Self-similar solutions of the p-Laplace heat equation: the fast
diffusion case*
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Abstract

We study the self-similar solutions of the equation
ur — div(|Vul’ > Vu) = 0
inRVY, N>1,pe(l, 2). We provide a complete description of the signed solutions of the form
u(a, ) = ()" Puw((£) " [a))

with o, 3 € R, B # 0, regular or singular at z = 0, and possibly not defined on whole RV x

(0, £00) .
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1 Introduction and main results

In this article we study the existence of self-similar solutions of the degenerate parabolic equation
involving the p-Laplace operator in RN, N > 1,

w—div(|[VulP~? Vu) = 0, (E,)

with 1 < p < 2. In the sequel we set
p

thus 6 > 1. Two critical values P, Py are involved in the problem, see for example [10]:

2N
N+1’

ON

P =
1 N+2’

P =
they are connected to § by the relations

N
p>P <= §>N, p>P2<:>5>E.

If u(x,t) is a solution then for any o, 8 € R, uy(z,t) = A*u(\z, \’t) is a solution of (E,) if and
only if
B=p—Q2-pa=(2-p)0—-a) (1.1)

thus 8 > 0 <= a < §. For given a € R such that « # J, the natural way to construct particular
solutions is to search for self-similar solutions, radially symmetric in x, of the form:

uw=u(z,t) = (e6t) " Bw(r), r=(eft)" VP ||, (1.2)

where ¢ = +1. By translation, for any real T, we obtain solutions defined for any ¢ > T when
ef >0, or t <T when ¢8 < 0. The hypersurfaces {r = constant} are of ”focussing” type if 3 > 0
and ”spreading” one if 3 < 0. We are lead to the equation

_ r N-—-1 _
(|w"p 2w') +— || 2w'—|—€(rw'+aw) =0 in (0,00). (E,)
r

Furthermore, if we look for solutions of (E,) under the form
u = Ae Hw(r), r = Me P/ |g|, >0,

Then w solves (E,,), provided M = §/a and A = (67 /a?~ 1)/ 2=P) where o > 0 is arbitrary. This
is another motivation for studying equation (E,,) for any real a.

In the huge litterature on self-similar solutions of parabolic equations, many results deal on
positive solutions u defined and smooth on RY x (0,00) . Equation (E,) was studied in [16] when



a > 0, e = 1 with that topic. In our work we provide an exhaustive description of the self-similar
solutions of equation (E,,), possibly not defined on whole (0, c0), with constant or changing sign. In
particular for suitable values of o, we prove the existence of solutions w oscillating with respect to 0
as r tends to 0 or co, or constant sign solutions oscillating with respect to some nonzero constant.
Our main tool is the reduction of the problem to an autonomous system with two variables and
two parameters: p and a. We are lead to a problem of dynamical systems, which we study by
phase-plane techniques. When p = 3/2, this system is nearly quadratic, and many devices from
the theory of algebraic dynamical systems could be used. In the general case such structures do
not exist, then we use energy functions associated to the system. The behaviour of the solutions
presents a great diversity, according to the possible values of p and a.

In the sequel we set

_N-p
77 - p— 1 I
thus n > 0if N > 2, and n = —1 if N = 1. Observe the relation which connects 7, and N :
60— N N —
p—1 2—-p

1.1 Explicit solutions

Obviously if w is a solution of (E, ), then also —w. Many particular solutions are well-known.

(i) The infinite point source solution U,,. The simplest positive solutions of equation (E,),
which exist for any « such that (6 — N)(d — a) > 0, are given by

w(r) =02, (1.4)

where Ut
(= (@P*%) e > 0. (1.5)
They correspond to a unique solution u of (E,) called Uy in [8], singular at x = 0, for any [¢| > O:
Uso(z, ) = (S—ﬁ,)l/@p), C=2-po*tB-N). (1.6)

(i) Case o = N. Then the equation (E,) has a first integral
w4 er? |w'|p_2w' =Cr N, (1.7)
All the solutions corresponding to C' = 0 are given by
/ 75/ !
’u):’wa(T)::l:(&(sil’l“p +K) ! ,

—(p—1)/(2—
) (-1)/( p)’ K cR, (1.8)

u=tug(z,t) = (eBnt)~N/BN (65_1(5ﬂNt)_p//ﬁN |x|p/ + K



with 8 = vy = (N + 1)(p — P1). For p > P;,e = 1, K > 0, the solutions are usually called
Barenblatt solutions, see [3]. For given ¢ > 0, the function ug 1, defined on RY x (0,00), is the
unique solution of equation (E,) with initial data w(0) = cdy, where &y is the Dirac mass at 0,

where K is determined by / ug (x,t)dt = ¢, see for example [19]. Moreover the ug (K > 0) are

RN
the only nonnegative solutions defined on RY x (0,00), such that u(z,0) = 0 for any = # 0, see
[14]. In the case K = 0, we find again the function U given at (1.4), and Uy is the limit of the

functions ug 1 as K — 0, that means ¢ — oo.

(ii) Case o = n. We exhibit a family of solutions of (E,) :

w(r)=Cr™", u(t,z) =Clz|™"=C \x](p_N)/(p_l) , C #0, (1.9)
The solutions u, independent of ¢, are the fundamental p-harmonic solutions the equation when
p > P.

(iii) Case a = —p'’. Equation (E,,) admits solutions of the form
w(r) = +K (N(Kp’)p*2 + erp/) . u(n,t) = £K (N(Kp’)pfzt te |x|p’) . K>0. (110)
and the functions u are the only solutions of the form v (t) + ®(|z|) with ® nonconstant. They have

a constant sign when € = 1, and a changing sign when ¢ = —1.

(iv) Case a = 0. Here equation (E,,) can be explicitely solved: either w’ =0, thus w =a € R, u
is a constant solution of (E,, ), or there exists K € R such that

C\-Yen
| = r-M 1) (K + 5y ,  HI#EN, (1.11)
(35 (K +elr) "G, if 9= N,

which gives w by integration, up to a constant, and then u(z,t) = w(|z| /(ept)*/P).

(v) Case N=1and a= (p—1)/(2—p) > 0. Here again we obtain explicit solutions:
w(r) ==+ (eK(r — (Ka)?™')™", u(z,t) = + (eK(|z] — e(Ka)P~ )™, K > 0.

Observe that all the functions w above are defined on intervals of the form (R,0),R > 0 if ¢ = 1,
(0,9),S <ooife=-1.

Remark 1.1 When a = 0, equation (E,,) is invariant under the transformation uy(z,t) = Au(Ax,t);
searching solutions of the form u(z,t) = \x]_(S P(t), we find again the function Us.



1.2 Different kinds of singularities

Consider equation (E,). It is easy to get local existence and uniqueness near any point 71 > 0,
thus any solution w is defined on a maximal interval (R, Sy), with 0 < R, < S, < o0; and in
fact S, = oo when € = 1, and R, = 0 when ¢ = —1, see Theorem 2.5. Returning to solution u of
equation (E,) associated to w by (1.2), it is defined on a subset of R\ {0} x (0, £00) :

Dy, = {(m,t) sz e RN eft > 0, (eBt) /PR, < |z] < (eﬂt)l/ﬂSw} )

When w is defined on (0,00), then u is defined on R\ {0} x (0, £00).

(i) Regular solutions Among the solutions of (E,,) defined near 0, we also show the existence
and uniqueness of solutions w = w(.,a) € C? ([0, S,)) such that for some a € R,

w(0) = a, w'(0) = 0, (1.12)

called regular solutions. Obviously, they are defined on [0,00) when ¢ = 1. If w is regular, then
Dy = RN x (0,400), and u(.,t) € C! (]RN) for t # 0; we will say that u is regular; this does
not imply the regularity up to t = 0: indeed u presents a singularity at time ¢ = 0 if and only if
0 < a < 4. In the sequel we shall not mention the trivial solution w = 0, corresponding to a = 0.

(ii) Singular solutions If R, = 0, and w is not regular, then u presents a singularity at z = 0
for t # 0, called standing singularity. Using the terminology of [17] and [8], for such a solution, we
say that = 0 is a weak singularity if x — w(|z|) € L}, (RY), or equivalently u(.,t) € L}, . (RY)
for t # 0; and a strong singularity if not. If u has a strong (resp. weak) singularity, and
limg o u(t,z) = 0 for any x # 0, u is called a strong (resp. weak) razor blade. If u(.,t) € L* (RY)

for t #£ 0, u is called integrable.

(iii) Solutions with a reduced domain If R,, > 0 or S,, < 0o, we will say that v and w have a
reduced domain. Then D,, has a lateral boundary of the form %, = {|z| = C(eﬂt)l/ﬂ}, of parabolic
type if 8 > 0, of hyperbolic type if 3 < 0, and u has an explosion near X,,. We precise the blow-up
rate, of the order of d(z, t)_(p_l)/(2_p), where d(z,t) is the distance to X, at Proposition 2.20.

1.3 Main results

Let us give a summary of our main results, expressed in terms of function u, and, for simplicity,
we avoid the particular cases (for example N = 1, or « = 0, or p = P;) and do not mention the
existence of solutions with a reduced domain, although there exist many such solutions. All of them
and the detailed results in terms of function w can be found inside each section. An important
critical value of « is involved:

(N —-95)
(p—1)(26 = N)’
it appears when € =1, p > P, and then o* > 0, or ¢ = —1, p < P, and then o* < 0.

a* =0+

(1.13)



Remark 1.2 In order to return from w to wu, consider any solution w of (E,,) defined on (0,00),
such that for some X >0 and p € R, lim,_or*w = ¢ # 0 and lim,_or*w = ¢ # 0. Then

(i) For fized t, u has a singularity in x|~ near x = 0, and a behaviour in |z| ™" for large |z|. Thus
x =0 s a weak singularity if and only if A < N, and u s integrable if and only if A\ < N < p.

(ii) For fized x # 0, the behaviour of u near t = 0, depends on the sign of (3:
lim || 1) @=B y(x,t) = C # 0 if a < 6, lim |z ¢ NPz, t) = C £0if 6 < a

(i) Solutions defined for t > 0

Here we look for solutions u of (E,) on RY \ {0} x (0, 00) of the form (1.2). That means 3 > 0,
or equivalently € = 1, v < 0 (see Section 3) or ¢ = —1,d < « (see Section 4). We begin by the case
€ = 1, and discuss with respect of the sign of p — P;. For the proofs, see Theorems 3.2, 3.5 and 3.7.

Theorem 1.3 Assume e = 1,—00 < a <6, and p > P; (N > 2). Then Uy, is a solution on RY
\ {0} x (0,00), it is a strong razor blade. There exist also positive solutions with a strong singularity
in ||, and limy_g |z|*w =L > 0 (for x # 0). For o < N, any function u(.,t) has at most one
zero at time t.

(1) For o« < N, the regular solutions on RN x (0,00) have a constant sign, are not integrable,and
they are solutions of (E,) with initial data L|z|”% € L}, (]RN). There ezist positive integrable
razor blades, with a singularity in |x|~". There exist also positive solutions with a weak regularity
in |x| 7", with limy_o |z|*w = L (in particular if o = n, then uw = C'|z|™"). There exist solutions
with one zero and a weak or a strong singularity.

(2) For a = N, the regular (Barenblatt) solutions have a constant sign and are integrable. There
exist solutions with one zero and a weak singularity.

(8) For N < a, the regular solutions have at least one zero. If a < o, then any solution has a
finite number of zeros. If N < o, there exists & € (a*,d) such that if & < «, the regular solutions

are oscillating around 0 for large |x|, and r’w is asymptotically periodic in Inr; and there exists
precisely a solution u such that r®w is periodic in Inr.

Theorem 1.4 Assumee =1,—00 < a < 6, and p < Py. Then the reqular solutions on RY x (0, 00)
have a constant sign, are not integrable, and are solution of (E,) with initial data L|x|™® €
L},. (RN). There is no other solution on RY \ {0} x (0, 00) .

Observe that if a > 0, all the solutions w tend to 0 at oo, whereas if o < 0, some of the solutions
are unbounded near co. Next we come to the case ¢ = —1, which is treated at Theorems 4.1 and
4.2.



Theorem 1.5 Assume ¢ = —1, § < o, p > P (N > 2). There is no regular solution on RY x
(0,00) . Besides function Us, which is a strong razor blade, there exist positive integrable razor

blades, with a singularity in |z|™", and positive solutions with a strong singularity in |xz|~%, and
lim; o |2|* u = L.

Theorem 1.6 Assumee = —1,0 < a, p < Py (N > 2). There is no regular solution on RN x (0, 00).
There exists a positive solution on RN \ {0} x (0,00) with a singularity in |x|~% (a strong one if
and only if N < ), and lim;_,o |z|* u = L.

Remark 1.7 Weak singularities can occur even if p > Pi. For example, the solutions u(t,z) =
Cla|™ = C|z|PM/®D (N > 2) given at (1.9) have a weak singularity. There even exist
positive solutions u with a standing singularity, and integrable, see Theorems 1.3, 1.5,. This is
not contradictory with the reqularizing effect LlloC (RN) — Ly (RN) , which concerns solutions in
(0,00) xRN The functions constructed above are solutions in (0,00) x R\ {0}, and the singularity

x = 0 s not removable.

(ii) Solutions defined for ¢ < 0.

Next we consider the solutions defined for ¢ < 0, and more generally for ¢ < T They correspond
toe =1,0 < a (see Section 5), or ¢ = —1, ¢ < J (see Section 6). A main question in that case is
the extinction problem: does there exist regular solutions u vanishing identically on R at time 77
Does there exist singular razor blades, vanishing on RV\ {0} at time T'? Are they integrable?

One of our most significative results is the existence of two critical values iy > 0 (when
P, <p< Pp)and o < 0 (when 1 < p < P,), for which the regular solutions Uq,,,;; are positive,
integrable, and vanish identically at time 0. Another new phenomena is the existence of positive
solutions such that C1Uy, < u < CoUy for some Cy,Cy > 0, with a periodicity property, see
Theorems 1.9 and 1.11.

First assume € = 1. From Theorems 5.1 when p > P; and 5.4, 5.8 and 5.10 when p < P, we
deduce the following.

Theorem 1.8 Assumee =1, < a,p> P, (N >2). Then any solution u on R\ {0} x (0, —c0) ,
in particular the regular ones, is oscillating around O for fixzed t < 0 and large |x|, and row is
asymptotically periodic in Inr. There exists a solution such that r’w is periodic in Inr. There exist

weak integrable razor blades, with a singularity in |x|™" .

Theorem 1.9 Assumee = 1,6 < a, p < Pi. Then Uy is a solution on RN\ {0} x (0, —00), it is
a weak razor blade. Moreover
(1) If p < Py, the regular solutions on RN x (0, —00) have a constant sign, are not integrable, and

vanish identically at t = 0, with [[u(.,?)[| peo@ry < C t|*/181. All the solutions have a finite number
of zeros.



(2) For oo <, the reqular solutions have a constant sign, with the same behaviour (given by (1.8)
if « = N ). There exists a positive solution w, which is not integrable, with a singularity in |x|~®
(a strong one if and only if « > N), and limy_g |x|*u = L. If a = 0, then u(t,z) = C'|z|™" is a
solution with a strong singularity.

(3) If p > Ps, there exists a critical value aeriy such that n < aerie < o and the reqular solutions
Uq,,,, have a constant sign, are integrable, and vanish identically at t = 0, with [[u(.,t)| oo gry <

C [t[*/1A.

(4) If & € (Qeris, @*) , there exist positive solutions u such that row is periodic in Inr, thus
CilUsx <u< Uy  for some C1,Co > 0.

There exist positive solutions u, with the same bounds, such that r®w is asymptotically periodic near
0 . There exist positive integrable solutions u such that row is asymptotically periodic near 0.

(5) If aerit < a, the regular solutions are oscillating around O for fivred t < 0 and large |z|, and
rdw is asymptotically periodic in Inr. There exist solutions oscillating around 0, such that row is

periodic. If o < «, there exist positive integrable razor blades, with a singularity in \x]_é.

Finally suppose ¢ = —1. From Theorems 6.1, 6.2 when p > P; and 6.4, 6.6, 6.8, 6.9 when
p < Pp, we obtain the following:

Theorem 1.10 Assumee = —1, a <9 andp > P; (N > 2). If a« > 0, there exist positive solutions
w with a weak singularity in |x|™", integrable if and only if & > N, and limy_o |z|* v = L. If « < 0,
any solution has at least a zero. If —p' < «, there is no regular solution on RN x (0,—oc). If
a = —p/, the regular solutions, given by (1.10), have one zero.

Theorem 1.11 Assumee = —1, a < § and p < Py. Then Uy, is a solution on RV\ {0} x (0, —c0),
it is a weak razor blade. Moreover

(1) If p > Py, all the solutions have a finite number of zeros. There exist positive integrable razor

blades, with a singularity in ]x\_é.

(2) If —p' < a, there is no regular solution on RN x (0, —o0). There exist positive integrable razor
blades as above. If a > 0, there exist positive solutions u with a weak singularity in ]m\_é, integrable
if and only if « > N, and limy_q |x|“w = L. If —p' < a < 0, there exist solutions with one zero and
the same behaviour. If oo = —p/, the regqular solutions, given by (1.10), have one zero.

(3) If p < P», there exists a critical value o™ such that o < o™ < —p' for which the
reqular solutions u,e-w have a constant sign, are integrable, vanishing identically at t = 0, with

(s )] oo vy < C VP,




(4) If p < Py and o € (a*,acm), there exist positive solutions u such that row is periodic in Inr,

and thus
CilUsx u< Uy  for some C1,Co > 0.

There exist positive solutions with a weak singularity in ]m\_é, with the same bounds, such that rw
18 asymptotically periodic near oo. The reqular solutions have a constant sign, are not integrable,

vanishing identically at t = 0, and rw is asymptotically periodic near co.

(5) If p < Py and o < o™, there exist solutions oscillating around 0, such that row is periodic.

There exists solutions oscillating around 0, integrable, such that row is asymptotically periodic. If
a < aF the regular solutions have a constant sign, are not integrable, and vanish identically at

t=0.

Remark 1.12 If p < Py, recall that the Harnack inequality does not hold, as it can be shown by
the regular positive solutions constructed at Theorems 1.9, in particular those given by (1.8) when
a = N. Notice that the two kinds of regqular, integrable, solutions constructed for the critical values
Qerit > 0 and o™ < 0 are of different types: the first one, constructed for p > Pa, desappears in a
spreading way, the second one, constructed for p < Py desappears in a focussing way.

The case p > 2 will be treated in a second article, see [5], where we complete the results of [11].

2 General properties

2.1 Different formulations of the problem

In all the sequel we can assume
a # 0,

since the solutions are given explicitely by (1.11) when « = 0. Defining
In) = (wter P} ) = N, (2.1)
equation (E,) can be written in an equivalent way under the forms
() = VYN = a)w, J (1) = —e(N — a)r®2 !w"piQ w'. (2.2)

If « = N, then Jy is constant, so we find again (1.7).

We shall often use the following logarithmic substitution; for given d € R, setting

w(r) =r"Yy(r),  Yg=—r@OeD Py s =, (2.3)

10



we obtain the equivalent system:

y& = dyy — |Yd|(2fp)/(p*1) Yy,

And y,, Y, satisfy the equations

- el 0BTy, yal>" (v + (o — d)ya) =0,

yq + (n —2d)yg — d(n — d)ya + —

Vi 4 (0= 1)(n = 2d = p)Yj + ee @07 [y, G (V1 (p — 1) + (0 — d)Yo)
—(p=1*(n—d)(p' +d)Ya=0.

2.2 Reduction to an autonomous system

In particular the substitution (2.3) with d = § is the most performant: setting y = y4,
w(r) =r""y(7), Y = —p(0+De-1) ‘w"p_2 W, T=1Inr,

we are lead to the autonomous system

y = oy — |y|(27p)/(p71) Y,
Y == N)Y +e(ay — |Y|ZP/ Dy

Since N —dp=n—20, and N — 6 = (p — 1)(n — ), equations (2.5), (2.6) take the form
(p—1)y" + (N =0p)y' +3(0 = Nyy+eldy —/|"" (v + (a = 8)y) = 0,
Y”+(N—26)Y’+Zﬁ Y|P/ Y e (a—8) |Y|@ P/ PV Yy 1 5(5-N)Y =0,
When w has a constant sign, we define two functions associated to (y,Y") :

(2-p)/(p—1) — WP (r
] Yoyl ) Y W)

y w(r) y rw(r)

¢(7)

(2.4)

(2.5)

(2.7)

(2.8)

They play an essential role in the asymptotic behaviour: indeed ¢ describes the behaviour of w'/w

and o is the slope in the phase plane (y,Y’). They satisfy the equations

ela=9)

(p— 1)0)’

¢ =CC=m+ =l - ) =¢c-n+
o' =ela—N)+ (|ay|<2*p>/<p*1> o — N) (0 —¢)=ela—N)+(C—N)(o—e).

