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Abstract

We study the self-similar solutions of any sign of the equation

ut − div(|∇u|p−2∇u) = |u|q−1 u,

in RN , where p, q > 1. We extend the results of Haraux-Weissler obtained for p = 2 to the
case q > p−1 > 0. In particular we study the existence of slow or fast decaying solutions.
For given t > 0, the fast solutions u(t, .) have a compact support in RN when p > 2,

and |x|p/(2−p) u(t, x) is bounded at infinity when p < 2. We describe the behaviour for
large |x| of all the solutions. According to the position of q with respect to the first critical
exponent p − 1 + p/N and the critical Sobolev exponent q∗, we study the existence of
positive solutions, or the number of the zeros of u(t, .). We prove that any solution u(t, .)

is oscillatory when p < 2 and q is closed to 1.

2000 Mathematics Subject Classification. 35K55,35B05,34C35,34C10.
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1 Introduction and main results

In this paper we study the existence of self-similar solutions of degenerate parabolic equa-
tions with a source term, involving the p-Laplace operator in RN × (0,∞) , N ≥ 1,

ut − div(|∇u|p−2∇u) = |u|q−1
u, (1.1)
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where p > 1, q > 1. The semilinear problem, relative to the case p = 2,

ut −∆u = |u|q−1
u, (1.2)

has been treated by [18], and [26], [27], [20]. In particular, for any a > 0, there exists a
self-similar solution of the form

u = t−1/(q−1)ω(t−1/2 |x|)

of (1.2), unique, such that ω ∈ C2([0,∞)), ω(0) = a and ω′(0) = 0. Any solution of this
form satisfies lim|ξ|→∞ |ξ|2/(q−1)

ω(ξ) = L ∈ R. It is called slowly decaying if L 6= 0
and fast decaying if L = 0. Let us recall the main results:

• If (N + 2)/N < q, there exist positive solutions.

• If (N + 2)/N < q < (N + 2)/(N − 2), there exist positive solutions of each
type; in particular there exists a fast decaying one with an exponential decay:

lim
|z|→∞

e|z|
2/4 |z|N−2/(q−1)

ω(z) = A ∈ R,

thus for the solution u of (1.2) , u(., t) ∈ Ls(RN ) for any s ≥ 1, limt→0 ‖u(., t)‖s = 0
whenever s < N(q−1)/2, and limt→0 sup|x|≥ε |u(x, t)| = 0 for any ε > 0. Moreover,
for any integer m ≥ 1, there exists a fast decaying solution ω with precisely m zeros.

• If (N + 2)/(N − 2) ≤ q, all the solutions ω 6≡ 0 have a constant sign and a
slow decay.

• If q ≤ (N + 2)/N, then all the solutions ω 6≡ 0 have a finite positive number
of zeros, and there exists an infinity of solutions of each type.

The uniqueness of the positive fast decaying solution was proved later in [28] and [11],
and more results about the solutions can be found in [16], [15] and [17].

Next we assume p 6= 2. If u is a solution of (1.1), then for any α0, β0 ∈ R, uλ(x, t) =
λα0u(λx, λβ0t) is a solution if and only if

α0 = p/(q + 1− p), β0 = (q − 1)α0.

This leads to search self-similar solutions of the form

u(x, t) = (β0t)−1/(q−1)w(r), r = (β0t)−1/β0 |x| , (1.3)

and the equation reduces to

(
|w′|p−2

w′
)′

+
N − 1

r
|w′|p−2

w′ + rw′ + α0w + |w|q−1
w = 0 in (0,∞) . (1.4)

In the sequel, some critical exponents are involved:

p1 =
2N

N + 1
, p2 =

2N

N + 2
,
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q1 = p− 1 +
p

N
, q∗ =

N(p− 1) + p

N − p
;

with the convention q∗ = ∞ if N ≤ p. Observe that p−1 < q1 < q∗; moreover p1 < p ⇔
1 < q1, and p2 < p ⇔ 1 < q∗. We also set

δ =
p

2− p
, and η =

N − p

p− 1
. (1.5)

Thus δ > 0 ⇐⇒ p < 2. Notice that

p1 < p < 2 ⇐⇒ N < δ ⇐⇒ η < N, (1.6)
p2 < p < 2 ⇐⇒ N < 2δ. (1.7)

Problem (1.1) was studied before in [22]. In the range q1 < q < q? and p1 < p,
the existence of a nonnegative solution u was claimed, such that w has a compact support
when p > 2, or w > 0 when p < 2, with w(z) = o( |z|(−p+ε)/(2−p)) at infinity, for any
small ε > 0. However some parts of the proofs are not clear. The equation was studied
independently for p > 2 in [3], but the existence of a nonnegative solution with compact
support was not established, and some proofs are incomplete. Here we clarify and improve
the former assertions, treat the case p ≤ p1, and give new informations on the existence
of changing sign solutions. In particular, a new phenomenon appears, namely the possible
existence of an infinity of zeros of w. Also all the solutions have a constant sign when
p ≤ p2.

Theorem 1.1 Let q > max(1, p− 1).
(i) For any a > 0, there exists a self-similar solution of the form

u(t, x) = (β0t)−1/(q−1)w((β0t)−1/β0 |x|) (1.8)

of (1.4), unique, such that w ∈ C2 ((0,∞)) ∩ C1 ([0,∞)) , w(0) = a and w′(0) = 0.
Any solution of this form satisfies lim|z|→∞ |z|α0 w(z) = L ∈ R.

(ii) If q1 < q, there exists positive solutions with L > 0, also called slow decaying.

(iii) If q1 < q < q?, there exists a nonnegative solution w 6≡ 0 such that L = 0,
called fast decaying, and

u(t) ∈ Ls(RN ) for any s ≥ 1, lim
t→0

‖u(t)‖s = 0 whenever s < N/α0,

lim
t→0

sup
|x|≥ε

|u(x, t)| = 0 for any ε > 0.

More precisely, when p > 2, w has a compact support in (0,∞) ; when p < 2, w is
positive and

lim
|z|→∞

|z|p/(2−p)
w(z) = `(N, p, q) > 0 if p1 < p < 2,

lim
|z|→∞

|z|(N−p)/(p−1)
w(z) = c > 0 if 1 < p < p1, (1.9)

lim
r→∞

rN (ln r)(N+1)/2w = %(N, p, q) > 0 if p = p1.
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(iv) If q1 < q < q?, for any integer m ≥ 1, there exists a fast decaying solution
w 6≡ 0 with at least m isolated zeros and a compact support when p > 2; there exists
a fast decaying solution w precisely m zeros, and |w| has the behaviour (1.1) when
p < 2.

(v) If p ≤ p2, or if p > p2 and q ≥ q?, all the solutions w 6≡ 0 have a constant sign
and are slowly decaying.

(vi) If q ≤ q1, (hence p1 < p), all the solutions w 6≡ 0, assume both positive and
negative values. There exists an infinity of fast decaying solutions such that w has
a compact support when p > 2, and |z|p/(2−p)

w(z) is bounded near ∞ when p < 2.
Moreover, if p < 2, q is close to q1, and p close to 2, then all the solutions w 6≡ 0
have a finite number of zeros. If p < 2 and q is close to 1, all of them are oscillatory.

In the sequel we study more generally the equation

(
|w′|p−2

w′
)′

+
N − 1

r
|w′|p−2

w′ + rw′ + αw + |w|q−1
w = 0 in (0,∞) , (1.10)

where α > 0 is a parameter, and we only assume q > 1. The problem without source

ut − div(|∇u|p−2∇u) = 0 (1.11)

was treated in [23] when p < 2 for positive solutions. In [5] we make a complete descrip-
tion of the solutions of any sign of (1.11) for p < 2, and study the equation

(
|w′|p−2

w′
)′

+
N − 1

r
|w′|p−2

w′ + rw′ + αw = 0 in (0,∞) , (1.12)

for arbitrary α ∈ R. A main point is that equation (1.10) appears as a perturbation of (1.12)
when w is small enough. When α > 0 and (δ −N)(δ − α) > 0, observe that (1.12) has a
particular solution of the form w(r) = `r−δ, where

` =
(

δp−1 δ −N

δ − α

)1/(2−p)

. (1.13)

A critical value of α appears in studying (1.12) when p2 < p :

α∗ = δ +
δ(N − δ)

(p− 1)(2δ −N)
, (1.14)

In the case p > 2, eqution (1.12) is treated in [13] and [6].

Our paper is organized as follows:
In Section 2, we give general properties about equation (1.10). Among the solutions de-

fined on (0,∞) , we show the existence and uniqueness of global solutions w = w(., a) ∈
C2 ((0,∞)) ∩ C1 ([0,∞)) of problem (1.10) such that for some a ∈ R

w(0) = a, w′(0) = 0. (1.15)
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By symmetry, we restrict to the case a ≥ 0. We give the first informations on the number
of zeros of the solutions, and upper estimates near ∞ of any solution of any sign.

In Section 3, we study the case (2 − p)α < p. We first show that any solution w
satisfies limr→∞ rαw = L ∈ R. Moreover, we prove that the function a 7−→ L(a) =
limr→∞ rαw(r, a) is continuous on R. When L = 0, then any solution w has a compact
support if p > 2, and rδw is bounded if p < 2 and we give a complete description of
the behaviour of w near infinity. Then we study the existence of fast decaying solutions
of equation 1.10, positive or changing sign, according to the value of α, see theorems 3.9
and 3.6. We give sufficient conditions on p, q, α, in order that all the functions w(., a) are
positive and slowly decaying, see Theorem 3.11; some of them are new, even in the case
p = 2. Finally we prove that all the solutions w are oscillatory when p1 < p < 2 and α is
close to δ, see Theorem 3.15; this type of behaviour never occurs in the case p = 2.

In Section 4 we study the case p ≤ (2 − p)α, for which equation (1.10) has no more
link with problem (1.1), but is interesting in itself. Here rδw is bounded at ∞, except
in the case p = (2 − p)α < p1 where a logarithm appears. Moreover, if p1 < p, or
p1 = p < (2 − p)α, then all the solutions are oscillatory. As in section 3 we study the
existence of positive solutions, see Theorems 4.9 and 4.11. In Theorem 4.6 we prove a
difficult result of convergence in the range α < η,w here the solutions are nonoscillatory.

Section 5 is devoted to the proof of Theorem 1.1, by taking α = α0 and applying the
results of Section 3, since (2− p)α0 < p.

2 General properties

2.1 Equivalent formulations, and energy functions

Equation (1.10) can be written under equivalent forms
(
rN−1 |w′|p−2

w′
)′

+ rN−1(rw′ + αw + |w|q−1
w) = 0 in (0,∞) , (2.1)

(
rN (w + r−1 |w′|p−2

w′)
)′

+ rN−1
(
(α−N)w + |w|q−1

w
)

= 0 in (0,∞) .

(2.2)
Defining

JN (r) = rN
(
w + r−1 |w′|p−2

w′
)

, (2.3)

then (2.2) is equivalent to

J ′N (r) = rN−1(N − α− |w|q−1)w. (2.4)

We also use the function

Jα(r) = rα
(
w + r−1 |w′|p−2

w′
)

= rα−NJN (r), (2.5)

which satisfies

J ′α(r) = rα−1
(
(α−N)r−1 |w′|p−2

w′ − |w|q−1
w

)
. (2.6)



74 F. Bidaut-Véron

The simplest energy function,

E(r) =
1
p′
|w′|p +

α

2
w2 +

|w|q+1

q + 1
, (2.7)

obtained by multiplying (1.10) by w′, is nonincreasing, since

E′(r) = −(N − 1)r−1 |w′|p − rw′2. (2.8)

More generally, we introduce a Pohozaev-Pucci-Serrin type function with parameters λ >
0, σ, e ∈ R :

Vλ,σ,e(r) = rλ

(
|w′|p
p′

+
|w|q+1

q + 1
+ e

w2

2
+ σr−1w |w′|p−2

w′
)

. (2.9)

Such functions have been used intensively in [21]. After computation we find

r1−λV ′
λ,σ,e(r) = −(N − 1− σ − λ

p′
) |w′|p −

(
σ − λ

q + 1

)
|w|q+1

+ σ(λ−N)r−1w |w′|p−2
w′

−
(

rw′ +
σ − e + α

2
w

)2

− (σα− eλ

2
− (σ + α− e)2

4
)w2. (2.10)

Notice that E = V0,0,α.

In all the sequel we use a logarithmic substitution; for given d ∈ R,

w(r) = r−dyd(τ), τ = ln r. (2.11)

We get the equation, at each point τ such that w′(r) 6= 0,

y′′d+(η−2d)y′d−d(η−d)yd

+
1

p− 1
e((p−2)d+p)τ |dyd − y′d|2−p

(
y′d − (d− α)yd + e−d(q−1)τ |yd|q−1

yd

)
= 0.

