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Abstract. We consider the semilinear parabolic system with absorption terms in a bounded domainΩ of R
N{

ut − ∆u + |v|p|u|k−1u = 0, in Ω × (0,∞),
vt − ∆v + |u|q |v|�−1v = 0, in Ω × (0,∞),
u(0) = u0, v(0) = v0, in Ω,

wherep,q > 0 andk, � � 0, with Dirichlet or Neuman conditions on∂Ω × (0,∞). We study the existence and uniqueness
of the Cauchy problem when the initial data areL1 functions or bounded measures. We find invariant regions whenu0, v0 are
nonnegative, and give sufficient conditions for positivity or extinction in finite time.

1. Introduction and main results

LetΩ be a bounded regular domain ofR
N (N � 1). We consider the parabolic system with absorption

terms inQ∞ = Ω × (0,∞),{
ut − ∆u+ |v|p|u|k−1u = 0,

vt − ∆v + |u|q|v|�−1v = 0,
(1.1)

wherep, q > 0, andk, 
 � 0, with the convention in casek = 0 (resp.
 = 0):

|u|−1u = sign0 u =


1 if u > 0,

0 if u = 0,

−1 if u < 0.

(1.2)
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We are concerned with the existence and uniqueness of the Cauchy problem, with Dirichlet or Neuman
conditions on∂Ω × (0,∞), and initial data

u(0) = u0, v(0) = v0,

whereu0, v0 lie in L1(Ω) or in the setMb(Ω) of bounded Radon measures inΩ. We also study the
existence of invariant regions, and the properties of strict positivity or extinction in finite time of the
solutions, whenu0,v0 � 0.

In the case of nonnegative solutions, this system serves as a simple model for the joint evolution of
two interacting biological species with densitiesu, v, competing for a common resource, see [25,19,24].
Then it is interesting to prove the existence of a global solution and study the uniqueness. Also assuming
that at initial time one species dominates the other one, will it continue to dominate it all the time long?
This corresponds to finding the existence of invariant regions, that means subsetsΣ of R

2 such that if
(u0,v0) ∈ Σ, a.e. inΩ, then (u,v) ∈ Σ in Q∞. Another question is to know also under what conditions
one of the species disappear in finite time, and what happens with the other.

Independently of the biological applications, system (1.1) offers a special interest due to the multiple
difficulties that it brings up. It is the direct extension to two functionsu, v of the scalar equation with an
absorption term

wt − ∆w + |w|Q−1w = 0, (1.3)

whereQ > 0. Nevertheless, the situation is much more complex: contrarily to the case of Eq. (1.3), no
comparison principle holds for the system, as we will see below, and thus we cannot use any technique of
supersolutions, or pass to the limit by monotone convergence arguments. One of the most striking results
is the existence of a minimal–maximal solution and a maximal–minimal one and a principle of cross
comparisons whenu0, v0 are nonnegative, see Theorem 1.3 below, which show the specific character of
the system.

Also the problem of uniqueness is quite involved, in particular because of the lack of monotonicity.
It is easy to solve wheneveru0,v0 ∈ L∞(Ω) andp, q,k, 
 � 1. In the general case the nonlinear parts
of system (1.1) may be non-Lipschitz on the sets {u = 0} or { v = 0}. Thus uniqueness was qualified
as an open problem by Kalashnikov in [3], and still open up to now, despite on some announcements
in [28,29], which deal with porous media operators but restricted to the Lipschitzian case. We solve the
problem in a great number of cases, see Theorems 1.6 and 1.7.

System (1.1) with nonnegativeu,v has also to be compared to the problem with the other sign,{
ut − ∆u = vpuk,

vt − ∆v = uqv�,
(1.4)

where the nonlinear parts are source terms. It is a cooperative system, so that some comparison princi-
ples hold, see [16], even when the nonlinear part is non-Lipschitz, see [14,12]. As a consequence, sys-
tem (1.4) has given rise to many works about blow up properties or global existence inΩ or in R

N , among
them [2,27,13]; see also [18] for systems with porous media operators. On the contrary, system (1.1) has
been little studied. Existence results inR

N and partial compact support properties are given in [21].
Some properties of shrinking of the support in the space variable of the solutions are shown in [22,23].
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Also the existence of travelling waves is analyzed in [17] in casek = 
 = 0 andN = 1. In the elliptic
case the behaviour near a singularity is described in [8].

