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Abstract

We study the existence of singular solutions to the equation −div(|Du|p−2Du) = |u|q−1u under the
form u(r, θ) = r−βω(θ), r > 0, θ ∈ SN−1. We prove the existence of an exponent q below which no
positive solutions can exist. If the dimension is 2 we use a dynamical system approach to construct solutions.
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1. Introduction

The study of isolated singularities of solutions of quasilinear equations started with the cele-
brated works of Serrin [20,21] dealing with expressions such as

divA
(
(x,u,Du)

) + B(x,u,Du) = 0 (1.1)

where A and B are respectively vector-valued and real-valued Carathéodory functions satisfying
the same power p-growth with p � 1. One of the main results of these works stated that the type
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of singularities is dictated by the diffusion operator A. Later on the particular cases of superlinear
semilinear elliptic equations was considered, either with an absorption

−�u + |u|q−1u = 0 (1.2)

[5,24], or with a source reaction

�u + uq = 0 (1.3)

[2,10,17], and in all cases q > 1. One of the main facts of these studies relied in the existence
of critical thresholds where the interaction of the diffusion and the reaction terms could create
unexpected phenomena. As a natural generalisation, the same analysis was carried on for

−div
(|Du|p−2Du

) + |u|q−1u = 0 (1.4)

[9], and

div
(|Du|p−2Du

) + uq = 0 (1.5)

[22], in the range 0 < p − 1 < q . In all these works, the radial explicit solutions, whenever they
exist, played a key role.

Similarly, the study of the boundary behaviour of solutions of quasilinear equations has a
natural starting point in the description of their isolated singularities on the boundary. Besides
the historical results of Fatou, Herglotz and Doob on the boundary trace of positive harmonic
and super harmonic functions, equations of types (1.2), (1.3) and (1.4) have already been consid-
ered [4,6,11,12,26,27]. In the present article we consider equations of type (1.5). The problem
can be stated under the following form: Assume Ω is an open subset of R

N , a ∈ ∂Ω and
u ∈ C(Ω \ {a})∩C1(Ω) is a solution of one of the above equations which vanishes on ∂Ω \ {a},
what is the behaviour of u(x) when x → a. The simplest configuration corresponds to Ω = R

N+ ,
and a = 0 (or more generally, if Ω is a cone and the singular point a its vertex 0). For such
geometry, the key-stone element for describing the behaviour of u near 0 is played by separable
solutions, whenever they exist. These solutions, which have the form

u(x) = u(r, σ ) = r−βω(σ ), r > 0, σ ∈ SN−1, (1.6)

have already proved their importance for (1.2), (1.3) and (1.4). It is expected that such will be
the case for (1.5), even if the full theory will be much more difficult to develop because of the
absence of comparison principle and a priori estimates near x = 0. It is straightforward that, if u

is a separable solution of (1.5) in R
N ,

β = p

q + 1 − p
:= βq, (1.7)

which is positive since q > p − 1. Furthermore ω is a solution of

−∇′.
((

β2
qω2 + |∇′ω|2)p/2−1∇′ω

) − |ω|q−1ω = λq,p

(
β2

qω2 + |∇′ω|2)p/2−1
ω, (1.8)
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in SN−1+ , where ∇′ is the covariant gradient on SN−1, ∇′. the divergence operator acting on
vector fields on SN−1 and

λq,p = βq(qβq − N).

When p = 2, βq = 2/(q − 1) and (1.8) becomes

−�′ω − |ω|q−1ω = λq,2ω, (1.9)

where �′ is the Laplace–Beltrami operator on SN−1 and

λq,2 = 2

q − 1

(
2q

q − 1
− N

)
.

If S is a subdomain of SN−1, Eq. (1.9), considered in S, is the Euler–Lagrange variation of the
functional

I (ψ) =
∫
S

(
1

2
|∇ψ |2 + λq,2

2
ψ2 − 1

q + 1
|ψ |q+1

)
dσ. (1.10)

For any 1 < q < (N + 1)/(N − 3) (any q > 1 if N = 2 or 3) this functional satisfies the Palais–
Smale condition. Furthermore, if λq,2 < λS,2 (λS,2 is the first eigenvalue of −�′ in W

1,2
0 (S)),

Ambrosetti–Rabinowitz theorem [1] or Pohozaev fibration method [18,19] apply and yield to the
existence of nontrivial positive solutions to (1.9) in S vanishing on ∂S; while if λq,2 � λS,2 no
such solution exists.

When p �= 2, Eq. (1.8) cannot be associated to any functional defined on SN−1, except if
q = qc = (N(p − 1) + p)/(N − p) (the critical Sobolev exponent for W 1,p , when N > p);
therefore, finding functions satisfying it is not straightforward. Besides the constant solutions
which exist as soon as qβq < N , it is not easy to prove the existence of nonconstant solutions.
As in the case p = 2, it is remarkable to see that existence, or nonexistence, of solutions of (1.8)
is associated to some spectral problem, although this problem is not standard at all: if one looks
for the existence of a positive p-harmonic function v in the cone CS = {(r, σ ): r > 0, σ ∈ S}
vanishing on ∂S, under the form v(r, σ ) = r−βφ(σ ), one finds that φ is a positive solution of the
so-called spherical p-harmonic spectral equation on S, namely

{
−∇′.

((
β2φ2 + |∇′φ|2)p/2−1∇′φ

) = λ
(
β2φ2 + |∇′φ|2)p/2−1

φ in S,

φ = 0 in ∂S,
(1.11)

and λ = β(β(p −1)+p −N). The difficulty of this problem is two-fold since β is unknown and
(1.11) is not the Euler–Lagrange equation of any functional. However, given a smooth subdomain
S ⊂ SN−1, it is proved in [25], following a shooting method due to Tolksdorff [23], that there
exists a couple (β,φ) = (βS,φS), where βS > 0 is unique and φS is defined up to a homothety,
such that (1.11) holds. Denoting

λS = βS

(
βS(p − 1) + p − N

)
,
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the couple (φS,λS) is the natural generalization of the first eigenfunction and eigenvalue of the
Laplace–Beltrami operator in W

1,2
0 (S) since λS = λS,2 when p = 2. The case N = 2 is treated

in [14,15] by ODE methods. Our first theorem is a nonexistence which extends the one already
mentioned in the case p = 2.

Theorem 1. Let S ⊂ SN−1 be a smooth subdomain. If βq � βS there exists no positive solution
of (1.8) in S which vanishes on ∂S.

Apart the case p = 2, the existence counterpart of this theorem is not known in arbitrary
dimension, except if q = qc in which case (1.5) is the Euler–Lagrange equation of the functional

J (ψ) =
∫
S

(
1

p

(
β2

qc
ψ2 + |∇′ψ |2)p/2 − 1

qc + 1
|ψ |qc+1

)
dσ, (1.12)

and applications of the already mentioned variational methods lead to an existence result.
However, when N = 2 the problem of finding solutions of (1.5) under the form (1.6) can

be completely solved using dynamical systems methods. In order to point out a richer class of
phenomena, we shall imbed this problem into a more general class of quasilinear equations with
a potential, authorizing even the value p = 1. This equation is the following,

div
(|Du|p−2Du

) + |u|q−1u − c

|x|p |u|p−2u = 0 (1.13)

in R
2 \ {0}, with q > p − 1 � 0 and c ∈ R. If u is a solution under the form (1.6), β is equal

to βq , while ω is any 2π -periodic solution of

d

dσ

[(
β2

qω2 +
(

dω

dσ

)2)p−2)/2
dω

dσ

]
+ λq

[
β2

qω2 +
(

dω

dσ

)2](p−2)/2

ω

+ |ω|q−1ω − c|ω|p−2ω = 0, (1.14)

where

λq = βq (qβq − 2) = βq

(
p − 2 + (p − 1)βq

)
. (1.15)

If we set

cq = β
p−2
q λq = pp−1 (p − 2)q + 2(p − 1)

(q + 1 − p)p
, (1.16)

then, if c � cq , the only constant solution is the zero function, while if c > cq , there exist two
other constant solutions ±(c − cq)1/(q+1−p). Let us denote by E+ the set of positive solutions
of (1.14) on S1, E the set of sign changing solutions and F = ±E+ ∪ E the set of all nonzero
solutions. Our main result which gives the structure of the sets E and E+ is the following:
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Theorem 2. Assume p > 1, q > p − 1. Then:

(i)
∞⋃

k∈N
k=kq

{
ωk(. + ψ): ψ ∈ S1}, (1.17)

in which expression ωk is a function with least period 2π/k, and kq = 1 if c � cq , or kq is
the smallest positive integer such that kq > Mq, where

Mq = πβ
1−p
q

2
∫ π/2

0
1+(p−1) tan2 θ

β
p
q (p−1) tan2 θ+cq−c cosp−2 θ

dθ
, (1.18)

if c < cq .

(ii) If c � cq , E+ is empty. If 0 < c − cq � β
p−1
q /p, E+ is reduced to the constant function

(c − cq)1/(q+1−p). If c − cq > β
p−1
q /p, E+ contains the constant function (c − cq)1/(q+1−p)

and the set

E+∗ =
k+
q⋃

k∈N
k=1

{
ω+

k (. + ψ): ψ ∈ S1}, (1.19)

where ω+
k is a nonconstant positive function with least period 2π/k, and k+

q is the largest

integer smaller than (pβ
1−p
q (c − cq))1/2.

Since separable solutions of (1.5) defined in a cone CS and vanishing on ∂CS are associated
to elements of E , we can prove the existence counterpart of Theorem 1 in dimension 2.

Corollary 1. Let N = 2 and S be any angular sector of S1. Then there exists a positive solution
of (1.8) vanishing at the two end points of S if and only if βq < βS . Furthermore this solution is
unique. In particular, existence holds for any sector if p < 2 and q � 2(p − 1)/(2 − p).

The case p = 1 appears as a limiting case of the preceding one. In that case we observe that u

is a positive solution of (1.13) if and only if v = uq is a solution of the same equation relative to
q = 1,

div
(|Dv|−1Dv

) + v − c

|x| = 0. (1.20)

The initial case c = 0 is easily treated, but the case c �= 0, that we shall analyse in full generality, is
much richer and delicate and shows a large variety of solutions depending on various parameters.

Theorem 3. Assume p = 1 and q > 0. Then:

(i) If c �= 0, or c = 0 and q > 1, E is empty. If c = 0 and q � 1, E = {ω0(. + ψ): ψ ∈ S1},
where σ �→ ω0(σ ) := 21/q | sinσ |(1−q)/q sinσ is a C1 solution of (1.14).
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(ii) If c � −1, E+ is empty. If −1 < c < 0, E+ is reduced to the constant function (c + 1)1/q . If
c > 0,

E+ = {
(c + 1)1/q

} ∪
k2⋃

k∈N
k=k1

{
ω+

k (. + ψ): ψ ∈ S1},

in which expression ω+
k is a positive function with least period 2π/k, k2 is the largest

integer strictly smaller than (c + 1)1/2 and k1 is the smallest integer greater than
π
2

∫ π/2
0

√
cos θ

cos θ+2c
dθ . Finally, if c = 0,

E+ = {1} ∪
⋃

K∈(0,1)

{
ω+

K(. + ψ): ψ ∈ S1} ∪
{∅ if q � 1,

{ω+
0 (. + ψ): ψ ∈ S1} if q < 1,

where the functions ω+
K and ω+

0 are explicitly given by

ω+
K = (√

1 − K2 sin2 σ − K cosσ
)1/q

and ω+
0 = (

2| sinσ |)1/q ∀σ ∈ S1.

