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Abstract

We study the existence of singular solutions to the equation —div(lDulp_zDu) = |u|9" 'y under the
form u(r,0) = rfﬂw(e), r>0,0eSV1 we prove the existence of an exponent g below which no
positive solutions can exist. If the dimension is 2 we use a dynamical system approach to construct solutions.
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1. Introduction

The study of isolated singularities of solutions of quasilinear equations started with the cele-
brated works of Serrin [20,21] dealing with expressions such as

div A((x, u, Du)) + B(x,u, Du) =0 (1.1

where A and B are respectively vector-valued and real-valued Carathéodory functions satisfying
the same power p-growth with p > 1. One of the main results of these works stated that the type
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of singularities is dictated by the diffusion operator A. Later on the particular cases of superlinear
semilinear elliptic equations was considered, either with an absorption

—Au+ul?lu=0 (1.2)
[5,24], or with a source reaction
Au+u?=0 (1.3)

[2,10,17], and in all cases ¢ > 1. One of the main facts of these studies relied in the existence
of critical thresholds where the interaction of the diffusion and the reaction terms could create
unexpected phenomena. As a natural generalisation, the same analysis was carried on for

—div(|DulP"*Du) + |u|"'u =0 (1.4)
[9], and
div(|DulP~*Du) +u? =0 (1.5)

[22], in the range 0 < p — | < q. In all these works, the radial explicit solutions, whenever they
exist, played a key role.

Similarly, the study of the boundary behaviour of solutions of quasilinear equations has a
natural starting point in the description of their isolated singularities on the boundary. Besides
the historical results of Fatou, Herglotz and Doob on the boundary trace of positive harmonic
and super harmonic functions, equations of types (1.2), (1.3) and (1.4) have already been consid-
ered [4,6,11,12,26,27]. In the present article we consider equations of type (1.5). The problem
can be stated under the following form: Assume £2 is an open subset of RV, a € 92 and
u € C(2\{a}) NC'(£2) is a solution of one of the above equations which vanishes on 952 \ {a},
what is the behaviour of u(x) when x — a. The simplest configuration corresponds to 2 = RY,
and a = 0 (or more generally, if §2 is a cone and the singular point a its vertex 0). For such
geometry, the key-stone element for describing the behaviour of u near 0 is played by separable
solutions, whenever they exist. These solutions, which have the form

u(x):u(r,a):riﬂa)(a), r>0, UeSNfl, (1.6)

have already proved their importance for (1.2), (1.3) and (1.4). It is expected that such will be
the case for (1.5), even if the full theory will be much more difficult to develop because of the
absence of comparison principle and a priori estimates near x = 0. It is straightforward that, if u
is a separable solution of (1.5) in RV,

p

P=ii=y

=By, (1.7)
which is positive since ¢ > p — 1. Furthermore w is a solution of

V. ((B2? + Vo) Vo) — ol o =1y, (820 + Vo) o, (18)
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in S i] ~! where V' is the covariant gradient on S¥~!, V', the divergence operator acting on
vector fields on SV~! and

)\q,p Zﬁq(‘]ﬂq —N).

When p=2, 8, =2/(q — 1) and (1.8) becomes
—ANo— ol o =10, (1.9)

where A’ is the Laplace—Beltrami operator on S¥~! and

2 2q
Ap=——(—=-N).
g—1\qg—1

If S is a subdomain of SN, Eq. (1.9), considered in S, is the Euler-Lagrange variation of the
functional

_ l 2 )‘q_2 2 _ 1 +1
I(Iﬂ)—f<2IV1/f| += 14 q+1|wl" )do. (1.10)
S

Forany 1 <g < (N +1)/(N —3) (any ¢ > 1 if N =2 or 3) this functional satisfies the Palais—
Smale condition. Furthermore, if 4,2 < As2 (As2 is the first eigenvalue of —A’in WOI‘Z(S)),
Ambrosetti—-Rabinowitz theorem [1] or Pohozaev fibration method [18,19] apply and yield to the
existence of nontrivial positive solutions to (1.9) in § vanishing on 9S; while if 1,2 > Ag 2 no
such solution exists.

When p # 2, Eq. (1.8) cannot be associated to any functional defined on , except if
g=qgc=(N(p—1)+ p)/(N — p) (the critical Sobolev exponent for W7 when N > p);
therefore, finding functions satisfying it is not straightforward. Besides the constant solutions
which exist as soon as gf8; < N, it is not easy to prove the existence of nonconstant solutions.
As in the case p = 2, it is remarkable to see that existence, or nonexistence, of solutions of (1.8)
is associated to some spectral problem, although this problem is not standard at all: if one looks
for the existence of a positive p-harmonic function v in the cone Cs = {(r,0): r >0, o € S}
vanishing on 9§, under the form v(r, o) = r~P¢ (o), one finds that ¢ is a positive solution of the
so-called spherical p-harmonic spectral equation on S, namely

SN*]

{ V(897 + IVOP) V) = 0827+ IVeR) g s,
$=0 inas,

and A = B(B(p — 1) + p — N). The difficulty of this problem is two-fold since § is unknown and
(1.11) is not the Euler-Lagrange equation of any functional. However, given a smooth subdomain
Sc SN itis proved in [25], following a shooting method due to Tolksdorff [23], that there
exists a couple (8, ¢) = (Bs, ¢s), where Bs > 0 is unique and @y is defined up to a homothety,
such that (1.11) holds. Denoting

As=PBs(Bs(p—1)+p—N),
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the couple (¢, As) is the natural generalization of the first eigenfunction and eigenvalue of the
Laplace—Beltrami operator in W01’2(S) since As = As 2 when p =2. The case N =2 is treated
in [14,15] by ODE methods. Our first theorem is a nonexistence which extends the one already
mentioned in the case p = 2.

Theorem 1. Let S € S¥~! be a smooth subdomain. If Bg = Bs there exists no positive solution
of (1.8) in S which vanishes on 9S.

Apart the case p = 2, the existence counterpart of this theorem is not known in arbitrary
dimension, except if g = g, in which case (1.5) is the Euler—Lagrange equation of the functional

1

9+l ) g 1.12
chLlll/fl )a, (1.12)

1
Jo/f)=/<;(ﬂ;w2+|w|2)””—
S

and applications of the already mentioned variational methods lead to an existence result.

However, when N = 2 the problem of finding solutions of (1.5) under the form (1.6) can
be completely solved using dynamical systems methods. In order to point out a richer class of
phenomena, we shall imbed this problem into a more general class of quasilinear equations with
a potential, authorizing even the value p = 1. This equation is the following,

c

|x|P|u|p_2u=0 (1.13)

div(IDu|”~2Du) + |u|7 u —

in RZ\ {0}, with ¢ > p — 1 >0 and ¢ € R. If u is a solution under the form (1.6), B is equal
to B,, while w is any 27 -periodic solution of

2\ p—2)/2 29(p=2)/2
4 Blew* + do\ ) do g | B2+ (22 ! )/a)
do q do do 4| "a do
+lol? ' — clw|? 2w =0, (1.14)

where

Ay =B @By —2)=Bq(p—2+ (p—DBy). (1.15)

If we set

¢y = fqu:p,,_l(p 2g+2(p -1 (1.16)
(g+1-=p)?

then, if ¢ < ¢, the only constant solution is the zero function, while if ¢ > ¢4, there exist two

other constant solutions (¢ — cq)l/ @+1=P) Let us denote by £ the set of positive solutions

of (1.14) on S!, £ the set of sign changing solutions and F = ££T U & the set of all nonzero

solutions. Our main result which gives the structure of the sets £ and £ is the following:
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Theorem 2. Assume p > 1, g > p — 1. Then:

o]

) U {exC+v): v es'], (1.17)

keN
k=ky

in which expression wy is a function with least period 2i [k, and kg = 1 if ¢ > ¢4, or kg is
the smallest positive integer such that kg > My, where

L=p
T
My = Fy : (1.18)
2[”/2 1+(p—1) tan* 6 9
0 Bl (p—1)tan?6+cy—ccosP=26

ifc <cy.

(i) If ¢ < ¢y, ET is empty. If 0 < ¢ — ¢q < 5_1/]7, ET is reduced to the constant function
(c—c)V/at1=P) Ifc — ¢, > ,B(fil/p, ET contains the constant function (c — cg)'/@+1=p)
and the set

+
kq

&=UJlofC+v)yes'), (1.19)

keN
k=1
where w,j is a nonconstant positive function with least period 2w/ k, and k; is the largest

integer smaller than (pﬂ,}fp (c— Cq))l/2-

Since separable solutions of (1.5) defined in a cone Cg and vanishing on dCyg are associated
to elements of £, we can prove the existence counterpart of Theorem 1 in dimension 2.

Corollary 1. Let N =2 and S be any angular sector of S'. Then there exists a positive solution
of (1.8) vanishing at the two end points of S if and only if B, < Bs. Furthermore this solution is
unique. In particular, existence holds for any sector if p <2 and g >22(p —1)/(2 — p).

The case p = 1 appears as a limiting case of the preceding one. In that case we observe that u
is a positive solution of (1.13) if and only if v = u? is a solution of the same equation relative to

g=1,

div(|Dv| " Dv) + v — lizo. (1.20)
X

The initial case ¢ = 0 is easily treated, but the case ¢ # 0, that we shall analyse in full generality, is
much richer and delicate and shows a large variety of solutions depending on various parameters.

