and �w is of type (iii). If p > N; either �w is of type (iii), or T[P ] stays in Q4: From Theorems
5.1, 5.2, either T[P ] coincides with Tu; and w is of type (iv), or with one of the trajectories T�; thus
w is of type (v).

(2) Case � = N: All the solutions are given by (1.9), which is equivalent to JN � C; where JN
is de�ned by (2.1). For C = 0; the regular (Barenblatt) solutions, given by (1.10), are nonnegative,
with a compact support. In other words the trajectory T" given by Theorem 5.3 coincides with Tr;
it is given by y � Y; y > 0 (see �gure 3). The only change in the phase plane is the nonexistence
of solutions of type (ii).

(3) Case � > N:
The regular solutions have a number m = 1 of simple zeros, from Proposition 3.6 (see �gure 4).

As above, Tr starts from Q1 with a �nite slope �=N:
Either Tr 6= T": Then the regular solutions satisfy limr!1 r�w = L 6= 0: Since T" cannot meet

Tr; T" also cuts the line fy = 0g at m points, and the corresponding w is of type (vi). For any
P 2 Q1 above Tr; the trajectory T[P ] cuts the line fy = 0g at m + 1 points and w is of type (vii).
If p > N; there exist trajectories starting from Q1 between T" and Tr, with (4.9), such that w has
m simple zeros, and trajectories with (4.7) or (4.10), m zeros, and limr!1 r�w = L 6= 0:

Or Tr = T"; the regular solutions have a compact support, and we only �nd solutions of type
(vii), (viii).

Remark 6.2 In the case � = � < 0, the solutions (iv) are given by (1.11). In the case N = 1;
� = �(p� 1)=(p� 2); the solutions of types (i) and (v) are given by (1.14).
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Remark 6.3 We conjecture that there exists an increasing sequence (��m) ; with ��0 = N such that
the regular solutions w have m simple zeros for � 2 (��m�1; ��m) ; with limr!1 r�w = L 6= 0; and
m simple zeros and a compact support for � = ��m, in which case Tr = T":

7 The case " = �1; � 5 �

Theorem 7.1 Assume " = �1; � 5 �
: Then all the solutions w of (Ew), among them the regular
ones, are ocillating near 1 and r�
w is asymptotically periodic in ln r. There exist

(i) solutions such that r�
w is periodic in ln r;
(ii) a unique solution with a hole;
(iii) �at solutions w with (4.4) or (4.5) near 0;
(iv) solutions with (4.6) or(4.8) or (4.9) or also (4.10) near 0;
(v) for p > N; a unique solution with (4.7) near 0.

th 7.1,�g5: " = �1; N = 1; p = 3; � = �4

Proof. Here again, (0; 0) is the unique stationary point in the plane (y; Y ). Any solution y of
(Ey) oscillates near 1; and (y; Y ) is bounded from Proposition 4.3. From the strong form of the
Poincaré-Bendixon theorem, see [7, p.239], all the trajectories have a limit cycle or are periodic. In
particular Tr starts in Q1, since "� > 0; with the asymptotical direction "�=N . and it has a limit
cycle O: There exists a periodic trajectory of orbit O; thus w is of type (i) (see �gure 5).

From Theorem 5.2 there exists a unique trajectory T" starting from (0; 0) with the slope �1;
y > 0; it has a limit cycle O" � O; and w is of type (ii). For any P in the bounded domain
delimitated by O"; not located on T"; the trajectory T[P ] does not meet T"; and admits O" as limit

31



cycle; near �1; y has a constant sign, is monotone and converges to (0; 0) from Propositions 3.8
and 4.1, and lim�!�1 � = �. This show again the existence of such trajectories, proved at Theorem
5.1, and there is an in�nity of them; and w is if type (iii):

From Theorems 5.1 and 5.2, there exist trajectories starting from in�nity, with O as limit cycle,
and w is of type (iv) or (v). If O = O"; all the solutions are described.

8 Case " = 1; � < �
:
Theorem 8.1 Assume " = 1; � < �
: Then w � �`r
 is a solution of (Ew). All regular solutions
have a strict constant sign, and satisfy (4.3) near 1: Moreover there exist (exhaustively, up to a
symmetry)

(i) a unique positive �at solution with (4.4) near 0 and (4.3) near 1;
(ii) a unique nonnegative solution with (4.6) or (4.8) or (4.9) near 0, and compact support;
(iii) positive solutions with the same behaviour near 0 and (4.3) near 1;
(iv) solutions with one zero and the same behaviour near 0, and jwj satis�es (4.3) near 1;
(v) for p > N; positive solutions with (4.7) near 0 and (4.3) near 1;
(vi) for p > N; positive solutions with (4.10) near 0 and (4.3) near 1:

th 8.1, �g6: " = 1; N = 2; p = 3; � = �6

Proof. Here system (S) admits three stationary points in the plane (y; Y ), given at (2.8), thus
w � �`r
 is a solution; and M` is a sink (see �gure 6). Any solution y of (Ey) has at most one
zero, and is strictly monotone near �1; from Propositions 3.6 and 3.8.
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From Theorems 3.9 and 5.3, there exists a unique trajectory T" converging to (0; 0) in Q1 at
1; and a unique trajectory T� converging to (0; 0) in Q4 at �1: The trajectory Tr starts in Q4
with the asymptotical direction � j�j =N . From Remark 2.3, Q4 is positively invariant, and Q1
negatively invariant. Then T" stays in Q1; and T� and Tr in Q4. From Proposition 4.1, all the
trajectories, apart from �T"; converge to �M` at1: Then Tr converges toM`; and w satis�es (4.3)
near 1: And T� also converges to M`; and w is of type (i).