A striking phenomenon is the existence of a 2-parameter family of solutions when c = 0.
Our paper is organized as follows: Section 1—Introduction. Section 2—The N -dimensional

case. Section 3—The 2-dim dynamical system. Section 4—The case p > 1. Section 5—The case
p = 1.

2. The N -dimensional case

2.1. The spherical p-harmonic spectral problem

If p � 1, β > 0 and λ ∈ R we denote by Tβ,λ the operator defined on C1(SN−1) by

ϕ �→ Tβ,λ[ϕ] = −∇′.
((

β2ϕ2 + |∇′ϕ|2)(p−2)/2∇′ϕ
) − λ

(
β2ϕ2 + |∇′ϕ|2)(p−2)/2

ϕ. (2.1)

Let q > p − 1 > 0, S be a smooth connected domain on SN−1 and CS the cone with vertex 0
generated by S. If u is a positive solutions of

−div
(|Du|p−2Du

) = uq, (2.2)

in CS \ {(0)} vanishing on ∂CS \ {(0)}, under the form

u(r, σ ) = r−βω(σ ), (2.3)

then β = p/(q + 1 − p) := βq and ω solves

{
Tβq,λq,p [ω] − ωq = 0 in S,

ω = 0 on ∂S,
(2.4)
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where

λq,p = βq(qβq − N).

We denote by βS the exponent corresponding to the first spherical singular p-harmonic function
and by φS the corresponding function. Thus βS > 0 and u(r, σ ) = r−βS φS(σ ) is p-harmonic in
CS \ {(0)} and vanishes on ∂CS \ {(0)}. Furthermore φ = φS > 0 and satisfies{

TβS,λS
[φ] = 0 in S,

φ = 0 on ∂S,
(2.5)

where

λS = βS

(
βS(p − 1) + p − N

)
.

We recall that (βS,φS) is unique up to a homothety upon φ. Furthermore φS is positive in S,
∂φS/∂ν < 0 on ∂S and

S′ ⊂ S, S′ �= S �⇒ βS′ > βS.

2.2. Non-existence

Proof of Theorem 1. We put

θ = βq

βS

and η = φθ
S.

Then θ � 1 and

∇′η = θφθ−1
S ∇′φS,

β2
qη2 + |∇′η|2 = θ2φ

2(θ−1)
S

(
β2

Sφ2
S + |∇′φS |2),(

β2
qη2 + |∇′η|2)(p−2)/2 = θp−2φ

(p−2)(θ−1)
S

(
β2

Sφ2
S + |∇′φS |2)(p−2)/2

,

∇′.
(
β2

qη2 + |∇′η|2)(p−2)/2∇′η

= θp−1φ
(p−1)(θ−1)
S ∇′.

(
β2

Sφ2
S + |∇′φS |2)(p−2)/2∇′φS

+ (p − 1)(θ − 1)θp−2φ
(p−1)(θ−1)−1
S

(
β2

Sφ2
S + |∇′φS |2)(p−2)/2|∇′φS |2.

Using (2.5) with φ = φS , we derive

Tβq ,λq,p [η] = −(p − 1)θp−1(θ − 1)φ
(p−1)(θ−1)−1
S

(
β2

Sφ2
S + |∇′φS |2)p/2 in S. (2.6)

Because ω is a nonnegative nontrivial solution of (2.4), it is nonpositive in S. Furthermore
∂ω/∂ν < 0 on ∂S. Therefore we can choose φS as the maximal positive solution of (2.5) such
that η � ω. If θ > 1 there exists σ ∗ ∈ S such that

ω
(
σ ∗) = η

(
σ ∗) > 0 and ω(σ) � η(σ ) ∀σ ∈ S̄. (2.7)
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If θ = 1, the graphs of ω and η could be tangent only on ∂S. This means that either (2.7) holds,
or there exists σ̄ ∈ ∂S such that

∂ω(σ̄ )/∂ν = ∂η(σ̄ )/∂ν < 0 and ω(σ) < η(σ) ∀σ ∈ S. (2.8)

Let ψ = ω−η and we first consider the case where (2.7) holds. Let g = (gij ) be the metric tensor
on SN−1. We recall the following expressions in local coordinates σj around σ ∗,

|∇′ϕ|2 =
∑
j,k

gjk ∂ϕ

∂σj

∂ϕ

∂σk

,

for any ϕ ∈ C1(S), and

∇′.X = 1√|g|
∑

�

∂

∂σ�

(√|g|X�
) = 1√|g|

∑
�,i

∂

∂σ�

(√|g|g�iXi

)
,

for any vector field X ∈ C1(T SN−1), if we lower the indices by setting X� = ∑
i g

�iXi . We
derive from the mean value theorem

(
β2

qω2 + |∇′ω|2)(p−2)/2 ∂ω

∂σi

− (
β2

qη2 + |∇′η|2)(p−2)/2 ∂η

∂σi

=
∑
j

αi
j

∂(ω − η)

∂σj

+ bi(ω − η),

where

bi = (p − 2)
(
β2

q

(
η + t (ω − η)

)2 + |∇′(η + t (ω − η)
)|2)(p−4)/2

× (
η + t (ω − η)

)∂(η + t (ω − η))

∂σi

,

and

αi
j = (p − 2)

(
β2

q

(
η + t (ω − η)

)2 + ∣∣∇′(η + t (ω − η)
)∣∣2)(p−4)/2

× ∂(η + t (ω − η))

∂σi

∑
k

gjk ∂(η + t (ω − η))

∂σk

+ δ
j
i

(
β2

q

(
η + t (ω − η)

)2 + ∣∣∇′(η + t (ω − η)
)∣∣2)(p−2)/2

.

Since the graphs of η and ω are tangent at σ ∗,

η
(
σ ∗) = ω

(
σ ∗) = P0 > 0 and ∇′η

(
σ ∗) = ∇′ω

(
σ ∗) = Q.

Thus

bi
(
σ ∗) = (p − 2)

(
β2

qP 2
0 + |Q|2)(p−4)/2

P0Qi,
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and

αi
j

(
σ ∗) = (

β2
qP 2

0 + |Q|2)(p−4)/2
(

δ
j
i

(
β2

qP 2
0 + |Q|2) + (p − 2)Qi

∑
k

gjkQk

)
.

Now

Tβq ,λq,p [ω] − Tβq ,λq,p [η]
= ωq + (p − 1)θp−1(θ − 1)φ

(p−1)(θ−1)−1
S

(
β2

Sφ2
S + |∇′φS |2)p/2

= −1√|g|
∑
�,i

∂

∂σ�

[√|g|g�i

((
β2

qω2 + |∇′ω|2) p
2 −1 ∂ω

∂σi

− (
β2

qη2 + |∇′η|2) p
2 −1 ∂η

∂σi

)]

− λq,p

((
β2

qω2 + |∇′ω|2) p
2 −1

ω − (
β2

qη2 + |∇′η|2) p
2 −1

η
)
,

= − 1√|g|
∑
�,i

∂

∂σ�

[√|g|g�i

(∑
j

αi
j

∂(ω − η)

∂σj

+ bi(ω − η)

)]
+

∑
i

Ci

∂(ω − η)

∂σi

= − 1√|g|
∑
�,j

∂

∂σ�

[
a�
j

∂(ω − η)

∂σj

]
+

∑
i

Ci

∂(ω − η)

∂σi

,

where the Ci are continuous functions and

a�
j = √|g|

∑
i

g�iαi
j .

The matrix (αi
j (σ0)) is symmetric, definite and positive since it is the Hessian of the strictly

convex function

X = (X1, . . . ,Xn−1) �→ 1

p

(
P 2

0 + |X|2)p/2 = 1

p

(
P 2

0 +
∑
j,k

gjkXjXk

)p/2

.

Therefore (αi
j ) has the same property in some neighborhood of σ ∗, and the same holds true with

(a�
j ). Finally the function ψ = ω − η is nonnegative, vanishes at σ ∗ and satisfies

− 1√|g|
∑
�,j

∂

∂σ�

[
a�
j

∂ψ

∂σj

]
+

∑
i

Ci

∂ψ

∂σi

� 0. (2.9)

Then ψ = 0 in a neighborhood of S. Since S is connected, ψ is identically 0 which is a contra-
diction.

If (2.8) holds, then θ = 1 and the graphs of η and ω are tangent at σ̄ . Proceeding as above
and using the fact that ∂η/∂ν exists and never vanishes on the boundary, we see that ψ = η − ω

satisfies (2.9) with a strongly elliptic operator in a neighborhood N of σ̄ . Moreover ψ > 0 in N ,
ψ(σ̄ ) = 0 and ∂ψ/∂ν(σ̄ ) = 0. This is a contradiction, which ends the proof. �
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Remark. If p = 2, the proof of nonexistence is straightforward by multiplying the equation in ω

by the first eigenfunction φS and get

∫
S

(
(λS − λq,2)ω − ωq

)
φS dσ = 0,

a contradiction since λS � λq,2.

2.3. Existence results

Let us consider the case q = qc = (N(p − 1) + p)/(N − p) (N > p > 1), and let S be any
smooth subdomain of SN−1. Since in that case λq,p = −β2

qc
, the research of solutions of (1.5)

under the form (1.6) vanishing on ∂CS leads to

{
Tβqc ,−β2

qc
[ω] − |ω|qc−1ω = 0 in S,

ω = 0 in ∂S,
(2.10)

where βqc = N/p − 1. This equation is the Euler–Lagrange variation of the functional J defined

on W
1,p

0 (S) by

J (ψ) =
∫
S

(
1

p

(
β2

qc
ψ2 + |∇′ψ |2)p/2 − 1

qc + 1
|ψ |qc+1

)
dσ. (2.11)

Theorem 2.1. Problem (2.10) admits a positive solution.

Proof. Clearly the functional is well defined on W
1,p

0 (S) since qc is smaller than the Sobolev

exponent p∗
N−1 for W 1,p in dimension N − 1. For any ψ ∈ W

1,p

0 (S), limt→∞ J (tψ) = −∞.

Furthermore there exist δ > 0 and ε > 0 such that J (ψ) � ε for any ψ ∈ W
1,p

0 (S) such that

‖ψ‖W 1,p = δ. Assume now that {ψn} is a sequence of W
1,p

0 (S) such that J (ψn) → α and
‖DJ(ψn)‖W−1,p′ → 0 as n → ∞. Then

Tβqc ,−β2
qc

[ψn] − |ψn|qc−1ψn = εn → 0.

