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1 Introduction

Let  be a domain is RN, N > 2, d a locally bounded and measurable function defined in €
and p a real number larger than 1. This article deals with the study of positive solutions of

—div (|Du|ff’*2 Du) —d@)u" =0 inQ (1.1)

which admit an isolated singularity on the boundary of 2. It is known since the starting
pioneering work of Serrin [11] that one of the main goals for studying the regularity of
solutions of quasilinear equations consists in obtaining Harnack inequalities. The simplest
form of this inequality is the following: Assume Bs, CC Q and d € L% (By,), then there

1/p
exists a constant C = C(N,p,r (||dHLOO(BZT)) ) > 1 such that any nonnegative solution u

of (1.1 ) in B, satisfies
u(r) < Cu(y) ¥(v,y) € B, x B,. (1.2)

Actually this inequality is valid for a much wider class of operators in divergence form with
a power-type growth. Among the important consequences of this inequality are the Holder
continuity of the weak solutions of (1.1 ) and the two-side estimate of solutions admitting
an isolated singularity. Among more sophisticated consequences are the obtention of local
upper estimates of solutions of the same equation near a singular point. This program has
been carried out by Gidas and Spruck for equation

—Auy = u? (1.3)

in the case N > 2 and 1 < ¢ < (N 4+ 2)/(IN — 2) [6], and recently by Serrin and Zhou [12]
for equation

—div (|Du|ff’*2 Du) = ul (1.4)

in the case N > pand p—1 < ¢ < Np/(N —p) — 1. A third type of applications of
Harnack inequality linked to the notion of isotropy leads to the description of positive
isolated singularities of solutions. This was carried out by Véron [17] for

—Au+u?=0 (1.5)
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in the case 1 < ¢ < N/(N — 2), and by Friedman and Véron [5] for
div (|Du|f”*2 Du) Ful=0 (1.6)

when p—1 < ¢ < N(p—1)/(N — p). When the singularity of « is not an internal point
but a boundary point, the situation is more complicated and the mere inequality (1.2 ) with
only one function has no meaning. Boundary Harnack inequalities which deals with two
nonnegative solutions of (1.1 ) vanishing on a part of the boundary asserts that the two
solutions must vanish at the same rate. For linear second order elliptic equations they are
used for studying the properties of the harmonic measure [3] (see also [1]). For p-harmonic
function in a ball, a sketch of construction is given by Manfredi and Weitsman [10] in order
to obtain Fatou type results. In this article we consider singular solutions of (1.1 ) with a
singular potential type reaction term. The first result we prove is the following: Assume OS2
is C% and d is measurable, locally bounded in Q\ {a} for some a € O and satisfies

ld(z)] < Colz —al™ a. e in Br(a)NQ (1.7)

for some Co, R > 0 and p > 1. Then there exists a positive constant C' depending also on
N, p and Cy such that if u € C*(Q\ {a}) is a nonnegative solution of (1.1 ) vanishing on
00\ {a}, there holds

uly) _ u(z) _ Culy)
Cp(y) = p(z) = p(y)

where p(.) is the distance function to 0. Another form of this estimate, usually called
boundary Harnack inequality, asserts that if u; and us are two nonnegative solutions of (1.1
) vanishing on 9Q \ {a}, there holds

V(z,y) € A xQ st |z|=]y|. (1.8)

ui(z) _ us(z) _ Cui(w)
Cunly) = wal(y) = wi(y)

for some structural constant C' > 0. Another consequence of the construction leading to
(1.8 ) is the existence of a power-like a priori estimate: Assume Q is a bounded C* domain
with a € 0, A € Q is an arbitrary point and d a measurable function such that

V(z,y) € A xQ st |z| =lyl|. (1.9)

ld(z)| < Colz —al™ a. e in Q. (1.10)

Then there exist two positive constants o > 0 depending on N, p, 2 and Cy, and C depending
on the same parameters and also on A such that, any nonnegative solution u € C(Q\ {a})N
I/Vllocp(Q \ {a})) which vanishes on OQ\ {a} verifies

u(z) < Cﬂ (A) Vz e Q\{a}. (1.11)

|CE _ a|a+1u

The precise value of « is unknown and surely difficult to know explicitely, even in the
simplest case when w is a p-harmonic function. In several cases the value of « is associated to
the construction of separable p-harmonic functions called the spherical p-harmonics. Another
striking applications of the boundary Harnack principle deals with the structure of the set
of positive singular solutions. We prove the following: Let Q be C? and bounded, a € OS2

and d satisfies (1.10 ). Assume also that the operator v — —div (|Dv|pf2 Dv) — d(z)vP~1

satisfies the comparison principle in Q \ Be(a) for any € > 0, among nonnegative solutions



which vanishes on 0N\ Be(a). If u and v are two positive solutions of (1.1 ) in Q@ which
vanish on OQ\ {a}, there exists k > 0 such that

Elu(z) < v(x) < ku(z) Yz e Q. (1.12)

Furthermore, if we assume also either p = 2, either p > 2 and u has no critical point in €2,
orl <p<2andd?>0, there exists k > 0 such that

v(z) = ku(x) Ve Q. (1.13)

In the last section we give some partial results concerning the existence of singular solutions
of equations of type (1.1 ) and their link with separable solutions which are solution under
the form u(x) = |z|” 7 ¢(z/ |z|). If d = 0 such specific solutions, studied by Kroll and Maz’ya
[8], Tolksdorff [14], Kichenassamy and Véron [7], are called spherical p-harmonics.