From Propositions 4.1, Theorems 5.1 and 5.2, all the nonregular solutions which are positive
near �1 satisfy (4.6), (4.8), (4.9), (4.10) or (4.7); and there exist such solutions. For p < N (resp.
p = N); they correspond to trajectories T� (resp. T+) starting in Q1. For p > N; there is a unique
trajectory Tu satisfying (4.7), starting in Q4 under Tr; and the trajectories T+ satisfying (4.9) start
from Q1; the trajectories T� satisfying (4.10) and the unique trajectory Tu satisfying (4.7) start
from Q4, under Tr: Since T" stays in Q1; it de�nes solutions w of type (ii).

Consider the basis of eigenvectors (e1; e2) de�ned at (2.15), where �(�) > 0; associated to the
eigenvalues �1 < �2: One veri�es that �1 < �
 < �2; thus e1 points towards Q3 and e2 points
towards Q4: There exist unique trajectories Te1 and T�e1 converging to M`; tangentially to e1 and
�e1. All the other trajectories converging to M` at 1 are tangent to �e2: Let

M =
n
jY j(2�p)=(p�1) Y = �
y

o
; N =

n
(N + 
)Y + " jY j(2�p)=(p�1) Y = "�y

o
be the sets of extremal points of y and Y:

The trajectory Tr starts above the curvesM and N , thus y0 < 0 and Y 0 > 0 near �1: And Tr
converges to M` at 1; tangentially to e2: Indeed if Tr = Te1 ; then y has a minimal point such that
y < ` and Y < � (
`)p�1 ; then (y; Y ) cannot be onM. If Tr = T�e1 ; then Y has a maximal point
such that y > ` and Y < � (
`)p�1 ; then also (y; Y ) cannot be on N . Finally Tr cannot end up
tangentially to �e2; it would intersect Te1 or T�e1 :

The trajectory T� converge toM` tangentially to �e2: Indeed if T� = Te1 ; then Y has a maximal
point such that y < ` and Y < � (
`)p�1 ; if T� = T�e1 ; then y has a maximal point such that
y > ` and Y > � (
`)p�1 : In any case we reach a contradiction. Moreover Te1 does not stay in Q4 :
y would have a minimal point such that y < ` and Y < � (
`)p�1 ; which is impossible; thus Te1
starts in Q3; and enters Q4 at some point (�1; 0) with �1 < 0: And �w is of type (iv).

Any trajectory T[P ]; with P in the domain of Q1 [Q4 delimitated by Tr; T� and T"; comes from
Q1; and converges to M` in Q4, in particular T�e1 ; the corresponding w are of type (iii).

Any trajectory T[P ]; with P in the domain of Q3[Q4 delimitated by Te1 ; T� and �T"; goes from
Q3 to Q4, and T[P ] converges to M` at 1; and �w is of type (iv). For any � < �1; the trajectory
T[(0;�)] is of the same type. If p 5 N; any trajectory in the domain under Tr; and Te1 is of the same
type.
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If p > N; moreover in this domain there exists a the unique trajectory Tu and trajectories of
the type T� corresponding to solutions w of type (v) and (vi), from Theorems 5.1 and 5.2. Up to
a symmetry, all the solutions are described, and all of them do exist.

9 Case " = �1;�
 < �
Here again System (S) admits the three stationary points (2.8), thus w � �`r
 is a solution of
(Ew). The behaviour is very rich: it depends on the position of � with respect to �� de�ned at
(1.5), and 0; �p0; and � (in case p > N); and also �1; �2 de�ned at (2.14). We start from some
general remarks:

Remark 9.1 (i) There exists a unique trajectory T" starting from (0; 0) in Q4 with the slope �1,
from Theorem 3.9.
(ii) There exists a unique trajectory T� converging to (0; 0) at 1; in Q1 if � > 0; in Q4 if � < 0;
with a slope 0 at (0; 0); and lim�!1 � = �; from Theorem 5.3.
(iii) From Remark 2.3, if � > 0; Q4 is positively invariant and Q1 negatively invariant. If � < 0;
at any point (0; �); � < 0; the vector �eld points to Q4; and at any point ('; 0); ' > 0; it points to
Q1: Thus if T" does not stay in Q1; then T� stays in the bounded domain delimitated by Q4 \ T".
If T� does not stay in Q4; then T" stays in the bounded domain delimitated by Q4 \ T�. If T" is
homoclinic, in other words T" = T�; it stays in Q4.