(2.12)
Setting

Yd(τ) = −r(d+1)(p−1) |w′|p−2
w′, (2.13)

we can write (2.12) as a system:




y′d = dyd − |Yd|(2−p)/(p−1)
Yd,

Y ′
d = (p− 1)(d− η)Yd

+e(p+(p−2)d)τ (αyd + e−δ(q−1)τ |yd|q−1
yd − |Yd|(2−p)/(p−1)

Yd).
(2.14)

In particular, the case d = δ plays a great role: setting

w(r) = r−δy(τ), Y (τ) = −r(δ+1)(p−1) |w′|p−2
w′, τ = ln r, (2.15)



The p-Laplace heat equation 75

equation (2.12) takes the form

(p− 1)y′′ + (N − δp)y′ + (δ −N)δy
+ |δy − y′|2−p

(
y′ − (δ − α)y + e−δ(q−1)τ |y|q−1

y
)

= 0,
(2.16)

and system (2.14) becomes
{

y′ = δy − |Y |(2−p)/(p−1)
Y

Y ′ = (δ −N)Y − |Y |(2−p)/(p−1)
Y + αy + e−δ(q−1)τ |y|q−1

y.
(2.17)

As τ →∞, this system appears as a perturbation of an autonomous system
{

y′ = δy − |Y |(2−p)/(p−1)
Y

Y ′ = (δ −N)Y − |Y |(2−p)/(p−1)
Y + αy

(2.18)

corresponding to the problem (1.12). The existence of such a system is one of the key
points of the new results in [5]. If δ(δ −N)(δ − α) ≤ 0, it has only one stationnary point
(0, 0). If δ(δ −N)(δ − α) > 0, which implies p < 2, it has three stationary points:

(0, 0), M` = (`, (δ`)p−1), and M ′
` = −M`, (2.19)

where ` is defined at (1.13). The critical value α∗ of α, defined at (1.14) corresponds to
the case where the eigenvalues of the linearized problem at M` are imaginary. Observe the
relation

JN (r) = e(N−δ)τ (y(τ)− Y (τ)). (2.20)

As in [4] and [5], we construct a new energy function, adapted to system (2.17), by
using the Anderson and Leighton formula for autonomous systems, see [1]. Let

W(y, Y ) =
(2δ −N)δp−1

p
|y|p +

|Y |p′

p′
− δyY +

α− δ

2
y2, (2.21)

W (τ) = W(y(τ), Y (τ)) +
1

q + 1
e−δ(q−1)τ |y(τ)|q+1

. (2.22)

Then

W ′(τ) = U(y(τ), Y (τ))− δ(q − 1)
q + 1

e−δ(q−1)τ |y(τ)|q+1 (2.23)

with

U(y, Y ) =
(
δy − |Y |(2−p)/(p−1)

Y
) (|δy|)p−2δy − Y

)
(2δ −N −H(y, Y )), (2.24)

H(y, Y ) =

{ (
δy − |Y |(2−p)/(p−1)

Y
)

/
(
|δy|p−2

δy − Y
)

if |δy|)p−2δy 6= Y,

|δy|2−p
/(p− 1) if |δy|)p−2δy = Y.

(2.25)
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If 2δ ≤ N, then U(y, Y ) ≤ 0 on R2; thus W is nonincreasing. If 2δ ≥ N, the set

L =
{
(y, Y ) ∈ R2 : H(y, Y ) = 2δ −N

}
(2.26)

is a closed curve surrounding (0, 0), symmetric with respect to (0, 0), and bounded, since
for any (y, Y ) ∈ R2,

H(y, Y ) ≥ 1
2
((δy)2−p + |Y |(2−p)/(p−1)). (2.27)

Introducing the domain S of R2 with boundary L and containing (0, 0),

S =
{
(y, Y ) ∈ R2 : H(y, Y ) < 2δ −N

}
, (2.28)

then W ′(τ) ≤ 0 for any τ such that (y(τ), Y (τ)) 6∈ S, from (2.23).

2.2 Existence of global solutions

The first question concerning problem (1.10), (1.15) is the local existence and uniqueness
near 0. It is not straightforward in the case p > 2, and the regularity of the solution differs
according to the value of p. It is shown in [3] when p > 2 and α = α0, by following the
arguments of [14]. We recall and extend the proof to the general case.

Theorem 2.1 For any a 6= 0, problem (1.10), (1.15) admits a unique solution w =
w(., a) ∈ C1 ([0,∞)) such that |w′|p−2

w′ ∈ C1 ([0,∞)) , and

lim
r→0

|w′|p−2
w′/rw = −(α/N + aq+1); (2.29)

thus w ∈ C2 ([0,∞)) if p < 2. And |w(r)| ≤ a on [0,∞) .

Proof. Step 1 : Local existence and uniqueness. We can suppose a > 0. Let ρ > 0. From
(2.2), any w ∈ C1 ([0, ρ]) , such that |w′|p−2

w′ ∈ C1 ([0, ρ]), solution of the problem
satisfies w = T (w), where

T (w)(r) = a−
∫ r

0

|H(w)|(2−p)/(p−1)
H(w)ds,

H(w(r)) = rw − r1−NJN (r) = rw − r1−N

∫ r

0

sN−1j(w(s))ds, (2.30)

and j(r) = (N − α)r − |r|q−1
r. Reciprocally, the mapping T is well defined from

C0 ([0, ρ]) into itself. If w ∈ C0 ([0, ρ]) and w = T (w), then w ∈ C1 ((0, ρ]) and
|w′|p−2

w′ = H(w); hence |w′|p−2
w′ ∈ C1 ((0, ρ]) and w satisfies (1.10) in (0, ρ] . More-

over, limr→0 j(w(r)) = aq−(N−α)a, hence |w′|p−2
w′(r) = −r((α/N +aq−1)+o(1));

in particular, limr→0 w′(r) = 0, and |w′|p−2
w′ ∈ C1 ([0, ρ]) , and w satisfies (1.10) and

(1.15), and (2.29) holds. We consider the ball

BR,M =
{

w ∈ C0 ([0, ρ]) : ‖w − a‖C0([0,R]) ≤ M
}

,
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where M is a parameter such that 0 < M < a/2. Notice that j is locally Lipschitz con-
tinuous, since q > 1. In case p < 2, then the function r 7→ |r|(2−p)/(p−1)

r has the
same property; hence T is a strict contraction from Bρ,M into itself for ρ and M small
enough. Now suppose p > 2. Let K = K(a,M) be the best Lipschitz constant of j on
[a−M, a + M ] . For any w ∈ BR,M , and any r ∈ [0, ρ] , from (2.30)

(
a−M − j(a) + MKM

N

)
r ≤ H(w(r)) ≤

(
a + M +

−j(a) + MK

N

)
r (2.31)

hence, setting µ(a) = a− j(a)/N = (aq + αa)/N > 0,

µ(a)r/2 < H(w(r)) < 2µ(a)r

as long as M ≤ M(a) is small enough. Then from (2.30),

‖T (w)− a‖C0([0,R]) ≤ (2µ(a))1/(p−1)
Rp/(p−1)

and hence T (w) ∈ Bρ,M for ρ = ρ(a) small enough. Now for any w1, w2 ∈ Bρ,M , and
any r ∈ [0, ρ] ,

|T (w1)(r)− T (w2)(r)|

≤
∫ r

0

∣∣∣|H(w)|(2−p)/(p−1)
H(w1)− |H(w2)|(2−p)/(p−1)

H(w)
∣∣∣ (s)ds

and for any s ∈ [0, r] , from [14, p.185], and
∣∣∣|H(w)|(2−p)/(p−1)

H(w1)− |H(w2)|(2−p)/(p−1)
H(w)

∣∣∣ (s)

≤ H(w2)(2−p)/(p−1) |H(w1)−H(w2)| (s)

≤ (2µ(a))(2−p)/(p−1)
s1/(p−1)

(
|w1 − w2|+ Ks−N

∫ s

0

σN−1 |w1 − w2| dσ

)

≤ C(a)s1/(p−1) ‖w1 − w2‖C0([0,R]) (2.32)

with C(a) = (2µ(a))(2−p)/(p−1) (1 + K/N)

‖T (w1)− T (w2)‖C0([0,R]) ≤ C(a)ρp′ ‖w1 − w2‖C0([0,R]) ≤
1
2
‖w1 − w2‖C0([0,R])

if ρ(a) is small enough. Then T is a strict contraction from Bρ,M into itself. Moreover if
ρ(a) and M(a) are small enough, then for any b ∈ [a/2, 3a/2] ,

‖w(., b)− w(., a)‖C0([0,ρ]) ≤ |b− a|+ 1
2
‖w(., a)− w(., b)‖C0([0,R]);

that means w(a, .) is Lipschitz dependent on a in [0, ρ(a)] . The same happens for w′(., a),
as in (2.32), since

|w′(., b)− w′(., a)|
=

∣∣∣|H(w(., b))|(2−p)/(p−1)
H(w(., b))− |H(w(., a))|(2−p)/(p−1)

H(w(., a))
∣∣∣ .
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Step 2 : Global existence and uniqueness. The function w on [0, ρ(a)] can be extended
to [0,∞) . Indeed, in the domain of definition,

E(r) =
1
p′
|w′|p +

α

2
w2 +

1
q + 1

|w|q+1 ≤ E(0) =
α

2
a2 + aq+1, (2.33)

and hence w and w′ stay bounded, and |w(r)| ≤ a on [0,∞). The extended function is
unique. Indeed existence and uniqueness hold near any point r1 > 0 such that w′(r1) 6= 0
or p ≤ 2 from the Cauchy-Lipschitz theorem; if w′(r1) = 0, w(r1) 6= 0 and p > 2, it
follows from fixed point theorem as above; finally if w(r1) = w′(r1) = 0, then w ≡ 0 on
[r1,∞) since E is nonincreasing.

Remark 2.2 For any r1 ≥ 0, we have a local continuous dependence of w and w′ on func-
tion of c1 = w(r1) and c2 = w′(r1). Indeed the only delicate case is c1 = c2 = 0. Since E
is nonincreasing, then for any ε > 0,, if |w(r1)| + |w′(r1)| ≤ ε, then sup[r1,∞) |w(r)| +
|w′(r)| ≤ C(ε), where C is continuous; thus the dependence holds on all of [r1,∞). In
particular, for any a ∈ R, w(., a) and w′(., a) depend continuously on a on any segment
[0, R] . If for some a0, w(., a0) has a compact support, the dependance is continuous on R.
As a consequence, w(., .) and w′(., .) ∈ C0 ([0,∞)× R) .

Remark 2.3 Any local solution w of problem (1.10) near a point r1 > 0 is defined on a
maximal interval (Rw,∞) with 0 ≤ Rw < r1.

2.3 First oscillatory properties

Let us begin by simple remarks on the behaviour of the solutions.

Proposition 2.4 Let w be any solution of problem (1.10). Then

lim
r→∞

w(r) = 0, lim
r→∞

w′(r) = 0. (2.34)

If w > 0 for large r, then w′ < 0 for large r.

Proof. Let w be any solution on [r0,∞), r0 > 0. Since the function E is nonincreasing,
w and w′ are bounded, and E has a finite limit ξ ≥ 0. Consider the function V = Vλ,d,e

defined at (2.9) with λ = 0, σ = (N − 1)/2, e = α + σ. It is bounded near∞ and satisfies

−rV ′(r) =
N − 1

2
(|w′|p + |w|q+1 + αw2 +

N

2
r−1w |w′|p−2

w′ + r2w′
2
)

≥ N − 1
2

E(r) + o(1) ≥ N − 1
2

ξ + o(1).

If ξ > 0, then V is not integrable, which is contradictory. Thus ξ = 0, and (2.34) holds.
Moreover, at each extremal point r such that w(r) > 0, from

(|w′|p−2
w′)′(r) = −(α + w(r)q+1)w(r), (2.35)
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r is unique and it is a maximum. If w(r) > 0 for large r, then from (2.34) necessarily
w′ < 0 for large r.

Now we give some first results concerning the possible zeros of the solutions. If p < 2
then any solution w 6≡ 0 of (1.10) has only isolated zeros, from the Cauchy-Lipschitz
Theorem. On the contrary, if p > 2, there can exist r1 > 0 such that w(r1) = w′(r1) = 0.
Then, by uniqueness, w ≡ 0 on [r1,∞) .

Proposition 2.5 (i) Assume α < N. Let a = (N −α)1/(q−1). Then for any a ∈ (0, a],
w(r, a) > 0 on [0,∞) .
(ii) Assume p1 < p and N ≤ α. Then for any a 6= 0, w(r, a) has at least one isolated
zero.
(iii) Assume p < 2. Then for any 0 < m < M < ∞, any solution w of (1.10) has a
finite number of zeros in [m,M ] , or w ≡ 0 in [m,M ] .
(iv) Assume p > 2 or α < max(N, η). Then for any m > 0, any solution w of
problem (1.10) w has a finite number of isolated zeros in [m,∞) , or w ≡ 0 in
[m,∞).

Proof. (i) Let a ∈ (0, a] . Assume that there exists a first r1 > 0 such that w(r1, a) = 0,
hence w′(r1, a) ≤ 0. Let us consider JN defined by (2.3). Then J ′N (r) ≥ 0 on [0, r1), as
0 ≤ w(r) ≤ a; JN (0) = 0, and JN (r1) = rN−1

1 |w′(r1)|p−2
w′(r1) ≤ 0. Thus J ′N ≡ 0 on

[0, r1], and w ≡ a, which contradicts (1.10).

(ii) Suppose that for some a > 0, w(r) = w(r, a) > 0 on [0,∞) . Since N ≤ α, there holds
J ′N (r) < 0 on [0,∞) , and JN (0) = 0, and hence JN (r) ≤ 0. Then r 7−→ rp′ − δw−δ is
nonincreasing.

• If p > 2, it is impossible, thus w has a first zero r1, and J ′N (r) < 0 on [0, r1) , and
hence JN (r1) < 0. Then w′(r1) < 0 and r1 is isolated.

• If p < 2, there exists c > 0 such that for large r, JN (r) ≤ −c, hence w(r)+ cr−N ≤
|w′(r)|p−1

/r. Then there exists another c > 0 such that w′+cr(1−N)/(p−1) ≤ 0. If N = 1
it contradicts Proposition 2.4. If 2 ≤ N, then p < N, and w − cr−η/η decreases to 0, thus
δ ≤ η, which contradicts N < δ, which means p1 < p, from (1.6).

(iii) Suppose that w has an infinity of isolated zeros in [m,M ] . Then there exists a sequence
of zeros converging to some r ∈ [m,M ] . We can extract an increasing (or a decreasing)
subsequence of zeros (rn) such that w > 0 on (r2n, r2n+1) and w < 0 on (r2n−1, r2n) .
There exists sn ∈ (rn, rn+1) such that w′(sn) = 0; since w ∈ C1 [0,∞) , it implies
w(r) = w′(r) = 0. It is impossible because p < 2.