11
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(2.10)



Remark 2.1 Since (S) is autonomous, for any solution w of (Ey) of the problem, all the functions
we(r) = f‘sw(fr),g > 0, are also solutions. From uniqueness, all the reqular solutions are completly
described from one of them: w(r,a) = aw(a'/r,1), thus they present the same behaviour at infinity.

System (S) will be studied by using phase plane techniques, which was not done in [16], and
gives our main results. Notice that the set of trajectories of system (S) in the phase plane (y,Y")
is symmetric with respect to (0,0). In the phase plane (y,Y’) we define

M= {(y,Y) eR?: || P/ Dy - 5y} , (2.11)
which is the set of the extremal points of y. We denote the four quadrants by
Ql:(()’OO) X (0700)7 QZZ(_OO,O) X (O,C)O)7 Q3:_Ql7 Q4:_Q2.

Remark 2.2 The vector field at any point (€,0),& > 0 satisfies yf = —€/P=D < 0, thus points to
Qy. The field at any point (p,0),p > 0 satisfies Y' = e, thus points to Q1 if ea > 0 and to Q4
if ea < 0.

Remark 2.3 The couple (y,Y) is related to Jy by the identity
In(r) =N (y(r) — eY (1)), T=Inr, (2.12)
and the formulae (2.2) can be found again from the relations
(y—eY) = (6—a)y+e(N-08)Y = (6—a)(y—eY)+e(N—a)Y = (6—N)(y—cY)+(N—a)y. (2.13)

Remark 2.4 In the sequel the sense of variations of the functions yq, Yq, in particular y,Y, and ¢
and o plays an important role. At any extremal point T, they satisfy respectively

Yy (1) = ya(7) <d(n —d) — %e(@mdw)r |dyd(7) ‘2p> ’ (2.14)
Y{(7) = Ya(r) (0 = 1201 = )@ + d) = el = d)elE=DH07 |y (7) /@D - (2.15)

(= 1)y () = 8 Py(r) (F7HN = 8) = el = 8) [y(r) P *) = = [Y (1) *P/ Ty (7), (2.16)

Y"(7) =Y (7) (8(N = 8) = (a = 8) [V ()| PO ) = eay/(7), (2.17)
(p—1)C"(1) =2 = p)((a = O 1P Iyl P yy)(7) = (2 = p) (@ — )6 = Q) [Cy*P)(r),  (2.18)
(p—1)a"(7) = (2= p)((0 — &) |o| PV E Dy |y 4=3/ =Dy (1) = ¢(7)(a(r) —€).  (2.19)
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2.3 Energy functions for system (S)

A classical energy function is associated to equation (E,):

1 s @ 9
E(r)= o |w "+ eqw, (2.20)
which is is nonincreasing when ¢ = 1, since E'(r) = —(N — 1)r~! ||’ — erw™. Tt is not sufficient

in the study: we need energy functions adapted to y and Y. Using the ideas of [4], we construct
two of them by using the Anderson and Leighton formula, see [2].

e We find a first function W, given by

/

26 — N)§P~! Y|P )
W(r) = W), Y (7)), where W(y, ¥) = = (% wr+ 2 - aw) $O0
(2.21)
It satisfies
2
W'(r) = (20 — N) (5y — [y |@=p)/ -1 Y) (16yl)P~20y — V) — <5y — |y |/ @D Y)
B B - Sy — ‘y’(Q—p)/(p—l) Yy
= (6y — [V |FP/E=Dy) (|6y)P 26y — V) (e(26 — N) — . (222
(69— v ) (6920 =¥) (6028 = N) = Fo om0 (222)
When (20 — N) < 0, then W is nonincreasing. When £(20 — N) > 0, we consider the curve
Sy — ‘Y‘(Q—p)/(p—l) )%
L={(y,Y)eR?: H(y,Y) = =e(26—N) y, 2.23
{(y ) (v,Y) 5y 25y Y ( ) (2.23)

where by convention the quotient takes the value |6y[* P /(p — 1) if |0y|)P~26y = Y. It is a closed
curve surrounding (0,0), symmetric with respect to (0,0). Let Sz be the domain with boundary £
and containing (0,0) :

Sc={(y.Y)eR*: H(y,Y) <e(26 — N)}. (2.24)

Then W'(r) > 0 if (y(7),Y (7)) € Sz and W'(r) < 0 if (y(7),Y (7)) &€ Sc. Observe that S; is
bounded: indeed for any (y,Y) € R?,
1 _ _ _
H(y,Y) 2 5((6y)* 7 + [y|E70/@0), (2:25)

Also Sy is connected, more precisely for any (y,Y) € Sz and any 6 € [0,1], (9y,0P~'Y) € S,.

e A second function, denoted by V, is also given by Anderson formula (or by multiplication by
Y in (Ey)): let

a—9

p/

V(1) =V(Y(7),Y'(7)), where V(Y,Z) =¢ (M

5 YP', o (2:26)

1
Y2+§Y/2> +
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then V satisfies )
Vi(r) = (s(20 - N) = I vV ) (2.27)

When £(2§ — N) < 0, then V is nonincreasing. When €(2§ — N) > 0, then V’(7) > 0 whenever
|Y'(7)| < D, where
D = (£(26 — N)(p — 1))~ D/@=p) (2.28)

The function W gives more informations on the system, because Sy is bounded, whereas the set of
zeros of V' is unbounded.
2.4 Stationary points of system (S)

If « = 6 = N, then (S) has an infinity of stationary points, given by +(k, (§k)P~1), k > 0. Apart
from this case, if €(d — N)(0 —«a) < 0, it has a unique stationary point (0,0). If (6 — N)(d — ) > 0,
it admits three stationary points:

(0,0), My = ((,(60)"1) € Qi,  My=—M;€ Qs, (2.29)

where /£ is defined at (1.5). In that case, we find again that w = ¢r~° is a particular solution of
equation (E,).

(i) Local behaviour at (0,0) : the linearized problem at (0,0) is given by
y' = dy, Y' = (6§ — N)Y +eay,

and has the eigenvalues iy = § — N and pg = 4. Thus (0,0) is a saddle point when § < N, and a
source when N < 4. One can choose a basis of eigenvectors v; = (0, —1) and v2 = (N, ca).

(ii) Local behaviour at M,. Setting
y=0+7, Y =()P1+Y, (2.30)
system (S) is equivalent in Q; to
7 =00 —cv(@Y —¥(Y), Y =caj+(6—N—v(a)Y —c¥(), (2.31)

where

S(N — §)
(p—1(a—10)’

The linearized problem is given by

via) = and W(0)) = ((60)P~L09)Y/ =1 _57— (ff)_tpﬁ, 9> —(80)P7L. (2.32)

7=00—cv()y, Y =eag+(—N-—v())Y.
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Its eigenvalues A1 < Xy are the solutions of equation
M — (26 =N —v(@)A+p'(N—-6)=0 (2.33)
The discriminant A of the equation (2.33) is given by
A= (20— N —v(a)?—4p' (N —6) = (N +v(a))? — dv(a)o (2.34)
The critical value a* of « given at (1.13) appears when (6 — N/2) > 0 :
a=a" < XA+ X =0.

When 6 < N, and € = 1, then § < a and My is a sink when § < N/2 or § > N/2 and a < a*, and
a source when § > N/2 and a > a*. When 6 < N, and ¢ = —1, then o < §, My is a source when
d>N/2ord < N/2and a > «a*, and a sink when § < N/2 and o < a*. When N < 0, then M, is
always a saddle point, but, as we will see after, the value a* also plays a part.

In the sequel the sign of o* and its position with respect to IV or n plays a role. By computation,

. P2 =35+2N) G-N2 (5 N)(6— (N +3)5+N)
B R T 7 g A o7 T T S R

Thusife =1, thena* >n>0if N >2;if N=1,a* >0if p>4/3. Ife = —1, then o* < —p/ < 0.

Otherwise, when A > 0 one can choose a basis of eigenvectors u; = (—ev(a),\; — J) and
ug = (ev(a),d — A\g). If A >0, then ¢ is exterior to the roots if ea > 0, and \; < § < Ay if e < 0.
2.5 Existence of solutions of equation (E,)

Theorem 2.5 (i) Let vy >0 (ry > 0 if N =1) and a,a’ € R. Then there exists a unique solution
w of equation (E,) in a neighborhood V of r1, such that w € C? (V) and w(r) = a, w'(r1) = d’. It
has a unique extension to a mazximal interval of the form

(Ry,0), 0<R,, ife=1; (0,Sy), Sw<oo, ife=-1.
Moreover if 0 < Ry, (resp. Sy < o0), then w is monotone near this point with an infinite limit.

(ii) For any a € R, there exists a unique reqular solution of equation (E,, ) satisfying (1.12); and

lim ‘w’|p_2 w' /rw = —ea/N. (2.36)

r—0

(11i) If N > 2, any solution defined near 0 and bounded is reqular. If N = 1, it satisfies lim,_,ow’ =
beR, and lim,_,gw =a € R.
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Proof. (i) Local existence and uniqueness near r; > 0 follow directly from the Cauchy theorem
applied to equation (E,) or to system (S), since the map £ — fp(§) = \{](2_1?)/(17_1)5 is of class
Cl. If N =1, we can take r; = 0, obtain a local solution in a neighborhood of 0 in R and reduce
it to [0,00) .

Any local solution around 7 has a unique extension to a maximal interval (R, Sy ). Suppose
0 < Ry (resp. Sy < 00), and w is oscillating around 0 near this point. Making the substitution (2.3),
whith d # 0, if 7 is a maximal point of |y,|, then (2.14) holds. Taking d such that € (d — a) > 0,
then (y4(7)) stays bounded since the exponential has a positive limit; for that reason yq stays
bounded, w is bounded near R,, (resp. S,,) and then also J});, Jy and w’, which is contradictory.
Thus w keeps a constant sign, for example w > 0 near R, (resp. S,). At each extremal point r
such that w(r) > 0, we find (Ju'|P"?w')/(r) = —eaw(r), thus 7 is unique since a # 0. Thus w is
strictly monotone near R,, (resp. Sy), and w and |w’| tend to oo.

First suppose € = 1. Let us show that S,, = co. It is easy when « > 0 : since E is nondecreasing,
w and w’ are bounded for r > 7. Assume a < 0 and S,, < oo; then for example w > 0 near S,
and w is nondecreasing, and lim,_,g, w = co. Then J, is nonincreasing and nonnegative near Sy,
hence again w and w’ are bounded, which is contradictory. Next suppose ¢ = —1. If R,, > 0, as
above, for example w > 0 and w is nonincreasing and lim,_,r, w = oo. Then either &« < N and
Jn is nonnegative and nondecreasing near R,,, thus bounded, or &« > N and J, is nonnegative and
nondecreasing near R,,, and still bounded. In any case we reach a contradiction, then R,, = 0.

(ii) By symmetry we can suppose a > 0. Let p > 0. From (2.1) and (2.2), any regular solution w
on [0, p] satisfies

=a—¢ ' si(w))as w)(r) =w(r a— 1N*1w7“ . .
wi) =a=c [ LT T = ul) + o= N) [ 0 w0, (230

Reciprocally, any function w € C° ([0, p]) solution of (2.37) satisfies w € C* ((0, p]) , and |w'|P~ 2w/ (r) =
T (w), hence |w'|P" 2w’ € C((0,p]) and w satisfies (E,) in (0,p]. And lim,_o7T(w) = 0, thus
w e C ([0, p]) and |w'[P"*w' € C ([0, p]). Then w satisfies (Ey,) in [0, p] and w’(0) = 0. Moreover
from (Ey), lim,_q |w/["?w'/rw = —ea/N, therefore, w — a = O(r?') near 0. We search w under
the form w = a 4 r? ((r), with

¢ € Bpar = {6 € O (0.7 Illngo = ma lo(r)] < b}

We are lead to the problem ¢ = O((), where

1 1 aa ’
O(()(r) = —¢ /0 01/ ®=V [ (T(a+ (r0)7((r6)))d0 = —& /0 0V 1 (S5 + T((r0)”C(r0))db.

Taking for example M = (|a| a)'/®=1) it follows that © is a strict contraction from B, 5/ into itself
for p small enough, hence existence and uniqueness hold in [0, p] .
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(iii) If w is defined in (0,p) and bounded, then J}, is integrable; let | = lim, .o Jx(r); then
|w'|P~2w’ = elr'=N(1+ o(1); if N > 2 it implies | = 0, thus from above, w is regular. If N = 1,
then lim, ,ow’ = b € R, and lim, _,ow = a € R. ]
Remark 2.6 Let w be any solution of (E,) such that w(r) > 0 on some interval I.

(i) Then w has at most one extremal point on I, since it satisfies (|w'[P” " w') = —eaw, and it
is @ mazimum if ea > 0, a minimum if ea < 0.

(it) From (2.36), if w is regular and w > 0 in (0,71), 1 < oo, then w' < 0 in (0,71) when
ea > 0, thus 7, is in Q1, and w' > 0 in (0,7r1) when ea < 0, thus T, is in Qs in (—oo,lnry).

Remark 2.7 In the case § # N, we can give a shorter proof of (ii) using the dynamical system.
Indeed (0,0) is either a source, or a saddle point. Thus there exists precisely one trajectory starting
from (0,0) at —oo, with y > 0, with the slope ea/N. The corresponding solutions are regular: they
satisfy lim,_,_og 0 = ea/N, then lim,_o |w'[P*w'/rw = —ea/N; thus w@ /P has a limit
a > 0. Moreover lim,_gw' =0, thus w satisfies (1.12), and any a is obtained by scaling.

Definition 2.8 For any p > 1, The trajectory T, in the plane (y,Y) starting from (0,0) at —oo,
with y > 0, with the slope ea/N and its opposite —7T, will be called regular trajectories. We shall
say that y is reqular. Observe that T, starts in Q1 if ea > 0, and in Q4 if ea < 0.

Notation 2.9 For any point Py = (yo, Yo) € R?\ {(0,0)}, the unique trajectory in the phase plane
going through Py is denoted by I(p,. Notice that 1|_p,) = —1p,|, from the symmetry of system ().

2.6 First sign properties

Proposition 2.10 Let w # 0 be any solution of (E,).

(i) If e =1 and a < max(N,n), then w has at most one zero, and no zero if w is reqular.
(ii) If e = 1 and N < min(d, o) and w is regular, then w has at least one zero.

(11i) If e = —1 and o > min(0,7n), then w has at most one zero. If « > 0 and w is regular, then it
has no zero.

(iv) If e = —1 and —p' < a < min(0,n), then w’' has at most one zero, consequently w has at most

two zeros, and at most one if w is regular.

Proof. (i) Let € = 1. Consider two consecutive zeros py < p1 of w, with w > 0 on (po, p1) thus
w'(po) <0 <w'(py). f a < N, we find

In(p1) = In(po) = —p = | (p0) [P 7% = pd "M (po)P ™t = (N — a)/ sNlwds,
P
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which is contradictory; thus w has at most one zero. If w is regular with w(0) > 0, and p; is a first
zero, then

B p1
In(p1) = =p) ™l (o) = (N = a)/ s" " lwds > 0,
0

hence again a contradiction. Next suppose 0 < a < 7 and use the substitution (2.3), with d = a.
Then y, has at most one zero. Indeed if y, has a maximal point 7 where it is positive, and is not
constant, then from (2.14),

YalT) = a(n — a)ya(7); (2.38)
hence y/(7) < 0, which is impossible. In the same way the regular solution satisfies lim,_, o, 9o = 0
since o > 0, and y, has no maximal point, thus y, is positive and increasing.

T
(ii) Let e =1 and w > 0 on [0,00) . If N < a, then Jy(r) = (N — a)/ sN~lwds < 0. The function
0

r— 0r?" — w®=2/(=1) is nonincreasing, thus w = O(r~%) at oo, then y is bounded at co. For
any 7 > 1, one gets Jy(r) < Jn(1) < 0, hence y(7) + [Jn(1)| e®~N7™ < Y (7) for any 7 > 0, from
(2.12). Then lim;_,o, Y = oo, thus lim,;_, 3y = —oo from (S), which is imposssible.

(iii) Let ¢ = —1 and o > min(n,0). Here we use again the substitution (2.3) from some d # 0.
If y; has a maximal point, where it is positive, and is not constant, then (2.14) holds. Taking
d € (0,min(a,n)), if N >2and a >0, and d = —1if N =1 and n = —1 < a, we are lead to a
contradiction. Suppose w regular and « > 0. Then w’ > 0 near 0, from Theorem 2.5, and as long
as w stays positive, any extremal point 7 is a strict minimum; thus in fact w’ > 0 on [0, S,,) .

(iv) Let e = —1 and —p’ < a < min(0, 7). Suppose that w’ has two consecutive zeros p; < pa, and
use again (2.3) with d = a. If the function Y, has a maximal point 7, where it is positive and is
not constant, then from (2.15),

Y (1) = (0~ 1)*(n— o)’ + a)Ya(r) (2.39)

thus Y/ (7) < 0, and Y, has at most one zero. Next consider the regular solutions: they satisfy
Y, = e@P=D4P)7 (|| a/N)(1 + o(1) near —oo, from Theorem 2.5 and (2.3), thus lim,_, Y, = 0;
as above Y, cannot cannot have any extremal point, thus Y, is positive and increasing; then w’ < 0
from (2.3), thus w has at most one zero. u

Remark 2.11 From (2.58) and (2.59), if 0 < a < n (resp. —p' < a < min(n,0)) then y, (resp.
Y. ) has only minimal points on any set where it is positive.

Proposition 2.12 Let y be any solution of (E,), of constant sign near In Ry, or In.S,,.

(i) Suppose that y is not strictly monotone near this point, then R, = 0 or Sy, = oo; if y is not
constant, then either e =1 and § < N < a, or e = —1 and o < § < N; in any case, y oscillates
around £.

(1) If y is strictly monotone near In Ry, (resp.ln S,,), then also Y, (, o are monotone near this point.
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Proof. Let s = R,, or S,,, and y of constant sign near s, then also Y, from Remark 2.6.

(i) At each point 7 where y/(7) = 0, then y”(7) # 0, and (2.16) holds with y > 0. Suppose that
y is not strictly monotone near s. Then there exists a sequence (7,) strictly monotone, converging
to s, such that y/(7,) = 0, ¥"(72n) > 0, ¥"(72n+1) < 0. Then either £ = 1 and § < min(«, N), or
e =—1land a < § < N; and y(72,) < ¢ < y(72n+1). It cannot happen if s is finite, because y
tends to oco. It is also impossible when € = 1 and o« < N. Indeed there exist at least two points
01 < 69, such that y(61) = y(62) = ¢ and y > ¢ on (61,602), y'(61) > 0 > y/(62). Then from (S),
Y (01) < (80)P~1 < Y(62). And from (2.13), (eN=97(y = Y)) = (N — a)eN=97y; and the constant
(¢, (60)P=1) is also solution of (S), hence

Ny — =Y+ (0P = (V= a)elN Ty — ) > 0 (2:40)

on (01,62). A contradiction follows by integration on this interval.

(ii) Suppose y strictly monotone near s. At any extremal point 7 of Y, we find Y (1) = cay/(7)
from (2.17), then ¢/(7) # 0, Y”(7) has a constant sign; thus 7 is unique, and Y is strictly monotone
near s. Next consider the function ¢, which satisfies (2.9). If there exists 7y such that ((7) = a,
then ('(19) = a(a—n). If a # 7, then ¢ is unique, thus a — ¢ has a constant sign near s. Then also
¢"(7) has a constant sign at any extremal point 7 of ¢, from (2.18). Then ( is strictly monotone
near s. If &« =7, then ¢ = a. At last consider o, which satisfies (2.10). At each point 7 such that
o'(1) =0, one finds (2.19) and Y has a constant sign. If there exists 79 such that o(7p) = ¢, then
o'(19) = e(a— N). If & # N, then 79 is unique, and o — ¢ has a constant sign near s. Thus ¢”(7)
has a constant sign at any extremal point 7 of o, from (2.19), since Y has a constant sign near s.
If « = N, then 0 = ¢. [

2.7 Behaviour of w near 0 or co

Here we suppose w defined near 0 or co, that means y is defined near +00. We study the behaviour
of y and then return to w. First we suppose y monotone, thus we can assume y > 0 near +o0o. We
do not look for a priori estimates, which could be obtained by successive approximations as in [6].
Our method is based on the monotonicity and the L.’Hospital’s rule, much more rapid and efficient.