Our paper is organized as follows: 1- Introduction. 2 The boundary Harnack principle.
3 Existence of singular solutions. 4 References.

2 The boundary Harnack principle
In this section we consider nonnegative solutions of
—div (|Du|p_2 Du) —d(z)uP"t =0 (2.1)

in a domain €2 which may be Lipschitz continuous or C2. The function d, is supposed to be
measurable and singular in the sense that it satisfies

ld(z)] < Colz —a|™” ae. €0 (2.2)

for some point a € 9 and some Cy > 0. By a solution of (2.1 ) vanishing on 9Q \ {a}, we
mean a u € C(Q\ {a}) such that Du € LP(K) for every K compact, K C Q\ {a} which
verifies

/ (|Du|p_2 Du.D¢ + d(m)u”_lcj) dr =0 (2.3)
)

for every ¢ € C*(Q), with compact support in Q\ {a}.

2.1 Estimates near the boundary in Lipschitz domains

Let © be a bounded domain in R with a Lipschitz continuous boundary. Then there exist
m > 1 and 79 > 0 such that for any Q € 9Q there exists an isometry Zg in RY and a
Lipschitz continuous real valued function ¢ defined in RN¥~1 such that

[6(2) — d(y)| < mlz —y| V(z,y) e RV xRV (2.4)

and
Bor (Q) N{z = (2, 2n) = (21, ..., zn) t xn > ¢(2')} = Lo (2N Bay (Q)) -

For any A € B, )N, A= (a’,¢(a’), r > 0 and v > 0, we denote by C4, ., the truncated
cone

Carny={x=0"2an) zn > ¢(d), v]2' —d| <azny —¢(a')} N B,.(4)

The opening angle of this cone is 6, = tan~!(1/7) Clearly, for every v > m and 0 < r < rg,
I 1(0 A,ry) is included into . Up to an orthogonal change of variable, we shall assume
that Zo = Id. We denote also by p(x) the distance from x to 9Q. The next result is a
standard geometric construction which can be found in [1]



Lemma 2.1 Let Q € 9Q and 0 < r < ro/5 and h > 1 an integer. There exists Ng € N de-
pending only onm such that for any points x and y in QN By, 2 (Q) verifying min{p(x), p(y)} >
r/2" there exists a connected chain of balls By, ...Bj with 7 < Noh such that

x € By, yeBj, BiNBiy1 #0 and 2B; C B2, (Q)NQ for 1 <i<j—1. (2.5)

Lemma 2.2 Assume u is a nonnegative solution of (2.1 ) in Ba,.(P) where |a — P| > 4r.
Then there exists a positive constant ¢1 depending on p, N and Cy such that

u(z) < cruly) V(z,y) € B.(P) x B.(P). (2.6)

Proof. By a result of Trudinger [15, Th. 1.1], if u is a nonnegative solution of (2.1 ) in

p such that

By, (P) there exists a constant C’ depending on N, p, r and H‘dl L (B2, (P))
e 2r

(2.6 ) holds. Furthermore C’ < Cyexp (C’gr

|d\1/pH ) where Cy and C; depend

Lo (B2 (P))
on N and p. This implies (2.6 ) since, by (2.2 ), r H\d|1/p

remains bounded by a
Lm(BZT(P))

constant depending on p and Cj. g

Up to a translation, we shall assume that the singular boundary point a is the origin of
coordinates.

Lemma 2.3 Assume Q is as in Lemma 2.1 with Q # 0 € 99Q, 0 < r < min{rg, |Q|/4} and
u s a nonnegative solution of (2.1 ) in Bar(Q). Then there exists a positive constant cg > 1
depending on p, N, m and Cy such that

u(z) < chu(y), (2.7)
for every x and y in Bs,/2(Q) N such that min{p(z), p(y)} = r/2" for some h € N.

Proof. By Lemma 2.1 there exists Ny € N* and a connected chain of j < Nyh balls B; with
respective radii r; and centers z;, satisfying (2.5 ). Thus

maxu < ¢1 n}lainu Vi=1,..,7, (2.8)

i i

by the previous lemma. Therefore (2.7 ) holds with ¢y = ¢}'°. O

Lemma 2.4 Let 0 < r < |Q| /4 and u be a nonnegative solution of (2.1 ) in B2, (Q) N
which vanishes on 0Q N B2, (Q). If P € 90N By(Q) and 0 < s < r/(1 +m) so that
Bs(P) C By (Q), there exist two positive constants d and cs depending on N, p, m and Cy
such that

z—p)°
T (2.9)

for all x € B4(P)NQ, where My p(u) = max{u(z) : z € Bs(P) N Q}.

u(z) < cs

Proof. Since 0f2 is Lipschitz, it is regular in the sense that there exists § > 0, s; > 0 such
that
meas (2°N Bs(y)) > Omeas (Bs(y)), Yy € IN, V0 < s < s7.