Theorem 3. Assume p =1 and q > 0. Then:

() Ifc#£0,0orc=0and qg>1, £ is empty. If c=0and g <1, £ ={wo(. + ¥): ¥ € S},
where o — wy(0) :=2Y4|sine |1=D/ sino is a C' solution of (1.14).
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(i) Ifc < —1, EY isempty. If —1 < ¢ <0, ET is reduced to the constant function (c + 1)V/4. If
c>0,

k2
Ef={c+D"}u [ J{of(+v): ypes'],

keN
k=k;

in which expression a),': is a positive function with least period 2w /k, ky is the largest
integer strictly smaller than (c + 1)/?

/2 SO . .
% 0 coz%:_zc d@. Finally, if c =0,

and ki is the smallest integer greater than

. 0 ifg=1,
st=mu Y {w,t<.+w>.weSI}U{{wg(.wywesl} ifqg <1,

Ke(0,1)

where the functions a)z and a)(‘)" are explicitly given by

w;:( 1—K25in20—Kcosa)1/q and a)(‘)":(2|sina|)l/q Vo e S,

A striking phenomenon is the existence of a 2-parameter family of solutions when ¢ = 0.

Our paper is organized as follows: Section 1—Introduction. Section 2—The N-dimensional
case. Section 3—The 2-dim dynamical system. Section 4—The case p > 1. Section 5—The case

p=1.
2. The N-dimensional case
2.1. The spherical p-harmonic spectral problem
If p>1, 8>0and A € R we denote by T4 the operator defined on c'(sN -1 by

o> Tpalol = =V (820> + Vo) P22V 0) = a(B20> + Vo) P20, 2.1)

Let g > p— 1> 0, S be a smooth connected domain on S¥~! and Cg the cone with vertex 0
generated by S. If u is a positive solutions of

—div(IDu|”"*Du) = uf, (2.2)
in Cg \ {(0)} vanishing on dCys \ {(0)}, under the form
ur,o)=rPw(), (2.3)
then 8 = p/(g + 1 — p) := B, and w solves

{ Tpyrgpl0] =@ =0 in§, 2.4)

w=0 OnaS,
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where

)‘q,p :ﬁq(‘]ﬂq —N).

We denote by Bs the exponent corresponding to the first spherical singular p-harmonic function
and by ¢ the corresponding function. Thus Bs > 0 and u(r, o) = r PS¢g(c) is p-harmonic in
Cs \ {(0)} and vanishes on dCgs \ {(0)}. Furthermore ¢ = ¢s > 0 and satisfies

Tpg sl =0 in S,
{ ¢ ; OS onads, (25)

where

rs=Bs(Bs(p—1)+p—N).

We recall that (Bg, ¢s) is unique up to a homothety upon ¢. Furthermore ¢y is positive in S,
d¢s/dv <0on dS and

ScS, 4SS = Bg>Bs.
2.2. Non-existence

Proof of Theorem 1. We put

9:,3_q and n=¢§.
Bs

Then 6 > 1 and
V=005 V'es,
Ban® + IV =025 (8565 + 1V 'sI°),
(135”2 + |V/n|2)(p—2>/2 _ 9p—2¢§[7—2)(9—1)(ﬂ§¢§ + IV/¢SI2)(p_2)/2,
V' (Byn® + V) PRy
_ 9p—1¢§17—1)(9—1)v/'(ﬂ§¢§ + |V/¢S|2)(p—2)/2v/¢s
+(p— DO — D"V (8395 + 1V ps?) TV g .

Using (2.5) with ¢ = ¢, we derive

Ty, M= —(p = D710 = D VOV (8262 4 V/gsP)”? ins. (2.6)

Because w is a nonnegative nontrivial solution of (2.4), it is nonpositive in S. Furthermore
dw/dv < 0 on 3S. Therefore we can choose ¢g as the maximal positive solution of (2.5) such
that n < w. If 0 > 1 there exists o™ € § such that

a)(o*) = n(cr*) >0 and w(o)>=n(c) VYo eS. 2.7)
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If 6 = 1, the graphs of w and 71 could be tangent only on 9. This means that either (2.7) holds,
or there exists o € .5 such that

dw(o)/dv=0n(c)/dv <0 and w(o) <n(o) Vo eS. (2.8)
Let ¥ = w — n and we first consider the case where (2.7) holds. Let g = (g;;) be the metric tensor

on SV 1. We recall the following expressions in local coordinates o around o*,

2 0@ 0@
V/ 2= ]k__7
Vol ,Zkg 5o, ox

for any ¢ € Cc'(S), and

V.X=

2 5 WX = 2 30 (Ve ),

for any vector field X € C'(TSV~1), if we lower the indices by setting X¢ = > g X;. We
derive from the mean value theorem

2 2360 2 2372 i 0w—mn)
(,330)2+|V/ |)(p )/ (/327) +|V/ |)(p )/ Z o o +b1(w 1),
J

where
b= (p— 2)(’35(7] +t(w— 77))2 + IV’(n it (w— 7]))|2)(1774)/2
a(n+ -
X (n+t(w—n))%‘?n))’
and

o =(p—2)(BF(n+1t(w— ,7))2 |V (0 + 10— n))|2)(p—4)/2

o +t(w—n)) K0 +t(@—mn)
x 30’,‘ Zg 3Gk

k
+8] (B2(n+1(@—m)* + |V (n+1@—m)[) 2"
Since the graphs of 1 and @ are tangent at o™,
n(e*) =w(e*)=Po>0 and V(o*)=Ve(o®) = 0.
Thus

b (o*) = (p —2)(B2PE +101%) "V Py 0;,
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and
ol (o%) = (B2P3 +101%) " (85 (B2P2+10P) +(p—2)0; 3 g/t Qk).
k
Now

3"ﬁqv)‘q,p[ o] = Sﬂq )”qp[ |

_ —1e-1)— 2
=aﬂ+(p—1>9” 1(9—1)¢§P DODY (8262 4 |V g5 )"
P_1 0w r_10n
V' wl?)? 10w 2 2 v/p2)2 P2
2,2 r2VETl (2,2 N
kq,p((ﬂqw +IV'ol?)2 o= (B +1V'nl")2 ),

__ Ly i 3(‘” do=m RAC)
=R & e [ Vie (Z Foes ﬂ*zc o
_ 1 d ¢ 0(w — 3((0

g 00 i ol RO W

where the C; are continuous functions and

a—\/EZgz"

The matrix (a; (00)) is symmetric, definite and positive since it is the Hessian of the strictly
convex function

1 ) 1 ] p/2
=Xy, Xy > ;(Poz + |X|2)”/ - ;(Poz + ngkxjxk) )
j.k

Therefore (a;.) has the same property in some neighborhood of o*, and the same holds true with

(af:). Finally the function ¥ = @ — 7 is nonnegative, vanishes at o* and satisfies

1 3
_ﬁ;a_w[faa}rz (2.9)

Then ¢ = 0 in a neighborhood of S. Since S is connected, v is identically 0 which is a contra-
diction.

If (2.8) holds, then 8 = 1 and the graphs of 1 and w are tangent at 6. Proceeding as above
and using the fact that d5/dv exists and never vanishes on the boundary, we see that v =n — w
satisfies (2.9) with a strongly elliptic operator in a neighborhood A/ of . Moreover ¥ > 0 in A/,
Y (o) =0and dy/dv(c) = 0. This is a contradiction, which ends the proof. O
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Remark. If p = 2, the proof of nonexistence is straightforward by multiplying the equation in @
by the first eigenfunction ¢5 and get

/((?»S — A2 —wl)psdo =0,

N

a contradiction since As < A4 2.
2.3. Existence results

Let us consider the case ¢ =g, = (N(p — 1) + p)/(N — p) (N > p > 1), and let S be any
smooth subdomain of S¥~!. Since in that case Agp = — ﬂng, the research of solutions of (1.5)
under the form (1.6) vanishing on dCys leads to

— qc—1 — 1
{gﬁqc-,—ﬁgc[“’] lo/* =0 inS, (2.10)

w=0 inas,

where 8, = N/p — 1. This equation is the Euler-Lagrange variation of the functional J defined
on Wol’p (S) by

1 2 1
T() =f<—(ﬂ,§(¢2 +IVy )P - —ww“) do. (2.11)
p gc+1
S
Theorem 2.1. Problem (2.10) admits a positive solution.

Proof. Clearly the functional is well defined on WO1 "P(S) since qc is smaller than the Sobolev
exponent py_; for WP in dimension N — 1. For any ¥ € Wol’p(S), lim;— 00 J (t) = —00.
Furthermore there exist § > 0 and € > O such that J(y) > € for any ¢ € W(} "P(8) such that

l¥llwir = 8. Assume now that {y,} is a sequence of Wol""(S) such that J(y,) — a and
I1DJ ()|l =1y = 0as n — oo. Then

et Wn] = [Vl = €4 — 0.