Proposition 2.13 Let (y,Y) be any solution of (S), such that y is strictly monotone and y > 0
near s = +oo. Then ( has a finite limit A near s, equal to 0,a,n,d. More precisely, one of the
eventualities holds:

(1) (y,Y) converges to a stationary point different from (0,0); then A =0, and (6 — N)(d —a) >0
ora=08§=N.

(ii) (y,Y) converges to (0,0); then
o cither A =0, s = —o0, and y is reqular, or N = 1;
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e or A\ = then either (s = 00,0 < N) or (s = 00,0 = N,e(a — N) < 0)) or (s =—00, N <)
or (s = —00,0 = N,e(a — N) > 0)).

(11i) im, sy = oo, and X\ = «; then either (s = co,a < §) or (s = 0o, = 0,6(0 — N) < 0) or
(s =—00,0 < ) or (s =—o0,a=40,e(0d —N)>0).

Proof. From Proposition 2.12, the functions y, Y, o, are monotone, thus ¢ has a limit \ €
[—00,00] and ¢ has a limit pu € [—00, 00], and (y,Y") converges to a stationary point, or limy = oo;
then lim |Y| = oo, since @ # 0 from system (S). In order to apply the L’Hospital’s rule, we consider
the two quotients

Y’ (0= N)o+ela—()
Y 6—¢

(2.41)

and

(W=7 y)y (@ =N +e(a=Q)fo) _ (0~ N)+ela—Q) eyl

Y (p—1)0 =) (p—1)0 -0 '

(i) First case: (6 — N)(§ —a) > 0 and (y,Y) converges to (¢,(6£)?~1). then obviously A = d; or
a=46=N and lim, sy =k > 0; then lim, ., Y = (§k)P~!, thus \ = 4.

(ii) Second case: (y,Y") converges to (0,0). Then A is finite; indeed if A = +o0, the quotient (2.42)

converges to (N — 8)/(p — 1), because |Cy| = |[Y|/®~Y = o(1); thus ¢ = |Y|?P/®=V y/y has the
same limit, from the L’Hospital’s rule, which is contradictory.

(2.42)

o If N < 4, then (0,0) is a source, thus s = —oo. Using the eigenvectors, either yu = ea/N,
then |C|P~" = |u|¥> P(1 4 o(1)), thus A = 0 and w is regular, from Remark 2.7. Or y = £oc; then
A=X0—=N)/(p—1)(§ —¢) from (2.42), thus A =0 or A =n. If A =0, then ¢’/{ converges to —n
from (2.9), and s = —oo, thus necessarily n < 0, which means N = 1.

e If § < N (thus N > 2) then (0,0) is a saddle point, thus either s = —oo0 and y = ea/N, A =0
and w is regular. Or s = oo, u = £00, and as above, A = 0 or A\ = 7. Now if A = 0 the quotient
(2.41) converges to Foo, which is contradictory. Thus A = 7.

e If 6 = N (thus N > 2), either A = 0, thus ¥/ > 0, then s = —o0, and p = ea/N from (2.42).
Or A > 0; then A = N = n from (2.42). Moreover if s = oo, then e(a — N) < 0; if s = —o0,
then e(a — N) > 0. Indeed (ey — Y) = e(N — o)y and y — €Y converges to 0; thus if s = co and
e(N—a) >0,0or s = —o0and e(N—a) <0, then pu < g, but u = 0o, we reach again a contradiction.
(iii) Third case: y tends to co. If s = 0o, then ¢’ > 0, thus ¢ < §; if s = —o0, then ¢ > §. If A = +o0,
then the quotient (2.42) converges to eo0o; thus A = oo and s = —eoo. In any case, ¢’ < 0, thus
lul < 1/(p—1) from (2.9), then p = e from (2.41), thus Y’ = — |Y|@P/®=1 y' (14 6(1)); we reach
a contradiction by integration. Thus A is finite, and A # 0. Indeed if A = 0, then p = 0, seeing that
o =|CyP2¢, but p = /6 from (2.41).
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o If & # 4, then A\ = v or 4, from (2.42). In turn o = [y’ 2 A(1 + o(1)), thus x = 0. From
(2.41), necessarily A = o. And if s = oo, then 3’ > 0, thus ¢ < §, thus o < 4. If s = —o0, then
similarly a > 4.

elfa =6 then A\ =a=¢# N, and ¢(0 — N)(0 — ) < 0 from (2.42); thus if s = oo, then
g(d — N) < 0 since ¢ < ¢; if s = —o0, then (6 — N) > 0. ]

Next we improve Proposition 2.14 by giving a precise behaviour of w in any case:

Proposition 2.14 Under the assumptions of Proposition 2.13,
(i) If \ = a # 6, then limr*w = L > 0 (near 0, or o).
(i) If A\ =mn >0, n # N, then limr"w = ¢ > 0.
(11i) If \ = o« = § # N, then
lim 7 (Inr) " Y@ Py = g = (2 — p)oP~ ' N — §))1/ZP), (2.43)

(iv) If \=n= N =0§ # «, then

, 1 (N(N—1)\N+D/2
| Ninp)NAD2yy = p= — [ 22 2.44
imr" (Inr) w=p= a—N| (2.44)
(v) IfN=1, A=n=—1 or A=0 (near 0) then
limw =a € R, lim w' = b; (2.45)

r—0 r—

and b # 0, and a =0 ( thus b > 0) if and only if A = —1.

Proof. (i) Let A = a # 6. From (2.8), rw'(r) = —aw(r)(14 O(1). Next apply Proposition 2.13:

e Either s = 0o and «a < §; thus for any v > 0, w = O(r~*"7) and 1/w = O(r**7) near co and
w = O(r~*"147); then J' (r) = O(r®?=P)=P=1+7) thus .J/, is integrable, hence .J, has a limit L,
and limr®w = L, seeing that J,(r) = r%w(1 + o(1)). If L = 0, then r®w = O(r*=P)=P+7) which
contradicts the estimate of 1/w = O(r®*7) for v small enough. Thus L > 0.

e Or s = —00, and § < a, and lim, sy = 0o, w = O(r~ ), 1/w = O(r* "), w' = O(r—*"177)
near 0, and J/,(r) = O(r®*=P)=P=1=7) thus J’ is still integrable; hence limr®w = L > 0. If L =0,
then r®w = O(r*>=P)=P=7) which contradicts the estimate of 1/w. Then again L > 0.

(ii) Let A =n > 0, n # N. From Proposition 2.13, either (s = 00, § < N) or (s = —o0 and N < ).
As above we get w = O(r~"*7) and 1/w = O(r"™7) near oo or 0. Here we make the substitution
(2.3) with d = 5. We find y,, = O(e77), 1/y, = O(e®7), y/, = O(e™7), thus ¥, = O(e®7),
and from (2.4), Y, = O(e® 7). Reporting in (2.4), we deduce Y, = O(e=PO=mENT)  When
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s = oo, then 6 < 7, when s = —oo, then § > n from (1.3). In any case, Yn/ is integrable, hence

Y, has a limit &k, and Y;, — k = O(e@=P)((=m+N7) Now (e "y,) = —e*”TYnl/(p_l), thus v, has
a limit ¢ = kl/(p_l)/n; in other words, limr"w = c. If ¢ = 0, then Y, = O (eG=PN(E=n)EN)7),
yy = O(elG=PNO=mEN/(P=1)7) "which contradicts 1/y, = O(e?7) for vy small enough.

(iii) Let A\ = a =6 # N, thus (s = co and €(0 — N) < 0 or (s = —oo and £(6 — N) > 0), and
lim, sy = co. Then Y = (dy)P~1(1+0(1)), and p = 0, thus y — Y = y(1 +0(1)), and from (2.13),
(y—eY) =e(N=08)Y =e(N =86 (y—eY )P L (1 +0(1)).

Then y = ([N — 6)6?~1(2 — p) |7[)Y/Z=P)(1 + 0(1)), which is equivalent to (2.43).

(iv) Let A\=n= N =6 # a, thus (s = co and e(a — N) < 0) or (s = —o0 and (o — N) > 0),
and lim, sy = 0. Then Y = (Ny)?"1(1 + o(1)) and p = oo, thus Y — ey = Y (1 + 0(1)), and from
(2.13))

(Y —ey) =cla— Ny =c(a— N)N(Y —ep) /P (1 +0(1)).

As a consequence y = C‘T‘_(N—H)ﬂ (1 +o0(1)), with ¢ = (1/N) (N(N = 1)/2 |a — N])(N+1)/2, and
(2.44) follows.

(v) Let A = 0, then also rw’ = o(w), thus by integration w + |w’| = O(r=*) for any k > 0.
Then J{ is integrable, thus J; has a limit at 0, and lim, o rw = 0, thus lim, ,ow’' = b € R,
lim, ,ow = a > 0. Then b # 0, since the regular solutions satisfy (2.36), and a # 0, since a = 0
implies w = —br(1 4+ o(1), ¢ = —1. If A = n = —1, then from (2.8), w is nondecreasing, thus it
has a limit @ > 0 at 0, thus w' = —a (1 + o(1)), and by integration a = 0. And ((w')P~1) =
e(1 — a)w(l 4 o(1)), thus w’ has a limit b # 0. ]

Next we consider the cases where y is not monotone, and possibly changing sign.

Proposition 2.15 Assume ¢ = 1. (i) Assume that N <06 < a, or N < 0 < a. Then any solution
y has a infinite number of zeros near oo.

(ii) Suppose that y has a infinite number of zeros near +0o. Then
either (N < a < 6 and |y| < ¢, |Y|< (60)P7! near £00), or N<d=a, or max(s,N,n) < a.
If moreover § < N < a, then |y| > £ at its extremal points, |Y| > (60)P~1 at its extremal points.

Proof. (i) Suppose that is is not the case. Then for example y > 0 for large 7; and y is monotone,
from Proposition 2.12, (i). Applying Proposition 2.13 with s = co, we reach a contradiction.

(ii) Suppose that y is oscillating around 0 near +oco. Then from (2.16), at the extremal points,

()P (6 — o) < (6 — N6, (2.46)
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and the inequality is strict: if one equality holds, then y is constant, from uniqueness. Similarly Y
is oscillating around 0, and at the extremal points, from (2.17), one finds

Y ()| 3P/ =D (5 — a) < (6 — N)6. (2.47)

Then max(N,n) < «, from Proposition 2.10; and the conclusions follow from (2.46) and (2.47). =
We can complete these results according to the sign of § — N/2 :

Proposition 2.16 Suppose that £(6 — N/2) < 0. Then any solution y has a finite number of zeros
near In Ry, or In Sy,. If it is defined near £o0o, and non monotone, then it converges to £ M,. There
is no cycle in R?, and no homoclinic orbit in R2.

Proof. (i) Suppose that y has an infinity of zeros. Then R, = 0 or S, = 00, and there
exists a strictly monotone sequence (r,) of consecutive zeros of w, converging to 0 or co. Since
e(d — N/2) < 0, the energy function V defined at (2.26) is nonincreasing. We claim that V' is
bounded, which is not easy to prove. For that purpose, we introduce the function U defined by

1

_ 1
Ur) = ’I“N(§U)2 +er! ‘w'|p 2 w'w) = e(N_Q‘S)Ty(gy —eY);

we find

U/(r) = NG = e[ ) = NI~ ag? e YY)

Ife =1, then 0 < N/2 < N < a. If e = —1, then o < 0, from Proposition 2.15. Then U(r,) = 0,
and eU’(r,) > 0. Therefore there exists another sequence (s,), such that s, € (r,,r,+1), and
U(sy) = 0, and eU’(s,) < 0. At point 7, = e*, we find 2177 y%" = 2 \Y]p/ < e(2a — N)y?, then
(y(7),Y (7)) is bounded, (V(7,)) is bounded, thus V' is bounded near +oco. Therefore V has a
finite limit y, and Y and Y’ are bounded because (o — 4) > 0, and in turn (y,Y’) is bounded.
Otherwise (0,0), +£M,, are not in the limit set at +oo, since (0,0) is a saddle point, and £M; is
a source or a sink. Then the trajectory has a limit cycle O, thus there exists a periodic solution
(y,Y). The corresponding function V' is periodic, and monotone, then it is constant, V' = 0, thus
Y is constant, and y is constant from (S), which is contradictory.

(ii) Suppose that y is positive near +00, and non monotone. If e = 1, then 6 < N/2 < N < q; if
€ = —1, then a < § < N, from Proposition 2.12, and y oscillates around ¢. There exists a sequence
of minimal points (7,), where y(7,) < ¢, and |Y (7,)| = dy(7s), thus again (y(7,,), Y (7)) is bounded,
and as above (y,Y) is bounded. The trajectory has no limit cycle, thus converges to M,. Finally
if there is an homoclinic orbit, then 7, is homoclinic. Then lim,_,_,V = lim,; .oV = 0, thus
V =0, as above (y,Y) is constant, hence (y,Y) = (0,0), which is contradictory. ]

Proposition 2.17 Suppose that y is not monotone near oo (positive or changing sign) then y
and 'Y are bounded.
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Proof. From Proposition 2.16, it follows that (6§ — N/2) > 0. When ¢ = 1, and y is changing
sign and N < o < 0, then |y| is bounded by ¢ from above. Apart from this case, if y is changing
sign, then £(a — §) > 0, from Proposition 2.16. If y stays positive, either ¢ = 1,6 < min(«, N),
ore =—1, @ < § < N, fom Proposition 2.12. In any case e(a — §) > 0. Here we use the energy
function W defined by (2.21). We can write W(y,Y) under the form

W(y,Y) =e(F(y,Y) + G(y)),

Y [0y[”

— N)§r—1
with F(.Y) = e —ayy + 2 GGy = (6= N)*—

e(la—19) ,

ly|” + 5V (2.48)

Observe that F(y,Y) > 0, thus eW(y,Y) > G(y) > 0 for large |y|. Then W'(r) < 0 whenever
(y(1),Y (1)) & S, where S is given at (2.24). Let 79 be arbitrary in the interval of definition
of y. Since S; is bounded, there exists & > 0 large enough such that eW(7) < k for any 7 such
that (7 — 79) > 0 and (y(7),Y (7)) € S, and we can choose k > W (ry). Then eW(7) < k for
e(t —70) > 0, hence y and Y are bounded near ecc. ]

2.8 Further sign properties

From Propositions 2.13 and 2.14 we can improve Proposition 2.10:

Proposition 2.18 Assume ¢ = 1,—00 < a < § and a« < N. Then the regular solutions have a
constant sign, y is strictly monotone and lim,_., ( = a. Moreover any solution has at most one
zero, and then lim, . ( = a.

Proof. (i) The regular solutions have a constant sign from Proposition 2.10. Moreover Jy
is increasing from 0, thus it is positive for » > 0, which means Y < y. And y is monotone near
oo from Proposition 2.12. From Proposition 2.13, we have three possibilities: either a« < N < ¢,
and lim;_ .o, ¢ = 9, then lim, ., Y/y = (6 — «)/(6 — N) > 1, which is impossible; or § < N, and
lim; oo ¢ =n > N, then lim,_,+ Y/y = oo, which is also contradictory, or (finally) lim, .~ ¢ = a.
Moreover y is increasing on R from 0 to co. Indeed if y has a local maximum for some 7, then from
(2.16), « < N < § and y(7) < ¢; and £ < §®=D/C=P); but sy(r) = Y (7)Y P=1) < y(r)V/P=D which
is contradictory.

(ii) From Proposition 2.10, any solution w # 0 has at most one zero. If w(r;) = 0 and for example
w > 0on (r1,00), then w'(r1) > 0, thus Jy(r) > Jx(r1) > 0 for r > r1; we conclude as above. =
Proposition 2.19 Assume e = —1.

(i) If « < 0 and N < 4, the regular solutions have at least one zero.

(i1) If 0 < a, the regular solutions have a constant sign and satisfy Sy, < 0.

(ii1) If —p' < a < min(0,n), the reqular solutions have precisely one zero and Sy, < .
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Proof. (i) Let a < 0 and N < 4. Since ea > 0, the trajectory 7, starts in Q. Suppose that y
stays positive. Then 7, stays in Qp, from Remark 2.6. If N < §, then y is monotone, since it can
only have minimal points, from (2.16); and (0, 0) is the only stationary point. Then lim,_,o, y = o0,
and lim; . ¢ = a < 0 from Proposition 2.13, thus (y,Y) is in Q4 for large 7, which is impossible.

(ii) Let 0 < a. Then ea < 0, so that 7, starts in Q4. Moreover y > 0 on R, from Proposition 2.10.
And 7, stays in Qy, from Remark 2.2. Thus 3/ = dy + |Y|1/(p71) > 0. If Sy, = oo, from Proposition
2.13, then lim; .o, ( = a > 0, hence (y,Y) ends up in Q;, which is false. Then S,, < cc.

(iii) Let —p’ < a < min(0,7n). Then 7, starts in Q;. From Proposition 2.10, Y,, stays positive, 7,

stays in Q1 U Qs, and Y, is increasing;:

Y, =—(p—1)(n — )Yy + P C PO (y V=1 _ ) > 0.

«

Suppose that S, = co. Then lim, . Yo(7) > C > 0, then vt/ (r) < —CcY®=1) for large r,
and by integration, r®w(r) < —CY®=1 /2, thus from (2.3), in particular lim, ..,y = —co. From
Propositions 2.12, 2.13, and 2.14, it follows that lim, .. r%w = L < 0, thus lim, . Y, (7) =
(aL)P~1. And there exists a unique 79 such that y,(m0) = 0, from Remark 2.2. But

Y, 1
Y(0) = (p=1)*(n—a)(a+p)Ya = 3 <ﬁe<p<“’“’%/ P —(p— 1)y — 20~ p'm)

YO,‘ a —(2—p)a)T
Z? (p_le(p (2-p)) ya+(n—a)(2—p)+(p_1)(a+p/)Ya> '
(2.49)

Thus Y./(7) > 0, for any 7 > 79, which is impossible. Then S,, < oo, lim; 1,5, Y/y = —1, and y
has a zero. u
2.9 Behaviour of w near R, >0 or S, < oo

Proposition 2.20 (i) Let w be any solution of (E,) with a reduced domain (¢ = 1,R,, > 0, or
e=-1,5, < ). Let s = Ry, or Sy. Then

lim (|r — s|®~V/ @) gV/CPyy — 4((p—1)/2—p))P VP and  lim o=e.  (2.50)

r—s T—lns

Proof. From Proposition 2.10, we can suppose that cw is decreasing near s and lim,_,; w = oo,
thus y > 0, €Y > 0 near In s, and lim,_,1, sy = 00. And o is monotone near In s, from Proposition
2.12; thus it has a limit p such that ey € [0, 00] . Suppose that = 0. Then Y = o(y) = o(y — €Y);
from (2.13),

(y—eY) =(0—a)ly—eY)+e(N —a)Y = (d —a+o(1)(y —eY);
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then y cannot blow up in finite time. In the same way, if 4 = oo, then y = 0(¢Y) = o(eY — y), and
(y—eY) =0 -N)y—e¥)+ (N -a)y=(6 - N +o(1)(y —Y),

hence again a contradiction; thus eu € (0,00). Therefore lim, 1, g, = €00, p = € from (2.41),
then w'w=/®=1D 4 (¢ + o(1))r/®=1 = 0, and (2.50) holds. |

2.10 More informations on the stationary points
(i) The Hopf bifurcation point.

A Hopf bifurcation appears at the critical value a = o*. Then some cycles do appear near o,
from the Poincaré-Andronov-Hopf theorem, see [12, P.344]. We get more precise results by using
the Lyapounov test for a week sink or source; it requires an expansion up to the order 3 near My,
in a suitable basis of eigenvectors, where the linearized problem has a rotation matrix.

Theorem 2.21 Let (6 — N/2) > 0. If e = —1, and o = o, then M, is a week source; moreover
if o < o and o — « is small enough, then there exists a unique limit cycle in Qq, attracting at
—o0. If e = =1, and a = a*, My is a week sink; moreover if a > o and o — o™ is small enough,
then there exists a unique limit cycle in Q1, attracting at co.