By [15, Th. 4.2] there exists § € (0,1) depending on p, N, Cp, € and s, such that for any
y € 012, there holds

§(1-7)
lu(z) —u(z")| < C (S> V(z,2") € Bs(y) NQ x By(y) N, (2.10)
S1
where C' depends on p, N, Cy and SUPp, (ynat = M, y(u). Because the equation is
homogeneous with respect to u, this local estimate is invariant if we replace w by u =
u/Ms, ,(u). Thus the dependence is homogeneous of degree 1 with respect to Mj, ,(u),
which implies

5(1—7)
lu(z) —u(z")] < C’ (31> M, 4 (u) V(z,2") € Bs(y) NQ x Bs(y) N Q. (2.11)

Taking 2/ = P =y, s = |x — P|, we derive (2.9 ). O

If X € By, (0)NOQ and r > 0, we denote by A, (X) the point with coordinates (2/, ¢(z')+
r). The next result is the key point in the construction. Although it follows [1], we give the
proof for the sake of completeness.

Lemma 2.5 Let 0 < r < min{2ro, |Q|/8,51,2°} and u be a nonnegative solution of (2.1
) in Ba(Q) N Q which vanishes on 0 N Ba,.(Q). Then there exists a positive constant cy
depending only on N, p, m and Cy such that

u(r) < cqu(A,2(Q)) Vo e B.(Q)NQ. (2.12)

Proof. The proof is by contradiction. We first notice from (2.9 ) that if P € B,.(Q) N 9N
verifies By(P) N Q C By, (Q) N Q and if ¢5 = (2¢3)'/?, there holds

1
M, e,,p(u) < 5 M, p(u). (2.13)

By Lemma 2.3, if y € Bs,/2(Q) satisfies u(y) > cguAT/Z(Q), it means that p(y) < r/2". Let
M > 0 such that 2M > ¢, (defined in Lemma 2.3), N = max{1+E(6+M Incs/In2), M +5},
so that 2V > 26¢M ) and ¢4 = c}. Let u be a positive solution of (2.1 ) vanishing on
Bs,-(Q) N OQ which satisfies

u(Yo) > & u(A,/5(Q)), (2.14)
for some Yy € B,.(Q) N Q. Then p(Yy) < r/2N. Let Qo € 9N such that p(Yp) = |Yy — Qo
Then

|Q —Qol < Yo —Qol +[Yo— Q| <r/2N +r <r(1+27°)

Therefore Qo € Bs,/2(Q) NN Set so = c2r/2V, then B, (Qo) C By112-542-6)(Q) C
Bs,./2(Q) because sy < 276 by the choice of N. Applying (2.13 ) with s = sy yields to

M, () > 2 M, jar o, () > 2Mu(Yo) > 2M b u(A, 2(Q)) > ) Tlu(A, 2(Q)),
since Yy — Qo| < r/2N = s5/c} and 2™ > cy. Hence we can choose Y; € By, (Qo) N
which realizes M, g, (u) and this implies that p(Y;) < r/2N¥+1. A point Q1 € 99 such that
p(Y1) = |Y1 — Q1] satisfies also

1Q— Q1] <1Q — Qol +1Qo — Q1| < r(1+27° +27°).



Now
M, j2.0,(w) = 2M M, joni1 g, (u) = 2Mu(Yr) > 2°M el u(A, 2(Q)) = 2V 124, 5(Q).

Tterating this procedure, we construct two sequences {Y;} of points such that p(Y;) <
r/28N and {Q} such that Qi € 0Q and |Q — Qx| < r(14+2(275+270+...+27°7F)) < 3r/2
and

u(Yy) > 2Nt A, 5(Q) Yk € N*.

Since Y3 € Bs, /o and p(Yy) — 0 as k — oo we get a contradiction with the fact that

Remark. The proof of the previous lemma shows that estimate (2.12 ) is valid for a much
more general class of equations under the form

—divA(z,u, Du) + B(z,u, Du) =0 (2.15)

where A and B are respectively vector and real valued Caratheodory functions defined on
Q x R x RY and verifying, for some constants v > 0 and ag, a;, Cy > 0,

A(z,r,9).9 > vql”,

|A(z, 7, q)] < aolgl’™ +ay [r[P7,

and
|B(z,7,q)] < Co |r[P~" |27,

for (z,7,q) € A x R x RV,

2.2 Estimates near the boundary in C? domains

From now we assume that Q is a bounded domain with a C? boundary. For any x € 052,
we denote by v, the normal unit outward vector to 02 at x. Let Ry > 0 be such that
for any x € 95, the two balls Br,(z — Rov,) and Bg,(z + Rov,) are subsets of  and Q¢
respectively. If P € 99, we denote by N,.(P) and N,.(P) the points P —rvp and = P+rvp.
Notice that r < Ry implies p(N,.(P)) = p(N,.(P)) = r.

Lemma 2.6 Let Q € 900\ {0}, 0 < r <min{Ry/2,|Q|/2} and u be a nonnegative solution

of (2.1)

in B2, (Q) N Q which vanishes on Ba,(Q) N ON. Then there exist b € (0,2/3) and cg > 0

depending respectively on N, p and Cy and N, p, Ry and Cy such that
t u(Ni(P)) _ et

or = uN, Q) 7

for any P € B.(Q)N9IN and 0 <t < rb/2.