Then

/((ﬁ,il/f,f F VY2 = Y19t do = (e, ).
S
Since J (Yr,) — « it follows

/(.3361//3 + |V/wn|2)p/2d0' — p(qc + l)a/(f]c +1— [7)-
S
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Therefore {1, } remains bounded in L4t1(S), and relatively compact in L"(S), forany 1 <r <
qc + 1. Multiplying the equation D J () — €, by Tk ¢ () where 0 € (1, (p;‘v_l —1D/gc), k>0
and Ty ¢ (r) = sgnmin{|r|, k} and using standard bootstrap arguments yields to the boundedness
of {¢,,} in L°°(S). Combining this fact with the compactness in L" (S), we derive the compact-

ness in any L*, for s < oco. Therefore {1} is relatively compact in Wol’p (S). This means that J
satisfies the Palais—Smale condition. O
3. The 2-dim dynamical system
3.1. Extension of the data
Due to possible applications and similarly to what is done in the semilinear case p =2 (see

[3,7,8]), we shall consider the existence problem for 27 -periodic solutions of a more general
quasilinear equation than (1.14),

d do\2\ P21 do\ 277721
— | [ B2? + £e i S Brw? + £e w+ g(w) — clo|’ 2w =0,
do do do do

3.1

where A, B, ¢ are real parameters, with 8 > 0, and g € C'R)ync! (R \ {0}) is odd and satisfies

lir(1)1+g(s)/sq=1, lim g(s)/s?~! = o0, di(g(s)/|s|l7*‘)>o on (0,00), (3.2)
s> §—>00 S

withg > p—1 > 0. In fact we can easily reduce the problem to a simpler form, and particularly in
the case p = 1, where the equation has a remarkable homogeneity property. The next statement
is a straightforward computation which transforms the equation satisfied by w into two more
canonic forms.

Lemma 3.1. Let w be a solution of (3.1).
(1) Assume p > 1. If we set

dw

t=Bo, w(o)=pPYT"Py) and w’zd—, (3.3)
T
then w satisfies
d _ _
d—((w2+u/2)”/2 ") —b(w?+w) P + fw) —dlwPPw =0,  (3.4)
T
where
-\ c
i _ < _ g—ra/(q+1-p) /(g+1-p)
b=z d=gp  f@=p PANATE=P) g (BPIATImP)g). (3.5)

In particular f satisfies the same assumptions (3.2) as g.
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(1) Assume p > 1. If on any open interval I C (0, 2m) where w(o) # 0, we set
1/q—1
t=fg0 and ()= B |w@)]" " w), (3.6)
then w satisfies (3.4) on I, with

b=—-2/B’q, d=c/Bg,  fils)=B""g((Bgs)"9). (3.7)

Furthermore f satisfies the assumptions (3.2) with g = 1, i.e.
lim fi(s)/s =1, lim fi(s) = o0, fi(s) >0 on (0, 00). (3.8)

s—0+ §—00

Due to this result, the changes of variables (3.3) and (3.6) reduce the problem to the study
both of existence of periodic solutions of Eq. (3.4), and to characterizing the period function of
these solutions, in therange g > p —1if p>1,andg > 0if p=1.

3.2. Reduction to dynamical systems

We rewrite (3.4) as the system,

w =F(w,y) =y,
bw? + (b +2 - p)wy? — (f(w) —d|w|P~2w)(w? + y2)>~P/? (3.9)
w2+ (p —1)y? ’

Y'=Gw,y)=
and we denote by % the odd function defined on R by

hs) = { F )/ 1517725 i s £0, (3.10)
0 if s =0.

If b+ d <0, (3.9) has no nontrivial stationary point, while if b + d > 0, it admits the two
stationary points Py, with Pp = (a,0) and a = h=Y(b + d). Furthermore Py is a center since
the linearized system at Py is given by the matrix

0 1
—ah’(a) 0)°

System (3.9) is clearly singular at (0, 0). Furthermore it could singular be along the line w = 0 if
p=1,ifg < 1,andif p <2 and d # 0. Actually, for p > 1 it is not singular at any points (0, o)
with o # 0. This can be checked as follows: consider the Cauchy problem

{wﬂzc(w,w’), 1€ (=4,6), (3.11)

w(0)=0, w(0)=o,
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and let w be any local solution; since near (0, c), G is continuous with respect to w and C !
with respect to y, w is C?; because o # 0, ¢ can be expressed locally in terms of w. Defining
w’(t) = p(w), then p is C! near 0, p(0) =1 and satisfies

dp _ G(w, p)
dw  p

with J(w, p) = G(w, p)/p. Clearly is C! with respect to p and continuous with respect to w,
thus one gets local uniqueness of p. and then the local uniqueness of problem w’(¢) = p(w(z)),
w(0) = 1, since p is of class cl.

The phase plane of the system (3.9) is equivariant under symmetries with respect to the two
axes of coordinates, because F is even with respect to w and odd with respect to y, and G is odd
with respect to w and even with respect to y. Thus from now we can restrict the study to the first
quadrant

9\ {(0,0)}, where Q= (0, 00) x (0, 00),

where, in particular, w > 0. Due to the symmetries, in the case p > 1, any trajectory which meets
the two axes in finite times 7, T 4 T is a closed orbit of period 47 .

Remark. It is useful to introduce the slope & = w’/w (or a function of the slope) as a new
variable. This was first used for p > 1 in [16] for the homogeneous problem

%((w2+w/2)p/2_lw/)—b(w2+w/2)p/2_lw=0.

In that case the function & satisfies

d - -
2 (148 e =—((p - D —p)(14+)",

for w > 0, and this equation is completely integrable in terms of u = (1 + £2)P/>~1¢,
By using polar coordinates in Q
(w,y)=(pcosb, psinf), p=>0,0¢e(0,r/2),
we transform (3.9) into
_b—(p- 1)tan? 0 + (d — h(pcosH)) cos”? 20

6 = ,
1+ (p— 1 tan26 (3.12)
o =p(1+6")tané.

Equivalently, if we introduce the slope £ =tan6 € (0, c0), and set

u=¢E) =cos' Posing, ¢ =(1+£)7 %, (3.13)

then ¢’ (&) = (1 + £H)P=D/2(1 + (p — 1)£2); thus ¢ is strictly increasing: from (0, co) into
(0, 00) when p > 1, and from (0, co) into (0, 1) when p = 1. Defining
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(p=¢_l and E(E):((p_l)gz_b)(1+$2)P/2—l’ (3.14)
we obtain
w' = we(u),
{M' =—E(pw)) —h(w) +d. (3.15)

This system is still singular on the line w =0 if & ¢ CL([0, 00)) near 0. In the sequel we set

u

¥ (u) =/<p(s)ds. (3.16)
0
Noticing that
E'€)=(p(p—DE +2(p— 1) — (p —2b) (1 +8%) "%, (3.17)

we derive that E is increasing on (0, o) when (p —2)b < 2(p —1). When (p —2)b > 2(p — 1),
E is decreasing on (0, n) and then increasing, where 7 is defined by

p(p—Dn*=(p—2)b—2(p— 1), (3.18)

and

_ _ p/2
(p=2)b+p 1)) . (3.19)

2
inE=E = —
e o p—2< pp—1)

In the case of initial problem (1.14), E is increasing.

Remark. If p > 1, system (3.9) is singular at (0,0). If we replace the assumption
limg— o+ f(s)/s9 =1, by the stronger one

lim f'(s)/s9 ' =gq, (3.20)
s—0+

we can transform system (3.15) in (0, 00) x R in a system of the same type, but without singu-
larity: this is obtained by performing the substitution v = w?!=7. Then

{v’=(q+1—P)U<P(’4)v (3.21)

u'=—E(p@w)) —h(v) +d,
where v — h(v) = h(v1/@+1=P) e C1([0, 1)). In particular, if f(w) = |w|? w, we find

vV'=(q+1—pp),
{ u = —E((p(u)) —v+d. (3.22)
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Remark. In the case f(w) = |w|?~'w, we can differentiate the equation relative to u’ and obtain
that u satisfies the following equation

' =B(p)u'+ (g +1-p)(E(p@) — d)p), (3.23)

where E is given above, and

(p—2b4+qg—3(p—1)+(qg+1-2p)(p—1)&>
1+ (p— DE?2

Notice that Eq. (3.23) has no singularity for p > 1.

B() = &. (3.24)

4. The case p > 1
4.1. Existence of a first integral

A natural question is to see if Eq. (3.4) admits a variational structure. When p = 2, it is the
case, for any b and d. Since (3.4) takes the form

w' — b +dw+ f(w) =0,

it is the Euler equation of the functional

w/2 w2
Hao(w, w') = N + (& +d)7 - F(w),
where F(w) = fow f(s)ds. Thus the function w'? = (b + d)w? — 2F (w) is constant along the
trajectory. When p # 2, p > 1, we find that a first integral exists only in the case b = 1. In such
a case (3.4) is the Euler equation of the functional

2 12\p/2 p
Hw, w') = (w +;U ) —|—d|w| — F(w).
Therefore, the associated Painlevé integral
1 _ d|lw|P
P(w7w/)= _(w2+w/2)l’/2 l((p_ 1)w/2_w2) _ ﬂ—FF(W) (41)
p p

is constant along the trajectories. Using the function E introduced at (3.14), then (4.1) is equiva-
lent to

w’ K + F(w)
E<_) =E(pw))=d - p———= (4.2)
w wP
for w > 0. Hence E is increasing on (0, oo) from —b = —1 to +o0.

In the general case, we cannot use a first integral for studying the periodicity properties of
the solutions, while it was the main tool in [3] for p = 2. This is the reason for which we are
lead to use phase plane techniques. Notice that, for the initial problem (1.14), the value b = 1
corresponds to the case p <2 and g = 3p —2)/(2 — p).
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4.2. Description of the solutions

In this section we describe in full details the trajectories of system (3.9) in the phase plane
(w, ). Notice that the system can be singular on the axis w = 0.