Proof. The eigen values are given by \; = —ib, Ay = ib, with b = /p/(IN — 0), and from (2.32),

(N —§ 50)2p
v(a*) =20 — N = ( *) 26( ) .
(p—Dla*=0)  (p—1)
First we make the substitution (2.30) as above, which leads to (2.31). The function ¥ defined at
(2.32) has an expansion near ¢t = 0 of the form ¥(9) = Bat¥? + B33 + .., where

B _ 2= B, 2=P)B=2p)(0"" 23— 2p)B;
2T 212 ° 6(p — 1)0

Next we make the substitution

32 —p)v(ar)

T=—0/b, y(r) = ev(a)xi(0), Y (1) = 6z1(0) + bxo(6),

and obtain
e(N —9)

21(0) = 22 + Wula)

oz + bxsy), 75(0) = —xq — U(dx1 + bxa).

by

We write the expansion of order 3 under the form

/ 2 2 3 2 2 3
T =T+ 5(@27()%1 + 01,1172 + ag2x5 + a3 0%y + a2,1X7T2 + a1 27125 + 4,375 + )

! 2 2 3 2 2 3
T =—T+ E(bg,oxl + b1711‘11‘2 + b(),g.%'Q + bg,o.%'l + bg,lxlxg + b1721‘11‘2 + 60,31‘2 + ),
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and compute the (pretty awful) Lyapounov coefficient
Lo =€(3azo 4+ a2+ bag + 3bo3) — agpai,1 + bi,1bo2 — 2a0,.2b02 — ap2a1,1 + 2a2,0b2,0 + b1,1b2,0.
After simplifications, we obtain

2-pbv(a)? [ 2AN=-25(p—-1) <0, ife =1,
2B2(52 + b?) Lo = (N =20)(1 - (3 —2p) = { 2N — 25)(2p— p) >0, ife=—1,

The nature of M, follow from [13, p.292], taking in account the fact that 6 has the opposite sign
of 7. Moreover there exists a small limit cycle attracting at —oo for all o near o* such that M,
is a sink, that means a < o*. If ¢ = —1, M, is a week sink and there exists a small limit cycle
attracting at oo for all @ near o such that M, is a source, that means o* < a. [

(ii) Node points or spiral points.
When system (S) has three stationary points, and M, is a source or a sink, thus § < N, it is
interesting to know if M is a node point. When o exists, it is a spiral point, from (2.33).
If e = 1, from (2.34), then M, is a node point when § < N/2 — /p/(N —4) or § > N/2 —
P (N —¢) and a < g, or § > N/2 + /p/(N —¢) and e < «, where

a; =6+ oW = 9) ay =6+ O = 9) . (2.51)

(p—1)(26 = N +2/p'(N =)’ (p—1)(26 — N —2/p'(N =)

If e = —1, then My is a node point when § > N/2 + /p/(N — ), or 6 < N/2+ /p'(N —¢) and
ag < a,or d < N/2—/p/(N —¢) and a < a3 In any case a1 < as.

Remark 2.22 (i) Lete = 1. One verifies that N < ay, and N = a1 <= N =46/(p—1) = p'/(2—p).
Also ay <<= 6%+ (7T— N)J + N > 0, which is true for N < 14, but not always.

(i) Let ¢ = —1. It is easy to see that ap < 0. And ag =0 <= N(2—p) =6 <= N =p/((2 — p)%.
Also ag > —p' <= 62+ 76 — 8N < 0, which is true for 6 < N/2 <9, but not always.

(iii) Nonexistence of cycles.

If system (S) admits a cycle O in R?, then O surrounds at least one stationary point. If it
surrounds (0, 0), the corresponding solutions y are changing sign. If it only surrounds My, then it
stays in Qq, thus y stays positive. Indeed o # 0 from (1.11), and O cannot intersect {(¢,0),» > 0}
at two points, and similarly {(0,&),& > 0}, from Remark 2.2.

For suitable values of «, §, N, we can show that cycles cannot exist, by using Bendixon’criterium
or Poincaré map. Writing system (S) under the form

vy =hY), Y =fyY) (2.52)
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we obtain

of Ofs

e yy L 22

dy v Y)+ 55,
For example, as a direct consequence of Bendixon’criterium, if ¢ (6 — N/2) < 0, we find again the
nonexistence of any cycle in R?, which was obtained at Proposition 2.16. Now we consider cycles

in Ql.

First we extend to system (S) a general property of quadratic systems, proved in [9], stating
that there cannot exist a closed orbit surrounding a node point. Notice that the restriction of our
system to Q; is quadratic whenever p = 3/2.

Y)=20— N —¢e|y|&P/e-1) (2.53)

Theorem 2.23 Let 6 < N and (0 — «) < 0. When My is a node point, there is no cycle, and no
homoclinic orbit in Q.

Proof. Let us use the linearization (2.30), (2.31), (2.32). Consider the line L given by the
equation Aj+Y = 0, where A is areal parameter. The points of L are in Q1 whenever —(6/)P~1 <Y
and —¢ < g. As in [9], we study the orientation of the vector field along L : we find

A +Y = (ev(a)A® + (N +v(a))A+ea) T — (A+e)U(Y).

From (2.34), up to the case e = 1, = N = aq, we can find an A such that ev(a)A? +(N+v(a))A+
ea =0, and A+¢ # 0. Moreover ¥(Y) > 0 on LNQ;. Indeed (p—1)W'(t) = ((6£)P~ 1 +1)2=»)/(p=1) _
t2=p)/(P=1) thus ¥ has a minimum on (—(56)7’*1,00) at point 0, thus it is nonnegative on this
interval. Then the orientation of the vector field does not change along LN Qy, in particular no cycle
can exist in Qq; and similarly no homoclinic trajectory can exist. In the case e = 1, = N = ag,
then Y = y € [0,¢) defines the trajectory 7, corresponding to the solutions given by (1.8) with
K > 0, and again no cycle can exist in Q; : it would intersect 7. [

Next we prove the nonexistence on one side of the Hopf bifurcation point:

Theorem 2.24 Assume § < N and €(0 —a) <0 < e(6d — N/2). If e(a — a*) > 0, there exists no
cycle and no homoclinic orbit in Q.

Proof. Here M, is a source or a weak source for ¢ = 1 (resp. a sink or a weak sink for ¢ = —1).
Suppose that there exists a cycle in Q. Then any trajectory starting from M, at —eoco has a
limit cycle in Qp, which is attracting at eco. Such a cycle is not unstable (resp. not stable); in
other words the Floquet integral on the period [0, P] is nonpositive (resp. nonnegative). Thus from
(2.53),

P P
e/ %_J;l 3{3 / 126 — N|——Y<2 P dr <0, (2.54)
0 0
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Now from (2.31),

P P P P P P
0= (5/ng — I/(Oé)/?d’l’ — /\I/(?)d’l', 0= a/@dT +(—N— I/(Oé))/?d’i‘ — /\I/(?)dT;
0 0 0 0 0 0
besides, since ¥ is nonnegative,
P P ) P
/\I/(?)dT = —p'/@dT = _]%;&/?dT > 0;
0 0 0
and ¢/ = 0y — Y/~ hence
P P
/ yUe-Dgr =5 / ydt < 60P. (2.55)
0 0
From (2.54),(2.55) and the Jensen inequality, it follows that
P P 2-p
(p—1)]26 = N| < / y =P/ (p=1)yqr < pp—1 / y Y=gy < (60)*7P = W
0 0

thus e(a — o*) < 0, which is contradictory. Next suppose that there is an homoclinic orbit. Then
from [13, p.303], Theorem 9.3, the saddle connection is repelling (resp. attracting), because the
sum of the eigenvalues p, o of the linearized problem at (0,0) is 20 — N. That means that the
solutions just inside it spiral toward the loop near —ezoo. Since My is a source, or a week source
(resp a sink, or a weak sink), such solutions have a limit cycle attracting at eoco. As before, we
reach a contradiction. n

Finally we get the nonexistence in nonobvious cases, where we have shown that any solution

has at most one or two zeros.

Theorem 2.25 Assume § < N and e(0 —a) < 0 <e(d —N/2). Ife=1and a <mn, ore =—1
and —p' < a < 0, there exists no cycle and no homoclinic orbit in Q1.
Proof. (i) Suppose that there exists at least one cycle.

e Let e =1 and a < 7. Since a < o™, then My is a sink, any trajectory converging to M, at oo
has a limit cycle O in Q;, attracting at —oo. Let (y,Y) be any solution of orbit O, of period P.
Then O is not stable, thus the Floquet integral is nonnegative, and from (2.54),

P
/(25 - N-— p%ly(”)/(pl))df > 0.
0
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Otherwise y is bounded from above and below; thus y,, defined by (2.3) with d = «, satisfies
lim; o yo = 0, lim; oo Yo = 0. It has only minimal points, from (2.38), since o < 7; thus
yl, > 0 on R. From (2.5) and (2.4) with d = a,

!

Yo 1
Ja -9 S v
y,+(77 a)+p_1

o

@p)/o-1) _ 2= )ya (- a)ya

Ve oge Y@ D

Integrating on [0, P] it implies n — 2ac+ 26 — N > n— «, which is impossible, since § — N +6 —a < 0.

e Let ¢ = —1 and —p' < a < 0. Since a* < «a, My is a source, any trajectory converging to it
at —oo has a limit cycle attracting O’ at oo. Let (y,Y’) be any solution of orbit O’, of period P.
Then O is not unstable, thus the Floquet integral is nonpositive, hence

P

/ (26— N + Lly@*p)/@*n)m <.
-~
0

Moreover Y is bounded from above and below; thus Y, satisfies lim,_,_ o Y, = 00, lim,_,o, Y, = 0.
It has only minimal points, from (2.39), since —p’ < a < 0; thus Y < 0 on R. From (2.6) and (2.4),

Y (p—1*n—a)p' +a)Ya

1
Za (-2 —9) — —— y@-p)/-1) _ —(p =1 )
yr T (p—1)(n—2a—p) p— V7 <—=(-1)F +a)

Integrating on [0, P] it implies (p — 1)(n —2a — p') + 20 — N < —(p — 1)(p’ + «), which means
pd + (p— 1) || < 0; but this is false.

(ii) Suppose that there exists an homoclinic orbit. Since § < N, (0,0) is a saddle point, thus 7,
is the only trajectory starting from (0,0) in Q;, and there exists a unique trajectory 7, converging
to (0,0), in Q; for large 7, with an infinite slope at (0,0), and lim, o r"w = ¢ > 0.

o If ¢ = 1, then 7, satisfies lim, . e "y, = a > 0, thus lim, ,_ y, = 0; and gy, has only
minimal points, thus it is increasing and positive; and 7, satisfies lim;_,oo €7y, = ¢ > 0. If
a < n, then lim; o yo = 0, thus 7, # T;. If a =1, 75 is given explicitely by (1.9), that means y,
is constant, thus again 7, # 7.

o If ¢ = —1, then 7, satisfies lim,_,_oo e ®®-D7Y, > 0, because lim,_,_ o ¢ = 7, thus
lim; s Yo = 0; and Y, has only minimal points, thus it is increasing and positive; otherwise 7.
satisfies lim,_, oo e~ (@P=DPITY, = _ga/N > 0, from (2.36). If o > —p/, thus lim, .o Yy = 0
which implies 7, # 7;. If a = —p/, then 7, is given explicitely by (1.10), in other words Y, is
constant, thus again 7, # 7. [

(iv) Boundeness of cycles.

When there exist cycles, except for a few cases, we cannot prove their uniqueness, but we show
the following:
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Theorem 2.26 When it is nonempty, the set C of all the cycles of system (S) is bounded in R?.

Proof. Suppose that there exists a cycle in R%. From Propositions 2.10, 2.12, 2.15, 2.16 and
Theorem 2.25, it can happen only in four cases: e =1l and N <a <d, e=1and N < = q,
e = 1 and max(0, N,n) < a and N/2 < 0, ¢ = —1 and § < N/2 and o < —p'. In the first
case, then C is bounded, contained in (—¢,¢) x (= (60)P~*,(6¢)P""), from Proposition 2.15. In
the other cases we use the energy function W. Let (y,Y) be a solution of trajectory O. Then
W is periodic, and its maximum and minimum points are precisely the points of the curve L.
Indeed if W/(71) = 0 and (y(71),Y (1) &€ L, then it is on the curve M defined at (2.11); hence
y'(r1) = 0, and y"(m1) # 0, since O is not reduced to a stationary point. As a consequence,
<5y — |y|@P»/r-Y Y) (|0y|)P=26y — Y') > 0 near 71; then W' has a constant sign, and 7 is not a

maximum or a minimum. In this way we obtain estimates for W independent of the trajectory:

W(r)| =M = Y)l.
max |W (7)] Jmax W ()|

At the maximal points 7 of y, one has |V (7)|®P/®=V v (7) = 5y(7), thus

e(d — p—1 o —
wir) = L2220 e+ 220,

In any case, from Hélder inequality, y is bounded by a constant K independent of the trajectory,

and

a4 26 — N|or~! o — 3] ,

< SyY + Yo+ M,

/ =

lyl”

thus Y is also uniformly bounded, and C is bounded. ]

3 Thecasec=1l,a<dora=0<N

3.1 General properties

Lemma 3.1 Assume ¢ = 1 and —oo < max (o, N) < é(aw # 0). Then in the phase plane (y,Y),
there exist

(i) a trajectory Ty converging to My at oo, such that y is increasing as long as it is positive;

(7i) a trajectory Ta in Q1 U Qyq converging to My at —oo, and unbounded at oo, with lim,_,o ¢ = «;
(iii) a trajectory T3 converging to My at —oo, such that y has at least one zero;

(iv) a trajectory Ty in Q1, converging to My at oo, with lim, 1, p, Y/y = 1;

(v) trajectories T in Q1 U Q4 unbounded at oo, with lim, o ¢ = «, lim, 1,5, Y/y = 1.
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Proof. Here system (S) has three stationary points. The point (0,0) is a source, and the point
M, is a saddle point. The eigenvalues satisfy A\; < 0 < A2 < d. The eigenvectors u; = (—v(a), Ay —9)
and ug = (v(«a),d — A2) form a direct basis, and u; points to Qs, us points to Q. There exist four
particular trajectories 77, 7s, 73,74 converging to My, at oo :

e T; converging to M, at oo, with tangent vector up; then y < £ and Y < (6¢)P~! and ¢/ > 0
near oo; as above, y cannot have a local minimum, so that 3’ > 0 whenever y > 0.

e 75 converging to M, at —oo, with tangent vector ug; then 3’ > 0 near —oo. If y has a local
maximum at some 7, then y”(7) < 0, so that y(7) < ¢ from (2.16), which is impossible. Then y

is increasing on R and lim, .y = 00, and lim,_,», { = « from Proposition 2.13. In particular 75
stays in QO if a > 0, and enters Q4 if a < 0.

e 73 converging to M, at —oco, with tangent vector —us; then 3’ < 0 near —oco. If y has a local
minimum at some 7, then y(7) > ¢, which is still impossible. Thus y is decreasing at long as the
trajectory stays in Q. It cannot stay in it, because it cannot converge to (0,0). It cannot enter Q4
from Remark 2.2. Then it enters Qs and y has at least one zero.

e 74 converging to M, at oo, with tangent vector —uq; then 1/ < 0 near co. As above, y cannot
have a local maximum, it is decreasing and lim,_,;, g, ¥ = 00. From Proposition 2.13, y cannot be
defined near —oo, hence R, > 0 and lim, 1, z, Y/y = 1.

For any trajectory 7 in the domain delimitated by 73,7y, the function y is positive, and 7
cannot converge to My at oo, and y is monotone for large 7 from Proposition 2.12, because a < J;

thus lim;_,, ¢ = a from Proposition 2.13, and y is not defined near —oo, and 7 is of type (5). =

Next we study the global behaviours, according to the values of a. The results are expressed
in terms of w.

3.2 Subcase a < N <§

Theorem 3.2 Assume ¢ =1 and —o0o < a < N < 6(a # 0). Then the regular solutions w have a
constant sign, and lim, o r®|w| = L > 0 if @ < N, lim, oo 7° |w| = £ if a = N. And w(r) = br—°
s also a solution. There exist solutions such that

(1) (only if « < N) w is positive, lim,_,or"w =c > 0, if N > 2 (and (2.45) holds with a > 0 > b
if N =1), and lim,_ 70w = ¢;

(2) w is positive, lim, o row = £, lim,_o r®w = L > 0;
(8) w has precisely one zero, lim, g r°w = £, lim, o r®w(r) = L < 0;
(4) w is positive, Ry > 0, lim, o 70w = £;

(5) w is positive, Ry, > 0, lim, o 7% = L > 0;
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(6) w has one zero, Ry, > 0, and lim,_,o, r*w = L # 0;

(7) (only if « < N) w is positive, lim, or"w =c¢ >0 if N > 2 (and (2.45) holds with a > 0 > b if
N =1) and lim,_,oo r*w = L > 0;

(8) w has one zero, with lim,_,or"w =c¢ >0 if N > 2 ((and (2.45) holds witha >0 >b if N = 1),
and lim,_, o r®w = —L < 0;

(9) N =1,w >0 and (2.45) holds with a > 0, b > 0 and lim, . 7w = L.
Up to a symmetry, all the solutions of (E,) are described.
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th32figlha=1<N=2<6=3 th 3.2,figll: a =2=N=2<§=3

Proof. (i) Case a # N (see fig I). The trajectory 7, starts in Q; for o > 0, in Q4 for a < 0,
and y stays positive. Then lim, ..,y = oo, and lim,; ., ¢ = «a, and lim, . rw = L > 0, from
Propositions 2.15 and 2.18, since &« < N. Moreover y is increasing: indeed if it has a local maximum,
at this point y < /¢, and then y has no local minimum, since at such a point y > ¢, so that y cannot
tend to co. Then 7, stays in Qp, and Y is increasing from 0 to co. Indeed each extremal point 7 of
Y is a local minimum, from (2.17). If & < 0, in the same way, then Y is decreasing from 0 to —oo,
and 7, stays in Q4.

e Let us follow the trajectory 77: it does not intersect 7,., and cannot enter Qo from Remark
2.2. Thus y stays positive and increasing. It cannot enter Q4, seeing that it does not meet 7, if
a > 0, or from Remark 2.2 if & < 0. Thus 7; stays in Q;, and (y,Y") converges necessarily to (0, 0).
If N > 2 then lim,_,_,,( =n, lim,_o7"w = ¢ > 0 from Proposition 2.13 and 2.14. If N = 1, since
71 stays in Qq, then necessarily lim,_,_o, ¢ = 0, thus (2.45) holds with a > 0 > b.
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e Next we follow 73: the function y has a zero, which is unique, since o < N, from Proposition
2.10. Then y < 0, and lim,; oy = —o00, lim, o 7*w = —L < 0 from Proposition 2.13 and 2.15.
And 73 stays in Qs if @ < 0, or goes from Qs into Qg if v > 0.

e The trajectories 7o, 74, 75 of Lemma 3.1 correspond to the solutions w of type (2),(4),(5).

e For any trajectories 7g in the domain delimitated by 73,74, y has one zero, and lim,_,, r®w =
L # 0; and w is of type (6).

e The solutions of type (7) correspond to the trajectories 7 in the domain delimitated by
7.,71,75. Indeed lim, ooy = 00, and lim, oo 7w = L > 0. And lim,_, oy = 0. If N > 2, then
lim, , ¢ =mn, lim,_or"w = ¢ > 0, from Proposition 2.13 and 2.14. If N = 1, 7 cannot meet 7,
thus necessarily lim,_,_~, ( =0, and (2.45) holds with @ > 0 > b.

e Up to the change of w into —w, the solutions of type (8),(9) correspond to the trajectories in the
domain delimitated by —7, 71, 73. Indeed they satisfy lim; ., y = —o0, and lim, o, r®w = L < 0;
and lim, oy = 0. If N > 2, then lim, ,or"w = ¢ > 0 and w has a zero. If N = 1, either (2.45)
holds with @ = 0 > b, and w stays negative, or a < 0,b < 0 and w has a zero. Such solutions exist
from Theorem 2.5. By symmetry, all the solutions are described.