(2.16)

Proof. Up to a dilation, we can assume that |Q)| = 1, since if we replace z by x/ |Q|, equation
(2.1 ) and the estimates (2.16 ) are structuraly invariant (which means that Cy and the C;
are unchanged), while the curvature constant Ry is replaced by R/ |Q| which is no harm
since € is bounded.

Step 1 The lower bound. For a > 0 and a > 0 to be made precise later on, let us define

e—a(|z—Nr/2(P)|/7’)a — e—a/2®

e—a/4* _ g—a/2%

v(z) = V(|z = Nppa(P)|) =




for & € B,./2(N,/2(P)) N B,;4(P). We set s = |z — N, jo(P)|. Since |Q| = 1, the function d
satisfies —Cj < d(z) < Co. Next

—div(|Dv[P72 Dv) 4+ Cov?t = — [V'P 2 ((p— V" + (N = 1)V'/s) + CoVP~ L.

Therefore this last expression will be nonpositive if and only if

@ - 1— o o o -1
(p—1) (aas +1- a) +1-N>Cy (ﬂ) ¥ er=Dals/)* 40 (e_a(s/r) — /2 )p
ra T.a
(2.17)
where § = p+ (1 — p)a. But § = 0 by choosing o = p/(p — 1), thus (2.17 ) is equivalent to

(p—1) (aaso‘ +1- a) +1-N>G (“O‘)l*p (1 _ ea<1/4“71/2a>)”’1 _

,roz rrll

Ifr/4a<s<r/2<1/4,

(p—l)(mj +1—a> +1-N>(p—1) (Z—g—i—l—a)—kl—N:Z—z—N,
r
while
(%)1‘17 (1- ea<1/4%1/2">)p‘1 < (E)l"’ < a7,
/rOt - /}n(! -
Therefore, if we choose a such that
@} (G5 = N) = o, (2.18)

we derive R

—div(|Dv[P "% Dv) + CovP~ 1 <0 (2.19)

in B, /2(Ny/2(P))NB, 4(P). Furthermore p(x) > r/16 for any x € 9B, /4(P)NB, j2(N,/2(P)),
therefore
u(@) 2 ¢ u(N, j2(P))v(), (2.20)

by Lemma 2.3 and since v < 1. Because u is a supersolution for (2.19 ), we obtain that
(2.20 ) holds for any = € B,./4(P) N B, /2(N,/2(P)). Finally

L e (s/r))

C'(a,a)t
’U(il') = e—a/4™ _ p—a/2% .

r

> Cla,a)(1—(1—=2t/r)*) >

if x = N¢(P) with 0 <t < r/2. This gives the left-hand side of (2.16 ).

Step 2 The upper bound. Let b € (0,2/3] be a parameter to be made precise later on. By
the exterior sphere condition, Bsy,.(N3,5(P)) C Q°. Let ¢1 be the first eigenfunction of the
p-Laplace operator in B3 \ B; with Dirichlet boundary conditions and A; the corresponding
eigenvalue. It is well known that ¢ is radial. We normalize ¢; by ¢1(y) = 1 on {y : |y| = 2}
(notice that ¢ is radial) and set

afo) = on (=),
thus N
~div (IDénl"* Doy ) = ol



in Bz (Npp(P)) \ Bry(Nyp(P)) and vanishes on the boundary of this domain. For b small
enough Al/(rb)p >1+ CO for any r € (0,1/2], thus

—div (IDl"~> Dy ) — Cosly " > 67! (2.21)
in QN Bz (Noo(P)) \ Bros(Nyp(P)) 2 QN Bayy (Nop(P)) while u verifies
—div (\Du|p‘2 Du) — CouP™1 <0 (2.22)
in the same domain. We can also take b > 0 such that Bay, (N, (P)) C B,(Q), thus

u(z) < cau(Ny2(Q))

for 2 € OBy, (N;5(P))NQ by Lemma 2.5. Now the function ¢, = cau(Ny2(Q))dry satisties
(2.21) in QN Baoyp(Np(P)) and dominates u on 9(Q N Bayp(Npp(P))) = (0Bars(Nop(P)) N
Q) U (Bayp(Npp(P)) N OQ). By the Diaz-Saa inequality [4]

. 7 p—2 it
div (\Du|pf2 Du) div (‘D¢rb D¢rb> )
/ — (uP — ¢P)) 1 dx <0,
QN Bary (Nrp (P))

wt My
valid because (u? — ¢?,)+ € Wy (N By (Nyp(P))). Therefore

/ (w? — @) da < 0,
QN By, (N (P))

from which follows the inequality u < ¢y in QN Bayy (N, (P)). In particular

() < cxon (D ZEEN) o, o).

Since ¢1(s) < C(s —1) for s € [1,2], we obtain the right-hand side of (2.16 ). O

The main result of this section is the following

Theorem 2.7 There exists two constants a > 0 and c; > 0 depending on N, p, Cy and N,
p, Co and Ry respectively such that if u is any nonnegative solution of (2.1 ) vanishing on
o0\ {0} there holds

L p(@)[al* " u(4) < u(a) < erple) o] u(4) (2.23)

for any x € Q, where A is a fized point in Q such that p(A) > Ry.