(iv) Suppose that w 6≡ 0 in [m,∞). Let Z be the set of its isolated zeros in [m,∞). Notice
that m is not an accumulation point of Z, since (w(m), w′(m)) 6= (0, 0). Let ρ1 < ρ2, be
two consecutive zeros, thus such that ρ1 is isolated, and |w| > 0 on (ρ1, ρ2) . We make
the substitution (2.11), where d > 0 will be choosen afterwards. At each point τ such that
y′d(τ) = 0, and yd(τ) 6= 0, we deduce

(p− 1)y′′d

= yd

(
(p− 1)d(η − d) + e((p−2)d+p)τ |dyd|2−p

(
d− α− e−d(q−1)τ |yd|q−1

yd

))
;

(2.36)
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if τ ∈ (eρ1 , eρ2) is an maximal point of |yd|, it follows that

e((p−2)d+p)τ |dyd(τ)|2−p
(
d− α− e−d(q−1)τ |yd(τ)|q−1

)
≤ (p− 1)d(d− η). (2.37)

Setting ρ = eτ ∈ (ρ1, ρ2) , it means

ρp |w(ρ)|2−p
(
d− α− |w|q−1 (ρ)

)
≤ (p− 1)dp−1(d− η). (2.38)

If p > 2, we fix d > α. Since limr→∞ w(r) = 0, the coefficient of ρp in the left-hand side
tends to ∞ as ρ → ∞. Hence ρ is bounded, and also ρ1, thus Z is bounded. If α < η, we
take d ∈ (α, η) . Then the right hand side is negative, and the left hand side is nonnegative
for large r, hence again Z is bounded. If α < N, we use the function JN :

JN (ρ2)− JN (ρ1)

= ρN−1
2 |w′|p−2

w′(ρ2)− ρN−1
1 |w′|p−2

w′(ρ1)

=
∫ ρ2

ρ1

sN−1w(N − α− |w|q−1
w)ds (2.39)

and the integral has the sign of w for large ρ, hence a contradiction. In any case Z is
bounded. Suppose that Z is infinite; then p > 2 from step (iii), and there exists a sequence
of zeros (rn), converging to some r ∈ (m,∞) such that w(r) = w′(r) = 0. Then
there exists a sequence (τn) of maximal points of |yd| converging to τ = ln r. Taking
ρ = ρn = eτn in (2.38) leads to a contradiction, since the left-hand side tends to ∞.

When w has a constant sign for large r, we can give some informations on the behaviour
for large τ of the solutions (y, Y ) of system (2.17), in particular the convergence to a
stationary point of the autonomous system (2.18): We have also a majorization in one case
when the solution is changing sign.

Lemma 2.6 Let w be any solution of (1.10), and (y, Y ) be defined by (2.15).
(i) If y > 0 and y is not monotone for large τ , then Y is not monotone for

large τ, and either max(α, N) < δ and limτ→∞ y(τ) = `, or δ < min(α, N) and
lim infτ→∞ y(τ) ≤ ` ≤ lim supτ→∞ y(τ).

(ii) If y > 0 and y has a limit l at ∞, then either l = 0 and limτ→∞ Y (τ) = 0,
or (δ −N)(δ − α) > 0 and l = ` and limτ→∞(y(τ), Y (τ)) = M`, or δ = α = N and
limτ→∞ Y (τ) = (δl)p−1.

(iii) If y > 0 and y is nondecreasing for large τ and limτ→∞ y(τ) = ∞, then
limτ→∞ Y (τ) = ∞.

(iv) If y is changing sign for large τ (which implies p < 2) and α < δ, then
N < δ and |y(τ)| ≤ ` (1 + o(1)) and |Y (τ)| ≤ (δ`)p−1(1 + o(1)) near ∞.

Proof. From Proposition 2.4, Y (τ) > 0 for large τ in cases (i) to (iii).

(i) Suppose that y is not monotone near ∞. Then there exists an increasing sequence (τn)
such that τn →∞, y′(τn) = 0, y′′(τ2n) ≥ 0, y′′(τ2n+1) ≤ 0, y(τ2n) ≤ y(τ) ≤ y(τ2n+1)
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on (τ2n, τ2n+1) , y(τ2n) ≤ y(τ) ≤ y(τ2n−1) on (τ2n−1, τ2n) , and y(τ2n) < y(τ2n+1).
From (2.16),

(p−1)y′′(τn) = δ2−py(τn)
(
y(τn)2−p

(
δ − α− e−δ(q−1)τny(τn)q−1)

)
− (δ −N)δp−1

)

(2.40)
From Proposition 2.4, e−δτy(τ) = o(1) near ∞ and

y(τ2n+1)2−p
(
α− δ + e−δ(q−1)τ2n+1y(τ2n+1)q−1)

)

> (N − δ)δp−1 ≥ y(τ2n)2−p
(
α− δ + e−δ(q−1)τ2ny(τ2n)q−1

)
> y(τ2n)2−p (α− δ) .

Then either α < δ, N < δ and ` ≤ y(τ2n) ≤ y(τ2n+1) ≤ `(1+o(1)); hence limτ→∞ y(τ) =
`. Or δ < α, δ < N, and y(τ2n) < `, and ` ≤ y(τ2n+1)(1 + o(1)). If Y is monotone
near ∞, then from (2.17), y′′ = δy′ − Y (2−p)/(p−1)Y ′, hence e−δty′ is monotone, which
contradicts the existence of a sequence (τn) as above. Thus Y is not monotone.

(ii) Let l = limτ→∞ y ≥ 0. If Y is monotone, either limτ→∞ Y = ∞, which is impossible,
since then y′ → −∞; or Y has a finite limit λ ≥ 0. If Y is not monotone, at the extremal
points τ of Y, we have

|Y (τ)|(2−p)/(p−1)
Y (τ)− (δ −N)Y (τ) = αl + o(1),

from (2.17). Thus Y has a limit at these points, hence Y still has a limit λ. From (2.17),
y′ has a limit, necessarily 0, hence λ = (δl)p−1.Then Y ′ has a limit, necessarily 0, and
(δ − N)(δl)p−1 = (δ − α)l; thus l = 0 = λ, or (δ − N)(δ − α) > 0 and l = `,
λ = (δ`)p−1, or δ = α = N.

(iii) Suppose that y is nondecreasing and limτ→∞ y(τ) = ∞. Then either Y is not mono-
tone, and at minimum points it tends to ∞ from (2.17), then limτ→∞ Y (τ) = ∞. 0r
Y is monotone; if it has a finite limit, then limτ→∞ Y ′(τ) = ∞ from (2.17), which is
impossible. Then again limτ→∞ Y (τ) = ∞.

(iv) Assume that y does not keep a constant sign near ∞; then also w, thus also w′, and in
turn Y. At any maximal point θ of |y|, one finds

(p− 1)y′′(θ) = δ2−py(θ)
(
|y(θ)|2−p

(
δ − α− e−δ(q−1)θ |y(θ)|q−1

)
− (δ −N)δp−1

)
,

hence
|y(θ)|2−p (δ − α + o(1)) ≤ (δ −N)δp−1.

Since δ − α > 0, it follows that δ −N > 0 and |y(τ)| ≤ `(1 + o(1)) near ∞. Similarly at
any maximal point ϑ of |Y | , one finds

Y ′′(ϑ) = (α + e−δ(q−1)ϑ |y(ϑ)|q−1)y′ + δ(q − 1)e−δ(q−1)ϑ |y(ϑ)|q−1
y

0 = (δ −N)Y (ϑ)− |Y (ϑ)|(2−p)/(p−1)
Y (ϑ) + (α + e−δ(q−1)ϑ |y(ϑ)|q−1)y(ϑ)

which implies
|Y (ϑ)|(2−p)/(p−1) (δ − α + o(1)) ≤ (δ −N)δ;

thus |Y (τ)| ≤ (δ`)p−1(1 + o(1)) near ∞.
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2.4 Further results by blow up techniques

Next we give two results obtained by rescaling and blow up techniques. The first one
consists in a scaling leading to the equation

r1−N
(
rN−1 |v′|p−2

v′
)′

+ |v|q−1
v = 0. (2.41)

without term in rw′, extending the result of ([26, Proposition 3.4]) to the case p 6= 2. It
gives a result in the subcritical case q < q∗, and does not depend on the value of α.

Proposition 2.7 Assume that 1 < q < q∗(thus p > p2). Then for any m ∈ N, there
exists am such that for any a > am, w(., a) admits at least m + 1 isolated zeros.
And for fixed m, the mth zero of w(., a) tends to 0 as a tends to ∞.

Proof. (i) First we show that there exists a∗ > 0 such that for any a > a∗, w(., a)
cannot stay positive on [0,∞). Suppose that there exists (an) tending to ∞, such that
wn(r) = w(r, an) ≥ 0 on [0,∞), and let

vn(r) = a−1
n wn(a−1/α0

n r). (2.42)

Then vn(0) = 1, v′n(0) = 0 and vn satisfies the equation
(
rN (a1−q

n vn + r−1 |v′n|p−2
v′n)

)′
+ rN−1

(
(α−N)a1−q

n vn + |vn|q−1
vn

)
= 0. (2.43)

From (2.33) applied to wn

vn(r) ≤ 1, |v′n(r)|p ≤ p′
(

α

2
a1−q

n +
1

q + 1

)
in [0,∞) ,

thus vn and v′n are uniformly bounded in [0,∞) . If p ≤ 2, then v′′n is uniformly bounded
on any compact K of (0,∞) , from (1.10), and up to a diagonal sequence, vn converges
uniformly in C1

loc (0,∞) to a function v. If p > 2, then, from (2.43), the derivatives
of rN (a1−q

n vn + |v′n|p−2
v′n) are uniformly bounded on any K, and a1−q

n vn converges
unifomly to 0 in [0,∞) , and up to a diagonal sequence, |v′n|p−2

v′n converges uniformly
on any K, hence also v′n, thus vn converges uniformly in C1

loc (0,∞) to a nonnegative
function v ∈ C1 (0,∞) . For any r > 0,

|v′n|p−2
v′n(r) = −a1−q

n rvn(r) + r1−N

∫ r

0

sN−1
(
a1−q

n (N − α)vn − |vn|q−1
vn

)
ds,

hence

|v′|p−2
v′(r) = −r1−N

∫ r

0

sN−1 |v|q−1
vds in (0,∞) . (2.44)

In particular, v′(r) → 0 as r → 0, and hence v can be extended to a function in C1([0,∞))
such that v(0) = 1, and v′(r) < 0. Using the form (1.10) for the equation in vn, v′′n
converges uniformly on any K, hence v ∈ C2 (0,∞)∩ C1([0,∞)) and is solution of the
equation (2.41) such that v(0) = 1 and v′0) = 0. But this equation has no nonnegative
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solution except 0 since q < q∗. Moreover the zeros of function v are all isolated, and form
a sequence (rn) tending to ∞, see [4], [8] and [24]. Then we reach a contradiction.

(ii) Now let m ≥ 0. As in [26, Proposition 3.4], assume that there exists a sequence (an)
tending to ∞, such that wn(r) = w(r, an) has at most m isolated zeros, hence also vn.
Up to a subsequence we can suppose that all the vn(r) have the same number of isolated
zeros m : r0,n, r1,n, .., rm,n. Let M > 0 such that r0, r1, .., rm ∈ (0,M) . Then for n
large enough, r0,n, r1,n, .., rm,n ∈ (0,M + 1) . Either vn(r) has no zero on [M + 1,∞) ,
or there is a unique zero rm,n+1 such that vn(r) has a compact support [0, rm,n+1] . Up
to a subsequence, all the vn are nonnegative or nonpositive on [M + 1,∞) ; then the same
holds for v, and we get a contradiction. Thus for a large enough, w(., a) has at least m + 1
zeros. Moreover, as in [26], the m first zeros stay in a compact set, and from (2.42) the
mth zero of w(., a) tends to 0 as a →∞.

Now we make a scaling leading to the problem without source

r1−N
(
rN−1 |v′|p−2

v′
)′

+ rv′ + αv = 0. (2.45)

It gives informations when the regular solutions of (2.45) are changing sign, in particular
p2 < p < 2, and δ < α. It does not depend on the value of q.

Proposition 2.8 Assume that p2 < p < 2, δ < α. Then there exists an αc ∈ (η, α∗)
such that if α > αc, then for any m ∈ N, there exists am such that for any 0 < a <
am, w(., a) admits at least m + 1 isolated zeros. And for fixed m, the mth zero of
w(., a) tends to 0 as a tends to ∞.

Proof. Suppose that there exists (an) tending to 0, such that wn(r) = w(r, an) ≥ 0 on
[0,∞), and let

vn(r) = a−1
n wn(a−1/δ

n r).

Then vn(0) = 1, v′n(0) = 0 and vn satisfies equation
(
rN (vn + r−1 |v′n|p−2

v′n)
)′

+ rN−1
(
(α−N)vn + aq−1

n |vn|q−1
vn

)
= 0,

and estimates

vn(r) ≤ 1, |v′n(r)|p ≤ p′
(

α

2
+

aq−1
n

q + 1

)
in [0,∞) .

As above we construct a solution v ∈ C2 (0,∞)∩ C1([0,∞)) of the equation (2.45). But
from [5], there exists αc ∈ (η, α∗) such that the regular solutions of (2.45) are oscillating
for α > αc, hence we conclude as above.

Remark 2.9 This scaling does not give any result when the regular solutions of (2.45)
have a constant sign: it is the case for example when α = N : they are the Barenblatt
solutions, they have a compact support when p > 2 and a behaviour in r−δ near ∞ when
p < 2. Nevertheless if p > p1, all the solutions w(., a) of (1.10) have at least one zero,
from Proposition 2.5.
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2.5 Upper estimates of the solutions

Here we get the behaviour at infinity for solutions of any sign. We extend the results of
[18] obtained for p = 2, giving upper estimates with continous dependence, which also
improve the results of [22]:

Proposition 2.10 Let d ≥ 0.
(i) Assume that the solution w of problem (1.10), (1.15) satisfies

|w(r)| ≤ Cd(1 + r)−d, (2.46)

on [0,∞) , for some Cd > 0. Then there exists another C ′d > 0, depending continu-
ously on Cd such that

|w′(r)| ≤ C ′d(1 + r)−d−1. (2.47)

(ii) For any solution of (1.10) such that w(r) = O(r−d) near ∞, then w′(r) =
O(r−d−1) near ∞.