Then

∫
S

((
β2

qc
ψ2

n + |∇′ψn|2
)p/2 − |ψn|qc+1)dσ = 〈εn,ψn〉.

Since J (ψn) → α it follows

∫ (
β2

qc
ψ2

n + |∇′ψn|2
)p/2

dσ → p(qc + 1)α/(qc + 1 − p).
S
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Therefore {ψn} remains bounded in Lqc+1(S), and relatively compact in Lr(S), for any 1 < r <

qc + 1. Multiplying the equation DJ(ψn)− εn by Tk,θ (ψn) where θ ∈ (1, (p∗
N−1 − 1)/qc), k > 0

and Tk,θ (r) = sgn min{|r|, k} and using standard bootstrap arguments yields to the boundedness
of {ψn} in L∞(S). Combining this fact with the compactness in Lr(S), we derive the compact-
ness in any Ls , for s < ∞. Therefore {ψn} is relatively compact in W

1,p

0 (S). This means that J

satisfies the Palais–Smale condition. �
3. The 2-dim dynamical system

3.1. Extension of the data

Due to possible applications and similarly to what is done in the semilinear case p = 2 (see
[3,7,8]), we shall consider the existence problem for 2π -periodic solutions of a more general
quasilinear equation than (1.14),

d

dσ

[(
β2ω2 +

(
dω

dσ

)2)p/2−1
dω

dσ

]
+ λ

[
β2ω2 +

(
dω

dσ

)2]p/2−1

ω + g(ω) − c|ω|p−2ω = 0,

(3.1)

where λ,β, c are real parameters, with β > 0, and g ∈ C0(R) ∩ C1(R \ {0}) is odd and satisfies

lim
s→0+g(s)/sq = 1, lim

s→∞g(s)/sp−1 = ∞,
d

ds

(
g(s)/|s|p−1) > 0 on (0,∞), (3.2)

with q > p−1 � 0. In fact we can easily reduce the problem to a simpler form, and particularly in
the case p = 1, where the equation has a remarkable homogeneity property. The next statement
is a straightforward computation which transforms the equation satisfied by ω into two more
canonic forms.

Lemma 3.1. Let ω be a solution of (3.1).
(i) Assume p > 1. If we set

τ = βσ, ω(σ ) = βp/(q+1−p)w(τ) and w′ = dw

dτ
, (3.3)

then w satisfies

d

dτ

((
w2 + w′2)p/2−1

w′) − b
(
w2 + w′2)p/2−1

w + f (w) − d|w|p−2w = 0, (3.4)

where

b = −λ

β2
, d = c

βp
, f (s) = β−pq/(q+1−p)g

(
βp/(q+1−p)s

)
. (3.5)

In particular f satisfies the same assumptions (3.2) as g.
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(ii) Assume p > 1. If on any open interval I ⊂ (0,2π) where ω(σ) �= 0, we set

τ = βqσ and ω(σ) = (βq)1/q
∣∣w(τ)

∣∣1/q−1
w(τ), (3.6)

then w satisfies (3.4) on I , with

b = −λ/β2q, d = c/βq, f1(s) = β−qg
(
(βqs)1/q

)
. (3.7)

Furthermore f1 satisfies the assumptions (3.2) with q = 1, i.e.

lim
s→0+f1(s)/s = 1, lim

s→∞f1(s) = ∞, f ′
1(s) > 0 on (0,∞). (3.8)

Due to this result, the changes of variables (3.3) and (3.6) reduce the problem to the study
both of existence of periodic solutions of Eq. (3.4), and to characterizing the period function of
these solutions, in the range q > p − 1 if p > 1, and q > 0 if p = 1.

3.2. Reduction to dynamical systems

We rewrite (3.4) as the system,

⎧⎨
⎩

w′ = F(w,y) = y,

y′ = G(w,y) = bw3 + (b + 2 − p)w y2 − (f (w) − d|w|p−2w)(w2 + y2)2−p/2

w2 + (p − 1)y2
,

(3.9)

and we denote by h the odd function defined on R by

h(s) =
{

f (s)/|s|p−2s if s �= 0,

0 if s = 0.
(3.10)

If b + d � 0, (3.9) has no nontrivial stationary point, while if b + d > 0, it admits the two
stationary points ±P0, with P0 = (a,0) and a = h−1(b + d). Furthermore P0 is a center since
the linearized system at P0 is given by the matrix

(
0 1

−ah′(a) 0

)
.

System (3.9) is clearly singular at (0,0). Furthermore it could singular be along the line w = 0 if
p = 1, if q < 1, and if p < 2 and d �= 0. Actually, for p > 1 it is not singular at any points (0, σ )

with σ �= 0. This can be checked as follows: consider the Cauchy problem

{
w′′ = G(w,w′), t ∈ (−δ, δ),

w(0) = 0, w′(0) = σ,
(3.11)
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and let w be any local solution; since near (0, σ ), G is continuous with respect to w and C1

with respect to y, w is C2; because σ �= 0, t can be expressed locally in terms of w. Defining
w′(t) = p(w), then p is C1 near 0, p(0) = 1 and satisfies

dp

dw
= G(w,p)

p
,

with J (w,p) = G(w,p)/p. Clearly is C1 with respect to p and continuous with respect to w,

thus one gets local uniqueness of p. and then the local uniqueness of problem w′(t) = p(w(t)),

w(0) = 1, since p is of class C1.

The phase plane of the system (3.9) is equivariant under symmetries with respect to the two
axes of coordinates, because F is even with respect to w and odd with respect to y, and G is odd
with respect to w and even with respect to y. Thus from now we can restrict the study to the first
quadrant

Q \ {
(0,0)

}
, where Q= (0,∞) × (0,∞),

where, in particular, w � 0. Due to the symmetries, in the case p > 1, any trajectory which meets
the two axes in finite times τ, τ + T is a closed orbit of period 4T .

Remark. It is useful to introduce the slope ξ = w′/w (or a function of the slope) as a new
variable. This was first used for p > 1 in [16] for the homogeneous problem

d

dτ

((
w2 + w′2)p/2−1

w′) − b
(
w2 + w′2)p/2−1

w = 0.

In that case the function ξ satisfies

d

dτ

((
1 + ξ2)p/2−1

ξ
) = −(

(p − 1)ξ2 − b
)(

1 + ξ2)p/2−1
,

for w > 0, and this equation is completely integrable in terms of u = (1 + ξ2)p/2−1ξ.

By using polar coordinates in Q

(w,y) = (ρ cos θ,ρ sin θ), ρ > 0, θ ∈ (0,π/2),

we transform (3.9) into⎧⎨
⎩ θ ′ = b − (p − 1) tan2 θ + (d − h(ρ cos θ)) cosp−2 θ

1 + (p − 1) tan2 θ
,

ρ′ = ρ(1 + θ ′) tan θ.

(3.12)

Equivalently, if we introduce the slope ξ = tan θ ∈ (0,∞), and set

u = φ(ξ) = cos1−p θ sin θ, φ(ξ) = (
1 + ξ2)(p−2)/2

ξ, (3.13)

then φ′(ξ) = (1 + ξ2)(p−4)/2(1 + (p − 1)ξ2); thus φ is strictly increasing: from (0,∞) into
(0,∞) when p > 1, and from (0,∞) into (0,1) when p = 1. Defining
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ϕ = φ−1 and E(ξ) = (
(p − 1)ξ2 − b

)(
1 + ξ2)p/2−1

, (3.14)

we obtain

{
w′ = wϕ(u),

u′ = −E
(
ϕ(u)

) − h(w) + d.
(3.15)

This system is still singular on the line w = 0 if h /∈ C1([0,∞)) near 0. In the sequel we set

Ψ (u) =
u∫

0

ϕ(s) ds. (3.16)

Noticing that

E′(ξ) = (
p(p − 1)ξ2 + 2(p − 1) − (p − 2)b

)(
1 + ξ2)(p−2)/2

ξ, (3.17)

we derive that E is increasing on (0,∞) when (p − 2)b � 2(p − 1). When (p − 2)b > 2(p − 1),
E is decreasing on (0, η) and then increasing, where η is defined by

p(p − 1)η2 = (p − 2)b − 2(p − 1), (3.18)

and

minE = E(η) = − 2

p − 2

(
(p − 2)(b + p − 1)

p(p − 1)

)p/2

. (3.19)

In the case of initial problem (1.14), E is increasing.

Remark. If p > 1, system (3.9) is singular at (0,0). If we replace the assumption
lims→0+ f (s)/sq = 1, by the stronger one

lim
s→0+f ′(s)/sq−1 = q, (3.20)

we can transform system (3.15) in (0,∞) × R in a system of the same type, but without singu-
larity: this is obtained by performing the substitution v = wq+1−p . Then

{
v′ = (q + 1 − p)vϕ(u),

u′ = −E
(
ϕ(u)

) − h̃(v) + d,
(3.21)

where v �→ h̃(v) = h(v1/(q+1−p) ∈ C1([0,1)). In particular, if f (w) = |w|q−1w, we find

{
v′ = (q + 1 − p)vϕ(u),

u′ = −E
(
ϕ(u)

) − v + d.
(3.22)
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Remark. In the case f (w) = |w|q−1w, we can differentiate the equation relative to u′ and obtain
that u satisfies the following equation

u′′ = B
(
ϕ(u)

)
u′ + (q + 1 − p)

(
E

(
ϕ(u)

) − d
)
ϕ(u), (3.23)

where E is given above, and

B(ξ) = (p − 2)b + q − 3(p − 1) + (q + 1 − 2p)(p − 1)ξ2

1 + (p − 1)ξ2
ξ. (3.24)

Notice that Eq. (3.23) has no singularity for p > 1.

4. The case p > 1

4.1. Existence of a first integral

A natural question is to see if Eq. (3.4) admits a variational structure. When p = 2, it is the
case, for any b and d . Since (3.4) takes the form

w′′ − (b + d)w + f (w) = 0,

it is the Euler equation of the functional

H2(w,w′) = w′2

2
+ (b + d)

w2

2
−F(w),

where F(w) = ∫ w

0 f (s) ds. Thus the function w′2 = (b + d)w2 − 2F(w) is constant along the
trajectory. When p �= 2, p > 1, we find that a first integral exists only in the case b = 1. In such
a case (3.4) is the Euler equation of the functional

H(w,w′) = (w2 + w′2)p/2

p
+ d

|w|p
p

−F(w).