Proof. Step I: Tangential estimate. Let € Q such that |z| = 2r < R and p(x) =t < br/2.
Let Q € 092\ {0} such that |Q| = |z| and = € B,(Q), the previous lemma implies

2 266

p(@)u(Nr2(Q)) < u(x) < —p(x)u(Ny/2(Q))- (2.24)

¢ || E

There exists a fixed integer k > 2 such that we can connect two points lying on 9Bs,.(0) NI
by k connected balls B; (j = 1,..., k) with radius r/4 and center on 0B2,(0). In particular



we can connect N, /5(Q) with No,.(0) = =271 and all the balls can be taken such that the
distance of their center to 9 be larger that /2. Since by Lemma 2.2 there holds

supu < crinfu Vj=1,..k,
B B;
we derive

2 2ckc,
(N2, (0) < ulw) < 2L,
cice |z |z|

Let AO = —Rol/o, b1 = —27‘1/0 = N27~(0)’ for ¢ > 2, b[ = —2(1 + 3(2271 - 1)/2)TVO and
re = 271, Applying again Lemma 2.2 in Ba,.,(bs) C €, we have

(2)u(N2,(0)). (2.25)

sup u<e¢; inf uw V=1,2,.. (2.26)
By, (be) Br, (be)

Let 7 be the solution of
In(Ry+r) —In3r
In2

and o = E(7) + 1, then Ay € By, (bs,), and the combination of (2.25 ) and (2.26 ) (applied
£y times) yields to

2143027 —1)/2)r =Ry <=1 = +1

1 ckHOcG
—— p(z)u(Ay) < u(z) < 2
cllf+e006 ‘x|p( ) ( 0) < u( )_

p(x)u(Ao)- (2.27)

||

Since r < Ry/2, the computation of 7 yields to

Incy/In2

2

o M) B g o ()"
3r r r

This implies (2.23 ) with o =1ne¢;/In 2.

Step 2: Internal estimate. If x € (2 satisfies |x| < Ry and p(z) > b/4 absz, we can directly
procede without using Lemma 2.6. Using internal Harnack inequality (2.6 ) and connecting
2 to N,-(0) and then to Ay we obtain

cl |z w(A) < u(x) < crlz|” % u(A), (2.28)
7

from which (2.24 ) is derived since p(z) > b|z| /4. Finally, if |2| > Ro and p(z) < Ry, we
can replace the singular point 0 by a regular point B € 99 such that |x — B| < Ry. The
previous procedure leads to the same estimate. At end, if p(x) > Ry we apply again the
internal Harnack inequality (2.6 ). Since Q is bounded, x and Ay can be joined by at most
d = 2diam (Q)/Ry balls B; with radius Ry/2 and center b; satisfying p(b;) > Ry. Then
using d times (2.6 ) yields to (2.24 ). O

Remark. If p = 2 and d is regular, it is proved that Lemma 2.6 holds even if 92 is Lipschitz
continuous. The previous proof is adapted by replacing the doubling property of the radius
on the connecting balls By, (by) by radii such that .41 = fBr, where § > 0 depends on the
opening of the standard cone C' associated to the inside cone property of Q2. This observa-
tion shows that in the general case p # 2 and d singular, the validity of Lemma 2.6 implies
Theorem 2.7 when €2 is a bounded domain satisfying the inside cone property.



Remark. In the case p = 2 and lim,_ |z|> d(z) = 0 the value of a is known and equal to
N — 1. When p # 2 the value of « is unknown, even in the case where d = 0.

The next result is a consequence of the method used in the proof of Theorem 2.7.

Theorem 2.8 Let u € C1(Q\ {0}) be a positive solutions of (2.1 ) vanishing on Bag, N
(0Q\ {0}). Then there exists a constant cg > 0 depending on p, N, Cy and Ry such that

Tu(y) _ ulx)
co p(y) ~ plz)

u(y)

= p(y)

< co—2, (2.29)

for every x and y in Br,(0) N Q satisfying |y| /2 < |z| < 2|yl
Proof. By (2.25 ) we have

=
ﬁ\

1 u(z
——u(N;,(0)) < —= < —u(N,(0)).
for any 2 € Q such that |z| < Ro/2 and p(x) < b|z| /4. If we assume that = € QN Bp, /2(0)
verifies |z| < Ro/2 and p(x) > b|x| /4 we can connect x to N, (0) by a fixed number n of
balls of radius b |z| /8 with their center at a distance to 9 larger than b|z|. The classical
Harnack inequality yields to

LNy (0)) < () < u(N (0)).

7

Since p(x) < |z| < p(x)/b, we obtain, for any = € Bg,/2(0) N €,

1 c

TP @M (0) < (@) < Cho(@)u(Nia) (0)) (2.30)

where cg depends on p, N, Cy and Ry. By Harnack inequality, we can replace u(N,(0)) by
u(Ns(0)) for any |z| /2 < s < 2]z| and get

: ()u(Ns(0)) < u(z) < %p(JC)U(Ns(O))- (2.31)

p
crcs |z

If y € Bp,/2(0) NQ satisfies |x| /2 < |y| < |z|, we apply twice (2.31 ) and we get (2.30 ) with
2.2
cyg = CiC§. U

Another consequence of this method and of Lemma 2.2 and Lemma 2.5 is the

Theorem 2.9 There exists a constant ¢y depending on N, p, Co and Ry such that any
u € CHQ\ {0}) be a positive solutions of (2.1 ) vanishing on Bag, N (0Q\ {0}) verifies

u(z) < cyu(N,.(0)) (2.32)
for every 0 <r < Ro/2 and any x € QN B, (0) \ B,/2(0).