Proposition 4.1. Assume p > 1. Then all the orbits of system (3.9) are bounded. Any trajectory
i py issued from a point P in Q is

(i) either a closed orbit surrounding (0, 0), or
(i) ifb+d > 0, a closed orbit surrounding Py but not (0, 0), or
(iii) a homoclinic orbit defined on R, starting from (0, 0) with initial slope

. w'(n)
lim =m

t——o00 w(t) B

where m is defined E(m) = d, and ending at (0, 0) with

w’' (1)
m =
t—00 w([)

Proof. We recall that £ and u are defined by (3.13) and (3.14), by using polar coordinates (p, 6)
in the (w, y)-plane.

First look at the vector field on the boundary of Q. At any point (0, c) with o > 0, it is
given by (o, 0), thus it is transverse and inward. At any point (w, 0) with w > 0, it is given by
O, w(b +d) — h(w))). Thus it is transverse and outward whenever b +d <0 or b+ d > 0 and
w > a, and inward whenever b +d > 0 and w < a.

Consider any solution (w, y) of the system, such that P = (w(0), y(0)) € Q, and let (71, 72)
be its maximal interval existence in Q. At any point T where u'(t) = 0 and u(t) > 0, there holds
u”(t) = —h' (w)weu) < 0 from (3.15). Thus if T exists, it is unique, and it is a maximum for u.

Since w’ =y > 0, w has the limits £, € (0, cc] as T 1 7 and £; € [0, 00) as T | 7;. Therefore
u is strictly monotone near 7| and 72, thus it has limits u, u; € [0, oo], in other words 6 has
limits 61, 65 € [0, /2].

(i) Let us go forward in time. On any interval where u is increasing, one has E(¢(u)) < d,
thus u is bounded and, consequently, u, is finite. If £, = 0o, then 0'(t) — —o0, as T 1 13;
by (3.13), p is decreasing, thus it is bounded, which is contradictory; thus £; is finite. If u» > 0
then (£2, £2¢(u3)) is stationary, which is impossible. Thus u is decreasing to 0, and the trajectory
converges to (£2,0). If b +d > 0 and ¢, = a, u’ tends to O from (3.15), and

u" =—(E o) ' — ' (w)weu) = —h'(a)ap@)(1+o(1));

therefore u” < 0 near 1, which is impossible. Finally, either b+d <0, orb+d > 0 and w > a,
and 17 is finite, the trajectory leaves Q transversally at ;.

(ii) Next let us go backward in time.

e Suppose u; = 0. Clearly the trajectory converges to ({1, 0); then necessarily b +d > 0
and ¢; < a, thus £; < a as above. The trajectory enters Q transversally at 75, and from the
symmetries it is a closed orbit surrounding only the stationary point Py.
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e Next, suppose u| = oo. It means that 6 tends to 7r/2. Then from (3.12), 6’ tends to 1, thus
71 is finite,

m2—0=@—m)(l+o0(1), tanf=(r—1)"'(1+0(1)),

and
(p—D(— n)—l% = (b+ 14 (d — h(pcosd))cos”26)(1+o(1)).

If p>2, then p'/p = O0((t —11)); if p<2then p'/p = Ot — 1)~ "). In any case, Inp
case is integrable, thus p has a finite limit y > 0. Then the trajectory enters Q transversally
at 1 and from the symmetries it is a closed orbit surrounding (0, 0). From the considerations in
Section 3.2, for any y > 0 there exists such an orbit, and it is unique. Moreover in Q the slope
w'/w =& = ¢(u) is decreasing from oo to 0; indeed it decreases near 7 and 7, and can only
have a maximal point.

e At end, suppose 0 < u| < oo. If £1 > 0, then (£1, £1¢(u1)) is stationary, which is impossi-
ble. Thus (y, w) converges to (0, 0). And w’/w tends to ¢(u;), thus 7 = —o0o. And u’ converges
tod — E(p(u1)), thus tanf = ¢(u) has a limit m > 0 such that E (m) = d. From the symmetries
the trajectory is homoclinic and the solution w is definedon R. O

The next theorem studies the precise behaviour of solutions according to the sign of b + d.

Theorem 4.2. Assume p > 1 and consider system (3.9) in the (w, y)-plane.

(i) Assume b +d > 0. Then there exists a unique homoclinic trajectory 'H starting from (0, 0)
in Q with initial slope mg = E~Yd) (mg = Vb/(p—1) if d =0), ending at (0,0) with the
slope —mg, and surrounding Py. Up to the stationary points, the other orbits are closed, and
either they surround only one of the points Py or — Py, in the domain delimited by H, corre-
sponding to solutions w of constant sign, or they are exterior to ='H and surround (0, 0) and
+ Py, corresponding to sign changing solutions w.

(ii) Assume b+ d < 0. Then

e if(p—2b<2(p—1,0r[(p—2)b>2(p—1)andd < E(n)], there is no homoclinic
trajectory;

o if[(p—2)b>2(p—1)and E(n) <d < —b], then denoting by m1 4 < ma_ 4 the two positive
roots of equation E(m) = d, there exist infinitely many homoclinic trajectories H; starting
from (0, 0) in Q with the initial slope m1 4 and ending at (0, 0) with the final slope —m 4,
and a unique homoclinic trajectory Hy starting from (0, 0) in Q with initial slope my 4 and
ending at (0, 0) with final slope —m> 4.

Proof. (i) Case b + d > 0. Then the equation E(m) = d has a unique positive solution
m = E~(d); and w’/w tends to m; thus the trajectory starts from (0, 0) with a slope m. Then
for any P € Q, the trajectory 7[p] passing through P meets the axis y = 0 after P at some point
(i, 0) with i > a. Denote

U={Pe Q: TipiN{0,0): 0 >0} #0},
V={PeQ: TipyN{(n.0): 0<p<a}+#0}. (4.3)
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Then either P € U and the trajectory is a closed orbit surrounding (0, 0) and +Pp, and in Q.
Or P €V and the trajectory is a closed orbit surrounding only Py. Or 7[p; is a homoclinic orbit
‘H starting from (0, 0) with the slope m, where m is the unique solution of equation E(m) =d
(such that m > n if E is not monotone, see (3.17)). Next I/ and V are open, since the vector field
is transverse on the axes, thus I/ UV £ Q. This shows the existence of such an orbit H.

(i) Case b+ d < 0.

e Either » +d < 0 and E is increasing, or E has a minimum at  and d < E (). In such a
case equation E(m) = d has no solution, and there is no homoclinic orbit. Or E is increasing
and b +d = 0; then E(p(u)) > —b =d, thus u’ < 0, thus u cannot tend to 0, and the same
conclusion holds.

e Or E has a minimum at 1 and E(n) < d < —b. In that case the equation E(m) = d has
two roots m1, my such that 0 < m; < n < my < myp, where m(b) is defined by E(mp) = —b.
Any trajectory 7jpj such that P € U (see (4.3) for the definition) satisfies u’ < 0, it means
h(w) > d — E(p(u)) and the range of u is (0, 00), therefore there exists t such that ¢(u)(7) =1,
hence h(w(t)) >d — E(n) and y(t) = nw(t). Next consider any trajectory 7}1;] starting from

P = (b, n) such that 7 () < d — E(n). It cannot be a trajectory of the preceding type, thus
(y,w) = (0,0) as T — 71, and O tends to 0y, with tanf; = m; or my; moreover u’(0) > 0,
and u’ < 0 near 7, thus there exists a unique t > 0 such that u’(t) = 0; then u’ > 0 in (71, 7),
therefore tan6; < n, and finally tanf; = m. Consequently there exist infinitely many such tra-
jectories Hj, with initial slope m 1. Next fix one trajectory ’]E Al such that h(wg) < d — E(n). Let
R be the subdomain of Q delimited by 7 5, and 70,1y and

V={P eR: TipiN{(w, nw): 0 <w <o} # ¥}.

The set V is open because the intersection with the line y = nw for w < wy is transverse since at
the intersection point, 2(0) <d — E(n), thus u’ > 0, and y/w = ¢(u) =7, and

/ /

/
AP AD WY
y @ (u) w
Then (4 NR)UYV # R. Then there exists at least a trajectory Hj  starting from (0, 0) with
initial slope m,.

(iii) Uniqueness of H and H>. Let m = mq or my 4. Suppose that system (3.9) has two solu-
tions (wy, y1), (w2, y2) defined near —oo, such that w; > 0 and w; (t) tends to 0 and y; (t)/w; (7)
tend to m as t || —oo. Then the system (3.15) has two local solutions (wy, u1), (w2, u2) such
that ¢ (u;) tends to m at —oo. Then w; > 0 locally and one can express u; as a function of w;.
Then at the same point w,

dw (u;) du;
w— =w<p(ui)dw=—E(<P(Mi))—h(w)+d,
dw 4
w U Z I _ (o) - Efptun) = E'(p(u*))¢/ (%) 2 — 1)

dw

for some u* between uy and uy, and E'(¢(u*)) = E'(m)(1 + o(1)); and E’(m) > 0. Then for
small w
d(W¥ (u2) —¥(uy))
dw

(¥ (u2) — ¥ (up)) <0,
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which implies that (¥ (u2) — W (uy))? is decreasing, with limit O at 0. Therefore ¥ (1) = ¥ (u1),
thus up = uj near —oo; but from (3.15), h(w;) = h(w3), and since & is one to one, it follows
w; = wy near —oo. The global uniqueness follows, since the system is regular except at (0, 0).
All the trajectories are described. O

Remark. Under the assumption (3.20), existence and uniqueness of H and H> can be obtained in
a more direct way whenever d # E (1). Indeed the system (3.21) relative to (v, u) is regular, with
stationary points (0, 0), (0, :i:ga_l(m)), where m = mq, m1 or my and also (+a,0) if b +d > 0.
The linearized system at (0, o1 (m)) is given by the matrix (m(qt)l_‘" ) % (Om)), with K (m) =
p(p—D@> =m?/(1 +(p—Dm?). Ifm= m1.4, then it is a source, and we find again the
existence of an infinity of solutions. If m = my or m = my 4, then K (m) < 0, thus this point
is a saddle point. Then in the phase plane (v, u), there exists precisely one trajectory defined

near —oo, such that v > 0 and converging to (0, m) at —oo, and u/v converges to 0.