Proof. (i) We can assume that w 6≡ 0. Let r ≥ R ≥ 0; we set

fR(r) = exp
(

1
p− 1

∫ r

R

s |w′|2−p
ds

)
. (2.48)

The function is well defined when p < 2 from (2.29), and fR ∈ C1([R,∞)). When p > 2,
from Proposition 2.5, (iv), the function w has a finite number of isolated zeros and either
there exists a first r̄ > 0 such that w(r̄) = w′(r̄) = 0, or w has no zero for large r, and we
set r̄ = ∞. In the last case case, from Proposition 2.4, the set of zeros of w′ is bounded. If
w′(r̃) = 0 for some r̃ ∈ (0, r̄) , then, from (1.10), (|w′|p−2

w′)′ has a nonzero limit λ at r̃,
hence r̃ is an isolated zero of w and

|w′(s)|2−p = |λ|(2−p)/(p−1) (s− r̃)−1+1/(p−1)(1 + o(1))

near r̃. Then s |w′|2−p ∈ L1
loc (R,∞); thus fR is absolutely continuous on [R, r̄) if r̄ = ∞.

Let k = k(N, p, d) > 0 be a parameter, such that K = k − (N − 1)/(p − 1) > 0, and
k > 1 + d. By computation, for almost any r ∈ (R, r̄) ,

(
rkfR(w′ −Kr−1w

)′
= −K(k − 1)rk−2fRw − rk−1f ′Rw(α + K + |w|q−1)

and hence for any r ∈ [R, r̄) ,

rkfRw′ = Rk−1(Rw′(R)−Kw(R)) + Krk−1fRw

−K(k − 1)

r∫

R

sk−2fRwds−
r∫

R

sk−1f ′Rw(α + K + |w|q−1)ds. (2.49)

Assume (2.46), take R = 0, and divide by f0. From our choice of k, and since f ′ ≥ 0, we
obtain

rk |w′(r)| ≤ C̃dr
k−1−d
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on [0, r̄) and then on [0,∞) , where C̃d = Cd(K +K(k−1)/(k−1−d)+α+K)+Cq−1
d ,

and K = K(N, p, d); this holds in particular on [1,∞) ; on [0, 1] , from (2.33),

|w′(r)| ≤ p′(αCd/2 + Cq−1
d ),

and (2.47) holds.

(ii) Let R ≥ 1 such that w is defined on [R,∞) and w(r) ≤ Cdr
−d on [R,∞) . Defining

r̄ as above and dividing (2.49) by fR and observing that fR(r) ≥ 1, and Rk ≤ Rk−1−d ≤
rk−1−d, we deduce

rk |w′(r)| ≤ Rk |w′(R)|+ CdKRk−1−d + C̃dr
k−1−d ≤ (|w′(R)|+ CdK + C̃d)rk−1−d

on [R, r̄) and then on [R,∞) , and we conclude again.

Proposition 2.11 (i) For any γ ≥ 0, if p > 2, any γ ∈ [0, δ) if p < 2, any solution of
(1.10) satifies, near ∞,

w(r) = O(r−γ) + O(r−α). (2.50)

(ii) The solution w = w(., a) of problem (1.10), (1.15) satisfies

|w(r, a)| ≤ Cγ(a)((1 + r)−γ + (1 + r)−α), (2.51)

where Cγ(a) is continuous with respect to a on R.

Proof. (i) Here we simplify the proofs of [18] and [22]: using equation (1.10), the function
F defined by

F (r) =
1
2
w2 + r−1 |w′|p−2

w′w, (2.52)

satisfies the relation

(r2αF )′ = r2α−1(|w′|p + (2α−N)r−1 |w′|p−2
w′w − |w|q+1)

≤ r2α−1(|w′|p + (2α−N)r−1 |w′|p−2
w′w).

Assume that for some d ≥ 0 and R > 0, |w(r)| ≤ Cr−d on [R,∞) . Then from Proposition
2.10 there exists other constants C > 0 such that

(
r2αF

)′ ≤ Cr2α−1−(d+1)p on [R,∞).
Then F (r) ≤ C(r−(d+1)p + r−2α) on [R,∞) if (d + 1)p 6= 2α; and r−1 |w′|p−1 |w| ≤
Cr−(d+1)p, and thus

|w(r)| ≤ C(r−(d+1)p/2 + r−α)

on [R,∞) . We know that w is bounded on [R,∞) from Proposition 2.4. Consider the
sequence (dn) defined by d0 = 0, dn+1 = (dn + 1)p/2. It is increasing and tends to ∞ if
p ≥ 2 and to δ if p < 2. After a finite number of steps, we get (2.50) by changing slightly
the sequence if it takes the value 2α/p− 1.

(ii) We have |w(., a)| ≤ a, from Theorem 2.1. Assuming that for some d ≥ 0, |w(r, a)| ≤
Cd(a)(1 + r)−d on [0,∞) , and Cd is continuous, then

|w(r, a)| ≤ C̃d(a)((1 + r)−(d+1)p/2 + (1 + r)−α)
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from Proposition 2.10, where C̃d is also continuous. We deduce (2.51) as above, and
Cγ is continuous, since we use is a finite number of steps. Notice in particular that
lima→0 Cγ(a) = 0.

As a consequence we can extend a property of zeros given in [26, Proposition 3.1] in
case p = 2, which improves Proposition 2.5:

Proposition 2.12 Assume that α < N, or p > 2, or α < η. Given A > 0, there exists
M(A) > 0 such that if 0 < |a| ≤ A, then the solution w(., a) of (1.10), (1.15) has
at most one isolated zero outside [0,M(A)] .

Proof. From Proposition 2.5, w(., a) has a finite number of isolated zeros. Let ρ1 < ρ2

be its two last zeros, where by convention ρ2 = r̄ if p > 2 and the function has a com-
pact support [0, r̄] . From Proposition 2.11, for any µ > 0, there exists R = R(A,µ) > 0
such that max|a|≤A,r≥R |w(r, a)| ≤ µ1/(q−1). Also max|a|≤A,r≥0 |w(r, a)| ≤ A, from
Theorem 2.1. As in Proposition 2.5, we make the substitution (2.11) for some d > 0.
If p > 2, we choose d > α, and fix µ = (d − α)/2. Suppose that ρ1 > R. Then
from (2.38), denoting µ′ = dp−1((p − 1)d − N + p), there exists ρ ∈ (ρ1, ρ2) such
thatρp |w(ρ)|2−p

(
d− α− |w|q−1 (ρ)

)
≤ (p− 1)dp−1(d− η),

µρp ≤ µ′ |w(ρ)|p−2 ≤ µ′Ap−2.

Taking M(A) = max(R(A,µ), (µ′µ−1Ap−2)1/p), we find ρ1 ≤ M(A). If p < 2 and
α < η, taking d ∈ (α, η) and the same µ, and M(A) = R(A,µ), then ρ1 ≤ M(A), from
(2.38). If p < 2 and α < N, we choose µ = (N − α)/2 and M(A) = R(A,µ) and get
ρ1 ≤ M(A) from (2.39) by contradiction.

3 The case (2− p)α < p

In this paragraph, we suppose that (2− p)α < p, or equivalently,

p > 2 or (p < 2 and α < δ). (3.1)

3.1 Behaviour near infinity

Proposition 3.1 Assume (3.1) and q > 1. For any solution w of problem (1.10),
there exists L ∈ R such that limr→∞ rαw = L.

Proof. From Propositions 2.10 and 2.11, w(r) = O (r−α) and w′(r) = O(r−α−1) near
∞. Indeed it follows from (2.51) by choosing any γ > α if p > 2 and γ ∈ (α, δ) if
p < 2. Consider the function Jα defined in (2.5). Then from (2.6), J ′α is integrable at
infinity: indeed rα−2 |w′|p−1 = O(r(2−p)α−p−1) and (3.1) holds, and rα−1 |w|q−1

w =
O(r−1−α(q−1)). Then Jα has a limit L as r →∞. And

rαw = Jα(r)− rα−1 |w′|p−2
w′ = Jα(r) + O(r(2−p)α−p).
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Thus limr→∞ rαw(r) = L, and

L = Jα(r) +
∫ ∞

r

J
′
α(s)ds. (3.2)

Next we look for precise estimates of fast decaying solutions. It is easy to obtain an

approximate estimate. Since limr→∞ Jα(r) = 0, we find Jα(r) = −
∫ ∞

r

J ′α(s)ds; thus

|w(r)| ≤ r−1 |w′(r)|p−1 + r−α

∫ ∞

r

sα−1
(
|w|q + (N + α)s−1 |w′|p−1

)
ds. (3.3)

Consider any d ≥ α, with (2 − p)d < p, such that w(r) = O(r−d), hence also w′(r) =
O(r−d−1) from Proposition 2.10. Then w(r) = O(r−d(p−1)−p) + O(r−qd) from (3.3).
Setting d0 = α and dn+1 = min(dn(p− 1)+ p, qdn), the sequence (dn) is nondecreasing.
it tends to ∞ if p > 2, and to δ if p < 2. Thus

w(r) = o(r−d), for any d ≥ 0 if p > 2, for any d < δ if p < 2. (3.4)

Next we give better estimates, for any solution of the problem, even changing sign or not
everywhere defined.

Proposition 3.2 Assume that (3.1) holds, and Let w be any solution of (1.10) such
that limr→∞ rαw(r) = 0.
(i)If p > 2, then w has a compact support.

(ii) If p < 2, then w(r) = O(r−δ) near ∞.

Proof. (i) Case p > 2. Assume that w has no compact support. We can suppose that w > 0
for large r, from Proposition 2.5. We make the substitution (2.11) for some d > α. Since
w(r) = o(r−d), w′(r) = o(r−d−1) near ∞, we get yd(τ) = o(1), y′d(τ) = o(1) near ∞.
And ψ = dyd − y′d = −rd+1w′ is positive for large τ from Proposition 2.4. From (2.12),

y′′d + (η − 2d)y′d − d(η − d)yd

+
1

p− 1
e((p−2)d+p)τψ2−p

(
y′d − (d− α)yd + e−d(q−1)τ |yd|q−1

yd

)
= 0.

As in Proposition 2.5 the maximal points τ of yd remain in a bounded set, hence yd is
monotone for large τ, y′d(τ) ≤ 0, and limτ→∞ e((p−2)d+p)τψ2−p = limr→∞ r2 |w′|2−p =
∞. Then

(p− 1)y′′d = e((p−2)d+p)τψ2−p (|y′d| (1 + o(1) + (d− α)yd(1 + o(1)) .

Since d− α > 0, there exists C > 0 such that y′′d ≥ Ce((p−2)d+p)τψ3−p for large τ. Then

−ψ′ = y′′d + d |y′d| ≥ Ce((p−2)d+p)τψ3−p,

and thus ψp−2 + Ce((p−2)d+p)τ/(d + |δ|) is nonincreasing, which is impossible.
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(ii) Case p < 2. Let us prove that y is bounded near ∞. It holds if y is changing sign,
from Lemma 2.6. Next assume that for example y > 0 for large τ, thus also Y. If y is
not monotone, then N < δ and limτ→∞ y(τ) = `, from Lemma 2.6. If y is monotone,
and unbounded, then is nondecreasing and tending to ∞. Then Y ≤ (δy)p−1 from system
(2.17), which implies Y = o(y); then y − Y > 0 for large τ. Thus for any ε > 0, for large
τ,

(y − Y )′ = (δ − α)y + (N − δ)Y − e−δ(q−1)τ |y|q−1
y

= (δ − α)(y − Y ) + (N − α)Y − e−δ(q−1)τ |y|q−1
y ≥ (δ − α− ε)(y − Y )

and y ≥ y − Y ≥ Ce(δ−α−ε)τ , for some C > 0, which contradicts (3.4).

Next we complete the estimates of Proposition 3.2 when p < 2.

Proposition 3.3 Under the assumptions of Proposition 3.2 with p < 2, if w has a
finite number of zeros, then

(i) if p1 < p, lim
r→∞

rδw = ±`; (3.5)

(ii) if p < p1, lim
r→∞

rηw = c c ∈ R, c 6= 0; (3.6)

(iii) if p = p1, lim
r→∞

rN (ln r)(N+1)/2w = ±%, % =
1
N

(
N(N − 1)
2(N − α)

)(N+1)/2

. (3.7)

Proof. We can assume that w > 0 for large r. Then y, Y are positive for large τ, from
Proposition 2.4, and y, y′ are bounded from Propositions 3.2 and 2.10. If y is not mono-
tone for large τ, then N < δ from Lemma 2.6; that means p1 < p from (1.6), and
limτ→∞ y(τ) = `, which proves (3.5). So we can assume that y is monotone for large
τ. Since it is bounded, then, from Lemma 2.6, either N < δ and limτ→∞ y(τ) = ` or 0, or
δ ≤ N and limτ→∞ y(τ) = 0. Suppose that limτ→∞ y(τ) = 0. Then y′(τ) ≤ 0 for large
τ.

(i) Case p1 < p (N < δ). Then N < δp, and from (2.16),

(p− 1)y′′ + (δp−N) |y′|+ (δ −N)δy = o(|y′|3−p) + o(y3−p). (3.8)

Thus y is concave for large τ, which is a contradiction; and (3.5) holds.

(ii) Case p < p1 (δ < N). We observe that

−(p− 1)y′′ + (δp−N)y′ + (N − δ)δy ≤ 0 (3.9)

for τ ≥ τ1 large enough, since α < δ; and we can suppose y(τ) ≤ 1 for τ ≥ τ1. For any
ε > 0, the function τ 7−→ ε + e−µ(τ−τ1) is a solution of the corresponding equation on
[τ1,∞), where

µ = η − δ = (N − δ)/(p− 1) > 0. (3.10)
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Then y(τ) ≤ ε + e−µ(τ−τ1) from the maximum principle; thus y(τ) ≤ e−µ(τ−τ1) on
[τ1,∞). Hence, w(r) = O(r(p−N)/(p−1)) near ∞, and w′(r) = O(r(1−N)/(p−1)) from
Proposition 2.10. Next we make the substitution (2.11), with d = η. Then functions yη and
y′η are bounded, and from (2.12)

(p− 1)(y′′η − ηy′η) (3.11)

= e(p−(2−p)η)τ
∣∣ηyη − y′η

∣∣2−p
(
−y′η + (η − α)yη − e−η(q−1)τ |yη|q−1

yη

)
;

hence (e−ητy′η)′ = O(e(p−(3−p)η)τ ). Since limτ→∞ e−ητy′η(τ) = 0, and δ < η from
(1.6), we find p < (2 − p)η < (3 − p)η. Hence e−ητy′η(τ) = O(e(p−(3−p)η)τ ), and
y′η(τ) = O(e(p−(2−p)η)τ ). Then yη has a limit c ≥ 0 as τ →∞, and

lim
r→∞

rηw = c.