Therefore, the associated Painlevé integral

P(w,w′) = 1

p

(
w2 + w′2)p/2−1(

(p − 1)w′2 − w2) − d|w|p
p

+F(w) (4.1)

is constant along the trajectories. Using the function E introduced at (3.14), then (4.1) is equiva-
lent to

E

(
w′

w

)
= E

(
ϕ(u)

) = d − p
K +F(w)

wp
(4.2)

for w > 0. Hence E is increasing on (0,∞) from −b = −1 to +∞.
In the general case, we cannot use a first integral for studying the periodicity properties of

the solutions, while it was the main tool in [3] for p = 2. This is the reason for which we are
lead to use phase plane techniques. Notice that, for the initial problem (1.14), the value b = 1
corresponds to the case p < 2 and q = (3p − 2)/(2 − p).



M.-F. Bidaut-Véron et al. / J. Differential Equations 244 (2008) 274–308 289
4.2. Description of the solutions

In this section we describe in full details the trajectories of system (3.9) in the phase plane
(w,y). Notice that the system can be singular on the axis w = 0.

Proposition 4.1. Assume p > 1. Then all the orbits of system (3.9) are bounded. Any trajectory
T[P ] issued from a point P in Q is

(i) either a closed orbit surrounding (0,0), or
(ii) if b + d > 0, a closed orbit surrounding P0 but not (0,0), or

(iii) a homoclinic orbit defined on R, starting from (0,0) with initial slope

lim
t→−∞

w′(t)
w(t)

= m,

where m is defined E(m) = d , and ending at (0,0) with

lim
t→∞

w′(t)
w(t)

= −m.

Proof. We recall that E and u are defined by (3.13) and (3.14), by using polar coordinates (ρ, θ)

in the (w,y)-plane.
First look at the vector field on the boundary of Q. At any point (0, σ ) with σ > 0, it is

given by (σ,0), thus it is transverse and inward. At any point (w̄,0) with w̄ > 0, it is given by
(0, w̄(b + d) − h(w̄))). Thus it is transverse and outward whenever b + d � 0 or b + d > 0 and
w̄ > a, and inward whenever b + d > 0 and w̄ < a.

Consider any solution (w,y) of the system, such that P = (w(0), y(0)) ∈ Q, and let (τ1, τ2)

be its maximal interval existence in Q. At any point τ where u′(τ ) = 0 and u(τ) > 0, there holds
u′′(τ ) = −h′(w)wϕ(u) < 0 from (3.15). Thus if τ exists, it is unique, and it is a maximum for u.

Since w′ = y > 0, w has the limits �2 ∈ (0,∞] as τ ↑ τ2 and �1 ∈ [0,∞) as τ ↓ τ1. Therefore
u is strictly monotone near τ1 and τ2, thus it has limits u1, u2 ∈ [0,∞], in other words θ has
limits θ1, θ2 ∈ [0,π/2].

(i) Let us go forward in time. On any interval where u is increasing, one has E(ϕ(u)) � d,

thus u is bounded and, consequently, u2 is finite. If �2 = ∞, then θ ′(τ ) → −∞, as τ ↑ τ2;
by (3.13), ρ is decreasing, thus it is bounded, which is contradictory; thus �2 is finite. If u2 > 0
then (�2, �2ϕ(u2)) is stationary, which is impossible. Thus u is decreasing to 0, and the trajectory
converges to (�2,0). If b + d > 0 and �2 = a, u′ tends to 0 from (3.15), and

u′′ = −(E ◦ ϕ)′(u)u′ − h′(w)wϕ(u) = −h′(a)aϕ(u)
(
1 + o(1)

);
therefore u′′ < 0 near τ2, which is impossible. Finally, either b +d � 0, or b +d > 0 and w̄ > a,

and τ2 is finite, the trajectory leaves Q transversally at τ2.

(ii) Next let us go backward in time.
• Suppose u1 = 0. Clearly the trajectory converges to (�1,0); then necessarily b + d > 0

and �1 � a, thus �1 < a as above. The trajectory enters Q transversally at τ2, and from the
symmetries it is a closed orbit surrounding only the stationary point P0.
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• Next, suppose u1 = ∞. It means that θ tends to π/2. Then from (3.12), θ ′ tends to 1, thus
τ1 is finite,

π/2 − θ = (τ − τ1)
(
1 + o(1)

)
, tan θ = (τ − τ1)

−1(1 + o(1)
)
,

and

(p − 1)(τ − τ1)
−1 ρ′

ρ
= (

b + 1 + (
d − h(ρ cos θ)

)
cosp−2 θ

)(
1 + o(1)

)
.

If p � 2, then ρ′/ρ = O((τ − τ1)); if p < 2 then ρ′/ρ = O((τ − τ1)
p−1). In any case, lnρ

case is integrable, thus ρ has a finite limit ȳ > 0. Then the trajectory enters Q transversally
at τ1 and from the symmetries it is a closed orbit surrounding (0,0). From the considerations in
Section 3.2, for any ȳ > 0 there exists such an orbit, and it is unique. Moreover in Q the slope
w′/w = ξ = ϕ(u) is decreasing from ∞ to 0; indeed it decreases near τ1 and τ2 and can only
have a maximal point.

• At end, suppose 0 < u1 < ∞. If �1 > 0, then (�1, �1ϕ(u1)) is stationary, which is impossi-
ble. Thus (y,w) converges to (0,0). And w′/w tends to ϕ(u1), thus τ1 = −∞. And u′ converges
to d − E(ϕ(u1)), thus tan θ = ϕ(u) has a limit m � 0 such that E(m) = d. From the symmetries
the trajectory is homoclinic and the solution w is defined on R. �

The next theorem studies the precise behaviour of solutions according to the sign of b + d.

Theorem 4.2. Assume p > 1 and consider system (3.9) in the (w,y)-plane.
(i) Assume b + d > 0. Then there exists a unique homoclinic trajectory H starting from (0,0)

in Q with initial slope md = E−1(d) (m0 = √
b/(p − 1) if d = 0), ending at (0,0) with the

slope −md, and surrounding P0. Up to the stationary points, the other orbits are closed, and
either they surround only one of the points P0 or −P0, in the domain delimited by H, corre-
sponding to solutions w of constant sign, or they are exterior to ±H and surround (0,0) and
±P0, corresponding to sign changing solutions w.

(ii) Assume b + d � 0. Then

• if (p − 2)b � 2(p − 1), or [(p − 2)b > 2(p − 1) and d < E(η)], there is no homoclinic
trajectory;

• if [(p −2)b > 2(p −1) and E(η) < d � −b], then denoting by m1,d < m2,d the two positive
roots of equation E(m) = d , there exist infinitely many homoclinic trajectories H1 starting
from (0,0) in Q with the initial slope m1,d and ending at (0,0) with the final slope −m1,d ,

and a unique homoclinic trajectory H2 starting from (0,0) in Q with initial slope m2,d and
ending at (0,0) with final slope −m2,d .

Proof. (i) Case b + d > 0. Then the equation E(m) = d has a unique positive solution
m = E−1(d); and w′/w tends to m; thus the trajectory starts from (0,0) with a slope m. Then
for any P ∈Q, the trajectory T[P ] passing through P meets the axis y = 0 after P at some point
(μ,0) with μ > a. Denote

U = {
P ∈Q: T[P ] ∩ {

(0, σ ): σ > 0
} �= ∅}

,

V = {
P ∈ Q: T[P ] ∩ {

(μ,0): 0 < μ < a
} �= ∅}

. (4.3)
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Then either P ∈ U and the trajectory is a closed orbit surrounding (0,0) and ±P0, and in Q.

Or P ∈ V and the trajectory is a closed orbit surrounding only P0. Or T[P ] is a homoclinic orbit
H starting from (0,0) with the slope m, where m is the unique solution of equation E(m) = d

(such that m > η if E is not monotone, see (3.17)). Next U and V are open, since the vector field
is transverse on the axes, thus U ∪ V �= Q. This shows the existence of such an orbit H.

(ii) Case b + d � 0.

• Either b + d < 0 and E is increasing, or E has a minimum at η and d < E(η). In such a
case equation E(m) = d has no solution, and there is no homoclinic orbit. Or E is increasing
and b + d = 0; then E(ϕ(u)) > −b = d, thus u′ < 0, thus u cannot tend to 0, and the same
conclusion holds.

• Or E has a minimum at η and E(η) < d � −b. In that case the equation E(m) = d has
two roots m1,m2 such that 0 � m1 < η < m2 � mb , where m(b) is defined by E(mb) = −b.
Any trajectory T[P ] such that P ∈ U (see (4.3) for the definition) satisfies u′ < 0, it means
h(w) > d −E(ϕ(u)) and the range of u is (0,∞), therefore there exists τ such that ϕ(u)(τ ) = η,

hence h(w(τ)) > d − E(η) and y(τ) = ηw(τ). Next consider any trajectory T[P̃ ] starting from

P̃ = (w̃, ηw̃) such that h(w̃) � d − E(η). It cannot be a trajectory of the preceding type, thus
(y,w) → (0,0) as τ → τ1, and θ tends to θ1, with tan θ1 = m1 or m2; moreover u′(0) � 0,
and u′ < 0 near τ2, thus there exists a unique τ � 0 such that u′(τ ) = 0; then u′ > 0 in (τ1, τ ),
therefore tan θ1 < η, and finally tan θ1 = m1. Consequently there exist infinitely many such tra-
jectories H1, with initial slope m1. Next fix one trajectory T[P̃0] such that h(w̃0) � d −E(η). Let
R be the subdomain of Q delimited by T[P̃0] and T[(0,1)] and

V={
P ∈ R: T[P ] ∩ {

(w,ηw): 0 < w < w̃0
} �= ∅}

.

The set V is open because the intersection with the line y = ηw for w < w̃0 is transverse since at
the intersection point, h(w̃) < d − E(η), thus u′ > 0, and y/w = ϕ(u) = η, and

y′

y
= ϕ(u) + ϕ′(u)

ϕ(u)
u′ > η = w′

w
.

Then (U ∩R) ∪ V �= R. Then there exists at least a trajectory H1,∗ starting from (0,0) with
initial slope m2.

(iii) Uniqueness of H and H2. Let m = m0 or m2,d . Suppose that system (3.9) has two solu-
tions (w1, y1), (w2, y2) defined near −∞, such that wi > 0 and wi(τ) tends to 0 and yi(τ )/wi(τ )

tend to m as τ ↓ −∞. Then the system (3.15) has two local solutions (w1, u1), (w2, u2) such
that ϕ(ui) tends to m at −∞. Then w′

i > 0 locally and one can express ui as a function of wi.

Then at the same point w,

w
dΨ (ui)

dw
= wϕ(ui)

dui

dw
= −E

(
ϕ(ui)

) − h(w) + d,

w
d(Ψ (u2) − Ψ (u1))

dw
= −E

(
ϕ(u2)

) − E
(
ϕ(u1)

) = E′(ϕ(
u∗))ϕ′(u∗)(u2 − u1)

for some u∗ between u1 and u2, and E′(ϕ(u∗)) = E′(m)(1 + o(1)); and E′(m) > 0. Then for
small w

d(Ψ (u2) − Ψ (u1))(
Ψ (u2) − Ψ (u1)

)
< 0,
dw
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which implies that (Ψ (u2)−Ψ (u1))
2 is decreasing, with limit 0 at 0. Therefore Ψ (u2) = Ψ (u1),

thus u2 ≡ u1 near −∞; but from (3.15), h(w1) = h(w2), and since h is one to one, it follows
w1 ≡ w2 near −∞. The global uniqueness follows, since the system is regular except at (0,0).