Remark. Suppose f(w) = |w|?"'w, then we can study the critical case (p —2)b > 2(p — 1)
and E(n) = d: there exist infinitely many homoclinic trajectories H; starting from (0, 0) in Q
with an infinite initial slope and ending at (0, 0) with an infinite slope, and a unique homoclinic
trajectory Ho starting from (0, 0) in Q with the initial slope 7 and ending at (0, 0) with the
slope —n. Indeed using system (3.22) and setting u = ~' () +z, and ¢ = (g + 1 — p)nz + v,
it can be written under the form

{'=P(,v), V=@ +1-pnv+ 0, v),

where P and Q both start with quadratic terms. Moreover the quadratic part of P (¢, v) is given
by pz,og‘z + p1.1¢v+ p0,2v2, where by computation,

_pr(p—1D

2 2\(p=2)/2
" (@) (1+n°) <0.

P2,0=

The results follow from the description of saddle-node behaviour given in [13, Theorem 9.1.7].

Remark. In the case b = 1 > —d, we have a representation of the homoclinic trajectory: it
corresponds to K =0 in (4.2). In the case f(w) = |w|9~'w, in terms of u we obtain

1—
W = TP (B (pw) - d),

which allows to compute u by a quadrature.
4.3. Period of the solutions
First we consider the sign changing solutions.
Theorem 4.3. Assume p > 1. For any v > 0 let T} )] be the trajectory which starts from (0, v),

and let T (v) be its least period. Then v — T (v) is decreasing on (0, 00). Furthermore the range
of T(.) can be computed in the following way.
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(1) If b+d <0 and m +— E(m) is increasing, or if d < min E, then T (.) decreases from Ty
to 0, where

Ty = 4]
J E(¢(“)) -

and Ty is finite if and only if b+ d < 0. If b < 0= d, then

To=2n— L= DY+ o — bl =), (4.5)
(p—Dyy+1D

@) Ifb+d>00rb+d<0andd > min E, then T (.) decreases from oo to 0.

_ 2
/ 14+ (p—1tan- 60 a6, @.4)
(p

—1)tan20 — b —dcosP—20

Proof. Step 1. Monotonicity of T . Consider the part of the trajectories Tj(,.)] located in Q, given
by (w,, y,). We have already shown that u is decreasing with respect to t from co to 0, then
E(p)) + h(w,(u)) —d > 0 and w, can be expressed in terms of u, and

o0

T(v)=4 f du . (4.6)
0

E(p(u)) + h(wy(w)) —d

Let A > 1. Since the trajectories 7[(o,)] and T}(,5.,)] have no intersection point, w;,, (u) > wy, (1)
for any u > 0, and 4 is nondecreasing, thus 7 (Av) < T'(v), and T is decreasing.

Step 2. Behaviour near co. Let v, > 1, such that limv, = co. Observe that for fixed u, for
any integer n > 1, there exists a unique vV, > 0 (depending on u), such that w;, (1) = n; let
U, = max(v,, n). Then h(wy, (1)) > h(n), thus h(w;, (1)) converges to oo; since v = h(w, (u))
is nondecreasing then i (w,, (#)) converges to oo, and 7T (v,) converges to 0, using the Beppo—
Levi theorem.

Step 3. Behaviour near 0.

e First assume b + d < 0, and E is increasing, or d < E(n). Then all the orbits are of the
type Zjo,»)- Let v, € (0, 1), such that limv, = 0. For fixed # and any integer n > 1, there
exists a unique v, > 0 (depending on u), such that w;, (1) = 1/n; let v, = min(v,, 1/n).
Then h(w;, (u)) < h(1/n), thus h(wy, (1)) converges to 0, and again i (w,, (1)) converges to 0.
Then T (v,) converges to Ty given by (4.4), using the Beppo—Levi theorem. If b + d < 0, then
T, is finite: indeed near oo, E(p(u)) = (p — DuP/P=D(1 + o(1)); if E is increasing, then
E(pm)) —d>—(b+d)>0;ifd < E(n), then E(p(u)) —d > E(n) —d > 0.

If b+ d =0 and E is increasing, then T; = oo: indeed near 0,

E(pw) —d=u*(E"(0)/2+ o(1))
and

E'"0)=2(p—1D)—(p—2)b if(p—2b=2(p—1).
Therefore

E(pw)) —d = (p(p — 1)/4)u*(1+o(1)).

In all the cases the integral (4.6) giving T is divergent.
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When b < 0 =d, one can compute Tp:

@:f’du :7d@msﬁf to-be
+ 7 Eew) ) Ee T W G- D +E)

(L N[ 4 = M)
_2+(p—1 y)!oﬂ+ﬂxuw%_2<HYp—nwy+n'

Hence (4.5) holds.
e Next assume d > E(n). Considering v, as above, for any fixed u such that ¢ (1) > m, there
exists a unique v, > 0 (depending on u), such that w;, (1) = 1/n. As above,

o0 oo

/ du /' du
— —_ =00,
E(pu)) + h(ws,) —d E(p(u)) —d

@~ 1(m2) @~ 1(m2)
since E’(my) is finite. As a consequence, T (v,) tends to oo. If d = E(n), the same proof still

works with m, replaced by n: the integral is still divergent because the denominator is of order 2
inu— (pfl (n), as, near 0, there holds

! 1
E(p(u) —d = 5Eﬂ(n)(w(u) —n)*(1+o0(1)) = EEN(TI)(QD(M) — (1 +0(h)),
and
E"(m) =2p(p— Dn*(1+ 772)([7—2)/2 o,

At last suppose b + d > 0; the same proof with m, replaced by m shows that 7'(v) converges to
o0 as v tends to 0, since E'(m) atm = E~! (d) is finite. O

The monotonicity of the period function is a more general property, since we have the follow-
ing result.

Proposition 4.4. Let F, G € C1(R?\ (0, 0)) are such that F (respectively G) is odd with respect
to y (respectively x) and even with respect to x (respectively y), with F(w, y) > 0 in Q. Assume
that for any (w, y) € Q and any A > 0,

0 [ F(w,Ay) )
— =) > <
o < . ) >0 (respectively <0) and
0 (G(Aw, )
ﬁ (%) <0 (respectively > 0). 4.7

Assume also that for any o in some interval (o1, 02) (Where 0 < o1 < 02), the trajectory T[(0,0)]
of solution of the system
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{w/ZF(w’y)’ (4.8)

Y'=Gw,y)
passing through (0, o) (necessarily entering Q since F(0,0) > 0) leaves Q transversally in a
finite time T (0)/4 at some point (c(0),0) (thus G(c(0),0) < 0). Then (from the symmetries),

T10,0)] is a closed orbit surrounding (0,0), with period T(0), and o + T (o) is decreasing
(respectively increasing) on (o1, 02).

Remark. We can notice the condition on F is equivalent to F(Aw,Ay) > AF(w,y) for any
A > 1. The second condition implies that for any A > 1,

G(w,Ay) <AG(w,y) (respectively G(Aw,Ay) > AG(w, y)).

Proof of Proposition 4.4. In polar coordinates (p, 6) in Q, we get

1
o = Fcosf + Gsiné, 0’ = —(Gcos® — Fsinb).
0

At each point T where 0’(t) = 0, there holds

0" (7) — G oF . ron
p0" (1) = %cose—a—sme , p (1)

0G oF |
= —cosf — —ssinf |.
0 cosf

ap ap

But (4.7) is equivalent to 0 F /dp > F/p and 0G/dp < G/p (respectively >), thus

8" (1) <

vy (Gcost — Fsinf) =0 (respectively >).
0

In both cases 6” has a constant sign. But 6'(0) = —F(0,0) < 0 and 6'(c) = G(c(5),0) <0
thus we get a contradiction by considering the first (respectively the last) point where 6'(7) =0,
which satisfies 8”(t) > 0 (respectively < 0). Thus 6 is decreasing from 7 /2 to 0. Then the curves
can be represented in function of 6 by (o (o, 8),6(0)), and

/2
T(o)=4/ L
J H(p(0,0),0)
with
1
H(p,0)= —(F(,o cosB, psinf)sind — G(pcosH, psinb) cos@).
P

Let A > 1. Since the trajectories 7[(0,s)] and 7[(0,1+)]. have no intersection point, then p (Ao, 6) >
p(o,0) for any 6 € (0, w/2); by assumption, for fixed 6, the function p — F(pcos@, psinf)/p
is nondecreasing (respectively nonincreasing) and p + G(pcos8, psinf)/p is decreasing (re-
spectively increasing), thus H(p(Aro,0),0) > H(p(0o,6),6), which yields to T(Ao) < T (o)
(respectively >). This implies that 7 is decreasing (respectively increasing). O
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Next we consider the positive solutions w of Eq. (3.4).