(ii) Case a = N(see fig IT). Then M, belongs to the line y =Y, and u; = (=d§/(p —1),—/(p — 1))
has the same direction. Moreover Jy is constant, which means y — Y = Cel® N7 ( e R. The
solutions corresponding to C' = 0 satisfy y =Y, thus 7; = 7, = {(£,€) : € € [0,¢))}, corresponding
to the regular Barenblatt solutions. And 73 = {(&,€) : £ > ¢)} corresponds to the solutions defined
by (1.8) for K < 0. All the other solutions exist as before, up to the solutions of type (7). ]

Remark 3.3 The trajectory Ty is the unique one joining the stationary points (0,0) and M,. As a
consequence, for a < N, the solutions w of type (1) are unique, up to the scaling given at Remark
2.1. The solutions of types (2),(4),(5) are also unique.

3.3 Subcase N < a <.

Here we prove that some periodic trajectories can exist, according to the value of o with respect
to a*. Notice that N < a* whenever 62 — (N +3)§ + N > 0, from (2.35), in particular a* < N for
any p < 3/2. Our main tool is the Poincaré-Bendixon theorem, using the level curves of the energy
function W:

Lemma 3.4 Assumee =1 and N < a < 8. Consider the level curvesCr, = {(y,Y) € R : W(y,Y) =k}
(k € R) of function W defined at (2.21), which are symmetric with respect to (0,0). Let

ke = W(L, (80)P71) = %(5 — N)6P~2¢P, (3.1)

If k > ky, then Ci has two unbounded connected components. If 0 < k < kg, Cy, has three connected
components and one of them is bounded. If k = k¢, Cy, is connected with a double point at M,. If
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k =0 and one of the three connected components of Cy is {(0,0)}. If k < 0, C has two unbounded
connected components.

Proof. The energy ky of My, given by (3.1), is positive. We observe that (y,Y) € Cy if and
only if F(y) = k — G(y), where F,G are defined at (2.48). By symmetry we can reduce the study
of Cj to the set y > 0. Let ¢(s) = |s|p/ /o — s+ 1/p, for any s € R, and § = Y/(dy)P~!. Then
(2.48) reduces to the equation

p(0) = (k= G(y)) /(0y)".

The function ¢ is decreasing on (—oo, 1) from oo to 0, and increasing on (1,00) from 0 to co. Let
11 be the inverse of the restriction of ¢ to (—oo, 1], and 9 be inverse of the restriction of ¢ to
[1,00), both defined on [0,00) . For any y > 0,

yely e (Y < ((Sy)p_1 and Y = ®4(y) or (Y > ((53/)19—1 and Y = ®y(y)),

where

k—G(y)
(6y)P

®; is under M and ®, is above, and ®1,®5 € C'((0,00)). The function G has a maximal point
at y = ¢, and G(¢) = ky. Using the symmetry, either k¥ > k; and y describes R, and Cj, has two
unbounded connected components. Or 0 < k < ky and C; has three connected components and
one of them, CZ, is bounded. Or k = k¢ and Cj, is connected with a double point at M,. Or k =0
and one of the three connected components of Cy is {(0,0)}. Or £ < 0 and C;, has two unbounded
connected components. The unbounded components satisfy lim|,|_,o. Y/ Y27 = +(p/ (5c) /2)VP from
(3.2). The zeros of @, are contained in

(I)z(y) = (5y)p_1'¢i( )7 1=1,2, (32)

N={(y,Y)eR*:y>0,6Y = (5§ —a)y+ (26 — N)(dy)* '},

and N is above M as long as y < £.

Let us describe CZ when 0 < k < kg : the function ®; is increasing on a segment [0,7], such
that 7 < ¢, and ®(0) = —(kp/)/?" and (7, ®(7)) € M, with an infinite slope at this point; the
function @, is increasing on some interval [0,§) such that (7, ®2(7)) € N and then decreasing on
(7,7), and ®5(0) = (kp')"/?'and ®5(7) = ®1(7). By symmetry with respect to (0,0), the curve ch
is completly described.

Next consider Cy, for y > 0 : the function @, is increasing on [0, 00) from (p'k¢)'/?" to oo, and
®o(¢) = (6¢)P~1; the function ®; is increasing on some interval [0,7) such that (7, ®1(¢)) € N
thus § > ¢; and (¢, ®1(¢)) is under M, and ®;(¢) = (§¢)P~1, and ®; is decreasing on (§,c), and
limy oo @1 = —o0. Setting Ci,1 = {(y, P1(y)) : y > £} and C,2 = {(y,P2(y)) : y > £}, one has
Ckz = Cze U iC;%l U Cku?' [ |
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Theorem 3.5 Assume e =1 and N < a < d. Then w(r) = £r=° is a solution. Moreover
(i) If a < o, then any solution of (E,) has at most a finite number of zeros.

(ii) There exist & such that max(N,a*) < & < 0, such that if « > &, in the phase plane (y,Y),
there exists a cycle surrounding (0,0).

(i4i) Let any « such that there exists no such cycle. Then the regular solutions have a finite positive
number of zeros and lim, o r%w = L, # 0 or lim,_, rdw = +0. There exist solutions of types

(2)(3)(4),(5),(6) of Theorem 3.2, and solutions such that
(1°) (only if L, # 0)lim, or’w = £, and lim, _or"w = ¢ # 0 (or (2.45) holds if N = 1);
(7)) im, o r"w = c # 0 (or (2.45) holds if N = 1) and lim, . r*w = L # 0.

(iv) Consider any o such that there exists such a cycle, thus there exist solutions w which oscillate
near 0 and oo, and r’w is periodic in Inr. The regular solutions w oscillate near 0o, and row is
asymptotically periodic in Inr. There exist solutions of types (2),(4),(5), and solutions

(17) with precisely one zero, Ry, > 0, and lim, row = ¢;
(87) such that lim,_ row = ¢, and oscillating near co;
(9) such that lim,_or"w = c# 0 (or (2.45) holds if N = 1) and oscillating near co;

(10) with precisely one zero, Ry, > 0, and lim, o 7w = L # 0;

(11) with Ry, > 0 and oscillating near co.

th 3.5,fglll: e =1, N=2<a=241<5=3 th 35fglV:ie=1,N=2<a=242<3=3

Proof. First observe that there always exist solutions of type (2),(4),(5), from Lemma 3.1.
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(i) Assume « < o*(see fig III). Consider any trajectory 7. Suppose that y has an infinity of zeros
near £o0. From Proposition 2.15, 7 is contained in the set D = {(y,Y) € R? : |y| < £, Y| < (60)P~1}
near +oo. Then it is is bounded near +o00, hence the limit set at +00 is contained in D. But M, & D;
and (0,0) is a source, and a node point, it cannot be in the limit set I' at co. From the Poincaré-
Bendixon theorem, I' is a closed orbit, so that there exists a cycle. Moreover, from (2.52) and
(2.53),

ofr Of2 _ L sen/e-1) _ v @-p)/e-1)

thus from Bendixon’s criterion, there is no cycle in the set {|Y| < D}. Now observe that
a<af < (80P < D. (3.3)

Then there is no cycle in D, and we reach a contradiction.

(ii) Assume o > max(N, a*). The curve £ intersects M at point (§-*D'/®=1 D). Then
SeNM= {(5*1(017)1/@*1),917) L0 €0, 1]} ;

and D < (§¢)P~! from (3.3), thus S, does not contain M,. We can find k; > 0 small enough such
that Czl is interior to Sg. Next we search if there exists some k € (0, k) such that £ is in the
domain delimitated by C,’;. By symmetry we only consider the points of £ such that y > 0. In any
case for any point of £, from (2.25) and by convexity, |[oy|” + ]Y\p/ < M = (2(26 — N))°. By a
straightforward computation it implies W(y,Y) < KM, where K = max(2/p/, (30 — N)/dp). Let
& = &(d, N) be given by KM = ky, that means

§—N )1/551’*1(5 ~N)
2K6% P’ 220 —N)

5—a=(

If o > ¢, there exists ko < ky such that £ is contained in the set {(y,Y) €ER2: W(y,Y) < k:g},
which has three connected components; inasmuch Sy is connected, it is is contained in the interior
to Ckg. Then the domain delimitated by C,Zl and 0,22 is bounded and positively invariant. It does

not contain any stationary point, thus contains a cycle, from the Poincaré-Bendixon theorem (see
fig IV).

(iii) Let « such that there exists no cycle. Since N < «, the regular solutions have at least one
zero. They a finite number of zeros. Indeed in the other case, (y,Y) is bounded near oo, thus it
has a limit cycle. Then either lim, .,y = 00, and lim, ., = « > 0, so that the trajectory 7.
ends up in Qp or Qsz, and limr%w = L, # 0, or lim,; .y = +£ and lim, row = +0.

e The trajectory 73 cannot meet 7, or —7,., thus y has a unique zero, and lim,_,,.y = —oo, and
lim,; _5( = a. The same happens for the trajectories 7 in the domain delimitated by 73, 74. Thus
there exist solutions of types (3),(6).
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e Suppose L, # 0 and consider 77 : the trajectories 7,, —7,,7; have a last intersection point at
time 7 with the half axis {y = 0,Y < 0} at some points P,, P/, P;, and P, € [P,, P!]. The domain
delimitated by 7,, —7, and [P,, P/] is bounded and negatively invariant, from Remark 2.2. Then
71 stays in it for 7 < 79, it has a finite number of zeros, and converges to (0,0) near —oo; thus w

is of type (1’). If N > 2, then lim,_,,( = 7, so that y has at least one zero.

e Since (0,0) is a source, there exist other solutions converging to (0,0) near —oo, they have a
finite number of zeros, and lim,_,»( = «, and w is of type (7).

(iv) Let a such that there exists a cycle, thus 7, has a limit cycle O.

e Consider again 7;. Since My ¢ Sr, the function W is decreasing near oo, so that W (1) > ky;
thus 77 is exterior to CZZ for large 7, in the domain exterior to C,ZZ delimitated by Cj, 1 and —Cy, 2;
and it cannot cut Ci,. Moreover y is decreasing at long as y > 0, then 7; enters Q4 as 7 decreases.
It cannot stay in it, because it would converge to (0,0), which is impossible. Then y has at least
one zero, and 7; enters Q3. It stays in it, since it cannot cross —Cy, 2. Thus y has a unique zero,
and lim, .,y = —o0, and R,, > 0 from Proposition 2.13, because 77 cannot converge to (0,0) at
—o00, and w is of type (1”).

e Next consider 73. Then W is decreasing near —oo, hence W (1) < ky; thus 73 is in the interior
of ng near —oo. Now the domain delimitated by Cgl and ng is positively invariant, thus 73 stays
in it; then it is bounded, and has a limit cycle at oo, and w is of type (37).

e The solutions of type (9) correspond to trajectories 7 in the domain delimitated by O, and
distinct from 7,.. Indeed 7 is bounded, in particular the limit-set at —oo is (0,0), or a closed orbit.
But 7 cannot intersect 7. Then 7 converges to (0,0) near —oo.

e The solutions of type (10) correspond to a trajectory 7 in the domain delimitated by 73 U 75
(or its opposite): indeed y has a constant sign near oo, and near In Ry, and lim, o, r®w = L # 0,
and R,, > 0, from Proposition 2.13. Then 7 starts in Qg, and ends up in Qp; and y has at most
one zero, because at such a point ¢y = — \Y\l/ PNy > 0, thus precisely one zero.

e The solutions of type (11) correspond to a trajectory 7 in the domain delimitated by
T1,74,—71,—74. Then y cannot have a constant sign near oo : indeed this implies lim{ = a > 0;
this is impossible since the line Y = y is an asymptotic direction for 77,74. Thus 7 is bounded
near oo, and it has a limit cycle at co. Near —oo, y a constant sign, because 7 cannot meet 73; and
R,, > 0 from Proposition 2.13, and 7 has the same asymptotic direction Y =y as 71, 7;. [

Remark 3.6 From the numerical studies, we conjecture that & is unique, and the number of zeros
of w is increasing with « in the range (N, &); and moreover there exists a1 = N < ag < .. < ap <
apt1 < .., such that the reqular solutions have n zeros for any o € (qp, apt1), with im, o 7% =
L. #0, and n + 1 zeros for a = ayy1, with lim,_ row = +4.
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3.4 Subcase a <J< N,a#N
Here (0,0) is the only stationary point, and N > 2.

Theorem 3.7 Assume e =1 and —o00 < a < § < N, # 0,N. Then the regular solutions have
a constant sign, and the positive ones satisfy lim, oo r®w(r) = L > 0 if a # 6§, or (2.43) holds if
a = 9. All the other solutions have a reduced domain (Ry, > 0). Among them, there exist solutions
such that

(1) w is positive, lim, oo 7w = ¢ # 0 if § < N, or lim,_oo ¥ (In )NtV 20 = o defined at (2.44)
if 6 = N;

(2) w is positive, lim, oo 7w = L > 0 if a # 5, or (2.43) holds if a = §;
(3) w has one zero, such that im, oo 7w =L # 0 if a # 9§, or (2.43) holds if a = 6.

Up to a symmetry, all the solutions are described.
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Proof. Any solution has at most one zero, from Proposition 2.10. The trajectory 7, starts in
Q4 for a < 0 (see fig V), in Qp for @ > 0 (see fig VI) and y stays positive, and lim, oy = oo,
and lim;_, ¢ = a, from Proposition 2.18. Then lim, o, r®w(r) = L > 0 if o < §, or (2.43) holds
if & = 9, from Proposition 2.14. Moreover y is increasing: indeed it has no local maximum from
(2.16). As a consequence 7, does not meet M, thus stays under M. If a > 0, then7, stays in Qy,
and Y is increasing from 0 to co. Indeed each extremal point 7 of Y is a local minimum, from
(2.17). If @ < 0, in the same way, then Y is decreasing from 0 to —oo, and 7, stays in Q4. The
only solutions y defined on (0, 00) are the regular ones, from Proposition 2.13.
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e For any point P = (¢, (6)P~!) € R? with ¢ > 0, in other words on the curve M, the trajectory
T p) intersects M transversally: the vector field is (0, —(N — a) ¢). Moreover the solution going
through this point at time 7y satisfies y”(79) > 0 from (E,), then 7y is a point of local minimum.
From (2.16), 79 is unique, so that it is a minimum. Then y > 0, lim,; . ( = o, lim, 1, g, Y/y =1,
and 7[p) stays in Q; if a > 0, or goes from Q; into Q3 if a < 0. The corresponding w is of type

(2).
e For any point P = (0,£),& > 0, the trajectory ’]EP] goes through P from @Q; into Qs, from

Remark 2.2. Then y has only one zero, and as above, it is decreasing on R and lim,_, ., y = —o0,
and lim; .o ¢ = a, lim,; 1,5, Y/y = 1. Thus ’ZIP] starts in Q1, then stays in Qs if a < 0, and

enters Qs and stays in it if & > 0. The corresponding w is of type (3).

e It remains to prove the existence of a solution of type (1). If & < N, then (0,0) is a saddle
point. There exists a trajectory 77 converging to (0,0) at oo, with y > 0, and lim, .o ( =7 > 0,
thus in Q; near oo, with ¢’ < 0. As above, y has no local maximum, it is increasing, so that y > 0.
If § = N, we consider the sets

A={P € (0,00) x R: Tjpy N M # 0}, B={P e (0,00) x R: TpN{(0,€) : £ >0} #0}.

They are nonempty, and open, because the intersections are transverse. Since 7, is under M,
the sets A and B are contained in the domain R of Q1 U Qs above 7., and AUB # R. As a
result there exists at least a trajectory 7; above 7., which does not intersects M and the set
{(0,£) : £ > 0} . The corresponding y is monotone. Suppose that y is increasing, then lim, , .y =
0; it is impossible since 71# 7 ,.. Then y is decreasing, and lim, ..,y = 0. In any case w is of type
(1), from Propositions 2.13 and 2.44. All the solutions are described, because any solution has at
most one zero, and at most one extremum point. And 77 is unique when 6 < V. [

4 The case ¢ = —1,0 < «

4.1 Subcase N < < «

Theorem 4.1 Assume ¢ = —1 and N < § < a. Then the regular solutions have a constant sign
and satisfy Sy < 0o. And w = 0r=% is a solution. There exist solutions such that

(1) w is positive, lim, or"w =c# 0 if N > 2 (lim,_ow = a > 0, and lim,_,ow’ = b for any a >0
and some b= b(a) <0 if N = 1) and lim, .o, r’w = ¢

(2) w is positive, lim,_,o rw =/ and S, < oo;
(3) w has one zero, lim,_or%w = £ and Sy, < o0;
(4) w is positive, lim, or®w = L # 0 and lim, o r'w = ¢;

(5) w is positive, lim, or*w = L # 0 and S, < oo;
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(6) w has one zero, lim,_,or®w = L # 0 and S, < o0;

(7) w is positive, lim,_or"w = c¢ # 0 if N > 2 (lim,ow = a > 0, and lim,_gw' = b, for any
a >0 and some b <0 if N =1) and S,, < o0;

(8) w has one zero and the same behaviour;

(9) (only if N = 1) w is positive, lim, _ow = a > 0, and lim, _ow' = b, for any a > 0 and any
b>0, and Sy, < oo.

Up to a symmetry, all the solutions are described.
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Proof. Here we still have three stationary points, and (0,0) is a source and M, is a saddle
point (see fig V and VI). From Propositions 2.10 and 2.19, the regular solutions have a constant
sign and satisfy S, < co. And 7, stays in Qq, from Remark 2.6, and lim,_j, g, Y/y = —oc from
Proposition 2.20. Since a > 0, any solution y has at most one zero from Proposition 2.10, and y is
monotone near In Sy, (finite or not) and near —oo, from Proposition 2.12. In the linearization near
My the eigenvectors u; = (v(a), Ay — d) and ug = (—v(«a),d — Ag) form a direct basis, where now
v(a) < 0, and A\; < § < Ag; thus uy points to Q3 and uy points to Q4. There exist four particular
trajectories 71,73, 73, 74 converging to My near £oo :

e 77 converging to My at oo, with tangent vector u;. Here y is increasing near oo, and as long
as y > 0; indeed if there exists a minimal point 7, then from (E,), y(7) > £. And 7; stays in Q; on
R, from Remark 2.2. Then 7; converges to (0,0) at —oo, and w is of type (1).

e 7, converging to M, at —oo, with tangent vector us. Here again 3/ > 0 as long as y > 0. And
Y’ < 0 near —oo, and Y is decreasing as long as Y > 0 : if there exists a minimal point of Y in Qj,
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then from (Ey), Y (7) > (6¢)P~L. But (y,Y) cannot stay in Qi: it would imply lim, .o, ¥y = oo,
which is impossible, from Proposition 2.13. Thus 73 enters Q4 at some point (£2,0), & > 0 and
stays in it, since ¢’ > 0. Then Sy, < oo and lim,_,, Y/y = —1, and w is of type (2).

e 73 converging to M, at —oo, with tangent vector —us. Here again y' < 0 as long as y > 0.
And Y’ > 0 as long as Y > 0; thus Y’ > 0 on R. Then again (y,Y’) cannot stay in Qy, thus y has
a unique zero, and 73 enters Qs at some point (0,&3), & > 0, and stays in it. Hence S,, < oo and
lim, .. Y/y = —1, and w is of type (3).

e 7, converging to My at oo, with tangent vector —uy. In the same way, y is decreasing near oo,
and y is everywhere decreasing: if there exists a maximal point 7, then y(7) < ¢ from (E,). Then
Y stays positive, thus 7y stays in Q1. From Proposition 2.13, lim,_, .,y = o0 and lim,_, ., { = «,
so that w is of type (4).