Remark 9.2 From Propositions 4.1, Theorems 5.1 and 5.2, all the nonregular solutions positive
near �1 satisfy (4.6) for p < N , (4.8) for p = N; corresponding to trajectories T�; T+ starting
fromQ1; and (4.9), (4.10) or (4.7) for p > N; corresponding to trajectories T+ starting from Q1,
and T�; Tu starting from Q4:

Remark 9.3 Any trajectory T is bounded near 1 from Proposition 4.3. From the strong form of
the Poincaré-Bendixon theorem, any trajectory T bounded at �1 converges to (0; 0) or �M`; or
its limit set �� at �1 is a cycle, or it is homoclinic, namely T" = T�: If there exists a limit cycle
surrounding (0; 0); it also surrounds the points �M`, from Proposition 3.8.

The simplest case is � > 0:

Theorem 9.4 Assume " = �1; � > 0:

Then w � `r
 is a solution w of (Ew). All regular solutions have a strict constant sign; and
satisfy (4.3) near 1: There exist (exhaustively, up to a symmetry)

(i) a unique nonnegative solution with a hole, and (4.3) near 1;
(ii) a unique positive solution with (4.6), or (4.8) or (4.9); and (4.4) near 1;
(iii) positive solutions with the same behaviour near 0, and (4.3) near 1;
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(iv) solutions with one zero, the same behaviour near 0; and jwj satis�es (4.3) near 1;
(v) for p > N; a unique positive solution with (4.7) near 0; and (4.3) near 1;
(vi) for p > N; positive solutions with (4.10) near 0; and (4.3) near 1:

th 9.4, �g7: " = �1; N = 1; p = 3; � = 0:7 th 9.4, �g8: " = �1; N = 1; p = 3; � = 1

Proof. Any solution y of (Ey) has at most one zero, and y is strictly monotone near 1; from
Propositions 3.6 and 4.4. The point M` is a sink and a node point, since � > 0 = �2 (see �gure
7). Consider the basis eigenvectors (e1; e2); de�ned at (2.15), where �(�) < 0; associated to the
eigenvalues �1 < �2 < 0: One veri�es that �1 < �
 < �2; thus e1 points towards Q3 and e2 points
towards Q4: There exist unique trajectories Te1 and T�e1 tangent to e1 and �e1 at1: All the other
trajectories which converge to M` end up tangentially to �e1:

The trajectory T� stays in Q1 from Remark 9.1; near �1 it is of type T� for p < N; and T+
for p = N ; it de�nes the solution of type (ii). Since T� is the unique trajectory converging to (0; 0)
at 1; all the trajectories, apart from �T�; converge to �M` at 1; from Propositions 3.8 and 4.1.

The trajectories Tr and T" start in Q4, and stay in it from Remark 9.1, and both converge toM`

at 1; then w satis�es (4.3); and Tr starts with the asymptotical direction ��=N . And T" de�nes
the solution of type (i).

As in the proof of Theorem 8.1, Tr ends up tangentially to e2; and T" tangentially to �e2:
Moreover Te1 does not stay in Q4; it starts in Q3; and converges to M` in Q4; and �w is of type
(iv). Any trajectory T[P ]; with P in the domain of Q4 between Te1 ; T"; starts from Q3, enters Q4
at some point (0; �); � > �1; and has the same type as Te1 . Any trajectory T[(0;�)] with � < �1 is of
the same type.
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Any trajectory T[P ]; with P in the domain of Q1 [ Q4 above Tr [ T"; starts from Q1; and
converges to M` in Q4, in particular T�e1 ; the corresponding w are of type (iii). If p 5 N; all the
solutions are described. If p > N , moreover there exist trajectories staying in Q4 : Tu and the T�,
starting under Tr; corresponding to types (v) and (vi).

Remark 9.5 For � = N; Tr and T" are given by (1.10), respectively with K > 0 and K < 0: The
trajectory T" describes the portion 0M` of the line fY = �yg ; and Tr the complementary half-line
in Q4 (see �gure 8).

Next we assume �p0 5 � < 0: The case p > N is delicate: indeed the special value � = � is
involved, because � < 0:

Theorem 9.6 Assume " = �1; p 5 N; and �p0 5 � < 0: Then w � `r
 is a solution w of (Ew).