Proposition 4.5. Assume p > 1 and b + d > 0. Consider the trajectories Ty, 0y in the phase
plane (w, y) which goes through (u,0), for some u € (0, a). Let T (11) be their least period.
Then

2
lim T () = o0, lim TH(n) = ———.
Mim) () Jim, () )

In particular if f(w) = |w|?'w, then limy—, T () =27/(g+1—p)(b+d).

Proof. We notice that the trajectory 7[(,,0)] intersects the line y = 0 at (i, 0) and another point
(g(p),0), with u < a < g(u), and g is decreasing.

Step 1. Behaviour near a. When p tends to a, then also g(u) tends to a. Indeed for any
small ¢ > 0, then g(n) —a < € as soon as (4 — a < min(e,a — g_l(a + ¢)). Since, along such
a trajectory in Q, & = ¢ (u) varies from 0 to 0, it has a maximal £*, where u’ = 0, thus E(§*) =
h(w*). When u tends to a, then h(w*) tends to b, thus &* tends to E~!(b) = 0, thus also
maxye7;, o, |¥] tends to 0. Using the linearized form of the system at Py, and polar coordinates
with center (a,0), w =a + rcosn, y = +/ah’(a)r sinn, then r tends to 0 as w tends to a, and
one finds n’ = —v/ah’(a) + R/r, where R involves the derivatives of G of order 2, which are
bounded near the point (a,0), thus R/r? is bounded. Therefore 5’ tends to —+/ak’(a), and
finally T () tends to 27 /v/ah/(a).

Step 2. Behaviour near 0. On the trajectory Tj,,0)), the function u is increasing up to a
maximal value u*(u), and then decreasing; moreover u* is a nonincreasing function of wu,
because two different trajectories have no intersection. Let u, € (0, a), such that lim u, = 0.
For any n there exists fi, € (0,a) such that the orbit T}, )] contains a point above the line
y=¢ ' (m)(A1—1/n)w, let fi, =min(w,, 1/n). Then u*(@t,) = ¢~ (m)(1—1/n), thus u*(w,)
tends to m; then from the Beppo-Levi theorem

liminf T+ (12) > lim / du - / du :
” E(p)) —d + h(w(i, u)) E(pWm)) —d + h(w(u))
u*(p m

where w is the solution defining H, and this integral is infinite. O

Remark. Here the question of the monotonicity of the period is difficult to answer, even for
p = 2, where it is solved by using the first integral, see [3]. It is open in the general case. More
generally, if a dynamical system a center, the description of the period function is still a chal-
lenging problem. For example, one can construct a quadratic dynamical system with a center, the
associated period function of which is not monotone, and even with at least two critical points,
see [7] and [8].

Remark. In the case b = 1, we can compute theoretically the period T by using the first inte-
gral (4.1). The stationary point Py = (h~1(1), 0) is obtained for K, = a’/p—F(a) > 0 (in case
of a power, K, = (¢ + 1 — p)/p(q + 1)). The positive solutions correspond to trajectories 7
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with K € (0, K,), intersecting the axis y = 0 at points (w1, 0), (w2, 0) with w; < a < w» defined
by wip/p — F(w;) = K, and the period is given by

w3

T+—2/ dw
- _ K+F ’
wE l(_p +wp(w))

wi

Unfortunately, this formula does not allow us to prove the monotonicity of the period function
for p #£2.

It is remarkable that, in the case f(w) = |w|?~'w, one can solve completely the problem in
the particular case where b =1 and ¢ =2p — 1, using Eq. (3.23) satisfied by u.

Proposition 4.6. Suppose that f(w) = |w|?"'w, and b=1 and ¢ =2p — 1, p > 1 and
d+1>0.Ifp>20rd+1<1/Q2— p), then T is decreasing on (0, a).

Proof. Since B(£) =0 by (3.24), Eq. (3.23) turns to

u" =(q+1—-pE(ew) —d)pw)=(qg+1—p)(—(1+d)+ p¥))p).
Henceforth

1

Tu”u/ =—(1+DY' wu' + p¥ ¥ (',
q - P

from which expression we derive the first integral,

1

— W =C-Uw), U=MoV, M) =2(1 +d)t — pr°. (4.9)
g+1—p

From (4.9) the integral curves S in the (u,u’)-plane are symmetric with respect to the axis
u’ = 0. The times for going from # =0 to ¥ = u* and from u* to 0 are equal, and u* is given
by C = M (¥ (u*)). The computation of the period is reduced to the part relative to the first
quadrant. Here we follow the method of [3]: we get

) =4 [ =4 A
J VA =UG) ) i UG

Then
1
dT* () (OW*) — O(su*))ds ) . . ol
a1 e —aiypr W Ow) =Ul) - U (W) /2,
0
and
299U ooy =t () — U ().

du*
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In the interval of study, ¢(u*) < E~Yd), (E o ¢)(u) < d from (3.14), thus ¥ (1) < (1 +d)/p,
and M is increasing for 0 <t < (1 + d)/p, thus &’ > 0. Then at any point u, @' (u) > 0 &
U’ Ju) < 0. Now

Uw)  (—E@w) +dpw)
2pu u N

L —(p— Dg?@) +d(1+¢*w) > "2,
hence (U /u) =2X (u)p(u)¢’ (u), with

Xw)=—(p—1)+Q—pyd(1+¢*w) ",

and d > E(¢(u)); itimplies X (u) <0if p>2or p <2andd < (p —1)/(2— p). Henceforth ®
is increasing, and the same holds for P as a function of u*. Finally u* is decreasing with respect
to 1, and consequently P is decreasing with respect to . O

Remark. When p =2, and ¢ =2p — 1 =3, Eq. (3.23) reduces to u” = —2u + 2u>, which,
surprisingly, is an equation corresponding to the problem with absorption, and (3.4) reduces to
w” — w + w3 = 0. In this case, all the solutions can be expressed in terms of elliptic integrals,
see [3].

4.4. Returning to the initial problem

Proof of Theorem 2. Here 8 =B, = p/(q+1—p), A =X, isgivenby (1.15) and ¢, = ,3572)\(1
by (1.16). Moreover w (o) = ﬂqu(ﬁqo) from (3.3), b = —Aq/,Bg = —cy/B) and d = c/B]
from (3.5). At end f(s) = g(s) = |s|?"'s and h(s) = |s|¢"Ps. Thus ¢ > cq4 is equivalent to
b+d > 0, and then the constant solutions w = +(b + d)"/@~P*D of (3.4) correspond to the
constant solutions w = £(c — cq)l/ @+1=p) of Eq. (1.14). For any integer k > 1, we look for pe-
riodic solutions w of smallest period 27/ k, or equivalently solutions w of period Ty =2n8,/k.
From (3.17), the function E is increasing. First consider the sign changing solutions: if ¢ > ¢,
then from Theorem 4.3, the period function T of w is decreasing from oo to 0, hence for any
k > 1 it takes precisely once the value Ty. If ¢ < ¢4, then T decreases from Ty given by (4.4)
to 0, thus it takes once the value T} for any k > M, = T;/2nf, given at (1.18). Next consider
the positive solutions: from Proposition 4.5, the period function of w takes any value between co
and 27 /+/(qg + 1 — p)(b + d), thus it takes the value Ty for any k < (p,B,}_p(c — cq))l/z, which
ends the proof. O

In the case of Eq. (1.14) (i.e. ¢ = 0), we obtain the following description of the sets £ and £7:
Corollary 4.7. Assume p>1,qg > p— 1, and c =0.

(i) Then the set £ of changing sign solutions of (1.14) is given by (1.17), where kg = 1if p <2
andq >2(p—1)/2—p),and kg > M, if p=2o0r(p <2andq <2(p—1)/(2 — p)), where

M,=2/(q—1), (4.10)

if p=2,and
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(p—2)m, withm, =\/2<p—1>+<p—2>q @i

M, = ,
7 ((p = Dmg + D(my — 1) p(p—1)

ifp#2.
G If p=2or(p<2and g <2(p —1)/Q2 = p)), then E- =0. If p <2 and q >
2(p — 1)/ = p), then EF = {(—c,)V/@H1=P),

Proof. Here c; < 0 is equivalent to p <2 and g > 2(p — 1)/(2 — p). Furthermore M, =
To/2mB,; can be computed from (4.5), which gives (4.10), (4.11). Moreover in any case
cq + ,3; _1/ p= ,3; (p — (g + 1)/p? > 0 thus there exist no positive nonconstant periodic
solutions. O

Proof of Corollary 1. Let S be a sector on S! with opening angle 6 € (0, 277). From [14, Theo-
rem 3.3], Bs is the positive solution of equation

N\’ (2, P2 2
¢(’BS)=<1+§> <ﬂ5+ ﬂs—(ﬂs+1)>=0,
p—1

where k = /0 > 1. Using Corollary 4.7 (applied without assuming that k is an integer) we
distinguish two cases:
(i) p<2and g >2(p — 1)/(2 — p). Then there always exists a solution to the Dirichlet
problem in S. Notice that 0 < 8, < (2 — p)/(p — 1), thus ¢ (Bs) < 0 and consequently B, < Bs.
(i) p>2o0r p<2and g <2(p—1)/(2 — p). The existence is equivalent to k > M,
(see (4.11)). It means

(1+1>2<<<P—1>m3‘1)2—<ﬁq+1>2_ By +1?
mg(p=2) ) BIm2 BByt (p—2)By/(p— 1)

k
Thus ¢ (8,) < 0. Equivalently, 8, < Bs. O
5. Thecase p=1

5.1. Existence of a first integral

As shown in Lemma 3.1, we can reduce the study to

d w bt fi(w) —d|w| W =0 5.1)
— — w) —dlw|” w=0, .
dt \ Vw? 4+ w'2 Vw?+w'? :

where f] satisfies (3.8); in particular we are interested by the case f1(s) =s.