Next we describe all the other trajectories 7p) with one point P in the domain R above 7, U (=7,).

o If P = (p,0), ¢ > &, then Tjp| stays in Qq after P, because it cannot meet 7y; before P it
stays in Qp, from Remark 2.2. Thus again S, = 0o, and lim,_, o, ( = a > 0, and y has a unique
minimal point, and w is of type (5). For any P is in the domain delimitated by 73, 74, the trajectory
7ip) is of the same type.

o If P=(0,8),¢ > &3, then 7p stays in Qg after P, in Q; before P, since it cannot meet 75, 7y.
Then lim,; , - ¢ =a >0, and S, = 00, and w is of type (6). If P is in the domain delimitated by
73,74, then Tjp) is of the same type.

o If P = (p,0),p € (0,&2), then 7[p| stays in Q4 after P, in Q; before P; it cannot meet 7;,
thus Sy, < oo; and 7[p) converges to (0,0) in Q; at —oo, thus w is of type (7). If P is in the domain
delimitated by 71,72, 7;, then 7(pj is of the same type.

o If P =(0,¢) for some £ € (0,&3), then Tjp) stays in Q after P, in Q; before P; and 7 cannot
meet —7;, so that Sy, < oo. Then 7jp) converges to (0,0) in Q; at —oo, and w is of type (8).

e If P is is in the domain delimitated by 71,73, —7,, either y has one zero, and 7p) is of the
same type; or y < 0 on R, and v/ = dy — Y/®=1) < 0. Hence S,, < oo and is Tp) converges to
(0,0) in Qy at —oo. It implies N = 1 (see fig VI), and —w is of type (9), from Propositions 2.13
and 2.14; and such a solution does exist from Theorem 2.5. Up to a symmetry, all the solutions
are obtained. Here again, up to a scaling, the solutions w of types (1),(2),(3),(4) are unique. [ ]

4.2 Subcase § < min(a, N) (apart from o = 4§ = N)

Theorem 4.2 Suppose ¢ = —1 and § < min(a, N) (apart from a« = § = N). Then the regular
solutions have a constant sign and a reduced domain (S, < o0). There exist solutions such that

(1) w is positive, lim,_,gr®w = L # 0 and lim, 7w = ¢ # 0 if 6 < N, or (2.44) holds if
=N <
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(2) w is positive, lim, 0w =L # 0 if 0 < «, or (2.43) holds if « =6 < N, and S, < 00;
(8) w has one zero and the same behaviour.

Up to a symmetry, all the solutions are described.
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Proof. Here (0,0) is the only one stationary point, and N > 2, (see fig IX and X) From
Propositions 2.10 and 2.19, the regular solutions have a constant sign, and S,, < oo. Moreover
w’ > 0 near 0 from Theorem 2.5; and w can only have minimal points, see Remark 2.6, thus w’ > 0
on (0,Sy); in other words 7, stays in Qq, and lim, 1,5, Y/y = —1. From Propositions 2.10 and
2.12, any solution y has at most one zero and is monotone at the extremities. From Proposition
2.13, apart from 7,, any trajectory 7 satisfies lim,_,_ |y| = oo, then lim,;,_ ( = a > 0, thus 7
starts from Qp or Q3 at —oo.

e For any P = (¢,0), ¢ > 0, 7[p] goes from Q; into Q4 at P, from Remark 2.2, stays in Q4
after P, since it cannot meet 7., and in Q7 before P. Indeed it cannot start from Qgs, because it
does not meet —7,.. Then y stays positive and w is of type (2).

e For any P = (0,§), £ > 0, 7p] goes from Q; into Qa from Remark 2.2, thus 7[p| stays in Qy
after P, since it cannot meet —7,, and in Q; before P, and w is of type (3).

e It remains to prove the existence of solutions of type (1). If 6 < N, (0,0) is a saddle point,
thus there exists a trajectory 77 converging to (0,0) at oo; and lim,_,, { = 1 > 0 from Proposition
2.13. Then 77 is in Q; for large 7, and stays in it, because Qi is negatively invariant, and the
conclusion follows. If § = N, we consider the sets

A:{PEQlcT[p}ﬂ{(ap,O):ap>O}7é®}, B:{PGQl:’ﬁp]ﬂ{(O,f):5>0}7é(Z)}.
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They are nonempty, and open, since the vector field is transverse at (¢, 0) and (0, &); thus AU B # Q;.
Then there exists a trajectory 77 staying in Qy; therefore S,, = oo and 77 converges to (0,0) at oo,
and w is of type (1), from Proposition 2.14. All the solutions are described, up to a symmetry. m

5 Thecasec=1,0 <«

5.1 Subcase N < ¢ < a.
Theorem 5.1 Assumee =1, N <0 <« and o # N. Then

(i) There exists a cycle surrounding (0,0), thus changing sign solutions such that row is periodic
in Inr. All the other solutions w, in particular the reqular ones, are oscillating near co, and r’w is
asymptotically periodic in Inr. There exist solutions w such that lim, _or"w=c#0if2< N <9
and (2.44) holds if N =6, or (2.45) holds if N = 1.

(ii) There exist solutions such that Ry, > 0, or lim,_or®w = L # 0 if a # 6§, or (2.43) holds if
a=J.
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Proof. (i) Here (0,0) is the only stationary point. From Proposition 2.13, any trajectory is
bounded and y is oscillating around 0 near oo.

First assume N < § < « (see fig XI). Then (0,0) is a source, all the trajectories have a limit
cycle at oo, or are periodic. In particular there exists at least a cycle, of orbit O,. In particular 7,
presents a limit cycle O C O,. There exists also trajectories 7, starting from (0,0) with an infinite
slope, satisfying lim, ,or"w = ¢ # 0 if N > 2, or (2.45) if N = 1, and they have the same limit
cycle O.
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Next assume N = § < a(see fig XII). Then 7, cannot converge to (0,0), since it would intersect
itself. Thus again the limit set at co is a closed orbit O@. And no trajectory can converge to (0,0) at
oo: it would be spiraling around this point, and then intersect 7. Consider any trajectory 7 # 7,
in the connected component of O containing (0,0). It is bounded, in particular the limit set at —oco
is (0,0), or a closed orbit. The second case is impossible, since 7 does not meet 7,. Then 7 is one
of the 7, and the corresponding w satisfies (2.44).

(ii) From Theorem 2.26, all the cycles are contained in a ball B of R2. Take any point Py exterior
to B. Then 7|p, has a limit cycle at oo contained in B. If it has a limit cycle at —oo, then it is
contained in B, so that 7[p) is contained in B, which is impossible. As a result y has constant sign
near In R,,. From Proposition 2.13, either R,, > 0 or y is defined near —oc. [

Theorem 5.2 Assumee =1 and o« = 6 = N. Then the reqular solutions have a constant sign, and
are given by (1.8). For any k € R, w(r) = kr— is a solution. There exist solutions such that

(1) w is positive, lim,_orNw = ¢; > 0, lim,_orNw = c3 > 0 (c2 # ¢1);

(2) w has one zero, lim,_, rNw =¢; >0 and limy_ oo TN w = ¢ < 0;

(3) w is positive, Ry, > 0, and lim,_ rNw = ¢ # 0;

(4) w has one zero and the same behaviour.

Up to a symmetry, all the solutions are described.
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th 5.2 figXIll: e =1, a=§d=N =3

Proof. Since o = N, equation (E,,) admits the first integral (1.7), which means Jy =C,C €
R, and we have given at (1.8) the regular (Barenblatt) solutions relative to the case C' = 0. Since
d = N, (1.7) is equivalent to the equation Y = y — C, from (2.12) (see fig XIII). For any k£ € R,
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(y,Y) = (k,|Nk|P"* Nk) is a solution of system (S), located on the curve M, so that w(r) = kr—
is a solution. Any solution has at most one zero, from Proposition 2.10. From Propositions 2.13,
and 2.15, any trajectory converges to a point (k, |Nk|pf2 NEk) of M at co. Let C < 0 such that the
line Y = y — C is tangent to M. Then for any C € (6, 0) , the line Y = y — C' cuts M at three
points k1 < 0 < ko < k3. And ¢/ > 0 if the trajectory is below M and 3’ < 0 if it is above M. We
find two solutions defined on R : one is positive such that lim, ., _, y = ks, lim, . oy = k3, and
the other has one zero. All the other solutions satisfy R,, > 0, lim,_j, g, Y/y = 1, some of them
are positive, the other have one zero. [

5.2 Subcase 6 < min(a, V)

Here the system has three stationary points, (0,0), is a saddle point, and My, M are sinks when
d < NJ/2, or N/2 < ¢ and a < o, and sources when N/2 < § and o > «*, and node points
whenever o < aq, or ay < «, where oy, ay are defined at (2.51). recall that oy can be greater
or less than 7. This case is one of the most delicate, since two types of periodic trajectories can
appear, either surrounding (0, 0), corresponding to changing sign solutions, or located in Q; or Qs,
corresponding to constant sign solutions. Notice that 6 < N implies § < N < n from (1.3). And
N/2 < § implies n < o* from (2.35). We begin by some general properties of the phase plane.

Remark 5.3 (i) The trajectory 7, starts in Q. Since (0,0) is a saddle point, there exists a unique
trajectory Ty converging to (0,0), in Q1 for large T, with an infinite slope at (0,0), and lim,_or"w =
¢ > 0, from Propositions 2.13 and 2.14. Moreover if 1. does not stay in Qi, then T, stay in it,
and it is bounded, contained in the domain delimitated by Q1 NT., from Remark 2.2. Thus if 7, is
homoclinic, it stays in Q.

(ii) Any trajectory T is bounded near oo from Propositions 2.13 and 2.17. From the strong form of
the Poincaré-Bendizon theorem, see [13, p.239], any trajectory T bounded at +o0o either converges
to (0,0) or £ My, orits limit set I'y at +00 is a cycle, or it is homoclinic hence T =T, and 'y = 7,
(indeed for any P € T'x, Tjp) converges at oo and —oo to (0,0) or £=My; if one of them is £My,
then £M, € m C ', and My is a source or a sink, thus T converges to =My; otherwise T is
homoclinic and Tjp) = 7).

(i13) If there exists a limit cycle surrounding (0,0), then from (2.46), it also surrounds the points
+M,.

We begin by the case a < 1, where there exists no cycle in @71, and no homoclinic orbit, from
Theorem 2.25.

Theorem 5.4 Assume that e =1 and § < min(a, N), and oo <. Then the regular solutions have
a constant sign, and lim, .o 70 |w(r)| = £. And w(r) = €r=° is a solution. Moreover

(i) If « < m, There exist solutions such that
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(1) w is positive, lim, o 7w = L and lim, o r'w = ¢;
(2) w is positive, Ry, > 0 and lim, o "w = ¢ > 0;

(3) w is positive, Ry > 0 and lim, o rw = /;

(4) w has one zero, Ry, > 0 and lim, o r'w = ¢;

(ii) If o = n, then w = Cr~" is a solution and there exist solutions of type (4), but not of type (2)

or (3).
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Proof. From Proposition 2.10 and Remark 2.6, 7, stays in Qi, and converges to M, at oc;
indeed there is no cycle inQ, from Propositions 2.13, 2.17 and 2.25.

(i) Assume o < 7 (see fig XIV) Consider any trajectory in Qq, thus in particular Y, > 0. If there
exists 7 such that Y, (7) = 0, then at this point Y./(7) > 0 from (2.39), and 7 is a local minimum.
The trajectory 7, satisfies lim,_,_ Y, = 0, and consequently Y. > 0 on R. This is equivalent to

ay > YV 4 (p-1)(n - a)Y.
Therefore 7, stays strictly under the curve
Ma={@Y) € Qriay =YD 4 p- 1) - )Y}

e First consider 7. Since o < 7, it satisfies lim; o Y, = 0. Then Y, < 0 on (In R, 00), so
that 7 stays strictly above M. Then it stays above M. Indeed if it meets M at a first point
(y1, (5y1)p*1) , then y has a maximum at this point, thus from (2.16), ¢ < y;, and

(@—08)y; P =" p—1)(n—a) <& p—1)(n-93),
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and we reach a contradiction from (1.3) and (1.5). Thus y’ < 0. Suppose that y is defined on R,
then lim, oy = 00,lim; o ¢ = a. If ¢ > 0 on R, then ¢ (R) = (,n) , which contradicts (2.9).
Then ¢ has at least an extremal point 7, and ((7) is exterior to (o, n) from (2.9); if it is a minimum,
then ((7) > a from (2.18), since 3y’ < 0; if it is a maximum, then {(7) < a. Thus we reach again a
contradiction. Then R,, > 0 and lim, 1, g, Y/y = 1, and corresponding w are of type (2).

e For any P = (,0),¢ > 0, the trajectory 7|p) stays in Q; after P. The solution (y,Y") issued
from P at time 0 satisfies Y,(0) = 0, thus Y;(7) > 0 for any 7 > 0. Thus 7{pj stays under M,.
Moreover it enters Q4 as 7 decreases, and 3’ > 0 in Qy, from (S), thus it does not stays in it from
Proposition 2.13, enters in Q3 and cannot meat —7g; it stays in Q3 and R,, > 0, and y has precisely
one zero, and w is of type (4).

e Consider any trajectory 7[p,) going through some point P = (y1,Y1) in Q1, under 7 and

such that ay; < Yll/ @1 There exist such one, because the line y = Y is an asymptotic direction
of 7 . Let (y,Y) be the solution issued from P; at time 0. Suppose that y is defined on R, then
lim; .,y = oo, lim;,_» ¢ = a. And ((0) > . Then ¢ > ¢ on (—0o0,0) : otherwise there exists
7 < 0 such that {(7) = @ and ’(7) > 0, which contradicts (2.9). Thus ¥’ < 0 on (—oo, 7). Either
¢’ >0 on (—00,0), then ¢ > n > 0, from (2.9), which is impossible. Or ¢ has at least an extremal
point 7, and if it is a minimum, then {(7) > « from (2.18); if it is a maximum, then {(7) < «a; and
we are lead to a contradiction. Therefore R,, > 0, and the trajectory stays in Q;, and converges
to My ; indeed there is no cycle in Qq, from Theorem 2.25; then w is of type (3).

e Let O be the domain of Qp located under 7;. It is positively invariant. Any trajectory going
through any point of O converges to M; at oco. Either it meets the axis Y = 0 at some point
(£,0),€ > 0, or it stays in O and satisfies Ry, > 0, lim, 1, g, T/y = 1, and it meets M,, since M,
is strictly under M,,. Let

A={P € O :Tip)n{(,0): ¢ >0} # 0}, B={PecO:TpyNnMqy#0}.

Then A, B nonempty, and open: indeed one verifies that the intersection with M, is transverse,
because o # 1. Thus AU B # O. Then there exists a trajectory 77 such that w is of type (1).

(ii) Assume a = 7 (see fig XV). Then there is no positive solution with R,, > 0, thus no solution of
type (2) or (3). Indeed all the trajectories stay under 75, and 7 is defined by the equation ( = 7,
that means w = Cr~", or equivalently Y, = C; thus Yn/ = 0,7; = M,;. Consider any trajectory 7|p
going through some point P = (¢,0),¢ > 0, and the solution (y,Y) issued from P at time 0. Then
Y,(0) = 0, and Y;, < 0 thus Y, = ny — Y|@P/P=Dy > 0 on (—o0,0), secing that 7;p) does not
meet —7;. Suppose that it satisfies R, = 0. Then 7[p) starts from Qs, with lim, ., (=a =m1n.
Then lim, . o yy = L < 0, thus lim, . o Y, = — (a|L])® /@D And by a straightforward
computation,

Y, =Y, (N - % yy‘(2—p)/(p—1)> _
p—1

Hence Y, < 0 near —oo, which is impossible; then R,, < oo and w is of type (4). [
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Remark 5.5 Observe that for o < n, both trajectories T, and Ty stay in Q1.

Remark 5.6 (i) When a < N, one can verify that the reqular positive solution y is increasing and
y <l onR, so that rw(r) < ¢ for any r > 0.

(i) When o = N, then T, = {(§,£) : € € [0,£))}, and the corresponding solutions w are given by
(1.8) with K > 0. And T3 = {(§,§) : £ > £)} is a trajectory corresponding to particular solutions w
of type (3), given by (1.8) with K < 0.

Next we come to the most interesting case, where n < a.

Lemma 5.7 Assume e =1 and § < min(a, N) and n < a. If N/2 < § and a < o* and T, stays in
Q1, then it has a limit cycle at —oo in Qq, or it is homoclinic. If 6 < N/2, then 15 does not stay

m Ql.

Proof. In any case My is a sink, thus 7 cannot converge to M, at —oo. Suppose that 7; has no
limit cycle in Qj, and is not homoclinic and stays in Q. In particular it happens when § < N/2,
from Proposition 2.16. Then either lim,_, o,y = 00, lim,_or%w = A # 0, or R, > 0. In any case,
for any d € (n,q), the function yg(7) = riw = r?% satisfies lim, .1, r, Ya = 00 = lim, o0 Ya-

Then it has a minimum point, which contradicts (2.5). ]

Theorem 5.8 Assume ¢ = 1 and N/2 < § < min(a, N). Then w(r) = ¢r=° is still a solution.
Moreover

(i) There exists a (mazximal) critical value oyt of o, such that
max(n, a1) < Qerip < aF,

and the reqular trajectory is homoclinic: the reqular solutions have a constant sign and satisfy
lim, o 7w = ¢ # 0.

(ii) For any a € (qerit, @), there does exist a cycle in Qp, in other words there exist positive
solutions w such that r®w is periodic in Inr. There exist positive solutions such that row is asymp-
totically periodic in Inr near 0 and lim,_,o r'w = 8. There exist positive solutions such that rw is
asymptotically periodic in Inr near 0 and lim, 7w = ¢ # 0.

(i1i) For any o > o there does not exist such a cycle, but there exist positive solutions such that
lim, o 7w = £ and lim,_,o 7w = ¢ > 0.

(iv) For any o > g, there exists also a cycle, surrounding (0,0) and M, thus r°w is changing
sign and periodic in Inr. The reqular solutions, are changing sign, and oscillating at oo, and row
is asymptotically periodic in Inr. There exist solutions such that Ry, > 0, or lim,_,or%w = L # 0,
and oscillating at oo, and row is asymptotically periodic in Inr.
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th 5.8

N/2<d=3<N

th 5.8, figXVIIL: ¢ = 1,
N/2<§=3<N=4<a=59<a*

4<a*=6<a=06.2

6

we have three possibilities

)

Proof. (i). For any a € (a1, az) such that n < a, from Remark 5.3

for the regular trajectory 7,:

a spiral point, or it has a limit

e 7, is converging to M, and turns around this point, since « is

at a first point (¢, Y, (a)).

pfl}

(6¢)

Y >

{(.Y)

Notice that ¢ and £ depend continuously of a. Then 7; meats £ at a last point (¢, Y;(«)), such

that Ys(«)

Y, (a) > 0 (see fig XVI)

cycle in @ around My. Then 7, meats the set £
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e 7, does not stay in Q1, and then 7; is bounded at —oo, thus converges to M, at —oo and turns
around this point, or it has a limit cycle around M. Then 7; meats £ at a last point (¢, Ys(«)),
7, meats £ at a first point (¢,Y,(«)), such that Yy(a) — Y, («) < 0 (see fig XVIII and XIX)

e 7, is homoclinic, which is equivalent to Ys(a) — Y,.(a) = 0 (see fig XVII).

Now the function a — g(a) = Ys(a) — Y, () is continuous. If ay < 7, then g(n) is defined and
g(n) > 0, from Theorem 5.4. If n < ay, we observe that for & = a1, the trajectory 75 leaves Qq,
from Theorem 2.23, because « is a sink, and transversally from Remark 2.2; thus also for a =
aj + v for v small enough, by continuity, thus 7, stays in Q;, and g(a; + ) > 0. If & > a*(see
fig XIX), then M, is a source, or a weak source, from Theorem 2.21, thus 7, cannot converge to
Mpy. From Theorem 2.24, there exist no cycle in @1, and no homoclinic orbit. From Remark 5.3,
7, cannot stay in Qq, thus g(a) < 0 for o < a < . As a consequence, there exists at least an
Qerit € (max(n, ), a*) such that g(aerir) = 0. If it is not unique, we can choose the greatest one.

(ii) Let a < a*. The existence and uniqueness of such a cycle O in Q; follows from Theorem 2.21
when « is close to a* (see fig XVIII). In fact the existence holds for any o € (aerit, @*). Indeed
g(a) < 0 on this interval, and 7 cannot converge to M, at —oo, thus it has a limit cycle around M,
at —oo. Since My is a sink, there exist also trajectories converging to M, at co, with a limit cycle
at —oo contained in O. Now 7, does not stay in Qq, is bounded at oo, thus it has a limit cycle at
0o, containing the three stationary points .

(iii) Let o« > «*. Then 75 stays in Qj, is bounded on R, and converges at —oo to My, and 7, does
not stay in Q; as above, thus it has a limit cycle at oo, containing the three stationary points (see
figXIX).

(iv) For any o > agpit, apart from 7; and the cycles, all the trajectories have a limit cycle at oo
containing the three stationary points. Moreover from Theorem 2.26, all the cycles are contained
in a ball B of R2. Take any point P exterior to B. From Remark 6.5, 7ip) has a limit cycle at oo
contained in B and cannot have a limit cycle at —co. Thus y has constant sign near In R,,. From
Proposition 2.13, either R,, > 0 or y is defined near —oo and lim,_, o ( = L, lim, ,gr®w =L. =m

Remark 5.9 An open question is the uniqueness of qerit. It can be shown that if there exist two

critical values oztlm-t > azm-t, then the first orbit is contained in the second one.