Remark. Since Lemma 2.2 and Lemma 2.5 are valid in Lipschitz continuous domains and
the construction of connected chain of balls too by Lemma 2.1, the above inequality remains
valid if € is Lipschitz continuous.

The next result is known as the boundary Harnack inequality.
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Theorem 2.10 Let Q € 9, 0 < r < min{Ry/2,|Q|/2}, and uy and uz be two nonnegative
solutions of (2.1 ) in Bar(Q) N Q which vanish on Bz, (Q) N ON. Then there exists c19 > 0
depending respectively on N, p and Cy such that

Lul(a:) us () . up(x)
c10 u1(y) = uz(y = loul(y

(2.33)

for any z,y € B.(Q) N .

Proof. If x € B,.(Q)N<Q satisfies p(x) < br/2, we denote by P, = P the unique projection
of z on 90 and put t = p(x). By (2.16 ),

t w;(x) cel
. e < (2.34)
1 w(e) up(x <2 W@ (2.35)

Eur(N,2(Q) = 1N, 2(@Q) = Cur (N, 2(Q))

from which (2.33 ) is derived with a first constant c19 = cg. Next, if x € B,.(Q) N satisfies
p(x) > br/2, we denote 3 = 2+ E(—1Inb/In2), thus p(z) > r/2°. By Lemma 2.3

@) < .

1<
cgi

for i = 1,2. Therefore (2.35 ) holds with ¢Z replaced by cg. Finally (2.33 ) is verified with
10 = max{cd, 27}, O
The next result is another form of the boundary Harnack inequality

Theorem 2.11 Let u; € CYH(Q\ {0}) (i = 1,2) be two nonnegative solutions of (2.1 )
vanishing on Bag, N (OY\ {0}). Then there exists c11 > 0 depending respectively on N, p
and Cy such that for any r < Ry

uy (x) o ((ur(z)
S : QN (B-(0)\ B,/2(0) ) < f : QN (B-(0)\ B,/2(0) ).
sup (15 2 € QN B0\ Brya(0)) < cnvint (24500 € 00 (5,(0)\ Brya(0)
(2.37)
Proof. Applying twice Theorem 2.8, we get
%Ul () _ ua(2) _ 2 (fv)’ (2.38)
cgur(y) — uz(y) u1(y)
for any x and y such that |z| /2 < |y| < 2 |z|. Equivalently
%U&(x) S Ul(y) S CS ul (x)7 (2.39)
cg uz(z) = ua(y) us(x)
which the claim with ¢1; = cg. O

2.3 The set of singular solutions

We still assume that Q is a bounded domain with a C? boundary containing the singular
point 0. We introduce the following assumption on the function d.
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Definition 2.12 A measurable function d satisfying (2.2 ) with a = 0 € 9Q is said to
satisfy the local comparison principle in Q if, for any € > 0 and any u; € C1(Q,) (i =1,2)
nonnegative solutions of (2.1 ) in Q. = Q\ B.(0) which vanish on 0*Q. = 92\ B(0),
uy(x) > ug(x) on QN OB(0) implies uy > ug in €.

Clearly, if d is nonpositive it satisfies the local comparison principle. However there are
many other cases, depending either on the value of Cj or the rate of blow-up of d near 0
which insure this principle.

Theorem 2.13 Assume d satisfies the local comparison principle and there exists a non-
negative nonzero solution u to (2.1 ) in Q which vanishes on OQ\ {0}. If v is any other
nonnegative solution of (2.1 ) in Q vanishing on OQ\{0} there exists k > 0 such that v < ku.

Proof. Since any nontrivial nonnegative solution is positive by Harnack inequalities we can
assume that both u and v are positive in 2. We denote by H the set of h > 0 such that
v < hu in £ and we assume that H is empty otherwhile the results is proved. Then for any
n € N, there exists z,, € Q such that v(z,) > nu(z,). We can assume that z,, — £ for some
€ € Q. Clearly ¢ € Q is impossible. Let us assume first that & € 9Q \ {0} and denote by &,
the projection of x,, onto 0€2. Thus

’U(xn) B v(fn) u(xn) B u(fn)

o) " G
Because u and v are C* in Q\ {0},
. v(En) —v(&n) _ @ o u(@n) —uén) _ 87'“
ATy e (§) and  Tim plzn)  Ove (©):

Since Hopf boundary lemma is valid (see [14]), the two above normal derivative at £ are
negative, which leads to a contradiction. Thus we are left with the case z,, — 0. Set
rn = |Zn|. By Theorem 2.11

_ v(z _10(xy _
mf{uix; x| = rn} > et (%n) >cin

By the local comparison principle assumption, v > ncl_llu in Q, . This again leads to a
contradiction. O

The next statement is useful to characterize unbounded solutions

Proposition 2.14 Assume u is a nonnegative solution of (2.1 ) vanishing on 02\ {0},
unbounded and without extremal points near 0. Then

ol u(x)
2=0  p(z)

= 0. (2.40)

Proof. Assume that (2.40 ) is not true. Then there exist a sequence {s,} converging to 0
and a constant M > 0 such that

ST

Therefore sup {u(z) : |x| = s,} < M. Because u has no extremal points near 0, say in B, (0)
for some sy > 0, the maximum of u in QN (B, (0) \ Bs, (0)) is achieved either on |z| = s
or on |z| = s,. Therefore

max{u(x) : x € QN (Bs,(0) \ Bs, (0))} < max {M,max{u(z):x € QNIBs,(0)}} = M.