In Section 2 we describe the solutions of the system of ordinary differential equations associated
to (1.1), namely{

ut + |v|p|u|k−1u = 0,

vt + |u|q|v|�−1v = 0.
(1.5)

The solutions of (1.5) are also solutions of (1.1) in the case of Neuman problem. Thus their properties of
extinction in finite time or strict positivity can give information about one can expect for system (1.1).
System (1.5) can be completely solved. Setting

a = p+ 1− 
, b = q + 1− k,

the main point is that the region{
u > 0, v > 0, aub = bva

}
is invariant whenevera, b �= 0. The study of particular solutions leads also to define

δ = pq − (1− k)(1− 
),

called the discriminant of the system. The conditionδ > 0 (resp.δ < 0) means that, in a certain sense,
the system is superlinear (resp. sublinear). Whena, b �= 0, we also introduce the quantities

P = 1 +
δ

b
, Q = 1 +

δ

a
, (1.6)

which play a role in the sequel.
In Section 3 we study the existence and the regularity of weak solutions of the Cauchy problem with

Dirichlet (resp. Neuman) data on the lateral boundary:
ut − ∆u+ |v|p|u|k−1u = 0, inQ∞,

vt − ∆v + |u|q|v|�−1v = 0, inQ∞,

u = v = 0 (resp.∂u/∂ν = ∂v/∂ν = 0), on∂Ω × (0,∞),

u(0) = u0, v(0) = v0, inΩ.

(1.7)

We first give an existence result for initial data inL1(Ω), which needs some care in the casek = 0 or

 = 0, because of the lack of continuity of the function sign0. We denote by(

S(t)
)
t�0 =

(
Sd(t)

)
t�0

(
resp.

(
S(t)

)
t�0 =

(
Sn(t)

)
t�0

)
,

the linear heat flow the heat equation inL1(Ω) with Dirichlet (resp. Neuman) conditions on the lateral
boundary∂Ω × (0,∞).
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Theorem 1.1. Assume thatu0,v0 ∈ L1(Ω), and there existss,σ � 1 such that

(
S(·)|u0|

)k(
S(·)|v0|

)p ∈ Lsloc
(
Q∞

)
,

(
S(·)|u0|

)q(
S(·)|v0|

)� ∈ Lσloc
(
Q∞

)
, (1.8)

with s > 1 if k = 0, σ > 1 if 
 = 0. Then there exists a weak solution(u,v) of problem(1.7). And for
anyt � 0,∣∣u(t)

∣∣ � S(t)|u0|,
∣∣v(t)∣∣ � S(t)|v0|, a.e. inΩ. (1.9)

If u0 � 0, a.e. inΩ, thenu(t) � 0, a.e. inΩ. If v0 � 0, a.e. inΩ, thenv(t) � 0, a.e. inΩ.

As a consequence, we get existence results for initial data in someLθ spaces (1� θ � ∞) and by
extension inMb(Ω), related to the Fujita exponent (N + 2)/N :

Corollary 1.1. Assume thatu0 ∈ Lθ1(Ω) andv0 ∈ Lθ2(Ω) for some1 � θ1,θ2 � ∞, and

max
(
k

θ1
+
p

θ2
,
q

θ1
+



θ2

)
<
N + 2
N

. (1.10)

Then there exists a weak solution(u,v) to problem(1.7).

Theorem 1.2. Assume thatu0,v0 ∈ Mb(Ω), and

max(k + p, q + 
) <
N + 2
N

. (1.11)

Then there exists a weak solution(u,v) to problem(1.7).