All the trajectories are described. �
Remark. Under the assumption (3.20), existence and uniqueness of H and H2 can be obtained in
a more direct way whenever d �= E(η). Indeed the system (3.21) relative to (v,u) is regular, with
stationary points (0,0), (0,±ϕ−1(m)), where m = m0,m1 or m2 and also (±a,0) if b + d > 0.

The linearized system at (0, ϕ−1(m)) is given by the matrix
( m(q+1−p) 0

0 K(m)

)
, with K(m) =

p(p − 1)(η2 − m2)/(1 + (p − 1)m2). If m = m1,d , then it is a source, and we find again the
existence of an infinity of solutions. If m = md or m = m2,d , then K(m) < 0, thus this point
is a saddle point. Then in the phase plane (v,u), there exists precisely one trajectory defined
near −∞, such that v > 0 and converging to (0,m) at −∞, and u/v converges to 0.

Remark. Suppose f (w) = |w|q−1w, then we can study the critical case (p − 2)b > 2(p − 1)

and E(η) = d : there exist infinitely many homoclinic trajectories H1 starting from (0,0) in Q
with an infinite initial slope and ending at (0,0) with an infinite slope, and a unique homoclinic
trajectory H2 starting from (0,0) in Q with the initial slope η and ending at (0,0) with the
slope −η. Indeed using system (3.22) and setting u = ϕ−1(η) + z, and ζ = (q + 1 − p)ηz + v,

it can be written under the form

ζ ′ = P(ζ, v), v′ = (q + 1 − p)ηv + Q(ζ, v),

where P and Q both start with quadratic terms. Moreover the quadratic part of P(ζ, v) is given
by p2,0ζ

2 + p1,1ζv + p0,2v
2, where by computation,

p2,0 = − p(p − 1)

q + 1 − p
ηϕ′2(ϕ(η)

)(
1 + η2)(p−2)/2

< 0.

The results follow from the description of saddle-node behaviour given in [13, Theorem 9.1.7].

Remark. In the case b = 1 > −d, we have a representation of the homoclinic trajectory: it
corresponds to K = 0 in (4.2). In the case f (w) = |w|q−1w, in terms of u we obtain

u′ = q + 1 − p

p

(
E

(
ϕ(u)

) − d
)
,

which allows to compute u by a quadrature.

4.3. Period of the solutions

First we consider the sign changing solutions.

Theorem 4.3. Assume p > 1. For any ν > 0 let T[(0,ν)] be the trajectory which starts from (0, ν),
and let T (ν) be its least period. Then ν �→ T (ν) is decreasing on (0,∞). Furthermore the range
of T (.) can be computed in the following way.
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(i) If b + d � 0 and m �→ E(m) is increasing, or if d < minE, then T (.) decreases from Td

to 0, where

Td = 4

∞∫
0

du

E(ϕ(u)) − d
= 4

π/2∫
0

1 + (p − 1) tan2 θ

(p − 1) tan2 θ − b − d cosp−2 θ
dθ, (4.4)

and Td is finite if and only if b + d < 0. If b < 0 = d, then

T0 = 2π
(p − 1)γ + 1

(p − 1)γ (γ + 1)
with γ = √|b|/(p − 1). (4.5)

(ii) If b + d > 0 or b + d � 0 and d � minE, then T (.) decreases from ∞ to 0.

Proof. Step 1. Monotonicity of T . Consider the part of the trajectories T[(0,ν)] located in Q, given
by (wν, yν). We have already shown that u is decreasing with respect to τ from ∞ to 0, then
E(ϕ(u)) + h(wν(u)) − d > 0 and wν can be expressed in terms of u, and

T (ν) = 4

∞∫
0

du

E(ϕ(u)) + h(wν(u)) − d
. (4.6)

Let λ > 1. Since the trajectories T[(0,ν)] and T[(0,λν)] have no intersection point, wλν(u) > wν(u)

for any u > 0, and h is nondecreasing, thus T (λν) < T (ν), and T is decreasing.
Step 2. Behaviour near ∞. Let νn � 1, such that limνn = ∞. Observe that for fixed u, for

any integer n � 1, there exists a unique ν̃n > 0 (depending on u), such that wν̃n
(u) = n; let

ν̂n = max(ν̃n, n). Then h(wν̂n
(u)) � h(n), thus h(wν̂n

(u)) converges to ∞; since ν �→ h(wν(u))

is nondecreasing then h(wνn(u)) converges to ∞, and T (νn) converges to 0, using the Beppo–
Levi theorem.

Step 3. Behaviour near 0.
• First assume b + d � 0, and E is increasing, or d < E(η). Then all the orbits are of the

type T[(0,ν)]. Let νn ∈ (0,1), such that limνn = 0. For fixed u and any integer n � 1, there
exists a unique ν̄n > 0 (depending on u), such that wν̄n(u) = 1/n; let ν̌n = min(ν̄n,1/n).

Then h(wν̌n
(u)) � h(1/n), thus h(wν̌n

(u)) converges to 0, and again h(wνn(u)) converges to 0.
Then T (νn) converges to Td given by (4.4), using the Beppo–Levi theorem. If b + d < 0, then
Td is finite: indeed near ∞, E(ϕ(u)) = (p − 1)up/(p−1)(1 + o(1)); if E is increasing, then
E(ϕ(u)) − d > −(b + d) > 0; if d < E(η), then E(ϕ(u)) − d � E(η) − d > 0.

If b + d = 0 and E is increasing, then Td = ∞: indeed near 0,

E
(
ϕ(u)

) − d = u2(E′′(0)/2 + o(1)
)

and

E′′(0) = 2(p − 1) − (p − 2)b if (p − 2)b = 2(p − 1).

Therefore

E
(
ϕ(u)

) − d = (
p(p − 1)/4

)
u4(1 + o(1)

)
.

In all the cases the integral (4.6) giving T is divergent.
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When b < 0 = d, one can compute T0:

T0

4
=

∞∫
0

du

E(ϕ(u))
=

∞∫
0

φ′(ξ) dξ

E(ξ)
=

∞∫
0

1 + (p − 1)ξ2

(|b| + (p − 1)ξ2)(1 + ξ2)
dξ

= π

2
+

(
1

p − 1
− γ 2

) ∞∫
0

ds

(γ 2 + s2)(1 + s2)
= π

2

(
1 + 1 − (p − 1)γ 2

(p − 1)γ (γ + 1)

)
.

Hence (4.5) holds.
• Next assume d > E(η). Considering νn as above, for any fixed u such that ϕ(u) > m2, there

exists a unique ν̄n > 0 (depending on u), such that wν̄n(u) = 1/n. As above,

∞∫
ϕ−1(m2)

du

E(ϕ(u)) + h(wν̄n) − d
→

∞∫
ϕ−1(m2)

du

E(ϕ(u)) − d
= ∞,

since E′(m2) is finite. As a consequence, T (νn) tends to ∞. If d = E(η), the same proof still
works with m2 replaced by η: the integral is still divergent because the denominator is of order 2
in u − ϕ−1(η), as, near 0, there holds

E
(
ϕ(u)

) − d = 1

2
E′′(η)

(
ϕ(u) − η

)2(1 + o(1)
) = 1

2
E′′(η)

(
ϕ(u) − η

)2(1 + o(1)
)
,

and

E′′(η) = 2p(p − 1)η2(1 + η2)(p−2)/2
> 0.

At last suppose b + d > 0; the same proof with m2 replaced by m shows that T (ν) converges to
∞ as ν tends to 0, since E′(m) at m = E−1(d) is finite. �

The monotonicity of the period function is a more general property, since we have the follow-
ing result.

Proposition 4.4. Let F,G ∈ C1(R2 \ (0,0)) are such that F (respectively G) is odd with respect
to y (respectively x) and even with respect to x (respectively y), with F(w,y) > 0 in Q. Assume
that for any (w,y) ∈Q and any λ > 0,

∂

∂λ

(
F(λw,λy)

λ

)
� 0 (respectively � 0) and

∂

∂λ

(
G(λw,λy)

λ

)
< 0 (respectively > 0). (4.7)

Assume also that for any σ in some interval (σ1, σ2) (where 0 < σ1 < σ2), the trajectory T[(0,σ )]
of solution of the system
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{
w′ = F(w,y),

y′ = G(w,y)
(4.8)

passing through (0, σ ) (necessarily entering Q since F(0, σ ) > 0) leaves Q transversally in a
finite time T (σ )/4 at some point (c(σ ),0) (thus G(c(σ ),0) < 0). Then ( from the symmetries),
T[(0,σ )] is a closed orbit surrounding (0,0), with period T (σ ), and σ �→ T (σ ) is decreasing
(respectively increasing) on (σ1, σ2).

Remark. We can notice the condition on F is equivalent to F(λw,λy) � λF(w,y) for any
λ > 1. The second condition implies that for any λ > 1,

G(λw,λy) < λG(w,y)
(
respectively G(λw,λy) > λG(w,y)

)
.

Proof of Proposition 4.4. In polar coordinates (ρ, θ) in Q, we get

ρ′ = F cos θ + G sin θ, θ ′ = 1

ρ
(G cos θ − F sin θ).

At each point τ where θ ′(τ ) = 0, there holds

ρθ ′′(τ ) =
(

∂G

∂ρ
cos θ − ∂F

∂ρ
sin θ

)
, ρ′(τ ) = F

cos θ

(
∂G

∂ρ
cos θ − ∂F

∂ρ
sin θ

)
.

But (4.7) is equivalent to ∂F/∂ρ � F/ρ and ∂G/∂ρ < G/ρ (respectively >), thus

ρθ ′′(τ ) <
F

ρ cos θ
(G cos θ − F sin θ) = 0 (respectively >).

In both cases θ ′′ has a constant sign. But θ ′(0) = −F(0, σ ) < 0 and θ ′(σ ) = G(c(σ ),0) < 0
thus we get a contradiction by considering the first (respectively the last) point where θ ′(τ ) = 0,

which satisfies θ ′′(τ ) � 0 (respectively � 0). Thus θ is decreasing from π/2 to 0. Then the curves
can be represented in function of θ by (ρ(σ, θ), θ(σ )), and

T (σ ) = 4

π/2∫
0

dθ

H(ρ(σ, θ), θ)

with

H(ρ, θ) = 1

ρ

(
F(ρ cos θ,ρ sin θ) sin θ − G(ρ cos θ,ρ sin θ) cos θ

)
.