12



Since this is valid for any n, it implies that u is bounded in €2, contradiction. O

Such a solution is called a singular solution. The next result, which extends a previous
result in [2], made more precise the statement of Theorem 2.13.

Theorem 2.15 Assume d satisfies the local comparison principle and there exists a positive
singular solution u to (2.1 ) in Q vanishing on 9Q\ {0}. Assume also either 1 < p <2 and
d >0, orp> 2, u admits no critical point in 0 and

i it P

m it (@) > 0. (2.41)

If v is any other positive solution of (2.1 ) in Q vanishing on OQ\ {0} there exist k > 0 such
that v = ku.

Proof. Let us assume that v is not zero. By Theorem 2.13 there exists a minimal k£ > 0
such that v < ku. As in the proof of Theorem 2.13 the following holds:

(i) either the graphs of v and ku are tangent at some & € Q. If we set w = ku — v, then
w(§) =0, and
—Lw—Dw=0 (2.42)

where £ is a linear elliptic operator and D = d(z)(kP~1uP~! — vP~1)/w. Since ku(¢) =
v(€) > 0, D is locally bounded near £. If p > 2 and u admits no critical point in Q, £
is uniformly elliptic ([5], [2] for details in a similar situation). Thus the strong maximum
principles holds and w is locally zero. Since € is connected w = 0 in Q. If 1 < p < 2, the
strong maximum principle holds to and we have the same conclusion.

(ii) either the graphs of v and ku are not tangent inside , but tangent on 9\ {0}. Since the
normal derivatives of ku and v at £ coincide, £ is uniformly elliptic. If p > 2 the coefficient
D is locally bounded. If 1 < p < 2 this is not the case but D remains nonnegative. In
both case Hopf maximum principle applies and yields to Ow/dve(€) < 0. This is again a
contradiction.

(iii) or v < ku in Q, Ov/Ov > kdu/Ov on N\ {0} and there exists a sequence {x,} C Q
converging to 0 such that

lim v(@n)
n—oc u(zn)

=k.

Furthermore we can assume that
v(En) v(x) B .
wzn) SuP{u(x) Dl =] =

Put a,, = max{u(z) : |x| = r,}. By Theorem 2.9 there exists cj > 0 depending on N, p, Cj
and Rg such that

uw(N,, (0)) < ap, < cyu(N,, (0)), (2.43)

which implies
max{u(z) : r,/2 < |z| < 2r,} < chan,. (2.44)

We set up,(z) = u(rpx)/an, va(z) = v(rpz)/ay, and d,,(z) = r2d(r,z). Then both u, and
v, are solutions of
—div (|Df|p*2 Df) —dy P =0

in Q, = Q/r, and vanish on 09, \ {0}. By (2.44 ), u,, and v,, are uniformly bounded in
Q= Q, N (B2(0) \ By/2(0)). Since 9y, N (B2(0) \ By/2(0)) is uniformly C? we deduce by
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the degenerate elliptic equations theory [9] that, up to subsequences, u,, and v,, converge in
the C},.(Q, N (B2(0) \ B1/2(0)))-topology to functions U and V which satisfy

~div (|Df|”*2 Df) Pl =0

in H N (B2(0) \ B1/2(0))), where H is the half space {n € RY : n.yy < 0} and dos is some
weak limit of d,, in the weak-star topology of L>°. Moreover, if p > 2, (2.41 ), jointly with
(2.43 ) and (2.44 ), implies that
rn Du(r,x)
|Duy, (7)] = ———= > 7 (2.45)

Qn
for 2/5 < |z| < 8/5, where v > 0. We put
Ly, = inf{v(gj) Vel = x| = rn} <k
u(z)

and &, = x,,/r,. Up to another choice of subsequence, we can also assume that ¢, — £ and
&n — € with § = 1. Furthermore V < kU, V(§) = kU (§) and, if £ € 9OH N (B2(0)\ By /2(0))),

ov 1 ou

87V0(£) = afyo(f) <0.

In this case, and more generally if the coincidence set = of V and kU has a nonempty
intersection with OH N (B2(0) \ B1/2(0))), Hopf boundary lemma applies and implies that
V = kV in the whole domain. If this is not the case we use (2.45 ) to conclude again by the
strong maximum principle that V' = kU in H N (B2(0) \ B12(0))). Therefore £ = k and for
any € > 0 there exists n. € N such that n > n. implies

(k —eu(z) <wv(z) < ku(z) VreQnadB,, (0).