There exist a unique nonnegative solution with a hole, satisfying (4.3) at 1:

(1) If � 6= �p0; all regular solutions have one zero, and jwj satis�es (4.3) near 1: There exist
(exhaustively, up to a symmetry)

� for p 5 N;

(i) a unique solution with one zero, with (4.6) or (4.8) near 0;and (4.4) near 1;
(ii) solutions with one zero, with (4.6) or (4.8) near 0, and jwj satis�es (4.3) near 1;
(iii) solutions with two zeros, with (4.6) or (4.8) near 0; and (4.3) near 1;

� for p > N; � < �;

(iv) a unique positive solution, with (4.10) near 0; and (4.4) near 1;
(v) a unique positive solution, with (4.7) near 0; and (4.3) near 1;
(vi) positive solutions, with (4.10) near 0; and (4.3) near 1;
(vii) solutions with one zero with (4.10) or (4.9) near 0; and (4.3) near 1;

� for p > N;� < �;

(viii) a unique solution with one zero, with (4.9) near 0; and (4.4) near 1;
(ix) a unique solution with one zero, with (4.7) near 0; and jwj satis�es (4.3) near 1;
(x) solutions with one zero, with (4.9) or (4.9) near 0; and jwj satis�es (4.3) near 1;
(xi) solutions with two zeros, with (4.9) near 0; and (4.3) near 1:

� for p > N;� = �; solutions of the form w = crj�j (c > 0). The other solutions are of type (vii).

(2) If � = �p0; all regular solutions have one zero and satisfy (4.4) near 1: The solutions
without hole are of types (ii), (iii) for p 5 N; (ix), (x), (xi) for p > N:
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th 9.6, �g9: " = �1; N = 1; p = 3; � = �0:7 th 9.6, �g10: " = �1; N = 1; p = 3; � = �1:49

th 9.6, �g11: " = �1; N = 1; p = 3; � = �3=2
Proof. Here again M` is a sink; but it is a node point only if � = �2:. The phase plane (y; Y )

does not contain any cycle, from Proposition 4.4. From Proposition 3.6, any solution y has at most
two zeros, and Y at most one.

The unique trajectory T� ends up in Q4 with the slope 0: From the uniqueness of T� and T";
all the trajectories, apart from �T�; converge to �M` at 1; from Proposition 4.1 and Remark 9.3.
Since "� > 0; the trajectory Tr starts in Q1; and y has at most one zero. Then Tr converges to
�M` in Q2, or Tr = �T�.

37



The trajectory T" starts in Q4 with the slope �1; satis�es y = 0 from Proposition 3.6. If T"
converge to (0; 0); then T" = T�; thus it is homoclinic. Then M` is in the bounded component
de�ned by T", and T" meets Tr; which is impossible. Hence T" converges to M` in Q4; and w is
nonnegative with a hole and satis�es (4.3) near 1:

If � 6= �p0; we claim that Tr 6= �T�: Indeed suppose Tr = �T�: Consider the functions y�; Y�;
de�ned by (2.3) with d = �: Then Y� stays positive, and Y� = O(e(�(p�1)+p)� ) at 1, thus

lim
�!1

Y� = 0; lim
�!1

Y� = c > 0; lim
�!�1

y� =1; lim
�!1

y� = L < 0:

Moreover y�; Y� have no extremal point: at such a point, from (3.2), (3.3) the second derivatives
have a strict constant sign; then Y 0� > 0 > y0�: If � < � (in particular if p 5 N); from (4.13), near
1;

(p� 1)Y 00� =Y 0� = jY j(2�p)=(p�1) (1 + o(1));
thus Y 00� > 0 near 1; which is contradictory; if � > �, from (4.12)

(p� 1)y00�=y0� = jY j(2�p)=(p�1) (1 + o(1));

thus y00� < 0 near 1; still contradictory. If � = �; T� = Tu from (1.11), thus again Tr 6= �T�:

If p > N and � 6= �; we claim that T� 6= Tu: Indeed suppose T� = Tu: This trajectory stays Q4;
the function � stays negative, and lim�!�1 � = �; lim�!1 � = �: If � has an extremal point #;
then # 2 (�; �) from System (Q), and � 00 has a constant sign, the sign of � � �; it is impossible.
Thus � is monotone; then (�� �)� 0 > 0; which contradicts System (Q).

(1) Case � 6= �p0: Since Tr 6= �T�; Tr converges to �M`; and y has one zero, and jwj satis�es
(4.3).

� Case p 5 N . All the other trajectories start in Q3 or Q1; from Remarks 9.1 and 9.2. For any
' > 0; the trajectory T[(';0)] goes from Q4 into Q1, and converges to �M` in Q2; since it cannot
meet Tr and �T"; thus y has two zeros, and w is of type (iii). The trajectory T� cannot meet
T[(';0)]; thus y has one zero, and it has the same behaviour at �1, and w is of type (i). All the
trajectories T[P ] with P in the interior domain of Q1 delimitated by �T" and Tr start from Q1 and
converge to �M`; y has precisely one zero, and has the same behaviour at �1, and w is of type
(ii).

� Case p > N; � < � (see �gure 9). Any solution y has at most one simple zero. The trajectory
T� stays in Q4. Indeed if it started in Q3; then for any trajectory T[(0;�)] with (0; �) above �T�,
the function y would have two zeros. Since T� 6= Tu; we have T� 2 T�; and w is of type (iv). The
trajectory Tu necessarily stays in Q4 and converges to M`; and w is of type (v). The trajectories
T[P ]; with P in the domain delimitated by Tu; T� and T"; are of type T� and converge in Q4 to
M`; and w is of type (vi). The trajectories T[P ]; with P in the domain delimitated by Tr; T� and
�T"; are of type T�, and converge to �M`; and y has one zero. The trajectories T[P ]; with P in
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the domain delimitated by Tr and �Tu; are of type T+;converge to �M`; and y has one zero. Both
de�ne solutions w of type (vii).