Here the problem is variational: if Sj(w) is any primitive of w lw|?~! f1(w) and R(w) =
|w|b/b if b#0, R(w) =In|w]| if b =0, then (5.1) is the Euler equation of the functional

Hw, w) = |wP" Vw2 +w?2 — S (w) + dR(w).
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Thus the following Painlevé first integral is constant along the trajectories

» o |w|b+l
w w

The system (3.9) reads as

!
w =y,
bw? + (b + DHwy? — (f(w) — dw|'w)(w? + y?)*/?
2
w

YV =Gw,y) =

3

and it is singular on the line w = 0. For w > 0 system (3.15) reduces to

w =wel) =w

u
VT—u? (5.3)
u' =bv'1—u?— fi(w)+d.

In the case f(w) = w, the equation satisfied by u is

u u
W =(1—-b)———u' —bu —d——. 5.4
V1 —u? V1 —u?

5.2. Existence of periodic solutions

From the Painlevé integral (5.2), we can describe the solutions, in the phase plane (w, y).
Since a complete description is rather long, we reduce it to the research of periodic solutions.

Proposition 5.1. Let p = 1, and consider Eq. (5.1).
(1) Ifd # 0, there is no periodic sign changing solution. If d = 0 there exists such a solution if

and only if b > —1, and then it is unique (up to a translation).

(i) There exist periodic positive solutions if and only if b+ d > 0.

(i) Suppose moreover that fi1(w) = w. Then the sign changing solution is given by

w(t)=(b+1)cos(t —11);

it has period 2m. The orbits Tj (.0 of the periodic solutions intersect the axis y =0 at a
first point (., 0) such that © <a =b+d, and p describes u € (1, a) with x =0 ifd <0,
and i > 0 if d > 0; it is given by (5.9), (5.7), (5.8).

Proof. By symmetry we reduce the study to the case w > 0 and the Painlevé integral (5.2) takes
the form

w1 —u? - Sy (w) +dR(w) =C, (5.5)

where we denote
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w

Sl(w)=/sb_1f1(s)ds ith> —1,
0

w

1
Sl(w)zfsbflfl(s)ds—i— 1 ifb<—1,
1

and

w

Sl(w)=/s’2f1(s)ds ifb=—1.

1

Step 1. Periodic sign changing solutions. The curves in the phase plane (w, y) are given, for
w > 0, by

whtl 2
y2= — w2
(C —dR(w) + Sl(w))
~ w(w’ +dRw) — S1(w) — O)(w” —dR(w) + S1(w) + C)
B (S1(w) + C — dR(w))? ’

which defines £y in function of w. If there exists a sign changing periodic solution, the trajectory
intersects the axis w = 0 at some point (0, £) with £ > 0, thus y needs to £ as w tends to O.
From (5.5), it is impossible if b < —1. Assume d # 0; if —1 < b, then near w = 0, in any case
y2 < (b2 / d* + 1)w2, thus £ = 0 and w’/w is bounded, thus the maximal interval of existence
is infinite, and we reach a contradiction. If d = 0, and C £ 0, then y2 = —w2(1 + o(1)), which
is impossible. If d = C = 0, then y2= wz(wa/Slz(w) — 1); observing that the function w +—
x(w) =wl8(w) is increasing from 0 to oo, the curve intersects the two axes at (0, b + 1) and
(x (1), 0) and this corresponds to a closed orbit.

Step 2. Existence of periodic positive solutions. If we look at the intersection points of any
trajectory in the phase plane with the axis y = 0, we find that they are given by H(w) = C,
where

Hw) =w? +dR(w) — Si (w).

Then H'(w) = w?~'b +d — fi(w)). If b+ d <0, then H is decreasing, thus there ex-
ist no positive periodic solutions. If b + d > 0, the function H is increasing on (0,a)
where it reaches a maximum M, and decreasing on (a, 00). The stationary point (a,0) with
a= fl_l(b + d) corresponds to C = M. If b > 0, then lim,_.0H = 0, while, if b <0,
then lim,_.0 H = —oo. Equation H(w) = C has two roots 0 < w; < wp, if and only if
C € (max{limy_o H,limy,_,» H}, M). Moreover, if there exists a trajectory going through
(w1, 0) and (w>y, 0) and if one denotes

K(w)=dRw) — S;(w) = H(w) — w",

one has K(w) < C on (wy, wp), thus C > M’ =max K = K(ffl(d)). Conversely, if
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max| lim H, lim H.M'}<C<M, M=H(/"'G0+d), M'=K(f7 @), (56
w—0 w— 00

then there exists a closed orbit going through (wy, 0) and (w2, 0).

Step 3. End of the proof. The sign changing solution is given by w? + w’? = (b + 1)? and
its trajectory is a circle with center 0 and radius b + 1; for w > 0, w = (b + DV 1 —u* =
bv1—u? —u’, thus u' = —+/1 —u?, and 0’ = —1, then w(r) = (b + 1) cos(d — 1), periodic
solution with period 2. Now consider the positive periodic solutions. Here a = b + d, and

(A +d/bywb —wbt b+ 1), ifb#£0,-1,

Hw)={1+dhw—w, ifb=0, 5.7
(1-dyw ! —Inw, ifb=—1,
M=a"" b+ 1), M =@t po+1), ifb#£0, -1,
M=1+dind—d, M =dInd—d, if b =0, (5.8)
M=—1—Ind—-1), M =-1-Ind, ifb=—1.

If d <0, thus b > 0, then any C € (0, M) corresponds to a closed orbit, thus for any u € (0, ay),
one has a closed orbit passing through (i, 0), of period still denoted by T (). If d > 0, in
any case, any C € (M’, M) corresponds to a closed orbit. If —1 < b < 0, then H is increasing
on (0, a) from —oo to M < 0, and then decreasing on (a, co) from M to —oo. If b < —1, then
M>M >0.Ifb< —1, thend > 1, and limy,0 H = —00, limyoo H =0, 0 < M' < M. If
b =0, thus d > 0, then lim,,_,0 H = —o0, then any C € (M — 1, M) corresponds to a closed
orbit. Then H is increasing on (0, d) from —ocoto M = 1+dInd —d > 0 (notice that M =0 <
d = 1) and then decreasing on (a1, 00) from M to —oo; let & € (0, b + d) be defined by

H(p) =M, (5.9
thus for any u € (i, @), one has a closed orbit passing through (u, 0), with a period still denoted
by TH(w). If =1<b <0, thusd > —b > 0, then limy,_.o H = —00 =limy,_ 00 H, M <0, and
any C € (M’, M) corresponds to a closed orbit (if b = —1, then H(w) = (1 — dw ' —lnw,

M =—1—1In(d - 1), M' = —1 —Ind). Returning to Eq. (1.14), the conclusion follows with
laq =pi. O

5.3. Period of the solutions

Let p=1,b+d > 0. Consider Eq. (5.1). Let T (1) be the least period of the periodic positive
solutions corresponding to the orbit 7[(, 0)]. As in the case p > 1, we have a general result:

2
Jafi@

Next we study the variations of the period in the case of a power fi(w) = w.

lim 77 () = (5.10)
n—a

Theorem 5.2. Assume p =1, b+d >0 and fi(w) =w. Then lim;, 4 TH(uw) =2m/Vb+d.
Ifd <0, then limy_,oT" (u) =o00. Ifd >0, then lim,,_, 5 T (u) =T is finite, and given by
(5.12) if b ¢ {0, —1}, by (5.13) if b =0, and by (5.14) if b = —1. Ifd = 0, then T+ = (1 +1/b).
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Proof. Step 1. Assume b ¢ {0, —1}. From (5.5), the solutions of (5.1) satisfy

b+1
wb\/l—uz—w —i—iwb:C,

b+1 b

thus

d C+b
u’:b\/l—uz—w+d=—\/1—u2——+—( ;F ).
w

b

Eliminating w between the two relations, we find that Ch(b 4 1) > 0 and

(d+bV1—u? =)@+ by 1 =2 +6u) VOV = (Cb(1 + 1)V = 4

When a solution goes through the half-part of its trajectory 7 located in O, the asso-
ciated function u increases from 0 to some u* € (0, 1) where the derivative u’ vanishes
and d + b1 —u*? > 0; next d + b~/1 —u? is monotone and positive at 0 and u*, thus
d + b~/1 —u? > 0 everywhere. And A =d + b+/1 — u*? = w* (the value of w when u = u*).
Let

!
u
1=
d+bv1—u?