Suppose that c = 0. Then yd(τ) = O(e−γ0τ ), with γ0 = (2 − p)d − p > 0. Assuming
that yd(τ) = O(e−γnτ ) for some γn > 0, then y′d(τ) = O(e−γnτ ) from Proposition
2.10. Hence (e−dτy′d)

′ = O(e(p−(3−p)d−(3−p)γn)τ ), and in turn yd(τ) = O(e−γn+1τ )
with γn+1 = (3 − p)γn + (2 − p)d − p. And limn→∞ γn = ∞; thus w(r) = o(r−γ) for
any γ > 0. Let us again make the substitution (2.11), now with d > η. The new function yd

satisfies limτ→∞ yd(τ) = limτ→∞ y′d(τ) = 0. It is nondecreasing near ∞, since α 6= d :
indeed at each point τ large enough where y′d(τ) = 0, y′′d (τ) has a constant sign from
(2.12). Otherwise limτ→∞ e(p−(2−p)d)τ = 0, since δ < d. Then

(p− 1)y′′d + (2d− η + o(1)) |y′d|+ d(d− η + o(1))yd = 0;

thus y′′d is concave for large τ, which is a contradiction. Thus c > 0 and (3.6) holds.

(iii) Case p = p1 (δ = N). Then also δ = η. From (2.17),

y′ −Ny = −Y 1/(p−1), Y ′ + Y 1/(p−1) = αy + eδ(q−1)τyq (3.12)

hence Y ′+Y 1/(p−1) ≥ 0. Thus by integration, Y (τ) ≥ C1τ
−(p−1)/(2−p) for some C1 > 0

and for large τ. From (3.12), there exists K1 > 0 such that

(−Ne−Nτy
)′ ≥ K1e

−Nττ−1/(2−p) ≥ −K1

2

(
e−Nτ τ−1/(2−p)

)′

for large τ, which implies a lower bound

y ≥ (K1/2N)τ−1/(2−p).

Also Y ′ + Y 1/(p−1) ≤ (α/N + o(1))Y 1/(p−1), since y′ < 0. Then for any ε > 0,

Y ′ + (
N − α

N
− ε)Y 1/(p−1) ≤ 0 (3.13)

for large τ. Taking ε small enough, we deduce

Y (τ) ≤ C1,ετ
−(p−1)/(2−p), with C

(2−p)/(p−1)
1,ε =

p− 1
2− p

(
N − α

N
− 2ε)−1 (3.14)
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for large τ. Then

(−Ne−Nτy
)′ ≤ NC

1/(p−1)
1,ε e−Nττ−1/(2−p) ≤ −C

1/(p−1)
1,ε

(
e−Nτ τ−1/(2−p)

)′
.

Thus we get an upper bound

y(τ) ≤ 1
N

C
1/(p−1)
1,ε τ−1/(2−p).

Moreover from (3.12) and (3.13), |Y ′(τ)| ≤ Y 1/(p−1)(τ) for large τ ; hence from (3.14),
y′′ −Ny′ = −Y 1/(p−1)Y ′ = O

(
τ−(3−p)/(2−p)

)
. Then

(
e−Nτy′

)′
= O(e−Nττ−(3−p)/(2−p)),

thus y′ = O(τ−(3−p)/(2−p)), and y′ = o(y) from the lower estimate of y.Then for any
ε > 0,

Y ′ + (
N − α

N
− ε)Y 1/(p−1) ≥ 0

for large τ ; then

Y (τ) ≥ C2,ετ
−(p−1)/(2−p), with C

(2−p)/(p−1)
2,ε =

p− 1
2− p

(
N − α

N
+ 2ε)−1

for large τ. Thus

lim
τ→∞

τ−(p−1)/(2−p)Y (τ) = (
p− 1
2− p

N

N − α
)(p−1)/(2−p) = lim

τ→∞
(τ−1/(2−p)Ny(τ))p−1,

so that limτ→∞(τ−1/(2−p)y(τ)) = %, and (3.7) holds.

We can get an asymptotic expansion of the slow decaying solutions, which in fact
covers the case p = 2, where we find again the results of [26, Theorem 1].

Proposition 3.4 Assume (3.1). Let w be any solution of (1.10) such that L =
limr→∞ rαw > 0. Then

lim
r→∞

rα+1w′ = −αL, (3.15)

and

w(r) =





r−α
(
L + (K + o(1)) r−k

)
, if (q + 1− p)α > p,

r−α
(
L + (K + M + o(1)) r−α(q−1)

)
, if (q + 1− p)α = p,

r−α
(
L + (M + o(1)) r−α(q−1)

)
, if (q + 1− p)α < p,

(3.16)

where

k = p− (2− p)α, K =
(α(p− 1)− (N − p)) (αL)1/(p−1)

k
, M =

Lq

α(q − 1)
.

Moreover, differentiating term to term gives an expansion of w′.
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Proof. We make the substitution (2.11) with d = α, thus w(r) = r−αyα(τ). For large
r, w′(r) = r−(α+1)(αyα(τ) − y′α(τ)) < 0. Thus αyα − y′α > 0 for large τ. And (2.14)
becomes:

{
y′α = αyα − Y

1/(p−1)
α

Y ′
α = (p− 1)(α− η)Yα + ekτ (αyα − Y

1/(p−1)
α + e−α(q−1)τyq

α).
(3.17)

The function yα converges to L, and y′α is bounded near ∞, since w′ = O(r−(α+1)) near
∞, thus Yα is bounded. Either Yα is monotone for large τ , inwhich case it has a finite limit
λ; then y′α converges to αL − λ1/(p−1); and hence λ = (αL)1/(p−1)

. Or for large τ, the
extremal points of Yα form an increasing sequence (τn) tending to ∞. Then

Yα (τn)1/(p−1) = αyα (τn) + e−α(q−1)τnyq
α(τn) + (p− 1)(α− η)e−kτnYα(τn)

thus limYα (τn) = (αL)1/(p−1)
. In any case limτ→∞ Yα (τ) = (αL)1/(p−1)

, which
is equivalent to (3.15), and implies limτ→∞ y′α (τ) = 0. Now consider Y ′

α. Either it is
monotone for large τ, thus limτ→∞ Y ′

α (τ) = 0; or for large τ, the extremal points of Y ′
α

form an increasing sequence (sn) tending to ∞. Then Y ′′
α (τn) = 0, and by computation,

at the point τ = sn,

(
1

p− 1
Y (2−p)/(p−1)

α − (p− 1)(α− η)e−kτ

)
Y ′

α

=
(
p + α(p− 1) + qe−α(q−1)τyq−1

α

)
y′α + (k − α(q − 1))e−α(q−1)τyq

α

thus lim Y ′
α (sn) = 0. In any case, limτ→∞ Y ′

α (τ) = 0. From (3.17), we deduce

y′α = −e−α(q−1)τyq
α − e−kτ ((p− 1)(α− η)Yα − Y ′

α)

= −(Lq + o(1))e−α(q−1)τ − k(K + o(1))e−kτ

thus y′α = −k(K + o(1))e−kτ if α(q − 1) > k, or equivalently (q + 1− p)α > p; and
y′α = −(kK + Lq + o(1))e−kτ if α(q − 1) = k; and y′α = −(Lq + o(1))e−α(q−1)τ if
α(q − 1) < k. The estimates (3.16) follow by integration.This gives also an expansion of
the derivatives, by computing w′ = −r−(α+1)(αyα − y′α) :

w′(r) =





−r−(α+1)
(
αL + (α + k) (K + o(1)) r−k

)
, if (q + 1− p) α > p,

−r−(α+1)
(
αL + (α + k) (K + M + o(1)) r−k

)
, if (q + 1− p) α = p,

−r−(α+1)
(
αL + αq(M + o(1))r−α(q−1)

)
, if (q + 1− p)α < p;

which corresponds to a derivation term to term.

3.2 Continuous dependence and sign properties

Next we extend an important property of continuity with respect to the initial data, given in
[18] in the case p = 2. The proof is different; it follows from the estimates of Proposition
(2.10) and from the expression of L(a) in terms of function Jα.
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Theorem 3.5 Assume (3.1). For any solution w = w(., a) of problem (1.10), (1.15),
setting L = L(a), the function a 7−→ L(a) is continuous on all of R. Moreover the
family of functions (a 7−→ (1 + r)αw(r, a))r≥0 is equicontinuous on R.

Proof. Let a0 ∈ R. From Propositions 2.10 and (2.11), there exists a neighborhood V of
a0 and a constant C = C(V ) > 0 such that for any a ∈ V,

|w(r, a)| ≤ C(1 + r)−α, |w′(r, a)| ≤ C(1 + r)−(α+1). (3.18)

From (3.2), we have for any r ≥ 1,

L(a) = Jα(r, a) +
∫ ∞

r

J
′
α(s, a)ds =

∫ ∞

0

J
′
α(s, a)ds (3.19)

where Jα(r, a) = rα
(
w(r, a) + r−1 |w′|p−2

w′(r, a)
)

, since Jα(0, a) = 0. Then with a
new constant C = C(V ), for any a ∈ V,

∫ ∞

r

∣∣∣J ′α(s, a)
∣∣∣ ds ≤ C

(
r−α(q−1) + r−(p−α(2−p)

)
;

hence for any ε > 0, there exists rε ≥ 1 such that

sup
a∈V

∫ ∞

rε

∣∣∣J ′α(s, a)
∣∣∣ ds ≤ ε.

From Remark 2.2, w(., a) depends continuously on a on any compact set, thus also J
′
α(., a).

Then there exists a neighborhood Vε of a0 contained in V such that

sup
a∈V ε

∫ rε

0

∣∣∣J ′α(rε, a)− J
′
α(rε, a0)

∣∣∣ ≤ ε,

and consequently |L(a)− L(a0)| ≤ 3ε. This proves that L is continuous at a0. Moreover

sup
a∈V ε

sup
r∈[0,∞)

|Jα(r, a)− Jα(r, a0)| ≤ 2ε,

thus the family of functions (a 7−→ Jα(r, a))r≥0 is equicontinuous at a0. Next for any
r ≥ 1 and any a ∈ V,

|rαw(r, a)− Jα(r, a)| = rα−1 |w′(r, a)|p−1 ≤ Cr(2−p)α−p.

Thus for any ε > 0, there exists r̃ε ≥ rε such that

sup
a∈V,r≥r̃ε

|rαw(r, a)− Jα(r, a)| ≤ ε.

It implies
sup

a∈Vε,r≥r̃ε

|(1 + r)α(w(r, a)− w(r, a0))| ≤ (2α + 2)ε.
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And there exists a neighborhood Ṽε of a0 contained in Vε such that

sup
a∈Ṽε,r≤r̃ε

|(1 + r)α(w(r, a)− w(r, a0))| ≤ ε.

Then
sup

a∈Ṽε,r∈[0,∞)

|(1 + r)α(w(r, a)− w(r, a0))| ≤ (2α + 2)ε,

which shows that the family of functions a 7−→ (1 + r)αw(r, a) (r ≥ 0) is equicontinuous
at a0.

As a consequence we obtain some results concerning the number of zeros of the solu-
tions

Theorem 3.6 Assume (3.1).
(i) Suppose that for some a0 > 0, w(., a0) has a finite number of isolated zeros,
denoted by N(a0). If L(a0) 6= 0, then N(a) = N(a0) for any a close to a0.
(ii) Suppose q < q∗. Then {a > 0 : L(a) = 0} is unbounded from above. Moreover
there exists a increasing sequence (am) tending to ∞ such that w(., am) has at least
m + 1 isolated zeros and L(am) = 0.
(iii) Suppose q < q∗, p < 2 and α < N . Then for any m ∈ N,

ām = inf {a > 0 : N(a) ≥ m + 1} ∈ (0,∞) ,

and if m ≥ 1, then w(., ām) has precisely m zeros and L(ām) = 0.

Proof. (i) Let r1 < r2 < .. < rN(a0) be the isolated zeros of w(., a0). Since L(a0) 6= 0,
there do not exist other zeros, and there exists ε > 0 such that

inf
r≥rN(a0)+1

rα |w(r, a0)| ≥ ε.

By Theorem 3.5, there exists a neighborhood Vε of a0 such that

inf
r≥rN(a0)+1

rα |w(r, a)| ≥ ε/2

for any a ∈ Vε. From Remark 2.2, there exists a neighborhood Ṽε ⊂ Vε such that w(r, a)
has exactly N(a0) zeros on

[
0, rN(a0) + 1

]
. Hence N(a) = N(a0).

(ii) Assume that for some a∗ > 0, L(a) 6= 0 for any a ∈ (a∗,∞) . By Proposition 2.5, (iii)
and (iv), w(., a) has a finite number of isolated zeros N(a). The set

{a ∈ (a∗,∞) : N(a) = N(a∗) + 1}
is closed in (a∗,∞) since N is locally constant, and open; then N(a) is constant on
(a∗,∞) , which contradicts Proposition 2.7. Moreover there exists an increasing sequence
(a?

m) tending to ∞ such that w(., a?
m) has at least m + 1 isolated zeros; as above it can-

not happen that L(a) 6= 0 for any a ∈ (a∗m,∞) . Hence there exists am ≥ a∗m such that
w(., am) has at least m + 1 isolated zeros and L(am) = 0.
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(iii) Here w(., a) has only isolated zeros. Following the proof of [26, Propositions 3.5 and
3.7], for any m ∈ N, the set Bm = {a > 0 : N(a) ≥ m + 1} is open and zm(a) = mth

zero of w(., a) depends continuously on a. Using Proposition 2.12, one can show that for
any a0 > 0, N(a) = N(a0) or N(a0) + 1 for any a in some neighborhood of a0. Then
necessarily ām 6∈ Bm, and N(ām) = m, and L(ām) = 0 by contradiction in (i).