Let λ > 1. Since the trajectories T[(0,σ )] and T[(0,λσ )]. have no intersection point, then ρ(λσ, θ) >

ρ(σ, θ) for any θ ∈ (0,π/2); by assumption, for fixed θ, the function ρ �→ F(ρ cos θ,ρ sin θ)/ρ

is nondecreasing (respectively nonincreasing) and ρ �→ G(ρ cos θ,ρ sin θ)/ρ is decreasing (re-
spectively increasing), thus H(ρ(λσ, θ), θ) > H(ρ(σ, θ), θ), which yields to T (λσ) < T (σ)

(respectively >). This implies that T is decreasing (respectively increasing). �
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Next we consider the positive solutions w of Eq. (3.4).

Proposition 4.5. Assume p > 1 and b + d > 0. Consider the trajectories T[(μ,0)] in the phase
plane (w,y) which goes through (μ,0), for some μ ∈ (0, a). Let T +(μ) be their least period.
Then

lim
μ→0

T +(μ) = ∞, lim
μ→a

T +(μ) = 2π√
ah′(a)

.

In particular if f (w) = |w|q−1w, then limμ→a T +(μ) = 2π/(q + 1 − p)(b + d).

Proof. We notice that the trajectory T[(μ,0)] intersects the line y = 0 at (μ,0) and another point
(g(μ),0), with μ < a < g(μ), and g is decreasing.

Step 1. Behaviour near a. When μ tends to a, then also g(μ) tends to a. Indeed for any
small ε > 0, then g(μ) − a < ε as soon as μ − a < min(ε, a − g−1(a + ε)). Since, along such
a trajectory in Q, ξ = ϕ(u) varies from 0 to 0, it has a maximal ξ∗, where u′ = 0, thus E(ξ∗) =
h(w∗). When μ tends to a, then h(w∗) tends to b, thus ξ∗ tends to E−1(b) = 0, thus also
maxy∈T[(μ,0)] |y| tends to 0. Using the linearized form of the system at P0, and polar coordinates
with center (a,0), w = a + r cosη, y = √

ah′(a)r sinη, then r tends to 0 as μ tends to a, and
one finds η′ = −√

ah′(a) + R/r, where R involves the derivatives of G of order 2, which are
bounded near the point (a,0), thus R/r2 is bounded. Therefore η′ tends to −√

ah′(a), and
finally T +(μ) tends to 2π/

√
ah′(a).

Step 2. Behaviour near 0. On the trajectory T[(μ,0)], the function u is increasing up to a
maximal value u∗(μ), and then decreasing; moreover u∗ is a nonincreasing function of μ,

because two different trajectories have no intersection. Let μn ∈ (0, a), such that limμn = 0.

For any n there exists μ̃n ∈ (0, a) such that the orbit T[(μ̃n,0)] contains a point above the line
y = ϕ−1(m)(1−1/n)w, let μ̂n = min(μn,1/n). Then u∗(μ̂n) � ϕ−1(m)(1−1/n), thus u∗(μn)

tends to m; then from the Beppo–Levi theorem

lim infT +(μ) � lim

∞∫
u∗(μ)

du

E(ϕ(u)) − d + h(w(μ,u))
=

∞∫
m

du

E(ϕ(u)) − d + h(w(u))
,

where w is the solution defining H, and this integral is infinite. �
Remark. Here the question of the monotonicity of the period is difficult to answer, even for
p = 2, where it is solved by using the first integral, see [3]. It is open in the general case. More
generally, if a dynamical system a center, the description of the period function is still a chal-
lenging problem. For example, one can construct a quadratic dynamical system with a center, the
associated period function of which is not monotone, and even with at least two critical points,
see [7] and [8].

Remark. In the case b = 1, we can compute theoretically the period T + by using the first inte-
gral (4.1). The stationary point P0 = (h−1(1),0) is obtained for Ka = ap/p −F(a) > 0 (in case
of a power, Ka = (q + 1 − p)/p(q + 1)). The positive solutions correspond to trajectories TK
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with K ∈ (0,Ka), intersecting the axis y = 0 at points (w1,0), (w2,0) with w1 < a < w2 defined
by w

p
i /p −F(wi) = K, and the period is given by

T + = 2

w2∫
w1

dw

wE−1(−p
K+F(w)

wp )
.

Unfortunately, this formula does not allow us to prove the monotonicity of the period function
for p �= 2.

It is remarkable that, in the case f (w) = |w|q−1w, one can solve completely the problem in
the particular case where b = 1 and q = 2p − 1, using Eq. (3.23) satisfied by u.

Proposition 4.6. Suppose that f (w) = |w|q−1w, and b = 1 and q = 2p − 1, p > 1 and
d + 1 > 0. If p > 2 or d + 1 < 1/(2 − p), then T + is decreasing on (0, a).

Proof. Since B(ξ) = 0 by (3.24), Eq. (3.23) turns to

u′′ = (q + 1 − p)E
(
ϕ(u) − d

)
ϕ(u) = (q + 1 − p)

(−(1 + d) + pΨ (u)
)
ϕ(u).

Henceforth

1

q + 1 − p
u′′u′ = −(1 + d)Ψ ′(u)u′ + pΨ (u)Ψ ′(u)u′,

from which expression we derive the first integral,

1

q + 1 − p
u′2 = C − U(u), U = M ◦ Ψ, M(t) = 2(1 + d)t − pt2. (4.9)

From (4.9) the integral curves S in the (u,u′)-plane are symmetric with respect to the axis
u′ = 0. The times for going from u = 0 to u = u∗ and from u∗ to 0 are equal, and u∗ is given
by C = M(Ψ (u∗)). The computation of the period is reduced to the part relative to the first
quadrant. Here we follow the method of [3]: we get

T +(
u∗) = 4

u∗∫
0

dη√
U(u∗) − U(η)

= 4

1∫
0

u∗ ds√
U(u∗) − U(su∗)

.

Then

dT +(u∗)
du∗ = 4

1∫
0

(Θ(u∗) − Θ(su∗)) ds

(U(u∗) − U(su∗))3/2
, with Θ

(
u∗) = U

(
u∗) − u∗U ′(u∗)/2,

and

2
dΘ(u∗)

∗ = 2Θ ′(u∗) = U ′(u∗) − u∗U ′′(u∗).

du
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In the interval of study, ϕ(u∗) < E−1(d), (E ◦ ϕ)(u) < d from (3.14), thus Ψ (u) < (1 + d)/p,

and M is increasing for 0 < t < (1 + d)/p, thus U ′ > 0. Then at any point u, Θ ′(u) > 0 ⇔
(U ′/u)′ < 0. Now

U ′(u)

2pu
= (−E(ϕ(u)) + d)ϕ(u)

u
= 1 − (p − 1)ϕ2(u) + d

(
1 + ϕ2(u)

)(2−p)/2
,

hence (U ′/u)′ = 2X(u)ϕ(u)ϕ′(u), with

X(u) = −(p − 1) + (2 − p)d
(
1 + ϕ2(u)

)−p/2
,

and d > E(ϕ(u)); it implies X(u) < 0 if p > 2 or p < 2 and d < (p −1)/(2−p). Henceforth Θ

is increasing, and the same holds for P as a function of u∗. Finally u∗ is decreasing with respect
to μ, and consequently P is decreasing with respect to μ. �
Remark. When p = 2, and q = 2p − 1 = 3, Eq. (3.23) reduces to u′′ = −2u + 2u3, which,
surprisingly, is an equation corresponding to the problem with absorption, and (3.4) reduces to
w′′ − w + w3 = 0. In this case, all the solutions can be expressed in terms of elliptic integrals,
see [3].

4.4. Returning to the initial problem

Proof of Theorem 2. Here β = βq = p/(q +1−p), λ = λq is given by (1.15) and cq = β
p−2
q λq

by (1.16). Moreover ω(σ) = β
βq
q w(βqσ ) from (3.3), b = −λq/β2

q = −cq/β
p
q and d = c/β

p
q

from (3.5). At end f (s) = g(s) = |s|q−1s and h(s) = |s|q−ps. Thus c > cq is equivalent to
b + d > 0, and then the constant solutions w ≡ ±(b + d)1/(q−p+1) of (3.4) correspond to the
constant solutions ω ≡ ±(c − cq)1/(q+1−p) of Eq. (1.14). For any integer k � 1, we look for pe-
riodic solutions ω of smallest period 2π/k, or equivalently solutions w of period Tk = 2πβq/k.

From (3.17), the function E is increasing. First consider the sign changing solutions: if c � cq ,
then from Theorem 4.3, the period function T of w is decreasing from ∞ to 0, hence for any
k � 1 it takes precisely once the value Tk. If c < cq, then T decreases from Td given by (4.4)
to 0, thus it takes once the value Tk for any k > Mq = Td/2πβq given at (1.18). Next consider
the positive solutions: from Proposition 4.5, the period function of w takes any value between ∞
and 2π/

√
(q + 1 − p)(b + d), thus it takes the value Tk for any k < (pβ

1−p
q (c − cq))1/2, which

ends the proof. �
In the case of Eq. (1.14) (i.e. c = 0), we obtain the following description of the sets E and E+:

Corollary 4.7. Assume p > 1, q > p − 1, and c = 0.

(i) Then the set E of changing sign solutions of (1.14) is given by (1.17), where kq = 1 if p < 2
and q � 2(p − 1)/(2 − p), and kq > Mq if p � 2 or (p < 2 and q < 2(p − 1)/(2 − p)), where

Mq = 2/(q − 1), (4.10)

if p = 2, and
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Mq = (p − 2)mq

((p − 1)mq + 1)(mq − 1)
, with mq =

√
2(p − 1) + (p − 2)q

p(p − 1)
, (4.11)

if p �= 2.
(ii) If p � 2 or (p < 2 and q < 2(p − 1)/(2 − p)), then E+ = ∅. If p < 2 and q �

2(p − 1)/(2 − p), then E+ = {(−cq)1/(q+1−p)}.

Proof. Here cq < 0 is equivalent to p < 2 and q > 2(p − 1)/(2 − p). Furthermore Mq =
T0/2πβq can be computed from (4.5), which gives (4.10), (4.11). Moreover in any case

cq + β
p−1
q /p = β

p
q (p − 1)(q + 1)/p2 > 0 thus there exist no positive nonconstant periodic

solutions. �
Proof of Corollary 1. Let S be a sector on S1 with opening angle θ ∈ (0,2π). From [14, Theo-
rem 3.3], βS is the positive solution of equation

φ(βS) =
(

1 + 1

k

)2(
β2

S + p − 2

p − 1
βS − (βS + 1)2

)
= 0,

where k = π/θ � 1. Using Corollary 4.7 (applied without assuming that k is an integer) we
distinguish two cases:

(i) p < 2 and q � 2(p − 1)/(2 − p). Then there always exists a solution to the Dirichlet
problem in S. Notice that 0 < βq � (2 − p)/(p − 1), thus φ(βS) < 0 and consequently βq < βS .