Ifb>0,thenz e (—1/b,1);if b < —1then z € (—o0, 1); if =1 <b < 0then z € (—o0, 1/]b]),
and

and  G(s) = (1 — )2/ D (1 4 ps)!/OFD,

A
O e
Since
G'(s) = —bs(1 — )"V O+ (] 4 pg)=b/B+D)
and

G"(s)=—b(1 — S)—(b+2)/(b+l)(1 + bs)_(2b+1)/(b+l),

it follows G (0) =1, and 0 is a maximum if » > 0 and a minimum if » < 0: if » > 0, G increases
on (—1/b,0) from 0 to 1 and decreases on (0, 1) from 1 to 0; if b < 0, G decreases on (—00, 0)
from oo to 1 and increases on (0, min(1, 1/]b])) from 1 to co. Thus it has two inverse functions
—L{ and Lj: for b > 0, L| maps (0, 1) into (0, 1/b) and L, maps (0, 1) into (0, 1); for b < 0,
L1 maps (1, co) into (0, oo) and L, maps (1, co) into (0, min(1, 1/|b])). Then

1
TH=T"+1T}, T'= / Vi (M) dA, (5.11)
0
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where
2u*

iux(A) = .
Viur (1) (d+ b1 —22u*2)L; ((d + b1 —u*2)/(d + b/ 1 — A2u*2))

o First suppose d < 0 (thus b > 0); then one looks at the case where C — 0, thus /1 — u*? —
—d /b, thus u* — it =+/1 — d?/b? . Near i,

2u* - —d
b(V1— 22w — /T —u2)L;(0) ~ bLi(0)(1—22)

1//1',14*()\) P

therefore Tl.+ tends to co.

e Suppose d > 0, b > 0. One looks at the case where C — M’, thus u* — 1. There
exists a constant m > 0 such that 0 < 1 — G(s) = G(0) — G(s) < m?s> on [—1/b, 1]. In-
deed G’(0) =0 and G” is bounded on [—1/2b,1/2], and on [—1/b,—1/2b] U [1/2, 1] the
quotient (G(0) — G(s))/s? is bounded. Thus 1/L;(n) < m//T—n on [0, 1), hence taking
n=(d+bv1—u*?)/(d+ b1 —A2u*2), and computing

b(1 = A2)u*?
n= ,
(d +bVT=22u2) (V1 — w2 + /1 = )2u*2)

one finds v; ,+(A) < 4m//b(1 — A2). From the Lebesgue theorem, as u* — 1, T tends to the
finite limit
1

TH=T"+T,, T.+=z/ d* (5.12)
! (d+b1T—=22)Li(d/(d + b1 —22))

0

in particular if d = 0, then L(0) = 1/b, L1(0) =1, thus T|", = and T,", = 7 /b.
e Suppose b < 0, thus d > —b > 0. Then again C — M’, consequently u* — 1. The function

. . d+bv1—u*? b(1 — AHu*?
u—)Q(u,A):n: =1-
d+bV1—22u*? (d+ b1 = 22u2) (V1 — w2 + /1= 22u*?)

is increasing on (0, 1) from 1 to d/(d + b~/1 —A2) and d/(d + b~/1 —A%2) < d/(d + b) = a.
There exists m > 0 such that 0 < G(s) — 1 < m?s? on [—Li(a), La(a)], thus 1/L;(n) <
m/+/n— 1 on (1/d/(d + b)]. Thus as above, ¥; (1) < 4m//|b|(1 — A2), and T+ tends to T+
defined at (5.12).

Step 2. Assume b = 0. There exist periodic solutions for any C € (M — 1, M). The solutions
are given by

Vi—-u2+Hw)=vV1—u2+dhw—-—w=C

and u’ = —w +d, thus u is maximal (= u*) for w = d: therefore /1 — u*2 4+ H(d) = C, then

Hd—u)=H(d)+vV1—u2—1—u?
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and H has two inverse functions H; from (—oo, H(d)) into (0, d) and (d, 00), thus (5.11) holds
with

2u* di
d— H;(H(d)+~1—u?2—/1—22u*2)

1ﬂi,u*()\) =

and &€ = H(d) + V1 —u*2 — V1 —)2u*2 = H(d) — k = H(d + h) stays in (M — 1, M) =
(Hd) — 1,H(d)), and H(d + h) — H(d) > —m?h? for H(d + h) € (M — 1, M), thus
H(d)— &=k <m?(d — H;(§))?, thus

i () < 2m _2m(«/1—u*2+x/1—)»2u*2) . 4m
e S Vk V1=32 Vv

Therefore, as u* — 1, T tends to the finite limit
1

o B d
TT=TT+T,;, Tt= 2/ . (5.13)
! ! d— Hy(H(d) — V1= 2)

0

Step 3. Assume b = —1. Inthatcased > 1;let B=—(C+1) € (In(d—1),Ind) then B — Ind
and

wW4+w=d—-+vV1—u?=B+1w—-—whw=Hp(w),

where Hp is increasing on (0, ¢®) from 0 to ¢® and decreasing on (e, 00) from e? to —oo;
it has two inverse functions Lp,; from (—oo,e®) into (0,e?) and (e8!, 00); and w* =
d — /1 —u*2 = eP; then (5.11) holds with

2u* 2u*

Viux(A) = = .
. d—~1=22u2 —Lgi(d—T=22u*?)  |Hg_(Lp.i(d—~T—22u*2))|

Because Hp_1(e®) =0, Hp_i1(x) — Hp_1(e?) = H [ (€)(x — ¢®) and x ranges onto
(Hp1(d — 1), Hpo(d — 1)) := (x1,B, x2,), Wwhen B — Ind, (x1 g, X2,B) = (X1,Ind> X2,Ind)> it
follows |H{9_1(§)| > 1/u > 0 independent on B. Moreover Hp(x) — Hp(ef) =
(1/2)Hp (&) (x — eB)? = —(1/2&)(x — eB)2. Thus there exists m > 0 such that

Hp(x) — Hp (eB) < mz(x — 63)2 < mzqué_l(x).

Therefore, near Ind, taking x = Lp ;(d — +/1 — A2u*?), one derive

2 2 4
<
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Consequently, as u* — 1, T1+i tends to the finite limit

1

Pt T - d
] b |Hing—1(Lina,i(d — 1 —212))|

0

Remark. In the case d =0, b # 1, notice that T]+ and T2+ converges to i/ b as J tends to b
(one can verify it by linearizing the equation in u) and respectively to = and /b as p tends to 0.
Thus if those functions are monotone, they vary in opposite senses and it is not easy to get the
sense of variations of their sum T1+. Moreover in the phase plane (w, y1), as u tends to 0, one
can observe that the trajectory tends to a limit curve constituted of a segment [(0, 0), (0, )] and
half of the unique closed orbit surrounding (0, 0), circle of center O and radius b + 1, which is
covered in a time 7.

The case b =1 is the most interesting for (5.1), since it corresponds to the initial problem
(1.14). In that case we improve the results by showing the monotonicity of the period function:

Theorem 5.3. Assume b =1, d > —1. When d = 0 the period function T () is constant, with
value 27, thus there exists an infinity of positive solutions w of (5.1), which are all 25 -periodic;
they are explicitly given by

w=+v1—K*®2sin?t — K*cost, tel[-nn], K*¥€(0,1). (5.15)

When d # 0, then TT(w) is strictly monotone; if d < 0 it decreases from oo to 2 //1+d; if
d > 0 it increases from

/2

1
) 7
T+=4/ du =4/ J%d@ (5.16)
S JarvTme—ar et

to2m//1+d.

Proof. e If d =0, then u” = —u, from (5.4), and u = sin6 € [0, 1), thus the positive solutions
w are given in Q by

u=K*sint, K*e€[0,1), T €[0,n],

and the period T is constant, equal to 27r. We obtain an infinity of positive solutions w, given
explicitly by

w=v1—-u?—u'=vV1—K*2sin>t —K*cost, K*e(0,1),

which intersect the axis y = 0 at points w; = (1  K*).
e In the general case d > —1, we find

(d+V1 =2 =) (V1 =i +u +d) = A2
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that means G is symmetric: G(s) = +/1 — s2, thus
u/zz(d+\/1—u2)2—A2,

V1—u*2=A—d=+/2C — d; thus here T1+ = T2+, and

1

dx d+ V1T —=225)2 —(d+/1—5)>
T+=4/—, Wherelll(s,)»)z( + $) @+ $) .
VYW 5) s

We show that the period function is strictly monotone with respect to #*. Because

SZ%—f(s, M =dd+1)(1/v/T—5s—1/y1—2%) >0,

we see that T is increasing if d < 0 and decreasing if d > 0 (and we find again that it is constant
if d =0). Also u can be expressed explicitly in terms of u* by

,u:d+1—\/(d+1)2—(d+\/1—u*2).

Therefore 1 is decreasing with respect to u*, hence T is decreasing with respect to u if d <0
and increasing if d > 0. O

5.4. Returning to the initial problem

Proof of Theorem 3. Here o, = B, = 1/q, the substitution (3.6) takes the form w(o) =
lw(o)|"/9 " w (o), and thus b = 1, and d = ¢ from (3.7). Then the existence of sign changing
solutions of (1.14) is given by Proposition 5.1. The constant solutions exist whenever ¢ + 1 > 0.
Next we look for positive solutions of smallest period 27/ k applying Theorems 5.2 and 5.3. If
¢ < 0 the period function T+ decreases from oo to 27 /+/1+ ¢ > 27, thus there exists no so-
lution. If ¢ > 0, T+ increases from T+ given by (5.16) to 277/+/T + ¢, thus it takes once any
intermediate value, which gives one solution (up to a translation) for any k € (k1, k2). If ¢ =0,
the solutions wg are given explicitly by (5.15), and w:{ is obtained from wy; this means that
system (3.9) does not satisfy the uniqueness property at (0,0). O
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