Remark 3.7 When q < q∗ and p > 2, for any a0 > 0, we have N(a) ≥ N(a0) for any a
in some neighborhood of a0, but we cannot prove that N(a) ≤ N(a0) + 2, thus we have
no specific information of the number of zeros of the compact support solutions.

3.3 Existence of nonnegative solutions

Here we study the existence of nonegative solutions of equation (1.10). If such solutions
exist, then either p1 < p and α < N, from From Proposition 2.5, or p < p1. Thus
α < δ ≤ N ; in any case α < N. Reciprocally, when α < N, we first prove the existence
of slow decaying solutions for |a| small enough.

Proposition 3.8 Assume (3.1), and α < N. Let a > 0 be defined at Proposition 2.5.
Then for any a ∈ (0, a], w(r, a) > 0 on [0,∞) , and L(a) > 0.

Proof. Let a ∈ (0, a] . By construction of a, w = w(r, a) > 0, from Proposition 2.5,
and the function JN is nondecreasing, JN (0) = 0; and JN (r) ≤ rNw near ∞, from
Proposition 2.4. Assume that L(a) = 0. Then p < 2 from Proposition 3.2. From
Proposition 3.3, either N < δ, and rNw = O(rN−δ); or δ < N and N < η from
(1.6), and rNw = O(rN−η); or δ = N and rNw = O(ln r)−(N+1)/2. In any case,
lim supr→∞ JN (r) = 0; then JN ≡ 0, and hence J ′N ≡ 0, which is impossible.

Next we consider the subcritical case 1 < q < q∗ and prove the existence of fast
decaying solutions. Notice that in that range p > p2; if moreover 1 < q < q1, then p > p1.

Theorem 3.9 Assume (3.1) and α < N, and 1 < q < q∗. Then there exists a > 0
such that w(., a) is nonnegative and such that L(a) = 0. If p > 2, it has a compact
support. If p < 2, it is positive and satisfies (3.5), (3.6) or (3.7).

Proof. Let
A = {a > 0 : w(., a) > 0 on (0,∞) and L(a) > 0} , (3.20)

B = {a > 0 : w(., a) has at least an isolated zero} . (3.21)

From Proposition 3.8 and 2.7, A and since B is nonempty: A ⊃ (0, a] and B ⊃ [a,∞) .
From the local continuous dependence of the solutions on the initial value, B is open. For
any a0 ∈ A,there exists ε > 0 such that minr≥0(1 + r)αw(r, a0) ≥ ε. From Theorem
3.5, there exists a neighborhood Vε of a0 such that minr≥0(1 + r)αw(r, a) ≥ ε/2 for any
a ∈ Vε, hence Vε ⊂ A, thus A is open. Let ainf = inf B > a and asup = sup A < a.
Taking a = ainf or asup, then w(., a) is nonnegative, positive if p < 2, and L(a) = 0, and
the conclusion follows from Proposition 3.3. We cannot assert that ainf = asup.
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Remark 3.10 As it was noticed in [25] for p = 2, there exists an infinity of pairs a1, a2

such that 0 < a1 < a2 < ainf ; thus w(., a1) > 0, w(., a2) > 0, and L(a1) = L(a2).
Indeed from the continuity of L proved at Theorem 3.5, L attains at least twice any value
in

(
0, max[0,ainf ] L

)
.

In the supercritical case q ≥ q∗ we give sufficient conditions assuring that all the solu-
tions are positive, and then slowly decaying. Recall that q∗ ≤ 1 whenever p ≤ p2.

Theorem 3.11 Assume (3.1) and one of the following conditions:
(i) p2 < p, α ≤ N/2, and q ≥ q∗;
(ii) p ≤ p2, and 1 < q;
(iii) p2 < p, N/2 < α < (N − 1)p′/2, and q ≥ q∗α, where q∗α > q∗ is given by

1
q∗α + 1

=
N − 1

2α
− 1

p′
. (3.22)

Then for any a > 0, w(r, a) > 0 on [0,∞), and L(a) > 0.

Proof. We use the function V = Vλ,σ,e defined in (2.9) , where λ > 0, σ, e will be chosen
after. It is continuous at 0 and Vλ,σ,e(0) = 0, from (2.29). Suppose that w(r0) = 0 for
some first real r0 > 0. Then Vλ,σ,e(r0) = rN

0 |w′(r0)|p /p′ ≥ 0. Suppose that for some
λ, σ, e, the five terms giving V ′ are nonpositive. Then V ≡ V ′ ≡ 0 on [0, r0] . Hence
rw′ + (σ − e + α)w/2 ≡ 0, r(σ−e+α)/2w is constant. Thus, w ≡ 0 if σ − e + α 6= 0, or
w ≡ a if σ − e + α = 0. This is impossible since w(0) 6= w(r0).

Case (i). We take λ = N , σ = (N − p)/p and e = σ + α−N. Thus

V (r) = rN

(
|w′|p
p′

+
|w|q+1

q + 1
+ (

N − p

p
+ α−N)

w2

2
+

N − p

p
r−1w |w′|p−2

w′
)

,

(3.23)

r1−NV ′(r)

= −
(

N − p

p
− N

q + 1

)
|w|q+1 − N + 2

4p
(p− p2) (N − 2α) w2 −

(
rw′ +

N

2
w

)2

(3.24)

and all the terms are nonpositive from our assumptions, thus w > 0 on [0,∞) . Moreover
suppose that L(a) = 0. Then p < 2, and from Proposition 3.2, V (r) = O(rN−2δ) as
r →∞. Thus limr→∞ V (r) = 0, since N < 2δ from (1.7). Then V ≡ 0 on [0,∞) which
is a contradiction.

Case (ii). We take λ = N = 2σ and e = α−N/2. Thus

r1−NV ′(r) = −N + 2
2p

(p2 − p) |w′|p − N(q − 1)
2q + 1

|w|q+1 − (rw′ + Nw)2 , (3.25)

and all the terms are nonpositive, and again w > 0 on [0,∞) . If L(a) = 0, we find V (r) =
O(rN−η) near ∞, from Proposition 3.2, since p ≤ p2 < p1,. Then limr→∞ V (r) = 0,
hence again a contradiction.
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Case (iii). We take λ = 2α, σ = N − 1− 2α/p′ and e = σ − α. Thus

r1−2αV ′(r) = −
(

σ − 2α

q + 1

)
|w|q+1 + σ(2α−N)r−1w |w′|p−2

w′ − (rw′ + αw)2 .

Here the first term is nonpositive from (3.22), and also the second term, since σ > 0,
N/2 ≤ α and w′ < 0 on (0, r0) , from Proposition 2.4. Hence again w > 0 on [0,∞) .
If L(a) = 0, then p < 2. From Proposition 3.2, either p1 < p and V (r) = O(r2(α−δ))
near ∞, where α < δ; or p < p1 and V (r) = O(r2(α−η)), and α < δ < η from (1.6);
or p = p1 and V (r) = O(ln r−(N+1)/2). In any case limr→∞ V (r) = 0, hence again a
contradiction.

Remark 3.12 With no hypothesis on p, if w(r0) = 0 for some real r0, then from (3.23),
(3.24),
(

N − p

p
− N

q + 1

) ∫ r0

0

rN−1 |w|q+1
dr +

(N + 2)p− 2N

4p
(N − 2α)

∫ r0

0

rN−1w2dr

+
∫ r0

0

rN−1

(
rw′ +

N

2
w

)2

dr = 0.

As in [20] such a relation can be extended to the nonradial case and then applied to nonra-
dial solutions w.

Remark 3.13 Property (ii) was proved for equation (1.12) in [23]. It is new in the general
case. It can be also obtained by using the energy function W defined at (2.22) instead of V.

The result (iii) is new. It is also true when p = 2 : if N/2 < α < N − 1 and q ≥ q∗α,
where q∗α = (3α−N + 1)/(N − 1− α) > q∗; we prove that all the solutions are ground
states, with a slow decay. In the case p = 2, q = q∗ it had been shown by variational
methods in [12] that there exist ground states with a fast decay, whenever N/2 < α < N
when N ≥ 4, or if 2 < α < 3 when N = 3; moreover from [2], they do not exist when
1 < α ≤ 2. Apparently nothing was known beyond the critical case.

Remark 3.14 If 1 < p ≤ p1, then the condition α < (N − 1)p′/2 is always satisfied,
since α < δ ≤ N ≤ (N − 1)p′/2. If p1 < p, our conditions imply α < N, which was a
necessary condition in order to get positive solutions, from Proposition 2.5.

3.4 Oscillation or nonoscillation criteria

Our next result concerns the case p < 2, and N ≤ α, thus N ≤ α < δ from (3.1), where
there exists no positive solutions: all the solutions are changing sign. It is new, and uses the
ideas of [5] for the problem without source (1.12). It involves the coefficient α∗ defined at
(1.14), which here satisfies α∗ < δ, and the energy function W defined in (2.23). We use
the notations W,U ,H,L,S of Section 2.1.

Theorem 3.15 Assume (3.1), p < 2, and N ≤ α.
(i) If α < α∗, then any solution w(., a) (a 6= 0) has a finite number of zeros.
(ii) There exists α ∈ (max(N,α∗), δ) such that for any α ∈ (α, δ), any solution
w(., a) has a infinity of zeros.
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Proof. (i) Suppose N ≤ α < α∗ (which implies p > 3/2). In the phase plane (y, Y ) of
system (2.17), the stationary point M` is in the domain S of boundary L. Indeed denote
Pµ = (µ, (δµ)p−1) for any µ > 0. Setting λ = δ−1((2δ − N)(p − 1))1/(2−p), the point
Pλ is on the curve L. Then (θλ, (θδλ)p−1) ∈ S for any θ ∈ [0, 1), and α < α∗ ⇔ ` < λ.
Thus P` = M` ∈ S, and there exists ε ∈ (0, 1] such that P`+ε ∈ S. Now for any µ > 0
such that Pµ ∈ S, the square Kµ =

{
(y, Y ) ∈ R2 : |y| ≤ µ, |Y | ≤ (δµ)p−1

}
is contained

in S. Indeed H(µ, (δµ)p−1) = (δµ)2−p/(p− 1), and for any ξ, ζ ∈ [−1, 1]

H(ξµ, ζ(δµ)p−1) = (δµ)2−p ξ − |ζ|(2−p)/(p−1)

|ξ|(2−p)/(p−1) − ζ
≤ H(µ, (δµ)p−1),

since the quotient is majorized by 1/(p − 1) if ξζ > 0, and by 1 if ξζ < 0, because
p > 3/2. From Lemma 2.6, iv, (y (τ) , Y (τ)) ∈ K`+ε for τ ≥ τ (ε) large enough, and
hence (y (τ) , Y (τ)) ∈ S . Thus U(y (τ) , Y (τ)) ≥ 0. Consider the function

τ 7→ Ψ(τ) = W (τ)− δ(q − 1)
q + 1

∞∫

τ

e−δ(q−1)s |y(s)|q+1
ds. (3.26)

We find

Ψ′(τ) = W ′ (τ) +
δ(q − 1)
q + 1

e−δ(q−1)τ |y(τ)|q+1 = U(y(τ), Y (τ)). (3.27)

Then Ψ is nondecreasing and bounded near ∞. Thus it has a limit κ, and W has the same
limit. And H(y, Y ) ≤ H(` + ε, (δ(` + ε))p−1) = 2δ −N −m, for some m = m(ε) > 0,
and hence

Ψ′ (τ) = U(y (τ) , Y (τ)) ≥ m
(
δy − |Y |(2−p)/(p−1)

Y
) (|δy|)p−2δy − Y

)
.

Now there exists a constant c = c(p) such that for any (a, b) ∈ R2\ {(0, 0)} ,

(a− b)
(
|a|p−2

a− |b|p−2
b
)
≥ c(|a|+ |b|)p−2(a− b)2,

thus from (2.17),
Ψ′ (τ) ≥ mc (2δ(` + 1))p−2y′

2
(τ).

Then y′
2

is integrable and bounded; hence limτ→∞ y′ (τ) = 0. Suppose that y admits
an increasing sequence of zeros (τn). Then W (τn) = |Y (τn)|p′ /p′ = |y′(τn)|p /p′, thus
limτ→∞W (τ) = 0, and limτ→∞W(y(τ), Y (τ)) = 0. Also, we have |Y |(2−p)/(p−1)

Y =
δy − y′ = δy + o(1). Thus

W(y(τ), Y (τ)) =
(δ −N)δp−1

p
|y(τ)|p − δ − α

2
y2(τ) + o(1),

from which it follows that lim y (τ) = 0 or ±`, and necssarily limτ→∞ y (τ) = 0. And
limτ→∞Ψ(τ) = 0. Thus Ψ(τ) ≤ 0 near ∞, and

(δ −N)δp−1

p
|y(τ)|p− δ − α

2
y2 ≤ W(y(τ), Y (τ)) ≤ δ(q − 1)

q + 1

∞∫

τ

e−δ(q−1)s |y(s)|q+1
ds.
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Then y(τ) = O(e−k0τ ), with k0 = δ(q− 1)/p. Assuming that y(τ) = O(e−knτ ), then we
find y(τ) = O(e−kn+1τ ) with kn+1 = kn(q+1)/p+(q−1)/(2−p). Since q > 1 > p−1,
it follows that y(τ) = O(e−kτ ) for any k > 0. Consider the substitution (2.11)for some
d > 0. Then yd(τ) = O(e−kτ ) for any k > 0. At any maximal point of |yd| we find from
(2.12)

(p− 1)d(η − d) ≤ e((p−2)d+p)τ |dyd|2−p
(
(α− d) + e−d(q−1)τ |yd|q−1

)
.