(ii) p > 2 or p < 2 and q < 2(p − 1)/(2 − p). The existence is equivalent to k > Mq

(see (4.11)). It means

(
1 + 1

k

)2

<

(
(p − 1)m2

q − 1

mq(p − 2)

)2

= (βq + 1)2

β2
qm2

q

= (βq + 1)2

βq(βq + (p − 2)βq/(p − 1))
.

Thus φ(βq) < 0. Equivalently, βq < βS . �
5. The case p = 1

5.1. Existence of a first integral

As shown in Lemma 3.1, we can reduce the study to

d

dτ

(
w′

√
w2 + w′2

)
− b

w√
w2 + w′2

+ f1(w) − d|w|−1w = 0, (5.1)

where f1 satisfies (3.8); in particular we are interested by the case f1(s) = s.

Here the problem is variational: if S1(w) is any primitive of w �→ |w|b−1f1(w) and R(w) =
|w|b/b if b �= 0, R(w) = ln |w| if b = 0, then (5.1) is the Euler equation of the functional

H(w,w′) = |w|b−1
√

w2 + w′2 − S1(w) + dR(w).
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Thus the following Painlevé first integral is constant along the trajectories

P(w,w′) = |w|b+1

√
w2 + w′2

− S1(w) + dR(w). (5.2)

The system (3.9) reads as

⎧⎨
⎩

w′ = y,

y′ = G(w,y) = bw3 + (b + 1)wy2 − (f (w) − d|w|−1w)(w2 + y2)3/2

w2
,

and it is singular on the line w = 0. For w > 0 system (3.15) reduces to

⎧⎨
⎩

w′ = wϕ(u) = w
u√

1 − u2
,

u′ = b
√

1 − u2 − f1(w) + d.

(5.3)

In the case f (w) = w, the equation satisfied by u is

u′′ = (1 − b)
u√

1 − u2
u′ − bu − d

u√
1 − u2

. (5.4)

5.2. Existence of periodic solutions

From the Painlevé integral (5.2), we can describe the solutions, in the phase plane (w,y).

Since a complete description is rather long, we reduce it to the research of periodic solutions.

Proposition 5.1. Let p = 1, and consider Eq. (5.1).

(i) If d �= 0, there is no periodic sign changing solution. If d = 0 there exists such a solution if
and only if b > −1, and then it is unique (up to a translation).

(ii) There exist periodic positive solutions if and only if b + d > 0.

(iii) Suppose moreover that f1(w) = w. Then the sign changing solution is given by

w(τ) = (b + 1) cos(τ − τ1);

it has period 2π . The orbits T[(μ,0)] of the periodic solutions intersect the axis y = 0 at a
first point (μ,0) such that μ < a = b + d, and μ describes μ ∈ (μ̄, a) with μ̄ = 0 if d � 0,

and μ̄ > 0 if d > 0; it is given by (5.9), (5.7), (5.8).

Proof. By symmetry we reduce the study to the case w � 0 and the Painlevé integral (5.2) takes
the form

wb
√

1 − u2 − S1(w) + dR(w) = C, (5.5)

where we denote
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S1(w) =
w∫

0

sb−1f1(s) ds if b > −1,

S1(w) =
w∫

1

sb−1f1(s) ds + 1

b + 1
if b < −1,

and

S1(w) =
w∫

1

s−2f1(s) ds if b = −1.

Step 1. Periodic sign changing solutions. The curves in the phase plane (w,y) are given, for
w > 0, by

y2 =
(

wb+1

C − dR(w) + S1(w)

)2

− w2

= w2(wb + dR(w) − S1(w) − C)(wb − dR(w) + S1(w) + C)

(S1(w) + C − dR(w))2
,

which defines ±y in function of w. If there exists a sign changing periodic solution, the trajectory
intersects the axis w = 0 at some point (0, �) with � � 0, thus y needs to � as w tends to 0.

From (5.5), it is impossible if b � −1. Assume d �= 0; if −1 < b, then near w = 0, in any case
y2 � (b2/d2 + 1)w2, thus � = 0 and w′/w is bounded, thus the maximal interval of existence
is infinite, and we reach a contradiction. If d = 0, and C �= 0, then y2 = −w2(1 + o(1)), which
is impossible. If d = C = 0, then y2 = w2(w2b/S2

1(w) − 1); observing that the function w �→
χ(w) = w−bS1(w) is increasing from 0 to ∞, the curve intersects the two axes at (0, b + 1) and
(χ−1(1),0) and this corresponds to a closed orbit.

Step 2. Existence of periodic positive solutions. If we look at the intersection points of any
trajectory in the phase plane with the axis y = 0, we find that they are given by H(w) = C,

where

H(w) = wb + dR(w) − S1(w).

Then H ′(w) = wb−1(b + d − f1(w)). If b + d � 0, then H is decreasing, thus there ex-
ist no positive periodic solutions. If b + d > 0, the function H is increasing on (0, a)

where it reaches a maximum M, and decreasing on (a,∞). The stationary point (a,0) with
a = f −1

1 (b + d) corresponds to C = M. If b > 0, then limw→0 H = 0, while, if b � 0,

then limw→0 H = −∞. Equation H(w) = C has two roots 0 < w1 < w2, if and only if
C ∈ (max{limw→0 H, limw→∞ H },M). Moreover, if there exists a trajectory going through
(w1,0) and (w2,0) and if one denotes

K(w) = dR(w) − S1(w) = H(w) − wb,

one has K(w) < C on (w1,w2), thus C > M ′ = maxK = K(f −1(d)). Conversely, if
1
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max
{

lim
w→0

H, lim
w→∞H,M ′} < C < M, M = H

(
f −1(b + d)

)
, M ′ = K

(
f −1(d)

)
, (5.6)

then there exists a closed orbit going through (w1,0) and (w2,0).
Step 3. End of the proof. The sign changing solution is given by w2 + w′2 = (b + 1)2 and

its trajectory is a circle with center 0 and radius b + 1; for w > 0, w = (b + 1)
√

1 − u2 =
b
√

1 − u2 − u′, thus u′ = −√
1 − u2, and θ ′ = −1, then w(τ) = (b + 1) cos(θ − τ1), periodic

solution with period 2π. Now consider the positive periodic solutions. Here a = b + d, and

H(w) =
⎧⎨
⎩

(1 + d/b)wb − wb+1/(b + 1), if b �= 0,−1,

1 + d lnw − w, if b = 0,

(1 − d)w−1 − lnw, if b = −1,

(5.7)

⎧⎨
⎩

M = ab+1/b(b + 1), M ′ = (
d+)b+1

/b(b + 1), if b �= 0,−1,

M = 1 + d lnd − d, M ′ = d lnd − d, if b = 0,

M = −1 − ln(d − 1), M ′ = −1 − lnd, if b = −1.

(5.8)

If d � 0, thus b > 0, then any C ∈ (0,M) corresponds to a closed orbit, thus for any μ ∈ (0, a1),

one has a closed orbit passing through (μ,0), of period still denoted by T +(μ). If d > 0, in
any case, any C ∈ (M ′,M) corresponds to a closed orbit. If −1 < b < 0, then H is increasing
on (0, a) from −∞ to M < 0, and then decreasing on (a,∞) from M to −∞. If b < −1, then
M > M ′ > 0. If b < −1, then d > 1, and limw→0 H = −∞, limw→∞ H = 0, 0 < M ′ < M . If
b = 0, thus d > 0, then limw→0 H = −∞, then any C ∈ (M − 1,M) corresponds to a closed
orbit. Then H is increasing on (0, d) from −∞ to M = 1 + d lnd − d � 0 (notice that M = 0 ⇔
d = 1) and then decreasing on (a1,∞) from M to −∞; let μ̄ ∈ (0, b + d) be defined by

H(μ̄) = M ′, (5.9)

thus for any μ ∈ (μ̄, a), one has a closed orbit passing through (μ,0), with a period still denoted
by T +(μ). If −1 � b < 0, thus d > −b > 0, then limw→0 H = −∞ = limw→∞ H,M < 0, and
any C ∈ (M ′,M) corresponds to a closed orbit (if b = −1, then H(w) = (1 − d)w−1 − lnw,

M = −1 − ln(d − 1), M ′ = −1 − lnd). Returning to Eq. (1.14), the conclusion follows with
μ̄q = μ̄q . �
5.3. Period of the solutions

Let p = 1, b+d > 0. Consider Eq. (5.1). Let T +(μ) be the least period of the periodic positive
solutions corresponding to the orbit T[(μ,0)]. As in the case p > 1, we have a general result:

lim
μ→a

T +(μ) = 2π√
af ′

1(a)

. (5.10)

Next we study the variations of the period in the case of a power f1(w) = w.

Theorem 5.2. Assume p = 1, b + d > 0 and f1(w) = w. Then limμ→a T +(μ) = 2π/
√

b + d.

If d < 0, then limμ→0 T +(μ) = ∞. If d � 0, then limμ→μ̄ T +(μ) = T̄ + is finite, and given by
(5.12) if b /∈ {0,−1}, by (5.13) if b = 0, and by (5.14) if b = −1. If d = 0, then T̄ + = π(1+1/b).
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Proof. Step 1. Assume b /∈ {0,−1}. From (5.5), the solutions of (5.1) satisfy

wb
√

1 − u2 − wb+1

b + 1
+ d

b
wb = C,

thus

u′ = b
√

1 − u2 − w + d = −
√

1 − u2 − d

b
+ C(1 + b)

wb
.

Eliminating w between the two relations, we find that Cb(b + 1) > 0 and

(
d + b

√
1 − u2 − u′)b/(b+1)(

d + b
√

1 − u2 + bu′)1/(b+1) = (
Cb(1 + b)

)1/(b+1) := A.

When a solution goes through the half-part of its trajectory T located in Q, the asso-
ciated function u increases from 0 to some u∗ ∈ (0,1) where the derivative u′ vanishes
and d + b

√
1 − u∗2 > 0; next d + b

√
1 − u2 is monotone and positive at 0 and u∗, thus

d + b
√

1 − u2 > 0 everywhere. And A = d + b
√

1 − u∗2 = w∗ (the value of w when u = u∗).
Let

z = u′

d + b
√

1 − u2
and G(s) = (1 − s)b/(b+1)(1 + bs)1/(b+1).

If b > 0, then z ∈ (−1/b,1); if b < −1 then z ∈ (−∞,1); if −1 < b < 0 then z ∈ (−∞,1/|b|),
and

G(z) = A

d + b
√

1 − u2
.