In the case 6 < N/2, which means p < P, there exist no cycle in R?, and we obtain the
following;:

Theorem 5.10 Assume ¢ = 1 and § < N/2, § < a. Then the regular solutions have a constant
sign, and lim,_ 70 |w| = €. All the solutions have a finite number of zeros. And w(r) = €r=° is
a solution. Moreover, if a < n, theorem 5.4 applies. If n < «, all the other solutions have at least
one zero. There exist solutions, such that lim, ., r"w = ¢ # 0, with a number m of zeros. All the
other solutions satisfy lim,_,.o 7w = +¢, and have m or m + 1 zeros. There exist solutions with
m+ 1 zeros.
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Proof. (i) From Proposition 2.16, all the solutions have a finite number of zeros. Since
d < N/2, the function W defined at (2.21) is nonincreasing. The regular solutions (y,Y") satisfy
lim,._ o W(r) =0, thus W(7) <0 on R. If y(79) = 0 for some real 79, then W (1) = ’Y(TQ)‘p/ >0,
and we reach a contradiction. From Propositions 2.13 and 2.16, then lim, .,y = +¢, thus
lim, o0 0w = ££.

(ii) Assume 7 < «. From Lemma 5.7, 7, does not stay in Q;. From Proposition 2.13 and 2.20, 7
cannot stay in Q4, thus y has at least one zero. Let m be the number of its zeros. Then 7 cuts the
axis y = 0 at points &1, ..,&y,. From Remark 5.3, apart from 75, any trajectory converges to +M,.
For any P = (0,§),§ > [&m|, the trajectory 7[p) cannot intersect 7; and —7s, thus y has m + 1
zeros. Any other solution has m or m + 1 zeros, because the trajectory does not meet 7. and —7,.
and 7jp;. And Ry, > 0 or lim, o r®w = L # 0. [

Remark 5.11 Theorems 5.4, 5.8 and 5.10 cover in particular the results of [16, Theorem 2].

6 Casece=-1,a<d

6.1 Subcase max(a,N) <§

Here (0,0) is the only stationary point, and it is a source when § # N. We first suppose 0 < .

Theorem 6.1 Suppose e = —1,max(a, N) <6 and 0 < a.

(i) Suppose a # N or a # §. Then the regular solutions have a constant sign and a reduced domain
(Sw < 00). Moreover there exist solutions such that

(1) w is positive, lim,_,or"w =c#0 if N > 2 (lim,_ow =a >0, lim, o' =b<0if N=1)
and lim, 0o r%w = L # 0 if a # 6, or (2.43) holds if o =

(2) w is positive, lim,_or"w = ¢ # 0 4f N > 2 (lim,ow = a > 0, lim,,ow’ =b # 0, or
a=0<bif N=1) and S, < oc;

(3) w has one zero, lim,_,or"w =c¢ # 0 if N > 2 (lim,_,ow = a > 0, lim,_,ow =b < 0 if
N =1) and Sy < oc.

(ii) Suppose o« = & = N. Then the regular solutions, given by (1.8), have a constant sign, with
Sy < 00. For any k € R, w(r) = kr—=N is a solution. Moreover there exist positive solutions such
that lim,_orNw = ¢ > 0 and S, < 0o, and solutions with one zero, such that lim,_orNw =¢ >0
and Sy, < 00.

Up to a symmetry, all the solutions are described.
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Proof. (i) Here a # N or a # § (see fig XX). Since o > 0, from Propositions 2.10, 2.12 and
2.19, 7, satifies y > 0 and S,, < 00; and any solution y has at most one zero, and y,Y are monotone
near —oo and near InS,,. From Proposition 2.13, any trajectory 7 converges to (0,0) at —oo; and
apart from 7, it is tangent to the axis y = 0. If y > 0 near —oo, and N > 2, then 7 starts in Q,
since lim,_, o ( =n > 0; if N =1, then lim, .ow = a > 0, and lim,_gw’ = b, and 7 starts in Q;
if b <0, in Q4 if b > 0 (in particular when a = 0).

e For any P = (¢,0),¢ > 0, then 7p) satisfies y > 0 on R, and from Remark 2.2, 7jp stays in
Q, after P, because it cannot meet 7., thus S,, < 0o, and it stays in @ before P, and w is of type
(2). In the same way for any P = (0,£),£ > 0, then 7jp| stays in Qp after P, since it cannot meet
—7,, thus S, < oo, and it stays in Q; before P, and w is of type (3).

e Next consider the sets
A:{PE Q1 : Tip) N {(,0) :Lp>0}7é®}, B:{PE Q1 : Tip N {(0,¢) :f>0}7é(2)}.

From above, they are nonempty, and open, thus AU B # Q. Then there exists a trajectory 7y
starting from (0,0) and staying in Q. From Proposition 2.13, necessarily lim,; .o, y = oo and
lim; o ¢ = a > 0, thus w is of type (1) from Proposition 2.14.

e Finally we describe all the other trajectories 7jp; with one point P in the domain R above
7, U (—7,). If P is in the domain delimitated by 7,77, then w is still of the type (2). If P is in the
domain delimitated by —7;, 77, then either y has a zero, and w is of type (3), or N =1, y < 0 and
—w is of type (2). Up to a symmetry, all the solutions are obtained.
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(ii) Here o« = § = N ((see fig XXI). Since a = N (1.7) holds, and the regular solutions, relative
to C' = 0 are given by (1.8). Since 6 = N, (1.7) is equivalent to y + Y = C, from (2.12). For any
keR, (y,Y)= P, = (k,|Nk|P 2 Nk) is a solution of system (S), located on the curve M, thus
w(r) = kr~" is a solution of (E,). Any solution has at most one zero, from Proposition 2.10. From
Propositions 2.13, and 2.15, any other trajectory converges to a point P, € M at oo, and 5, < oo.
There exists trajectories such that y has a constant sign, and other ones such that y has one zero.
All the solutions are obtained. ]

Next we suppose o < 0, and distinguish the cases N > 2 and N = 1.
Theorem 6.2 Suppose ¢ = —1 and a < 0 < 2 < N < 4. Then any solution has a finite number of

zeros. The regqular solutions have at least one zero, and precisely one if —p' < a. Any solution has
at least one zero, and any nonregular one satisfies lim,_or"w = ¢ # 0. Moreover

(i) If —p' < «, then the regular solutions have a reduced domain (S, < o0); and there exist (
exhaustively)

(1) solutions with two zeros and S, < oo;
(2) solutions with one zero and lim, o r%w = L # 0;
(3) solutions with one zero and Sy, < 0.

(i1) If o = —p', the reqular solutions satisfy lim, o, r®w = L # 0. The other solutions are of type

(1).

T e P

e e, T e T e e, P e, e
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:: 7

71

7
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g, e M T T Ty T T, T -
e e T e T T T e Ty T T T T T T

e e e T e T T T 3 e e T e T T T "y, e T T e e T e

th 6.2,figXXII: ¢ = —1, th 6.2figXXIIIL: ¢ = —1,
—p=-3<a=-25<0<N=2<d6=3 —p=-3=a<0<N=2<4§=3
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Proof. From Proposition 2.13, any trajectory converges necessarily to (0,0) at —oo, and apart
from 7., it is tangent to the axis y = 0. Any solution y has a finite number of zeros, and y is
monotone near —oo, and near S, (finite or not), from Propositions 2.12 and 2.16, since 6 > N/2.
And either S, < oo, thus lim, 1,5, Y/y = —1, or S, = 00 and lim; ¢ = @ < 0. In any case
(y,Y) is in Q9 or Q4 for large 7. From Proposition 2.19, 7, has at least one zero, and starts in
Q1. Since N > 2, any trajectory 7 # +7,. satisfies lim,_, o, ( = n > 0. Thus it starts in Q
(or Q3), and has at least one zero. Any trajectory 7 starting in Q; enters Qo, from Remark 2.2.
And ¢ = 6y — YV/®=D thus y decreases as long as 7T stays in Qy. Then either it enters Qs,
thus necessarily Q4, and y has at least two zeros; or it stays in Qs, and either S,, < oo, thus
lim; ng, Y/y=—1, or Sy, = 0o and lim,;_, { = a.

(i) Suppose —p’ < « (see fig XXII). Then 7, has precisely one zero, from Proposition 2.19, thus it
stays in Qg, and Sy, < o0, lim; 1,5, Y/y = —1. Any other solution has at most two zeros, because
the trajectory does not meet £7,. Recall that the function Y, defined by (2.3) with d = « has
only minimal points on the sets where it is positive, from Remark 2.11. From Proposition 2.19, 7.
satisfies

Y, =—(p—1)(n— )Yy + P EPIT(y/E=D _qy,) > 0,

«

which is equivalent to
yVe=D _(p—1)(n—a)Y > ay. (6.1)

And 7, stays strictly at the right of the curve
N, = {(y,Y) €R x (0,00) s ay = YY®D _ (p _1)(5 — a)y} , (6.2)

which intersects the axis y = 0 at points (0,0) and (0, (p — 1)(n — «)).

e For any P = (,0), » < 0, the trajectory T[ 7| enters Q3 after P, from Remark 2.2; the solution
passing through P at 7 = 0 satisfies and Y,,(0) = 0, thus Y, stays positive for 7 < 0, and Y. (7) < 0,
since it has no maximal point. Thus T[ 7 stays in Q1 U Qo before P, at the left of NV, and starts
from (0,0) in Q;, and ends up in Qy, thus y has two zeros. If S, = oo then lim, o |y| = oo,
lim, .o ( = a < 0; it is impossible, becasue T[]g] does not meet —7,; thus S, < oo, and w is of
type (1).

e Next consider the trajectory 7jp), for any P = (p,€) € Nu, ¢ <0. The solution going through
P at 7 = 0 satisfies and Y/ (0) = 0, Y,,(0) > 0, and 0 is a minimal point, thus Y, (0) > 0. Indeed if
Y (0) = 0, then from uniqueness, Y,, is constant on R; in turn Y, = 0, from (2.6), since a # —p/,
which is false. Then Y. (7) > 0 for 7 > 0, Y;(7) < 0 for 7 < 0. Thus 7jp| stays in Q1 U Qp, at
the right of NV, after P, with y < 0 from Remark 2.2, at its left before, and converges to (0,0) at
—o0 in Q1. Suppose that Sy, = co. Then lim,_, |y| = 00, lim; 00 ( = @, and lim; oo yo = L < 0
from Proposition 2.14, thus lim, ., Yy = (aL)P~!. As in Proposition 2.19, one finds Y/ () > 0 for
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any 7 > 0, which is impossible. Then 7[pj satisfies S,, < oo, thus lim, 1,5, Y/y = —1. And the
corresponding w is of type (3).

e Finally let R be the domain of Q1 U Q5 delimitated by 7, and containing N, and the sets
A={P e R : Tjpn{(¢,0) : o <0} #0}, B={PeR:TjpjN N, # 0}, (6.3)

corresponding to the trajectories of type (1) or (3). Then A, B are nonempty, and open: here again
the intersection with N, is transverse, because o # —p’. Thus AUB # R. There exists a trajectory
in R which does not meet N, starting from (0,0) in Q; and ending up in Qs. It cannot satisfy
lim; g, Y/y = —1, thus Sy, = oo and lim,_,o ( = «, thus w is of type (2).

(ii) Suppose o = —p’ (see fig XXIII). The regular solutions are given by (1.10), they have one zero,
but Sy, = 0o and lim, . ¢ = . They satisfy Y_,» = C, thus Yip, = 0, thus 7, = M_,. Consider
’T[ B’ the solution passing through P at 7 = 0 satisfies and Y_,/(0) = 0, thus Y_,, stays negative for

7> 0 and Yip/ < 0. Suppose that S, = oo, then lim; oo Yo = L > 0, lim, o Yo = —(Ja| L)P7L.
But as at (2.49), Y/ (7) < 0 for any 7 > 0, which leads to a contradiction. Thus S,, < 0o, and w is
of type (1). Finally suppose that there exists a trajectory 7 # 7, staying in QU Qs. Then Y, > 0,
lim,; . Y, =0, and it cannot meet 7,., thus S, = 0o, and lim,_,_ Y, = 00, lim,_,» Y, = C > 0.
As in Proposition 2.19, it is impossible. Thus there does not exist solution of type (2) or (3). =

Theorem 6.3 Supposce = —1 and a < 0 < N =1 < 4. Then any solution has still a finite number
of zeros. The regqular solutions have at least one zero, and precisely one if —p' < a. Moreover

(i) If —1 < a < 0, then the regular solutions a reduced domain (S, < o0), and
(1) the solutions with lim,_ow = a > 0,lim,_gw’ = b < 0 have one zero and Sy, < o0;
(2) the solutions with lim,_gw = 0,lim, _ow’ = b > 0 are positive and S, < o0;
(8) there exist solutions with one zero and lim,_,ow = a > 0,lim,_,ow’ = b > 0 and S, < o0;
(4) there exist positive solutions with lim, ow = a > 0,lim, ow' =b> 0 and S, < co;
(5) for any a > 0 there exists b= b(a) > 0 such that w is positive and lim,_,o r*w = L # 0.

(ii) If « = —1, for any b > 0, w = br is a solution. The other solutions such that lim,_,gw # 0
have one zero, and S, < 0.

(1i1) If —p' < o < —1, then

(6) there exist solutions with one zero, and lim, ow = a > 0,lim,_,ow’ =b < 0, and S,, < oc;
e solutions with lim,_gw = 0,lim,__ow’ = b > ave one zero and Sy, < 00;

7) th luti ith 1i 0,1i "=b>0h dS
ere exist solutions with one zero, and lim,_gw = a > 0,lim, ow' = b > 0 and S, < oo;

8) th st soluti ith dli 0,1i "=b>0and S
ere exist solutions with lim, _ow = a > 0,lim,_gw’ = b < 0, two zeros and S,, < 00;

9) th st soluti ith 1i 0,1i "=b<0,t d S

10) for any a > 0 there exists b = b(a) > 0 such that w has one zero and lim, o, r*w = L # 0.
Yy
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Proof. The case N = 1 is still more complex, since some trajectories start in Qg (or Qy),
corresponding to the solutions such that lim, ,ow = a and lim,_.qw’ = b, with b # 0, ab > 0. Any
solution has still a finite number of zeros, from Proposition 2.16.

(i) Suppose —1 < a < 0 (see fig XXIV) From Proposition 2.10, any solution has at most one zero,
thus the regular ones have precisely one zero. Thus 7, meets the axix y = 0 at some point (0,&,).

e Consider the trajectory 7y such that lim, .,ow = 0 and lim, ,ow’ = b < 0, that means
lim, o ( = n = —1, starting from (0,0) in Qg, thus w < 0 near 0. For any d € (—1,a), the
function y, satisfies yq(7) = bel@t7(1 + 0(1)) near —oo, thus lim,;,_o yq = 0. Then y; has no
zero, because |y4| has no maximal point from (2.14); thus 75 stays in Qs. Moreover if 7 satisfies
Sy = 00, then lim;_, yo = L < 0, thus lim,_,, yg = 0, which is impossible; thus w is of type (2).
And 7, satisfies S, < oo, since it cannot meet 7.

e For any P = (,0),¢ < 0, the trajectory T[p] does not meet 7, thus converges to (0,0) at —
o0 in Qy; then lim, o(—w) = a > 0 and lim,_,o(—w)" = b > 0, and T[p] ends up in Qy; thus y has
one zero and —w is of type (3).

e For any P = (0,§), £ € (0,&;), 7|p) has one zero, and converges to (0,0) at —co in Q, hence
lim, ow = a > 0 and lim, g w’ = b < 0; and 7p) cannot meet 7, thus S, < oo, and w is of type

(1). Reciprocally any solution such that lim,_,ow = a > 0 and lim, o w’ = b < 0 has one zero and
Sy < 00.

e Next consider any trajectory 7 such that lim,_o(—w) = a > 0 and lim,_o(—w’) = b > 0,
thus starting in Qs under 7;. Then ((7) = —(b/a)e” (1 + o(1) near —oo, thus lim,_,_ ¢ = 0. If ¢

o7



has an extremal point 0, then from (2.18),

p—1)¢"(0) =2 —p)(C—a)d— Q) ¢yl

thus it is a minimal point if {(f) > «a, or a maximal one if {(f) < «; in case of equality, then ( = a,
which is impossible. As a result, either ¢ has a first zero 71 and a < {(7) < 0 for 7 < 71, and 7 is
one of the 7j51. Or ¢ stays negative; if Sy, = oo, then lim; .o, ( = o; in that case ( is necessarily

decreasing, thus o < ((7) < 0 for any 7. In both cases, 7 stays under the curve
M = {(y,Y) ER X (0,00) : ay = Yl/(p—l)} 7

as long as it is in Q. As a consequence, for any P € Qs such that P is on or above M/, the
trajectory 7(pj satisfies S, < oo; in particular on finds again 7. For any P between M’ and T,
the solution has a constant sign, 7jp) converges to (0,0) at —oco and lim, .o(~w) = a > 0 and
lim, o(—w') = b > 0, and lim, 1,5, Y/y = —1, thus 7jp) meets M,; and —w is of type (4).

e Finally let Ry be the domain of Oy delimitated by 7, and the axis Y = 0, and let
Ai={P e Ry :Tpjn{(p,0): p <0} #0}, Bi={P eRy:TpjN Ny #0}.

They are open, since again the intersection is transverse, because o # —1. They are nonempty,
thus A UB1# R, and there exists a trajectory such that y is defined on R and lim;_,o, {( = a. By
scaling, for any a > 0 there is at least a b = b(a) such that the corresponding w has a constant sign
and lim, o, 7w = L # 0, and |w| is of type (5).

(ii) Suppose a = —1, then 7, is given explicitely by w = br, thus Y = —y?~!, or equivalently
Y_1 = b, thus 7, = N_;. For any other solution, one finds Y, = Y’ (1 + e ]Y_1](2_p)/(p_1)) ,

thus Y_; is strictly monotone, from uniqueness, and Y”; has the sign of Y. Any trajectory such
that lim, ,ow = a > 0 and lim,_,ow’ = b < 0, starting in Q; satisfies Y/; > 0 and Y_; is convex.
Then Y_; cannot have a finite limit, thus S, < 0o, and the trajectory ends up in Qo, thus y has
a zero. Any trajectory such that lim,_o(—w) = a > 0 and lim,_o(—w) = b > 0, starting in Qs
satisfies Y/, < 0 and thus Y_; has a zero, and the trajectory ends up in Q4. Then apart from 7g,
all the trajectories satisfy S, < oo, and y has one zero.

(iii) Suppose —p’ < a < —1 (see fig XXV). Then 7, starts in Qj, y has one zero from Proposition
2.19, and 7, ends up in Qs and S, < oco. Any solution has at most two zeros.

e Consider 7 : we claim that it cannot stay in Qs. Suppose that it stays in it, thus y <0 < Y.
Then ¢ < 0, and lim,_. o ( =n = —1, and ¢ is monotone near —oo; if ¢’ < 0, then ¢ < —1 near
—o0, and we reach a contradiction from (2.9). Then ¢’ > 0 near —oo; but any extremal point of ¢
is a minimal point, from (2.18), thus ( stays increasing, is defined on R and has a limit A € [—1,0];
but A = «, from Proposition 2.13, hence again a contradiction holds. Then 7 enters Q3 at some
point (ps,0), ps < 0, enters Qy, and y has precisely one zero; and w is of type (7).
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e Any solution such that lim, ,o(—w) = @ > 0 and lim,_o(—w)" = b > 0, has also one zero,
since its trajectory stays under 7 in Qy, and w is of type (8).

e As in the case N > 2, for any P = (p,§) € Na,» <0, 7jp stays in Q1 U Qp and S, < 0.
In particular for Py = (0,&), & = ((p — 1)(=1 — a))®~D/=P) the trajectory T(p,) starts from Qy,
thus lim, ow = a > 0,lim, g w’ = by(a) > 0, and w has one zero, and S,, < oo, and w is of type
(6).

e Considering the sets A, B defined at (6.3), they are still open, and B contains 7jp,). And
A contains 7y, thus also any 7jp) such that P = (p,0) with ¢ < 5. Such a trajectory satisfies
lim, ow = a > 0 and lim, ,gw’ = b < 0, and w is of type (9). Moreover AU B # R, thus for any
a > 0 there is a b = b(a) < 0 such that the corresponding w has one zero and lim, ., r%w = L # 0,
and w is of type (10). ]

6.2 Subcase a<d< N

As in the case ¢ = 1, § < min(«a, N) of Section 5.2, here two kinds of periodic trajectories can
appear, and the study is delicate. Here also N > 2, and we still have three stationary points, and
(0,0) is a saddle point. And M is a source when N/2 < § or § < N/2 and o* < «a, and a sink when
d < N/2 and a < o*; notice that o* < —p’ < 0 from (2.35). Also M, is a node point whenever
a < aj, or ag < «, where oy, ag are defined at (2.51), and «s can be greater or less than —p’. We
begin by the simplest case where o > 0.