Choosing, for example d = η/2, we get a contradiction, as the right-hand side tends to 0.

(ii) Suppose N ≤ α and α∗ < α. Assume that there exists a solution w with a finite
number of zeros. We can assume that w(r) > 0 near ∞. From Propositions 3.1 and 3.3,
either limr→∞ rαw = L > 0 or limr→∞ rδw = `. Now the point M` is exterior to S, thus
U(M`) < 0, and by computation

k` := WM` =
1
2

(δ −N) δp−2`p =
M

(δ − α)δ
> 0, (3.28)

where M = M(N, p) = (δ −N)δ+1
δp−2+(p−1)δ/2.

• First case: limr→∞ rδw = `. Then limτ→∞(y(τ), Y (τ)) = M`. Thus for large τ,
U(y(τ), Y (τ)) < 0, so that W ′(τ) < 0. Then W is decreasing, and limτ→∞W (τ) =
limτ→−∞W(y(τ), Y (τ)) = k`. Moreover, near −∞, we find that limτ→−∞W (τ) =
limτ→−∞W(y(τ), Y (τ)) = 0; indeed near −∞, y(τ) = O(eδτ ) and Y (τ) = O(eδτ )
from (2.29) and (2.15); hence e−δ(q−1)τ |y(τ)|q+1 = O(e2δτ ). Then W has at least
a maximum point τ0 such that W (τ0) > k`. At such a point, W ′(τ0) = 0, and thus
U(y(τ0), Y (τ0)) > 0, and (y(τ0), Y (τ0)) ∈ S. Let C = max(y,Y )∈S(|y| + |Y |). Then
C = C(N, p), and from (2.26) and (2.27), max(y,Y )∈SW(y, Y ) ≤ K = K(N, p), since
α− δ < 0. Then

k` < W (τ0) ≤ K +
Cq+1

q + 1
.

From (3.28) it follows that δ − α is not close to 0. More precisely, there exists α =
α(N, p) > max(N, α∗) such that α ≤ α.

• Second case: limr→∞ rαw = L > 0. It follows that limτ→∞ e(α−δ)τy = L, and
limτ→∞ e(α−δ)τY = (αL)1/(p−1)

, from (3.15). Then Y (τ) = O(yp−1(τ)) near ∞, and
thus

W(y(τ), Y (τ)) + δ−α
2 y2(τ) = O(yp(τ)),

W (τ) +
δ − α

2
y2(τ)

= O(yp(τ)) + O(e−δ(q−1)τyq+1(τ)) = O(yp(τ)) + O(y2−α(q−1)/(δ−α)(τ));

so limτ→∞W(y(τ), Y (τ)) = limτ→∞W (τ) = −∞; again limτ→−∞W(y(τ), Y (τ)) =
0. From [5, Lemma 4.3] we know the shape of the level curves Ck = {W(y, Y ) = k} :
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either k > k` and Ck has two unbounded connected components, or 0 < k < k` and Ck has
three connected components and one of them is bounded, or k = k` and Ck`

is connected
with a double point at M`, or k = 0 and one of the three connected components of C0 is
{(0, 0)} , or k < 0 and Ck has two unbounded connected components. As a consequence
there exists τ1 such that W(y(τ1), Y (τ1)) = k`; then again W (τ1) > k`. Thus W has at
least a maximum point τ0 such that W (τ0) > k`, and the conclusion follows as above.

4 The case p ≤ (2− p)α

In this section we assume that p ≤ (2− p)α, that means p < 2 and δ ≤ α.

4.1 Behaviour near infinity

From Proposition 2.11, we deduce approximate estimates near ∞
w(r) = o(r−γ), for any γ < δ. (4.1)

However it is not straightforward to obtain exact estimates, and they can be false, see
Proposition 4.4 below. Here again the key point is the use of enegy function W defined by
(2.22).

Proposition 4.1 Assume q > 1, p < 2, and δ < α, or N ≤ α = δ. Then any solution
w of problem (1.10) satisfies

w(r) = O(r−δ), w′(r) = O(r−δ−1) near ∞. (4.2)

Proof. (i) Case δ < α.
• First assume that 2δ ≤ N, that means p ≤ p2. Then from (2.23), W ′(τ) ≤ 0 for

any τ ; hence W is bounded from above near ∞, and in turn y and Y are bounded, because
δ < α and p < 2. Thus (4.2) holds.

• Then assume N < 2δ. Let τ0 be arbitrary. Since S is bounded, there exists k > 0
large enough such that W (τ) ≤ k for any τ ≥ τ0 such that (y(τ), Y (τ)) ∈ S, and we can
choose k > W (τ0); and W ′(τ) ≤ 0 for any τ ≥ τ0 such that (y(τ), Y (τ)) 6∈ S. Then
W (τ) ≤ k for any τ ≥ τ0; hence again y and Y are bounded for τ ≥ τ0.

(ii) Case N ≤ α = δ. Since N < 2δ, as above, W is bounded from above for large τ. We
can write W in the form

W (τ) =
(δ −N)δp−1

p
|y(τ)|p + Φ(y(τ), Y (τ)) +

1
q + 1

e−δ(q−1)τ |y(τ)|q+1
,

where

Φ(y, Y ) =
|Y |p′

p′
− δyY +

|δy|p
p

≥ 0, ∀(y, Y ) ∈ R2.

Thus y is bounded, and so is Y from Hölder inequality.
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Remark 4.2 Under the assumptions of Proposition 4.1, we can improve the estimate (4.2)
for the global solutions: there exists a constant C = C(N, p) independent on a such that
all the solutions w(.a) of (1.10), (1.15) satisfy

|w(r, a)| ≤ Cr−δ, for any r > 0. (4.3)

Indeed let w be any solution. Then limτ→−∞ y(τ) = limτ→−∞ Y (τ) = 0, and therefore
limτ→−∞W (τ) = 0. If 2δ ≤ N, then W (τ) ≤ 0 for any τ, which gives an upper bound
for y independent on a. The same happens in case 2δ > N : S is interior to some curve
W(y, Y ) = k, with k independent on a, and W (τ) ≤ k, for any τ . Thus (4.3) holds. As a
consequence, then |w(r, a)| ≤ max(C, a)2δ(1 + r)−δ for any r > 0, from Theorem 2.1.

The case α = δ < N is not covered by Proposition 4.1. In fact (4.2) is not satisfied,
because a logarithm appears:

Proposition 4.3 Assumeq > 1, p < 2, and α = δ < N. Then any solution w of
(1.10)satisfies

w = O(r−δ(ln r)1/(2−p)) near ∞. (4.4)

Proof. From (2.50), we have w(r) = O(r−δ+ε) for any ε > 0; hence y(τ) = O(eετ ), and
w has a finite number of zeros, from Proposition 2.5,(iv), since α < N. We can assume
that y is positive for large τ. From (2.17),

(y − Y )′ = (N − δ)Y − eδ(q−1)τyq.

From Lemma 2.6,(i), y is monotone for large τ. If y is bounded, then (4.4) is trivial. We
can assume that limτ→∞ y = ∞. Then also limτ→∞ Y = ∞, from Lemma 2.6, (iii), and
y′ ≥ 0 for large τ. Hence Y 1/(p−1) < δy, and Y = o(y) near ∞, since p < 2; for any
ε > 0, y ≤ (1 + ε)(y − Y ) for large τ. Thus

(y − Y )′ ≤ (N − δ)(δy)p−1 ≤ (N − δ)δp−1(1 + ε)p−1(y − Y )(p−1).

Hence with a new ε, for large τ, (y − Y )2−p(τ) ≤ (N − δ)δp−1(2 − p)(1 + ε)τ, which
gives the upper bound

y2−p(τ) ≤ (N − δ)δp−1(2− p)(1 + ε)τ. (4.5)

In particular, (4.4) holds, and the estimate is more precise:

lim sup
r→∞

rδ(ln r)−1/(2−p)w ≤ ((2− p)δp−1(N − δ))1/(2−p). (4.6)

Next we make precise the behaviour of the solutions according to the values of α.

Proposition 4.4 . Assume q > 1, p < 2. Let w be any solution w of problem (1.10)
such that w has a finite number of zeros.
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(i) If δ < min(α, N), then either

lim
r→∞

rδw = ±`, (4.7)

or
lim

r→∞
rηw = c 6= 0 (4.8)

or rδw(r) is bounded near ∞ and rδw has no limit, and

lim
r→∞

inf rδw ≤ ` ≤ lim sup
r→∞

rδw; (4.9)

in the last case p2 < p.
(ii) If α = δ < N , then either

lim
r→∞

rδ(ln r)−1/(2−p)w = ±η, η = ((2− p)δp−1(N − δ))1/(2−p), (4.10)

or (4.8) holds.
(iii) If α = δ = N , then

lim
r→∞

rNw = k 6= 0. (4.11)

Proof. (i) Case δ < min(α,N).

• First assume that y is positive and monotone for large τ . Since it is bounded, from
Lemma 2.6,(ii) and (iv), either limτ→∞(y, Y ) = M` and (4.7) holds; or limτ→∞(y, Y ) =
(0, 0), thus y is nonincreasing to 0, and limτ→∞ y′(τ) = 0. Comparing to the proof of
Proposition 3.3, we observe that (3.9) is no longer true because δ − α < 0. Nevertheless,
for any small κ and for τ ≥ τκ large enough,

−(p− 1)y′′ + (δp−N)y′ + (N − δ − κ)δy ≤ 0. (4.12)

Let us fix κ < N − δ. Since limτ→∞ y(τ) = 0, we can suppose that y(τ) ≤ 1 for τ ≥ τκ.
Then there exists µκ < µ, where µ defined at (3.10), with µκ = µ + O(K), such that, for
any ε > 0, the function τ 7−→ ε + e−µκ(τ−τκ) is a solution of the corresponding equation
on [τκ,∞). It follows that y(τ) ≤ ε + e−µκ(τ−τκ), from the maximum principle. Thus
y(τ) ≤ e−µκ(τ−τκ) on [τκ,∞). We can choose κ small enough such that µκ(3 − p) ≥
µ0 := µ(4 − p)/2 > µ. As a consequence, y(τ) ≤ e−µ0(τ−τκ)/(3−p); hence y′(τ) =
O(e−µ0τ/(3−p)), from Proposition 2.10. From (2.16) there exists C > 0 such that for
τ ≥ τC large enough, y(τ) ≤ 1 and

−(p− 1)y′′ + (δp−N)y′ + (N − δ)δy ≤ Ce−µ0τ .

There exists A > 0 such that −Ae−µ0τ is a particular solution of the corresponding equa-
tion; then ε + (1 + A)e−µ(τ−τC) − Ae−µ0(τ−τC) is also a solution on [τκ,∞). Thus
y(τ) ≤ ε + (1 + A)e−µ(τ−τC) on [τκ,∞) from the maximum principle, and thus y(τ) ≤
(1 + A)e−µ(τ−τC). Hence y(τ) = 0(e−µτ ), which means w(r) = O(r(p−N)/(p−1)) near
∞. As in the proof of Proposition 3.3, rηw has a limit c at ∞, and that c 6= 0.
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• Next assume that y is positive, but not monotone for large τ. Then there exists an
increasing sequence (τn) of extremal points of y, such that τn →∞, and (4.9) follows from
Lemma 2.6. Assume p ≤ p2, or equivalently 2δ ≤ N. The function W is nonincreasing;
hence it has a limit Λ ≥ −∞. Computing at the point τn, where Y (τn) = (δy (τn))p−1,
we find

W (τn) = (α− δ)(
y (τn)2

2
− `2−py (τn)p

p
) +

1
q + 1

e−δ(q−1)τn |y(τn)|q+1

= (α− δ)(
y (τn)2 (1 + o(1)

2
− `2−py (τn)p

p
),

thus y(τn) has a finite limit, necessarily equal to `. Then limτ→∞ y(τ) = `.

(ii) Case α = δ < N. From Proposition 2.5 and Lemma 2.6, (i), (ii), w has a finite number
of zeros, limτ→∞ y = 0 or ±∞, and (4.6) holds. If limτ→∞ y = ∞, we write

(y − Y )′ + eδ(q−1)τ |y|q−1
y

= (N − δ)Y 1/(p−1)Y −(2−p)/(p−1) = (N − δ)(δy − y′)Y −(2−p)/(p−1)

and Y 1/(p−1) < δy, hence for large τ,

(y − Y )′ + (N − δ)Y −(2−p)/(p−1)y′ ≥ yp−1((N − δ)δp−1 − y2−peδ(q−1)τyq−1.

Since y′ ≥ 0, and limτ→∞ Y = ∞, for any ε > 0 and for large τ,

(y − Y )′ + εy′ ≥ yp−1((N − δ)δp−1 − eδ(q−1)τyq+1−p)

and y(τ) = O(τ1/(2−p)) from (4.5). Thus for any ε > 0 and for large τ,

((1 + ε)y − Y )′ ≥ (N − δ)δp−1(1− ε)yp−1.

Setting ξ = (1 + ε)y − Y, we deduce that

ξ′ ≥ (N − δ)δp−1(1− 2ε)ξp−1

for large τ, which leads to the lower bound

y2−p(τ) ≥ (N − δ)δp−1(2− p)(1− 3ε)τ, (4.13)

and (4.10) follows from (4.6) and (4.13). If limτ→∞ y = 0, (4.8) follows as in case (i).

(iii) Case α = δ = N. From Proposition 4.1, y and Y are bounded. Moreover Y − y has a
finite limit K, and Y −y = K+O(e−(q−1)τ ). And y has a finite limit l from Lemma 2.6, (i),
(ii). Assume that l = 0. Then limτ→∞ y′ = − |K|(2−p)/(p−1)

K, and hence K = 0. Thus
there exists C > 0 such that y′ = Ny − Y 1/(p−1) ≥ Ny/2 − Ce−(q−1)τ/(p−1) for large
τ. This implies y = O(e−γ0t) with γ0 = e−(q−1)τ/(p−1). Assuming that y = O(e−γnt),
then (Y − y)′ = O(e−(q−1)τyq) = O(e−(q−1+qγn)τ ), hence Y = y + O(e−(q−1+qγn)τ ).
Then there exists another C > 0 such that y′ ≥ Ny/2−Ce−(q−1+qγn)τ/(p−1) for large τ,
and y = O(e−γn+1t), with γn+1 = (q− 1 + qγn)/(p− 1). Observe that lim γn = ∞; thus
y = O(e−γt)) and w = O(r−γ) for any γ > 0. We get a contradiction as in Proposition
(3.3) by using the substitution (2.11) with d > N.
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4.2 Oscillation or nonoscillation criteria

As a consequence of Proposition 4.1, we get a first result of existence of oscillating solu-
tions.