By the local comparison principle the same estimate holds in €, . Since this is valid for any
n and any €, we conclude that v = ku. O

3 Existence of singular solutions

3.1 Separable solutions

The existence of N-dimensional regular separable p-harmonic functions associated to cones
is due to Tolksdorff [14]. Extension to singular function is proved in [18]. These solutions
are obtained as follows: Let (r,0) € Ry x SV=1 be the spherical coordinates in RN and
S c SN=1 g smooth spherical domain. Then there exists two couples (vs,vs) and (Bs, ds),
where s and Bs are positive real numbers and s and ¢g belong to C?(S) and vanish on
0S8, such that

Us =17"5g and Vg =r PS¢g, (3.1)

are p-harmonic functions in the cone Cs = {(r,0) : r > 0, 0 € S}. These couples are unique
up to homothety over g and ¢g. Furthermore the following equation holds

~div ((an? + [Vnf*)0=2/2Vn) = Aa)(a®n? +[Vnf*) =2/ in S
n=0 ondS.

(3.2)
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where AM(a) = ala(p— 1) +p — N) if (a,n) = (Bs, ¢s), and A(a) = ala(p — 1) + N —p) if
(a,n) = (vs,9s)-

If p # 2 and N # 2, 75 and (g are unknown except if S = SiV*l = SN-1n{r =
(#',xNn) : xx > 0 € RV}, in which case 75 = 1 and g = zy. If N = 2, equation (3.2 )
is completely integrable and the values of the g and (s are known ([8], [7]). When p # 2,
the existence of solutions to (3.2 ) is not easy since this is not a variational problem on S.
Tolksdorff’s method ([14]) is based upon a N-dimensional shooting argument: he constructs
the solution v of

r p—2 _ . 1 _ . >
{ div (|Dv| Dv) 0 in Cg=Csn{z:|z|>1} (3.3)

v=(2—|z])+ on OCL.

Then he proves, thanks to an equivalence principle, that the function v stabilizes at infinity
under the asymptotic form v(z) ~ |z| ™ ¢(z/ |z|), with B > 0, which gives (3.2 ) and the
function Vg. The domain S characterizes the exponent 3. The same argument applies if
(3.3 ) is replaced by

cuP~1

/"

—div (|Dv|pi2 Dv) + =0 in C¢=Csn{x:|z|>1}
(3.4)

v=(2—|z])+ on OCL.

with ¢ > 0. This gives rise to a solution of (3.4 ) in Cs under the form Vg, = r~PBe.sy where
Be,s > 0 and

—div ((502,5772 - IVHIQ)(”’Q)/QW) + Pl = MBe,s) (B2 g% + V) P=2/2y in S

n=0 ondSs.
(3.5)
With these considerations we can construct singular solutions of (2.1 ) under a very restric-
tive geometry for €2, where S = Sfrv ~1. the upper half unit sphere.

Theorem 3.1 Assume d(x) = —c|z|™? with ¢ > 0 and Q is a bounded domain with a C*?
boundary containing 0. Assume also OS) is flat in a neighborhood of 0 and x.vo < 0 for
any x € Q. Then there exists a positive solution of (2.1 ) which vanishes on O\ {0} and

satisfies
8 N
lilr)n || syt u(x) = n(o) (3.6)
o/lel = o

uniformly for o € Sivfl, where 1 is a positive solution of (3.5 ).

Proof. Since  is located on one side of the hyperplane A = {z : z.1ry = 0}, the restriction
_B _
to 2 of the function ‘/cﬂsi\f—l tx e | syt n(x/ |z|) is a singular solution of

—div <|Dv|p72Dv) + < WP ?u=0 (3.7)

"

which vanishes on A N 9Q \ {0} and is positive on Q\ H. Let K = max{‘/c’sil—l(l’) RS
O\ A}. Then ‘/C7Sjr\f—1 — K is a solution (or a subsolution if ¢ > 0). For any € > 0 let u, be
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the solution of

C

v luel’ 2uc =0 inQ\ B(0)

—div (|Due\p_2 Due) +

|
ue =0 on 90N BE(0) (3.8)
Ue = Vc-,Sf’l on Q2N 0B(0).

Then ‘/;7Sf—l - K <u. < ‘/C7Sjr\7—1 and the mapping € — wu, is increasing. Therefore u,

converges to u in the C} (Q\ {0}) topology and u is a solution of (2.1 ) which vanishes on
o0\ {0} and satisfies (3.6 ). O

Remark. If N = p the set of p-harmonic functions is invariant under the Moebius group,

and in particular under the transformation x — Z(z) = z/ |z|> which preserves Cg. In such

a case fgn-1 = 1. By using the transformation Z it is possible to prove (see [2]) that there
+

exist positive N-harmonic functions in any bounded domain 2 having a singularity at a
point a of the boundary and vanishing on 9Q \ {a}.

Remark. When p = 2 it is possible to prove the existence of a singular solution to

—Au+d(z)u=0 in
{ u=0 01(1 gQ\{a} (3.9)

where a € 09, for any C? domain Q and any d locally bounded in €\ {a} such that

—o0 < liminf |z — al’ d(z) <limsup |z — a|® d(z) < N?/4.

r—a

We conjecture that such a result holds for (2.1 ) and p # 2 although the precise upper limit
as & — a of |z — al d(z). We believe that at least if N > p and limsup,__, |z — a|* d(z) <
((N —p)/p)P, (the Hardy constant for W1 in RY), such a singular solution do exist.
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