Finally we prove our cross comparison principle when initial data are nonnegative:

Theorem 1.3. Assume thatu0,v0 ∈ L1(Ω) and(1.8) holds(or u0,v0 ∈ Mb(Ω)) and(1.11) holds), and
u0,v0 � 0. Then there exists two nonnegative solutions(U ,V ) and (Ũ , Ṽ ) of problem(1.7), such that
any nonnegative solution(u,v) satisfies

U � u � Ũ and Ṽ � v � V. (1.12)

Moreover if0 � u0 � u′0 and0 � v′0 � v0 with the same assumptions onu′0, v′0, then the corresponding

solutions(U ′,V ′) and(Ũ ′, Ṽ ′) are ordered in the same way:

U � U ′, Ũ � Ũ ′, V ′ � V , Ṽ ′ � Ṽ . (1.13)

Section 4 concerns the question of invariant regions. It is interesting to see that pointwise correspon-
dence can remain inQ∞ between the two functionsu andv, despite the lack of comparison principle:

Theorem 1.4. Assume thatu0,v0 ∈ L∞(Ω), u0,v0 � 0, and ab > 0. Let (u,v) be any solution of
problem(1.7).
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(1) Assume that

aub0 � bva0, a.e. inΩ.

Then

aub � bva, in Q∞,

in any of the following cases:

0< a � b and a � 1, (1.14)

0< a � b and 1< a and δ � 0, (1.15)

b � a < 0. (1.16)

Moreover if one of the eventualities holds, with the restriction(δ � 0 or 1 � b) in the case
0< a < 1, and ifaub0 �≡ bva0 , thenaub < bva in Q∞.

(2) Assume that the inequality is strict:

aub0 < bv
a
0 a.e. inΩ,

and1< a � b andu,v ∈ C(Q∞). Thenaub < bva in Q∞.

Hence, under the assumptions of Theorem 1.4, the region {aub � bva} of R
2 is invariant. Notice that

under the assumptions of Theorem 1.4,v is a supersolution of the scalar equation

wt − ∆w +
(
a

b

)−q/b
wP = 0,

where coefficientP is defined in (1.6). As a consequence we give new existence results in Section 5: we
can have existence beyond the critical case (1.11) when only one of the initial data is a measure, whenP
is less than the Fujita exponent:

Theorem 1.5. Suppose0< a � b, and that(1.14) or (1.15) holds. Assume that

u0 ∈ L1(Ω), v0 = V0 + µ0, V0 ∈ L1(Ω), µ0 ∈ Mb(Ω), u0,V0,µ0 � 0,

and

aub0 � bV a
0 , a.e. inΩ. (1.17)

If

P = min
(

1 +
δ

a
, 1+

δ

b

)
<
N + 2
N

, (1.18)

there exists a weak nonnegative solution(u,v) of problem(1.7).
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This is a typical result for such kind of systems. Conditions of a similar type appear also in prob-
lem (1.4), see [2,16], and in elliptic systems with multipowered absorption or source terms, see for
example [8,6,9].

In Section 6 we give sufficient conditions for the strict positivity of at least one of the componentsu
or v. This implies properties of extinction in finite time for the other solution, either directly, or by
combining with the comparison results of Section 4. Some of them will depend on the nature of the
lateral boundary conditions. Indeed the diffusion of the Laplacian plays its role, notably in the case of
Dirichlet conditions.

Section 7 is devoted to the difficult question of uniqueness. First we give a general result, available
without any assumption on the sign of the initial data. The proof shows that the terms|u|k−1u, |v|�−1v
play a real role of absorption terms, and the terms|v|p, |u|q appear as trouble-makers to the absorption.

Theorem 1.6. Let p, q � 1, andk, 
 � 0 be arbitrary. Assume thatu0,v0 ∈ L∞(Ω), or more generally
u0 ∈ Lθ1(Ω) andv0 ∈ Lθ2(Ω) for someθ1,θ2 ∈ [1,∞], and

max
(
k − 1
θ1

+
p

θ2
,

− 1
θ2

+
q

θ1

)
<

2
N
. (1.19)

Then problem(1.7) admits a unique solution(u,v). And

u ∈ C
(
[0,∞),Lθ1(Ω)

)
if θ1 <∞, and v ∈ C

(
[0,∞),Lθ2(Ω)

)
if θ2 <∞. (1.20)

In particular uniqueness holds for anyu0,v0 ∈ L1(Ω), under condition(1.11).