Proposition 4.5 Assume q > 1, p < 2, and N ≤ δ < α or N < δ = α. Then for
any m > 0, any solution w 6≡ 0 of problem (1.10) has a infinite number of zeros in
[m,∞) .

Proof. Suppose that is is not the case. Let w 6≡ 0, with, for example, w > 0 and
w′ < 0 near ∞, and hence y > 0 and Y > 0 for large τ. If N < δ = α, or N <
δ = α, then y is bounded from Proposition 4.1. From Lemma 2.6, y is monotone, and
limτ→∞(y(τ), Y (τ)) = (0, 0). As in (3.8), if N < δ, then y is concave for large τ, and we
reach a contradiction. If δ = N < α, we find

(y − Y )′ = (N − α)y − e−δ(q−1)τ |y|q−1
y ≤ 0;

then y − Y is non increasing to 0, hence y ≥ Y, Y ′ ≥ NY − Y 1/(p−1) ≥ NY/2 for large
τ, which is impossible since limτ→∞ Y (τ) = 0.

Next we study the case where δ < min(α, N). Recall that δ < N ⇔ p < p1. This case
is difficult because the solutions could be oscillatory, and even if they are not, they have
three possible types of behaviour near∞ : (4.7), (4.8), or (4.9). Here we extend to equation
(1.10) a difficult result obtained in ([5]) for equation (1.12). Recall that for system (2.18),
if α < η, there exist no solution satisfying (4.9), and for some α ∈ (η, α∗) there do exist
positive solutions satisfying (4.9).

Theorem 4.6 Assume p2 < p < p1 and δ < α. If α < η, (in particular if α ≤ N),
then any solution w(., a) (a 6= 0) has a finite number of zeros and satisfies (4.7) or
(4.8).

Proof. Assume α < η. From Proposition 2.5, (iv), any solution w 6≡ 0 has a finite
number of zeros. We can assume that w(., a) and w′(., a) < 0 for large r, from Proposition
2.4. Consider the corresponding trajectory Tn of the nonautonomous system (2.17) in the
phase plane (y, Y ). From Proposition (4.1) it is bounded near ∞. Let Γ be the limit set of
Tn at ∞. Then y ≥ 0 and Y ≥ 0 for any (y, Y ) ∈ Γ. From [19], Γ is nonempty, compact
and connected, and for any point P0 ∈ Γ, the positive trajectory Ta of the autonomous
system (2.18) issued from P0 at time 0 is contained in Γ. From [5, Theorem 5.4] we have a
complete description of the solutions of system (2.18) when α < η. Since δ < N, the point
(0, 0) is a saddle point; since α < α∗, the point M` is a sink. The only possible trajectories
of (2.18) ending up in the set y ≥ 0,Y ≥ 0 are either the points 0,M`, or a trajectory Ta,s

starting from ∞ and ending up at 0, or trajectories Ta ending up at M`. And Ta,s does not
meet the curve

M =
{
(λ, (δλ)p−1) : λ > 0

}
.

Then either Γ = {0} , or Γ = {M`} , or Γ contains some point P0 of Ta,s, or Ta, and hence
also the part of Ta,s or Ta issued from P0. If Γ = {M`} or {0} , the trajectory converges
to this point. If it is not the case, then y is not monotonous, and there exists a sequence of
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extremal points of y, such that (y, Y ) ∈M. Let P0 be one of these points. Then P0 6∈ Ta,s,
thus the autonomous trajectory going through P0 converges to M`. Then Γ also contains
M`. Hence there exists a sequence (τn) tending to ∞ such that (y (τn) , Y (τn)) converges
to M`. Next we consider again the energy function W defined at (2.21), and still use the
notations W,U ,H,L,S of Section 2.1. Since α < α∗, the point M` is exterior to the set
S. Thus

limW (τn) = W (M`) = k` < 0,

from (3.28). As, here δ < N, k` = min(y,Y )∈R2 W (y, Y ) , and for large n, (y (τn) , Y (τn))
is exterior to S, then U (y (τn) , Y (τn)) < 0, and W ′ (τn) < 0. Either W is monotone
for large τ, in which case limτ→∞W (τ) = k`, and thus limτ→∞W (τ) = k`, which
implies limτ→∞ (y (τ) , Y (τ)) = M`, and the trajectory converges to M`. Or there ex-
ists another sequence (sn) of minimal points of W such that sn > τn and W (sn) <
W (τn) . Then k` ≤ lim infW (sn) ≤ lim supW (sn) = lim sup W (sn) ≤ k`. Thus also
limτ→∞ (y (sn) , Y (sn)) = M`. But

0 = W ′(sn) < U (y (sn) , Y (sn))

thus (y (sn) , Y (sn)) ∈ S, which is contradictory. Hence Γ = {M`} or {0} , and w
satisfies (4.7) or (4.8) from Proposition (4.4).

Remark 4.7 If α > α∗, the regular solutions of system (2.18) are oscillatory, see [5,
Theorem 5.8]. We cannot prove the same result for equation (1.10), since it is a global
problem, and system (2.17) is only a perturbation of (2.18) near infinity; and the use of the
energy function W does not allow us to reach the conclusion.

4.3 Existence of positive solutions

From Theorem 4.6, we first prove the existence of positive solutions, and their decay can
be qualifieed as slow among the possible behaviours given at Proposition 4.4:

Proposition 4.8 Assume δ ≤ α < N . Let a > 0 be defined at Proposition 2.5. Then
for any a ∈ (0, a], and w(r, a) > 0 on [0,∞) and satisfies (4.7) if δ < α, or (4.10)
if α = δ.

Proof. We still have w(r, a) > 0 from Proposition 2.5, and JN is nondecreasing and
JN (0) = 0. If the conclusions were not true, then w(r) = O(r−η), from Theorem 4.6,
then rNw = O(rN−η), and N < η from (1.6). Then lim supr→∞ JN (r) ≤ 0, and we
reach a contradiction as in Proposition 3.8.

Next we show the existence of positive solutions with a (faster) decay in r−η in the
subcritical case:

Theorem 4.9 Assume p < 2, δ < α < N, and 1 < q < q∗. Then there exists a > 0
such that w(., a) is positive and satisfies limr→∞ rηw = c 6= 0.
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Proof. Let

A =
{

a > 0 : w(., a) > 0 on (0,∞) and lim
r→∞

rδw = `
}

,

B = {a > 0 : w(., a) has at least an isolated zero} .

Then A and B are nonempty by Propositions 4.8, 2.7, and A ⊃ (0, a] , B ⊃ [a,∞) ,
and B is open. Now we show that A is open. Let a0 ∈ A. Then JN (., a0) is in-
creasing for large r and tends to ∞. Hence JN (r0, a0) > 0 and J ′N (r0, a0) > 0 for r0

large enough; and then there exists a neighborhood V of a0 such that w(r, a) > 0 on
[0, r0] and JN (r0, a) > 0 and J ′N (r0, a) > 0 for any a ∈ V. Then J ′N (r0, a) > 0 for
any r ≥ r0, since w(., a) is decreasing. Then for any a ∈ V , from Propositions 4.4
and 2.10, either limr→∞ rηw = c > 0, and limr→∞ rη+1w′ = −cη, from (2.14) and
(2.13) with d = η; then limr→∞ JN (., a) = −cp−1, which is impossible. Or necessarily
limr→∞ rδw(., a) = `; thus a ∈ A. Let ainf = inf B > a and asup = sup A < a. Taking
a = ainf or asup, then w(., a) is positive and limr→∞ rηw = c.

Remark 4.10 Under the assumptions of theorem 4.9, any solution w(., a) (a 6= 0) has a
finite number of zeros, and limr→∞ rδw(., a) = Λ(a), with Λ(a) = ±` or 0. Here the func-
tion Λ is not continuous on (0,∞) . Indeed it would imply that the set {a > 0 : Λ(a) = `}
is closed and open in (0,∞) , and non empty, which contradicts the above results.

At last, in the supercritical case, we show the existence of grounds states for any a > 0,
and they have a (slow) decay:

Theorem 4.11 Assume δ ≤ α. Let w(r, a) be the solution of problem (1.10), (1.15).
(i) If p ≤ p2, then for any a > 0, w(r, a) > 0 on [0,∞) and (4.7) or (4.10) holds.
(ii) If p2 < p < p1, α < (N − 1)p′/2, and q ≥ q∗α > q∗, where q∗α is given by (1.14),
then again w(r, a) > 0 on [0,∞) and (4.7) or (4.10) holds.

Proof. We consider again the function V = Vλ,σ,e defined in (2.9).

(i) Suppose p ≤ p2. As in Theorem 3.11, (ii), we take λ = N = 2σ and e = α − N/2.
Then V ′ ≤ 0 from (3.25) and in the same way w(r) > 0 on [0,∞) . From Proposition
(4.4), if (4.7) does not hold, then w = O(r−η), w′ = O(r−(η+1)) near ∞. Then by
computation, V (r) = O(r−η), and thus limr→∞ V (r) = 0. Then V ≡ 0 on [0,∞) ,
which is contradictory.

(ii) Suppose p2 < p < p1, and α < (N − 1)p′/2. As in Theorem 3.11 (ii) we take λ = 2α
and σ = N − 1 − 2α/p′ and e = σ − α. Observe that α < η. Thus from Theorem
4.6, if (4.7) does not hold, then again w = O(r−η), w′ = O(r−(η+1)) near ∞. Then by
computation, V (r) = O(r2α−(N−1)p′) near ∞, hence limr→∞ V (r) = 0 and we reach
again a contradiction.
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5 Back to problem (1.1)

Here we apply to equation (1.4) the results of Section 3, with α = α0 = p/(q + 1 − p),
and show our main result.

Proof. [Proof of Theorem 1.1] 0ne has α0 > 0 since q > p − 1, and (3.1) holds since
q > 1.

(i) The existence and behaviour of w follows from Theorem 2.1 and Proposition 3.1.

(ii) Condition q1 < q is equivalent to α0 < N, and Proposition 3.8 applies.

(iii) If q1 < q < q?, then Theorem 3.9 shows the existence of fast nonnegative decaying
solutions w. For any s ≥ 1, there exists C > 0 such that for any t > 0,

‖u(t)‖s = Ct(N/sα0−1)/(q−1) ‖w‖s . (5.1)

If p > 2, then w has a compact support thus u(t) ∈ Ls(RN ). If p < 2, then u is positive,
and from Proposition (3.3), w satisfies (1.1), with `(N, p, q) and ρ(N, p, q) given by (3.5)
and (3.7) with α = α0 :

`(N, p, q) =
(

δp−1 δ −N

δ − α0

)1/(2−p)

ρ(N, p, q) =
1
N

(
N(N − 1)
2(N − α0)

)(N+1)/2

;

hence again u(t) ∈ Ls(RN ). Indeed either p1 < p; and thus N < δ, w = O(r−δ)

at ∞, and
∫ ∞

1

rN−1−δsdr < ∞; or p < p1, and thus w = O(r−η), N < η, and
∫ ∞

1

rN−1−(N−p)s/(p−1)dr < ∞; or p = p1, and w = O(r−N (ln r)−(N+1)/2), and
∫ ∞

1

rN−1−Ns(ln r)−(N+1)/2dr < ∞. Moreover limt→0 ‖u(t)‖s = 0 whenever s >

N/α0, from (5.1). For fixed ε > 0, by Proposition 3.2, either p > 2 and sup|x|≥ε |u(x, t)| =
0 for t ≤ t(ε) small enough, or p < 2 and sup|x|≥ε |u(x, t)| ≤ C(ε)t(δ/α0−1)/(q−1) for
t ≤ t(ε) small enough, and α0 < δ; hence in any case, limt→0 sup|x|≥ε |u(x, t)| = 0.

(iv) The assertions follow from Theorem 3.6 (ii) and (iii), and from Proposition 3.3.

(v) Here we applyTheorem 3.11 (i) and (ii). Indeed if p > p2, and q ≥ q?, then α0 ≤
(N − p)/p < N/2.

(vi) If 1 < q ≤ q1, then N < δ and N ≤ α0. Hence all the solutions w are changing sign,
from Proposition 2.5, (ii); and there exists an infinity of fast decaying solutions w, from
Theorem 3.6 (ii); the estimates follow from Proposition 3.2. Moreover in the case p < 2,
from Theorem 3.15, w has a finite number of zeros if α0 is not too large, in particular if
α0 < α∗,where α∗ is defined at (1.14) (α∗ < δ), which means 1 < p − 1 + p/α∗ < q ≤
q1.This requires N < α∗, which means that p is sufficiently close from 2 , more precisely
(2p − 3)p > N(2 − p)(p − 1), in particular p > 3/2). On the contrary, there exists
ᾱ ∈ (max(N,α∗), δ) such that w is oscillatory if α0 > ᾱ; hence 1 < q < p− 1 + p/ᾱ.
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Remark 5.1 If q = q1, then α0 = N. Thus for each of these functions w, there exists

C ∈ R such that the corresponding function u satisfies
∫

RN

u(t)dx = C

∫

RN

wdx, and

‖u(t)‖1 = |C| ‖w‖1 for any t > 0; then there exists a sequence (tn) → 0 such that u(tn)
converges weakly to a bounded measure µ inRN . We still have limt→0 sup|x|≥ε |u(x, t)| =
0, hence µ has its support at the origin; we cannot assert that µ is a Dirac mass as in the
case p = 2, see [26], since we have no uniqueness result for equation 1.1, inasmuch as u
does not have a constant sign.
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