� Case p > N;� < � (see �gure 10). We have seen that Tr 6= �T�: If T� 2 T+; then � decreases
from 0 to �; which contradicts System (Q) at 1: Then T� does not stay in Q4; it starts in Q3 and
�T� 2 T�; hence y has a zero, and w is of type (viii). Then Tu and the trajectories T� converge to
�M`; and y has one zero. The trajectories T[P ]; with P in the domain delimitated by Tr;�T� and
�T"; are of type T+ and converge to �M`; y has one zero. They correspond to w is of type (ix) or
(x). The trajectories T[P ]; with P in Q4 above Tr; cut the line fy = 0g twice, and converge to M`;
and w is of type (xi).

� Case p > N;� = �: Then T� = Tu, the functions w = cr�� (c > 0) are particular solutions:
The phase plane study is the same, and gives only solutions of type (vii).

(2) Case � = �p0 (see �gure 11). Here Tr = �T�; since the regular solutions are given by
(1.12): Thus there exist no more solutions of type (ii) or (viii).

Next we study the behaviour of all the solutions when � < �p0: In particular we prove the
existence and uniqueness of an �c for which there exists an homoclinic trajectory. Thus we �nd
again some results obtained in [8], with new detailed proofs. We also improve the bounds for �c;
in particular �� < �c:

Lemma 9.7 Let
�p := �(p� 1)=(p� 2):

If N = 1; for � = �p; then there exists an homoclinic trajectory in the phase plane (y; Y ) : If N = 2;
for � = �p; there is no homoclinic trajectory, moreover T� converges to M` at �1 or has a limit
cycle in Q4.

Proof. In the case N = 1; � = �p; the explicit solutions (1.14) de�ne an homoclinic trajectory
in the phase plane (y; Y ), namely T" = T�: In the phase plane (g; s) of System (R), from Remark
2.6, they correspond to the line s � 1 + �g; joining the stationary points (0; 1) and (�1=�; 0):

Next assume N = 2 and consider the trajectory T� in the plane (y; Y ): In the plane (g; s) of
System (R), the corresponding trajectory T 0� ends up at (�1=�; 0); as � tends to 1 from (2.18),
with the slope �kp: If T� is homoclinic, then T 0� converges to (0; 1) as � tends to �1: Consider the
segment

T = f(g;�k(g + 1=�p) : g 2 [0; 1= j�pj]g ; with k = p0�2p=(N + 2=(p� 2)) > kp:

Its extremity (0; k= j�pj) is strictly under (0; 1). The domain R delimitated by the axes, which are
particular orbits, and T; is negatively invariant: indeed, at any point of T; we �nd

k
dg

d�
+
ds

d�
= (N � 1)p0ks(g � 1



)2:
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The trajectory T 0� ends up in R; thus it stays in it, hence T 0� cannot join (0; 1): In the phase plane
(y; Y ); T� is not homoclinic, and T� stays in Q4; and Remark 9.3 applies.

Remark 9.8 Notice that �� 5 �p , N 5 p:

Theorem 9.9 Assume " = �1; and � < �p0: There exists a unique �c < 0 such that there exists
an homoclinic trajectory in the plane (y; Y ) ; in other words T" = T�: If N = 1; then �c = �p: If
N = 2; then

max(��; �p) < �c < min(�2;�p0): (9.1)

Proof. In order to prove the existence of an homoclinic orbit for System (S), we could consider
a Poincaré application as in [4], but it does not give uniqueness. Thus we consider the system (R�)
obtained from (R) by setting s = �S:

dg
d� = gF (g; S); F (g; S) := �S(1 + �g)� 1

p�1(1 + �g);

dS
d� = SG(g; S); G(g; S) := 1 + �g � �(1 +Ng)S:

9=; (R�)

Its stationary points are

(0; 0); A0 = (1= j�j ; 0); B0 = (0; 1=�); M 0 = (1=
; 1=(N + 
)(p� 2));

where M 0 corresponds to M`: The existence of homoclinic trajectory for System (S) resumes to the
existence of a trajectory for System (R�) in the plane (g; S), starting from B0 and ending at A0:

(i) Existence. We can assume that � 2 (�1;min(�2;�p0)), from Proposition 4.4. In the plane
(g; S); consider the trajectories T 0" and T 0� corresponding to T"\ Q4 and T�\Q4 in the plane (y; Y ):
Then T 0" starts from B0 and T 0� ends up at A0: From Remark 9.1, for any � 2 (�1; �2) ; with � 5 �p0;
we have three possibilities:

� T 0" is converging to M 0 as � tends to 1 and turns around this point, since � is a spiral point,
or it has a limit cycle in Q1 around M 0: And T 0� admits the line g = 0 as an asymptote as � tends
to �1; which means that T� does not stay in Q4 in the plane (y; Y ): Then T 0" meats the line

L := fg = 1=
g

at a �rst point (1=
; S0(�)): And T 0� meats L at a last point (1=
; S1(�)); such that S0(�)�S1(�) <
0;

� T 0� is converging to M 0 at �1 or it has a limit cycle in Q1 around M 0: And T 0" admits the
line S = 0 as an asymptote at 1; which means that T" does not stay in Q4. Then with the same
notations, S0(�)� S1(�) > 0:

� T 0" = T 0�; equivalently S0(�)� S1(�) = 0:
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The function � 7! '(�) = S0(�)�S1(�) is continuous, from Theorems 3.9 and 5.3. If �p0 < �2;
then '(�p0) is well de�ned and '(�p0) < 0; indeed T� = �Tr; thus T� does not stay in Q4 from
Theorem 9.6. If �2 5 �p0; in the plane (y; Y ); the trajectory T�2 leaves Q4; from Proposition 4.4,
because �2 is a sink, and transversally from Remark 9.1. The same happens for T�2�� for � > 0
small enough, by continuity, thus '(�2 � �) < 0: From Lemma 9.7, '(�p) > 0 if N = 2; and
'(�p) = 0 if N = 1: In any case there exists at least an �c satisfying (9.1), such that '(�c) = 0:

(ii) Uniqueness. First observe that 1 + �g > 0; indeed 1 + �= j�j > (p0 + �)= j�j > 0: Now

(p� 1)F +G = p�S(1=
 � g) = (p� 2)�S(1� 
g);

hence the curves fF = 0g and fG = 0g intersect at M 0 and A0; fG = 0g contains B0 and is above
fF = 0g for g 2 (0; 1=
) and under it for g 2 (1=
; 1= j�j) : Moreover T 0" has a negative slope at
B0; thus F > 0 > G near 0 from (R�). And T 0" cannot meet fG = 0g for (0; 1=
) ; because on this
curve the vector �eld is (gF; 0) and F > 0: Thus T 0" satis�es F > 0 > G on (0; 1=
). In the same
way T 0� has a negative slope ���2=(p� 1)(�+ j�j) < 0 at 1= j�j ; thus F > 0 > G near 1= j�j : And
T 0� cannot meet fF = 0g ; because the vector �eld on this curve is (0; SG) and G < 0. Thus T 0�
satis�es F > 0 > G on (1=
; 1= j�j) :

Let � < ��. Then T 0" is above �T 0" near g = 0, and T 0� is at the left of T 0�� near S = 0: We show
that '(�) > '(��): First suppose that T 0" and �T 0" (or T 0� and �T 0��) intersect at a �rst point P1 (or a
last point) such g 6= 1=
: Then at this point

1

p� 1
g

S

dS

dg
+ 1 =

(p� 2)(1� 
g)S
(p� 1)S(1 + �g)� ��1(1 + �g) =

(p� 2)(1� 
g)S
hS(g)� ��1(1� 
g)

(9.2)

with hS(g) = (p�1)S(1+ �g)� g=(p�2): Thus the denominator, which is positive, is increasing in
� on (0; 1=
) ; decreasing on (1=
; 1= j�j) ; in any case dS=dg > dS=dg at P1; which is contradictory.
Next suppose that there is an intersection on L: At such a point P1 = (1=
; S1) = (1=
; S1) the
derivatives are equal from (9.2), and P1 is above M 0, because F > 0: At any points (g; S(g)) 2 T 0"
(or T 0�); (g; S(g)) 2 �T 0" (or �T 0��); setting g = 1=
 + u;

�(u) = (
1

p� 1
g

S

dS

dg
+ 1)

1

(p� 2)S = �



hS(1=
)
u+

1

h2S(1=
)
(



�
+ h0S(1=
))u

2(1 + o(1));

��(u) = (
1

p� 1
g

S

dS

dg
+ 1)

1

(p� 2)S
= � 


hS(1=
)
u+

1

h2
S
(1=
)

(



�
+ h0

S
(1=
))u2(1 + o(1));

And hS(1=
) = hS(1=
) > 0, and h
0
S(1=
) = h0

S
(1=
); then

(�� ��)(u) = 
u2(1=� � 1=��)
h(1=
)

(1 + o(1)):
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This implies d2(S � S)=dg2 = 0 and d3(S � S)=dg3 = 2S1

2(p � 1)(p � 2)(1=� � 1=��) > 0; which

is a contradiction. Then T 0" and �T 0" cannot intersect on this line, similarly for T 0� and �T 0��: Hence
'(�) > '(��); which proves the uniqueness.

As a consequence, for � < �c; '(�) > 0; in the plane (y; Y ); T" does not stay in Q4; for � > �c;
'(�) < 0; T� does not stay in Q4: From Lemma 9.7, it follows that �p < �c if N = 2: Moreover
�� < �c: Indeed �� is a weak source from Proposition 2.5, thus for � > �� small enough, there
exists a unique cycle O around M`; which is unstable. For such an �; T" cannot stay in Q4 : it
would have O as a limit cycle at 1, which contradicts the unstability.