Theorem 6.4 Assume ¢ = —1 and 0 < a < § < N. Then the regular solutions have a constant
sign and a reduced domain (S, < 00). And w = r~% is a solution. Moreover there exist solutions
such that

(1) w is positive, lim,_,o rw =/ and S, < oo;

(2) w has one zero, lim,_, row = £ and Sy, < o0

(3) w is positive, lim, _qr°w = ¢ and lim,_ 7w = ¢ > 0;
(4) w is positive, lim,_orow = £ and lim, o r*w = L > 0.

Up to a symmetry, all the solutions are described.
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Proof. Since o > 0, the regular solutions have a constant sign and satisfy S, < oo, from
Propositions 2.10 and 2.19. Here 7, starts in Q4 and stays in it, from Remark 2.6 ((see fig XXVI).
Any solution has at most one zero from Proposition 2.10. The point M is a source, and a node
point, from Remark 2.22, and 0 < A; < § < Ag2. The eigenvectors u; = (v(a), A1 — §) and
ug = (—v(a),d — Ag) form a direct basis, where now v(«) < 0; thus u; points to Qs, ug points to
Q,. There exist two particular trajectories 77, 75 starting from M, at —oo, with respective tangent
vectors us, and —uso. All the other trajectories 7 which converge to M, at —oo have the direction
of u1; and y is monotone at the extremities, from Proposition 2.12, since 7 cannot meet 77, 75.

e First consider 77. The function y is nondecreasing near —oo, and stays nondecreasing as long as
Ty stays in Q1. Indeed Y is nonincreasing near —oo, thus Y (7) < (§¢)P~L. If y has a maximal point 7,
then y(7) > ¢ from (2.16), and Y/~ = §y, thus Y (7) > (6¢)P~", thus Y has a minimal point 7, in
Q1; then Y (1) < (6¢)P~! from (Ey); and Y'(71) = 0, thus of < ay(r) < (N —6) aY (11)/(6 — ),
which is contradictory. If 77 stays in Qq, then lim,_, o, { = o > 0 from Proposition 2.13, which is
also contradictory. Thus 7; enters Q4 at some point (¢1,0) and stays in it, does not meet 7., and
thus S, < 00, and w is of type (1).

e Next consider 75. Near —oo, the function Y is nondecreasing, and y nonincreasing, and y is
monotone as long as y > 0 : if there exists a minimal point 7, then y(7) > ¢ from (2.16). And Y
is nondecreasing as long as Y > 0 : if Y has a maximal point 7, Y (7) > (6£)?~! from (Ey); and
al > ay(r) > (N —6) aY (1)) — ), which is still impossible. Thus 75 cannot stay in Qq, it enters
Q9 at some point (0,&2) and does not meet —7,., then it stays in Qs, hence S, < 0o, and w is of
type (2).

e There also exists a unique trajectory 73 converging to (0,0) at oo, ending up in Qj, since
(0,0) is a saddle point. It stays in the domain of Q; delimitated by 77, 72, because Q; is negatively
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invariant. Thus 73 converges to M, at —oo, tangentially to u;. And y is increasing on R: indeed
y' < 0 near +o00, and y cannot have two extremal points. Then w is of type (3).

e For any point P = (¢,0), ¢ > 1, the trajectory 7p goes from Q; into Qy, from Remark 2.2.
It does not meet 7,77, thus it stays in Q4 after P, and S,, < co. Before P, it it stays in Q; because
it does not meet 77 or 75, and from Remark 2.2. From Proposition 2.13, either lim, ., o { = a < 4,
thus ¢’ = y(6 — ¢) > 0 near —oo, and lim, .,y = oo, which is impossible; or (necessarily) 7jpj
converges to My, tangentially to ui, and 7jpj is of type (2). Similarly, for any P" = (0,¢),§ > &,
the trajectory T[pq goes from Qp into Oy and stays in Qs after P, thus S,, < 0o, and in Q; before
P and converges to My, tangentially to —uy, at —oo; and w is still of type (2).

e The sets
A={P € Q1 : Tipjn{(p,0): >0} #0}, B={P € Q1 :Tjpjn{(0,&) :£>0} #0},

are open, nonempty, thus AU B # Q;. There exists at least a trajectory 74 in Qj, as above con-
verging to M, at —oo, and such that lim, . ¢ = «, and w is of type (4).

e For any point P in the bounded domain R’ of Q; delimitated by 75, 73, the trajectory Tip) is
confined in R’ before P, and y has no maximal point, thus y is monotone, and 7 converge to M,
at —oo. It cannot stay in Q; since it cannot converge to (0,0). Then it goes from Q; into Qs and
stays in it, because it does not meet —7,. Thus S,, < oo, and w is still of type (2).

e For any P in the domain of Q delimitated by 71,73, the trajectory 7;p) converge to M, at
—00, tangentially to uj, enters Q4 and stays in it. Thus S, < co and w is of type (1). No trajectory
can stay in Q4(Qs) except 7,.(—7,); thus all the solutions are described, up to a symmetry. [ |

Now we come to the case o < 0, and discuss according to the sign of o — p’. Here also we begin
by some remarks on the phase plane. Observe that the situation is different from the one of Section
5.2, from Remarks 6.5,(i) and 5.5.

Remark 6.5 Assume ¢ = —1 and o < 0. Then

(i) The regular trajectory 7, starts in Q1. There exists a unique trajectory Ty converging to (0,0),
in Q1 for large T, with an infinite slope at (0,0), and lim,_o7r"w = ¢ > 0. Moreover if T; does not
stay in Q1, then 7, stay in it, and it is bounded and contained in the domain delimitated by Q1 N7,
from Remark 2.2. If T, is homoclinic, it stays in Q.

Reciprocally if T; stays in Q1, and is not homoclinic, then 7, does not stay in Qq (indeed T
converges to My at —oo or has a limit cycle around it; if T, stays in Qy, either the corresponding y is
increasing, thus lim, 1,5, Y/y = —1, orlim,; .o ( = a < 0, from Propositions 2.20 and 2.13, thus
7T, enters Q4 and we are led to a contradiction; or y oscillates around £ near oo, from Proposition
2.12, thus it meets Ty, which is impossible).

(i) Any trajectory T is bounded near —oo from Propositions 2.13 and 2.15. Any trajectory T
bounded at 00 converges to (0,0) or £My, or its limit set T'y at +o00 is a limit cycle; or T, is
homoclinic and I'y+ = 7,.
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(i13) If there exists a limit cycle surrounding (0,0), then from (2.46) and (2.47), it also surrounds
the points =M.

Next we first study the case —p’ < a, where there is no cycle and no homoclinic orbit in Qj,
from Theorem 2.25.

Theorem 6.6 (i) Assume e = —1 and —p' < a < 0 < § < N. Then the regular solutions have
precisely one zero, and Sy, < o0o. And w = 0r~—° is a solution. There exist solutions such that

(1) w is positive, lim, o row = £ and lim, o 7w = ¢ > 0;

(2) w has one zero, lim,_orow = £, and lim, o r*w = L < 0;

(3) w has one zero, lim, or'w = £, and S, < oc;

(4) w has two zeros, lim,_qr°w = £, and S, < co.

(i1) Assume o = —p'. Then the reqular solutions, given by (1.10), have also one zero, and lim,_,, r®w =
L <0, and there exist solutions of type (1) and (4).

Up to a symmetry, all the solutions are described.
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th 6.6,igXXVIL & = —1, th 6.6,igXXVIIL: ¢ = —1,

—p=-3<a=-2<6=3<N/2<N=9 —p=-3=a<0=3<N/2<N=9

Proof. (i) Assume —p’ < a < 0 (see fig XXVII). From Proposition 2.10, any solution y has at
most two zeros, and Y has at most one zero.

e First consider 7;. The function Y, defined by (2.3) with d = « satisfies Y, = O(e(*~7) near
00, thus lim;_, Y, = 0. Then from Remark 2.11, Y,, is decreasing, thus Y, > 0, and 7, stays in
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Q1 U Qs. In fact it stays in 91, from Remark 2.2. From Propositions 2.13, 2.12, 2.16, and Theorem
2.25,7; converges to My at —oo. Indeed if limy = oo, then lim, ., ( = a < 0; if S, < oo, then
limY/y = —1; which contradicts Y > 0. Then w is of type (1).

e The trajectory 7, stays in Q; U Oy, and y has precisely one zero, and S, < oo, thus
lim; g, Y/y = —1. Now 7, cannot stay in Q;. Indeed it cannot converge to M, which is a
source, or oscillate around Qp, becausee it does not meet 7y, or tend to oo, or satisfy .S, < oo with
Y > 0. Then y has precisely one zero, 7, enters Qs and stays in it. Moreover the corresponding Y,
satisfies Y, > 0, or equivalently (6.1). Consider again the curve N, defined at (6.2). Here 7, stays
strictly at the right of NV, and 7, at the left of N,.

e For any P = (,0), < 0, the trajectory T[p] enters Qs after P, from Remark 2.2. The

solution going through P at 7 = 0 satisfies Y,,(0) = 0; thus Y,, stays positive as before, and Y/ < 0,
since Y, has no maximal point, from Remark 2.11. Thus T[p] stays in Q1 U Qy before P, at the
left of NV,. It cannot stay in Qs, from Propositions 2.12 and 2.13. As 7 decreases, it enters Qj,
and converges to My, from Theorem 2.25. If S,, = oo, then lim |y| = oo, lim; o ( = o < 0; it is
impossible, since T[ 7] does not meet —7,.. Thus S, < oo, limY/y = —1, T[ p) 80€s from Q3 into Q4

and stays in it, and w is of type (4). The solution y has precisely two zeros.

e Next consider 7jp) for any P = (¢,§) € N, with ¢ < 0. The solution passing through P at
7 = 0 satisfies and Y/ (0) = 0, Y,(0) > 0, and 0 is a minimal point, thus Y, (0) > 0. Indeed if
Y (7) = 0, then from uniqueness, Y, is constant on R; then from (2.6), Y, = 0, since o # —p/,
which is false. Therefore Y, (1) > 0 for 7 > 0, Y (7) < 0 for 7 < 0, thus 7jpj stays in Q1 U Qy,
at the right of N, after P, with y < 0 from Remark 2.2, at its left before. As above it cannot
stay in Qg near —oo, and converges to M. Suppose that it satisfies S,, = oo. Then lim |y| = oo,
lim, .o ¢ = @, and lim,; o Yo = L < 0 from Proposition 2.14, thus lim, . Yy = (aL)P~1. As in
Proposition 2.10,(iii) one finds Y”(7) > 0 for any 7 > 0, which is impossible. Then S,, < oo, thus
lim; g, Y/y = —1, and w is of type (3).

e Finally consider the domain R of Q1 U Qs delimitated by 7,7, and containing N,, and the
sets

A={PeR : TpjN N, # 0}, B={PeR:TpNn{(£0):£>0}#0},

corresponding to the trajectories of type (3) or (4). Then A, B are nonempty, and open: here again
the intersection with N, is transverse, because o # —p’. Thus AUB # R : there exists a trajectory
in R which does not meet M,; it converges to M, at —oo or oscillates around it, and it is located
under M, in Qy. It cannot satisfy lim, 1,5, Y/y = —1, thus S,, = oo and satisfies lim, .~ = a,
thus w is of type (2).

(i) Assume oo = —p’ (see fig XXVIII). Then the regular solutions have a different behaviour: they
are given explicitely at (1.10). They satisfy Y_,, = C, thus Y’ p =0, thus 7, = M_,,. Here y has
a zero, and S, = 0o, and lim,_,, { = —p’. As above 7 stays in Q7 and w is of type (1).
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e Next consider again T[p]. The solution going through P at 7 = 0 satisfies Y_,(0) = 0, thus

Y_,, stays negative for 7 > 0 and Yip, < 0. Suppose that S, = oo, and lim, .o, { = —p/, then
lim, oo Yo = L > 0, lim, o Yo = —(Ja| L)P~L. But as at (2.49), Y/(7) < 0 for any 7 > 0, which
leads to a contradiction. Then S, < oo and w is of type (4).

e Finally suppose that there exists a trajectory 7 # 7, staying in Q1 U Qs. Then it converges to
My, thus Y, > 0, Sy, = 00, and lim,_,_ Y, = o0, lim;_ . Y, = C > 0. If it has a minimal point,
then it has an inflexion point where Y, > 0, which as above is impossible. Then Y, < 0, and from
(2.6),

1 (2—p)/(p—1
(p— )Y, =Y (YD N (p - 1)) =Y (Y - N(p-1)),

and lim, ., Y = oo, thus Y” , < 0 for large 7, which is impossible. Thus there does not exist
solution of type (2) or (3). ]

Let us come to the most difficult case: o < —p'.

Lemma 6.7 Assume e = —1 and o < —p'. If 6 < N/2 and o* < «, either T, has a limit cycle in
Q1, or is homoclinic, or the reqular solutions have at least two zeros. If N/2 < § < N, then they
have at least two zeros.

Proof. In any case M, is a source. Suppose that 7. has no limit cycle in Qj, or is not
homoclinic (in particular it happens when N/2 < ¢ < N, from Proposition 2.16), and stays in
0Q1UQ,, thus Y stays positive. Then from Propositions 2.13, 2.14 and 2.20, either lim,_, .y = oo,
lim; oo = L # 0, lim; o Yo = (aL)P~ !, or S, < oco. In any case, for any d € (a,—p'), the
function Yy = e(d’a)TYa satisfies lim; g, Yg = 00 = lim;_, Yy. Then it has a minimum point,
and this contradicts (2.15). Thus 7, enters Qs. If it stays in it, it has a limit cycle; then —7,. has
a limit cycle in Q1. But —7,. does not meet 7., and M, is in the domain of Q; delimitated by 7,
since 7, meets M at the right of My, from (2.16); this is impossible. Then 7, enters Qy4, and y has

at least two zeros. ]
Theorem 6.8 Assume ¢ = —1 and § < N/2, a < —p'. Then w(r) = lr=% is still a solution.
Moreover

(i) There exists a (minimal) critical value o™ of o, such that

*

of < o < min(—p’,as) <0,

and 7, is homoclinic: the regular solutions have a constant sign and lim, . r"w = ¢ # 0.

(ii) For any a € (a*,a there does exist a cycle in Q1, equivalently there exist solutions such
that 0w is periodic in Inr. The regular solutions have a constant sign and row is asymptotically
periodic in Inr. There exist positive solutions such that lim,_or°w = ¢ and r®w is asymptotically
periodic in Inr.

crit )
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(iii) For any a < o, there does not exist such a cycle, the regular solutions have a constant sign,

and lim,_ oo 70 |w| = .

(iv) For any a < ™, there exists also a cycle surrounding (0,0) and £M;, thus w is changing
sign and r'w is periodic in Inr. There exist solutions oscillating near 0, and row is asymptotically
periodic in Inr, and lim, oo 7w = ¢ # 0. There exist solutions oscillating near 0, and row is

asymptotically periodic in Inr, and S, < oo or lim, o r%w = L # 0.
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Proof. (i) For any o € (a1, a2), such that « < —p’, from Remark (6.5), we still we have three
possibilities:

e 7, converges to My at —oo, and turns around this point, since « is a spiral point, or it has a
limit cycle around M. Then 7, meats the set £ = {(£,Y) : Y > (8£)P~'} at a first point (¢, Y (a)).
And 7, meats £ at a last point (¢I,Y,(«)), such that Y, (a) — Ys(a) > 0. Moreover 7, enters Qa,
from Proposition 2.13 (see fig XXIX).

e 7, enters Qq4, and then 7, is converging to My, at oo and turns around this point, or it has
a limit cycle around M,. Then 7; meats £ at a last point(¢l,Ys(«)), 7, meats £ at a first point
(41,Y,(a)), such that Y, (a) — Ys(a) < 0 (see fig XXXI and XXXII).

e Or 7, is homoclinic, which is equivalent to Y, (a) — Ys(a) = 0 (see fig XXX).

Now the function a — h(a) = Y, (a) — Ys() is continuous. If —p’ < ag, then h(—p’) is defined
and h(—p’) > 0, from Theorem 6.6. If ay < —p', we observe that for & = a9, from Theorem 2.23,
necessarily 7, leaves 91, because as is a source, and transversally; thus also for ¢« = as — v for
v > 0 small enough, thus 7 stays in it from Remark 6.5, hence h(ag — ) > 0. If a < o, then M,
is a sink, or a weak sink, from Theorem 2.21, therefore 7, cannot converge to M, at —oo. From
Theorem 2.24, there exist no cycle in @7, and no homoclinic orbit. From Remark 5.3, 7; cannot
stay in Qj; then 7, stays in Q7 and is bounded and converges at oo to My. Then h(a) < 0 for
a1 < a < oF, thus there exists at least an o™ € (a*, min(—p’, ) such that h(a) = 0. If it is
not unique, we chose the smallest one.

(ii) Let o > a*. The existence and uniqueness of such a cycle in Q; follows from Theorem 2.21
if @ — o is small enough (see fig XXXI). For any a € (a*,a“") , we still have existence. Indeed
h(a) < 0 on this interval, then 7, stays in Q;, and 7, cannot converge to M, at oo, for that reason

it has a limit cycle around M, at co. Since Mp is a source, there also exist trajectories converging
to My at —oo, with a limit cycle at co. And 7 does not stay in 91, and it is bounded at —oo. Then
it has a limit cycle at —oo surrounding (0,0) and £M,.

(iii) Let ao < o (see fig XXXII). Then 7, stays in Qy, is bounded on R, and converges to M, at
0o, and 7; does not stay in Q1 as above, thus it has a limit cycle at —oo, containing the three
stationary points.

(iv) For any a < o™, apart from 7, and the cycles, all the trajectories have a limit cycle at —oo

containing the three stationary points. Moreover from Theorem 2.26, all the cycles are contained
in a ball B of R?. Take any point P exterior to B. From Remark 5.3, 7p) has a limit cycle at —oo
contained in B and cannot have a limit cycle at co. Then y has constant sign near InS,,. From
Proposition 2.13, either S,, < oo or y is defined near co and lim,; .o ( = L, lim, oo r®w =L. =

Finally consider the case N/2 < 4, where no cycle can exist.
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Theorem 6.9 Assume ¢ = —1 and a < 0 < N/2 < 6 < N. Then all the solutions have a finite
number of zeros. And w(r) = 0r=% is a solution. Moreover if —p' < «, theorem 6.6 applies. If
a < —p/, there exist positive solutions such that lim,_orw = ¢, lim,_ .o 7w = ¢ > 0. The reqular
solutions have a number m > 2 of zeros. All the other solutions satisfy lim,_,_oo 70w = +¢, and
have m ot m + 1 zeros; there exist solutions with m + 1 zeros.

Proof. From Proposition 2.16, all the solutions have a finite number of zeros, and any solution
is monotone near 0 and In S, or converges to +=M,. From Remark 6.5, apart from 7., any trajectory
converges to + M, at —oo. The functions V and W are nonincreasing. The trajectory 7 satisfies
lim; oo V = lim; oo W = 0, thus V> 0, W > 0. If y has a zero at some point 7, then W (1) =
— ‘Y(T)‘p, /p’, which is impossible. If Y has a zero at some point 6, then V() = —Y’(0)?/2, hence
also a contradiction. Thus 7 stays in @1. From Remark 6.5 and Proposition 2.16, 7, does not stay
in Q1, but enters Qs. From Lemma 6.7, 7, enters Qq4, and y has at least two zeros. Let m be the
number of its zeros. Then 7, cuts the axis y = 0 at points &1, ..,&mn. Consider any trajectory 7py
with P = (0,£),£ > |&n|. It cannot intersect 7, and —7,., thus y has m + 1 zeros. has m + 1 zeros.
And any trajectory has m or m + 1 zeros, because it does not meet 7, and —7, and 7jp;. And
Sw < 0o or lim, oo r®w = L # 0. |
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discussions on existence of cycles in dynamical systems.
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