Since

G′(s) = −bs(1 − s)−1/(b+1)(1 + bs)−b/(b+1)

and

G′′(s) = −b(1 − s)−(b+2)/(b+1)(1 + bs)−(2b+1)/(b+1),

it follows G(0) = 1, and 0 is a maximum if b > 0 and a minimum if b < 0: if b > 0, G increases
on (−1/b,0) from 0 to 1 and decreases on (0,1) from 1 to 0; if b < 0, G decreases on (−∞,0)

from ∞ to 1 and increases on (0,min(1,1/|b|)) from 1 to ∞. Thus it has two inverse functions
−L1 and L2: for b > 0, L1 maps (0,1) into (0,1/b) and L2 maps (0,1) into (0,1); for b < 0,

L1 maps (1,∞) into (0,∞) and L2 maps (1,∞) into (0,min(1,1/|b|)). Then

T + = T +
1 + T +

2 , T +
i =

1∫
ψi,u∗(λ) dλ, (5.11)
0
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where

ψi,u∗(λ) = 2u∗

(d + b
√

1 − λ2u∗2 )Li((d + b
√

1 − u∗2 )/(d + b
√

1 − λ2u∗2 ))
.

• First suppose d < 0 (thus b > 0); then one looks at the case where C → 0, thus
√

1 − u∗2 →
−d/b, thus u∗ → ū = √

1 − d2/b2 . Near ū,

ψi,u∗(λ) � 2u∗

b(
√

1 − λ2u∗2 − √
1 − u∗2 )Li(0)

� −d

bLi(0)(1 − λ2)
,

therefore T +
i tends to ∞.

• Suppose d � 0, b > 0. One looks at the case where C → M ′, thus u∗ → 1. There
exists a constant m > 0 such that 0 � 1 − G(s) = G(0) − G(s) � m2s2 on [−1/b,1]. In-
deed G′(0) = 0 and G′′ is bounded on [−1/2b,1/2], and on [−1/b,−1/2b] ∪ [1/2,1] the
quotient (G(0) − G(s))/s2 is bounded. Thus 1/Li(η) � m/

√
1 − η on [0,1), hence taking

η = (d + b
√

1 − u∗2 )/(d + b
√

1 − λ2u∗2 ), and computing

1 − η = b(1 − λ2)u∗2

(d + b
√

1 − λ2u∗2 )(
√

1 − u∗2 + √
1 − λ2u∗2 )

,

one finds ψi,u∗(λ) � 4m/
√

b(1 − λ2). From the Lebesgue theorem, as u∗ → 1, T + tends to the
finite limit

T̄ + = T̄ +
1 + T̄ +

2 , T̄ +
i = 2

1∫
0

dλ

(d + b
√

1 − λ2 )Li(d/(d + b
√

1 − λ2 ))
(5.12)

in particular if d = 0, then L1(0) = 1/b,L1(0) = 1, thus T̄ +
1,1 = π and T̄ +

1,2 = π/b.

• Suppose b < 0, thus d > −b > 0. Then again C → M ′, consequently u∗ → 1. The function

u∗ → Q
(
u∗, λ

) = η = d + b
√

1 − u∗2

d + b
√

1 − λ2u∗2
= 1 − b(1 − λ2)u∗2

(d + b
√

1 − λ2u∗2 )(
√

1 − u∗2 + √
1 − λ2u∗2 )

is increasing on (0,1) from 1 to d/(d + b
√

1 − λ2 ) and d/(d + b
√

1 − λ2 ) � d/(d + b) = α.

There exists m > 0 such that 0 � G(s) − 1 � m2s2 on [−L1(α),L2(α)], thus 1/Li(η) �
m/

√
η − 1 on (1/d/(d + b)]. Thus as above, ψi,u∗(λ) � 4m/

√|b|(1 − λ2), and T + tends to T̄ +
defined at (5.12).

Step 2. Assume b = 0. There exist periodic solutions for any C ∈ (M − 1,M). The solutions
are given by

√
1 − u2 + H(w) =

√
1 − u2 + d lnw − w = C

and u′ = −w + d, thus u is maximal (= u∗) for w = d : therefore
√

1 − u∗2 + H(d) = C, then

H(d − u′) = H(d) +
√

1 − u∗2 −
√

1 − u2
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and H has two inverse functions Hi from (−∞,H(d)) into (0, d) and (d,∞), thus (5.11) holds
with

ψi,u∗(λ) = 2u∗ dλ

d − Hi(H(d) + √
1 − u∗2 − √

1 − λ2u∗2 )

and ξ = H(d) + √
1 − u∗2 − √

1 − λ2u∗2 = H(d) − k = H(d + h) stays in (M − 1,M) =
(H(d) − 1,H(d)), and H(d + h) − H(d) � −m2h2 for H(d + h) ∈ (M − 1,M), thus
H(d) − ξ = k � m2(d − Hi(ξ))2, thus

ψi,u∗(λ) � 2m√
k

= 2m(
√

1 − u∗2 + √
1 − λ2u∗2 )√

1 − λ2
� 4m√

1 − λ2
.

Therefore, as u∗ → 1, T + tends to the finite limit

T̄ + = T̄ +
1 + T̄ +

2 , T̄ +
i = 2

1∫
0

dλ

d − Hi(H(d) − √
1 − λ2 )

. (5.13)

Step 3. Assume b = −1. In that case d > 1; let B = −(C+1) ∈ (ln(d −1), lnd) then B → lnd

and

u′ + w = d −
√

1 − u2 = (B + 1)w − w lnw = HB(w),

where HB is increasing on (0, eB) from 0 to eB and decreasing on (eB,∞) from eB to −∞;
it has two inverse functions LB,i from (−∞, eB) into (0, eB) and (eB−1,∞); and w∗ =
d − √

1 − u∗2 = eB; then (5.11) holds with

ψi,u∗(λ) = 2u∗

d − √
1 − λ2u∗2 − LB,i(d − √

1 − λ2u∗2 )
= 2u∗

|HB−1(LB,i(d − √
1 − λ2u∗2 ))| .

Because HB−1(e
B) = 0, HB−1(x) − HB−1(e

B) = H ′
B−1(ξ)(x − eB) and x ranges onto

(HB,1(d − 1),HB,2(d − 1)) := (x1,B, x2,B), when B → lnd, (x1,B, x2,B) → (x1,lnd, x2,lnd), it
follows |H ′

B−1(ξ)| � 1/μ > 0 independent on B. Moreover HB(x) − HB(eB) =
(1/2)H ′′

B(ξ)(x − eB)2 = −(1/2ξ)(x − eB)2. Thus there exists m > 0 such that

HB(x) − HB

(
eB

)
� m2(x − eB

)2 � m2μ2H 2
B−1(x).

Therefore, near lnd, taking x = LB,i(d − √
1 − λ2u∗2 ), one derive

ψi,u∗ (λ) � 2

mμ
√

d − √
1 − λ2u∗2 − eB

= 2

mμ
√√

1 − u∗2 − √
1 − λ2u∗2

� 4

mμ
√

1 − λ2
.
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Consequently, as u∗ → 1, T +
1,i tends to the finite limit

T̄ + = T̄ +
1 + T̄ +

2 , T̄ +
1,i = 2

1∫
0

dλ

|Hlnd−1(Llnd,i(d − √
1 − λ2 ))| . � (5.14)

Remark. In the case d = 0, b �= 1, notice that T +
1 and T +

2 converges to π/
√

b as μ tends to b

(one can verify it by linearizing the equation in u) and respectively to π and π/b as μ tends to 0.
Thus if those functions are monotone, they vary in opposite senses and it is not easy to get the
sense of variations of their sum T +

1 . Moreover in the phase plane (w,y1), as μ tends to 0, one
can observe that the trajectory tends to a limit curve constituted of a segment [(0,0), (0, b)] and
half of the unique closed orbit surrounding (0,0), circle of center 0 and radius b + 1, which is
covered in a time π .

The case b = 1 is the most interesting for (5.1), since it corresponds to the initial problem
(1.14). In that case we improve the results by showing the monotonicity of the period function:

Theorem 5.3. Assume b = 1, d > −1. When d = 0 the period function T +(μ) is constant, with
value 2π, thus there exists an infinity of positive solutions w of (5.1), which are all 2π -periodic;
they are explicitly given by

w =
√

1 − K∗2 sin2 τ − K∗ cos τ, τ ∈ [−π,π], K∗ ∈ (0,1). (5.15)

When d �= 0, then T +(μ) is strictly monotone; if d < 0 it decreases from ∞ to 2π/
√

1 + d; if
d > 0 it increases from

T̄ + = 4

1∫
0

du√
(d + √

1 − u2 )2 − d2
= 4

π/2∫
0

√
cos θ

cos θ + 2d
dθ (5.16)

to 2π/
√

1 + d.

Proof. • If d = 0, then u′′ = −u, from (5.4), and u = sin θ ∈ [0,1), thus the positive solutions
w are given in Q by

u = K∗ sin τ, K∗ ∈ [0,1), τ ∈ [0,π],
and the period T + is constant, equal to 2π . We obtain an infinity of positive solutions w, given
explicitly by

w =
√

1 − u2 − u′ =
√

1 − K∗2 sin2 τ − K∗ cos τ, K∗ ∈ (0,1),

which intersect the axis y = 0 at points wi = (1 ∓ K∗).
• In the general case d > −1, we find

(
d +

√
1 − u2 − u′)(√1 − u2 + u′ + d

) = A2
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that means G is symmetric: G(s) = √
1 − s2, thus

u′2 = (
d +

√
1 − u2

)2 − A2,

√
1 − u∗2 = A − d = √

2C − d; thus here T +
1 = T +

2 , and

T + = 4

1∫
0

dλ√
Ψ (u∗2, λ)

, where Ψ (s,λ) = (d + √
1 − λ2s )2 − (d + √

1 − s )2

s
.

We show that the period function is strictly monotone with respect to u∗. Because

s2 ∂Ψ

∂s
(s, λ) = d(d + 1)

(
1/

√
1 − s − 1/

√
1 − λ2s

)
> 0,

we see that T + is increasing if d < 0 and decreasing if d > 0 (and we find again that it is constant
if d = 0). Also μ can be expressed explicitly in terms of u∗ by

μ = d + 1 −
√

(d + 1)2 − (
d +

√
1 − u∗2

)
.

Therefore μ is decreasing with respect to u∗, hence T + is decreasing with respect to μ if d < 0
and increasing if d > 0. �
5.4. Returning to the initial problem

Proof of Theorem 3. Here αq = βq = 1/q, the substitution (3.6) takes the form ω(σ) =
|w(σ)|1/q−1w(σ), and thus b = 1, and d = c from (3.7). Then the existence of sign changing
solutions of (1.14) is given by Proposition 5.1. The constant solutions exist whenever c + 1 > 0.

Next we look for positive solutions of smallest period 2π/k applying Theorems 5.2 and 5.3. If
c < 0 the period function T + decreases from ∞ to 2π/

√
1 + c > 2π, thus there exists no so-

lution. If c > 0, T + increases from T̄ + given by (5.16) to 2π/
√

1 + c, thus it takes once any
intermediate value, which gives one solution (up to a translation) for any k ∈ (k1, k2). If c = 0,

the solutions ωK are given explicitly by (5.15), and ω+
0 is obtained from ω0; this means that

system (3.9) does not satisfy the uniqueness property at (0,0). �
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