Next we discuss according to the position of � with respect to �� and �c:

Theorem 9.10 Assume " = �1; and � 5 ��: Then

(i) there exist a unique �at positive solution w of (Ew) with (4.3) near 0; and (4.4) near 1;
(ii) All the other solutions are oscillating at 1; among them the regular ones, and r�
w is asymp-
totically periodic in ln r. There exist solutions with a hole, also with (4.3), (4.6) or (4.9) or (4.9)
or (4.7) near 0: There exist solutions such that r�
w is periodic in ln r:

th 9.10,�g 12: " = �1; N = 1; p = 3; � = �2:53 th 9.10, �g 13: " = �1; N = 1; p = 3; � = �2:2

Proof. Here � < �c; from Theorem 9.9, and the trajectory T� stays in Q4. From Proposition
4.4, it converges at �1 to M`; and w is of type (i).

The trajectory T" leaves Q4, and cannot converge either to (0; 0) since T" 6= T�, or to �M`;
because this point is a source, or a weak source. Recall that M` is a node point for � 5 �1 (see
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�gure 12�where �1 �= �2:50), or a spiral point (see �gure 13). And T" is bounded at 1 from
Proposition 4.3. Then it has a limit cycle O" surrounding (0; 0) from Proposition 4.4, and �M`

from Remark 9.3. Thus w is oscillating around 0 near 1, r�
w is asymptotically periodic in ln r:

The solutions w corresponding to O" are oscillating and r�
w is periodic in ln r: Any trajectory
T[P ] with P in the interior domain delimitated by O" converges to M` at �1 and has the same
limit cycle at 1: The trajectory Tr starts in Q1; with lim�!�1 y =1 and cannot converge to any
stationary point at 1. It is bounded, thus has a limit cycle Or surrounding O0. For any P 62 Tr in
the exterior domain to Or, the trajectory T[P ] admits Or as a limit cycle at 1; and y is necessarily
monotone at �1; thus (4.6) or (4.9) or (4.9) or (4.7) near 0; all those solutions exist. The question
of the uniqueness of the cycle (Or = O") is open.

Theorem 9.11 Let �c be de�ned by Theorem 9.9.

(1) Let �� < � < �c: Then all regular solutions w of (Ew) are oscillating around 0 near 1;
and r�
w is asymptotically periodic in ln r. There exist

(i) positive solutions, such that r�
w is periodic in ln r;
(ii) a unique positive solution such that r�
w is asymptotically periodic in ln r near 0, with (4.4)
near 1;
(iii) positive solutions such that r�
w is asymptotically periodic in ln r near 0, with (4.3) near 1;
(iv) solutions oscillating around 0 such that r�
w is periodic in ln r;
(v) solutions with a hole, oscillating near 1; such that r�
w is asymptotically periodic in ln r;
(vi) solutions satisfying (4.6) or (4.9) or (4.9) or (4.7) near 0, oscillating around 0 near 1; such
that r�
w is asymptotically periodic in ln r;
(vii) solutions positive near 0; oscillating near 1; such that r�
w is asymptotically periodic in ln r
near 0 and 1:

(2) Let � = �c:

(viii) There exist a unique nonnegative solution with a hole, with (4.4) near 1.
The regular solutions are as above. There exist solutions of types (iv), (vi), and
(ix) positive solutions such that r�
w is bounded from above near 0, with (4.3) near 1.
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th 9.11,�g 14: " = �1; N = 1; p = 3; � = �2:1 th 9.11,�g 15: " = �1; N = 1; p = 3; � = �2

Proof. (1) Let �� < � < �c (see �gure 14). Then T� stays in Q4; but cannot converge neither
to M` which is a sink, nor to (0; 0) since T� 6= T": It has a limit cycle O� in Q4 at �1; surrounding
M`; and w is of type (ii). The orbit O� corresponds to solutions of type (i). There exist positive
solutions converging to M` at 1; with a limit cycle O` at �1 surrounded by O�; and w is of type
(iii). This cycle is unique (O` = O�) for ���� small enough, from Proposition 2.5. The trajectory
T" still cannot stay in Q4: As in the case � 5 ��; T" has a limit cycle O" surrounding the three
stationary points, w is of type (v), and Tr is oscillating around 0; and there exist solutions of type
(vi). Any trajectory T[P ] with P 62 T" in Q4 in the domain delimitated by O� and O" admits O�
as a limit cycle at �1 and O" at 1, and w is of type (vii).

(2) Let � = �c (see �gure 15). The homoclinic trajectory T" = T� corresponds to the solution
w of type (viii). The trajectory Tr has a limit cycle Or surrounding the three points. Thus there
exist solutions of types (iv) or (vi). Any trajectory ending up at M` at 1 is bounded, contained in
the domain delimitated by T"; and its limit set at �1 is the homoclinic trajectory T"; or a cycle
around M`, and w is of type (ix).

Theorem 9.12 Assume " = �1; and �c < � < �p0:

There exist a unique nonnegative solution w of (Ew) with a hole, with r�
w bounded from above
and below at 1: The regular solutions have at least two zeros.

(1) Either there exist oscillating solutions such that r�
w is periodic in ln r: Then the regular
solutions have an in�nity of zeros, and r�
w is asymptotically periodic in ln r: There exist
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(i) solutions satisfying (4.6) or (4.9) or (4.9) or (4.7) near 0, oscillating near 1; such that r�
w
is asymptotically periodic in ln r;
(ii) a unique solution oscillating near 0, such that r�
w is asymptotically periodic in ln r; and with
(4.4) near 1;
(iii) solutions positive near 0; with r�
w bounded, and oscillating near 1; such that r�
w is
asymptotically periodic in ln r:

(2) Or all the solutions have a �nite number of zeros, and at least two. Two cases may occur:

� Either regular solutions have m zeros and r�
w bounded from above and below at 1: Then there
exist

(iv) solutions with m zeros, with (4.6) or (4.9), with (4.4) near 1;
(v) solutions with m zeros with (4.6) or (4.9) and r�
w bounded from above and below at 1;
(vi) solutions with m+ 1 zeros with (4.6) or (4.9) and r�
w bounded from above and below at

1;
(vii) (for p > N) a unique solution with m zeros,with (4.7) or (4.10) and r�
w bounded from

above and below at 1:
� Or regular solutions have m zeros and (4.4) holds near 1: Then there exist solutions of type (vi)
or (vii).

th 9.12,�g 16: " = �1; N = 1; p = 3; � = �1:98 th 9.12, �g 17: " = �1; N = 1; p = 3; � = �1:90

Proof. Here T" stays in Q4; converges to M` or has a limit cycle around M`; thus w has a hole
and r�
w bounded from above and below at1: If � = �2; there is no cycle in Q4, from Proposition
4.4, thus T" converges to M`:
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(1) Either there exists a cycle surrounding (0; 0) and �M`, thus solutions w oscillating around
0; such that r�
w is periodic in ln r. Then Tr has such a limit cycle Or, and w is oscillating around
0: The trajectory T� has a limit cycle at �1 of the same type O� � Or, and w is of type (ii). For
any P 62 T" in the interior domain in O�; T[P ] admits O� as a limit cycle at �1 and converges to
M` at 1; or has a limit cycle in Q4; and w is of type (iii). For any P 62 Tr, in the domain exterior
to Or; T[P ] has O� as limit cycle at 1; and w is of type (i).

(2) Or no such cycle exists. Then any trajectory converges at 1; any trajectory, apart from
�T�; converges to �M` or has a limit cycle in Q1. All the trajectories end up in Q2 or Q4: Since
Tr starts in Q1; y has at least one zero. Suppose that it is unique. Then Tr converges to �M`;
thus Y stays positive. Consider the function Y� = e(�+
)(p�1)�Y de�ned by (2.3) with d = �: From
Theorem 3.3, Y� = (a j�j =N)e(�(p�1)+p)� (1+o(1)) near �1; thus Y� tends to1; since � < p0: And
Y� = (
`)p�1e(�+
)(p�1)� near 1; thus also Y� tends to 1; then it has a minimum point �; and
from (2.6), Y 00� (�) = (p � 1)2(� � �)(p0 + �)Y� < 0; which is contradictory. Thus y has a number
m = 2 of zeros:

Either Tr 6= T�: Since the slope of T� near �1 is in�nite and the slope of Tr is �nite, T� cuts
the line fy = 0g at m points, starts from Q1; and w is of type (iv). For any P in the domain of
Q1 between Tr and T�, T[P ] cuts fy = 0g at m + 1 points, and w is of type (v). For any P in the
domain of Q1 above Tr; T[P ] cuts the line fy = 0g at m+ 1 points, and w is of type (vi). If p > N;
the trajectories T� and Tu cut the line fy = 0g at m points, and w is of type (vii).

Or Tr = T�; and then we �nd only trajectories with w of type (vi) or (vii).

Remark 9.13 Consider the regular solutions in the range �c < � < �p0: We conjecture that there
exists a decreasing sequence (��n) ; with ��0 = �p0 and �c < ��n such that for � 2 (��m; ��m�1) ; y has
m zeros and converges to �M`; and for � = ��m; y has m + 1 zeros and converges to (0; 0); thus
Tr = T�: We presume that (��m) has a limit �� > �c: And for � < ��; y has an in�nity of zeros, in
other words there exists a cycle Or surrounding f0g and �M`.

Numerically, for � = �c; the cycle Or seems to be the unique cycle surrounding the three points.
But for � > �c and � � �c small enough, there exist two di¤ erent cycles O� � Or (see �gure
15). As � increases, we observe the coalescence of those cycles; they disappear after some value ��
(see �gure 16).
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