Whenu0,v0 ∈ L∞(Ω), andu0,v0 � 0, we obtain new results, where the four parametersp, q, k, 

are involved, by using Theorem 1.3, and also the positivity properties of Section 6. Our main result is the
following.

Theorem 1.7. Assume thatu0,v0 ∈ L∞(Ω) andu0,v0 � 0. Then uniqueness holds for problem(1.7),
in any of the following cases:

(i) p, q � 1 (see Theorem1.6);
(ii) 0 < k � q < 1, 0< 
 � p < 1, and

p(1− q) � 
(1− k) and q(1− p) � k(1− 
); (1.21)

(iii) p,k � 1, 
 > 0, and

1− 
 � q and v�0(x) � cu1−q
0 (x), a.e. inΩ, for somec > 0; (1.22)

(iv) q, 
 � 1, k > 0, and

1− k � p and uk0(x) � cv1−p
0 (x), a.e. inΩ, for somec > 0; (1.23)

(v) k, 
 � 1 and(1.22), (1.23)hold.
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In particular if infx∈Ω u0(x) > 0 and infx∈Ω v0(x) > 0, then uniqueness holds whenk, 
 � 1. We
give more complete results in the case of Neuman problem, see Theorem 7.1, or when the comparison
properties of Section 4 hold, see Theorem 7.2.

Notice that uniqueness can hold with all the parametersp, q,k, 
 < 1, for example whenp = 
 and
q = k, or whenp = 1− k andq = 1− 
 andp + q � 1. The problem remains open for some ranges of
the parameters, for example in the case of the Hamiltonian system{

ut − ∆u+ vp sign0u = 0,

vt − ∆v + uq sign0 v = 0,

wherek = 
 = 0, whenp < 1 or q < 1.

2. The o.d.e. problem

Here we study the ordinary differential system (1.5). We will discuss according to the different values
of a, b, δ. Notice that

a, b > 0 andδ < 0 =⇒ k, 
 < 1, (2.1)

a, b < 0 =⇒ k, 
 > 1 andδ < 0. (2.2)

The role ofδ is enlighted by the existence of particular solutions:

u∗ = A∗t−a/δ, v∗ = B∗t−b/δ, on (0,∞), if a, b > 0 andδ > 0, or if a, b < 0, (2.3)

u∗ = A∗(t−)a/|δ|, v∗ = B∗(t−)b/|δ|, onR, if a, b > 0 andδ < 0, (2.4)

are solutions of (1.5), whereA∗ = |b/δ|p/δ |a/δ|(1−�)/δ andB∗ = |a/δ|q/δ |b/δ|(1−k)/δ . Whena, b > 0
andδ = 0, one gets a family of solutions, wherec > 0 is arbitrary:

u∗c = ce−(a/b)p/at, v∗c =
(
c
a

b

)b/a

e−(b/a)q/bt. (2.5)

The solutions given by (2.3) or (2.5), remain positive, but those given by (2.4) have a compact support.
Now consider the Cauchy problem with datau(0) = u0 ∈ R, v(0) = v0 ∈ R, and unknown (u,v) ∈

C1([0,∞)).

Proposition 2.1. The problem(1.5) with initial data u0,v0 ∈ R, has a unique global solution(u,v) on
[0,∞). If u0,v0 � 0, thenu,v � 0. Wheneveru0,v0 > 0, the following properties hold:

(i) If k � 1 (resp.
 � 1), thenu (resp.v) remains positive on[0,∞). In particular if a, b � 0, then
u,v are positive.

(ii) Whena, b �= 0, the region{aub = bva} is invariant, since

bva − aub = bva0 − aub0 = C. (2.6)



248 M.-F. Bidaut-Véron et al. / On a semilinear parabolic system of reaction–diffusion with absorption

(iii) If a, b > 0 andδ � 0, thenu,v are positive whenC = 0; whenC > 0 (resp.C < 0), v (resp.u)
is positive, andu (resp.v) has a compact support ifk < 1 (resp.
 < 1).

(iv) If a, b > 0 and δ < 0, thenu and v have a compact support whenC = 0; whenC > 0 (resp.
C < 0), v (resp.u) is positive, andu (resp.v) has a compact support.

(v) If a � 0 (resp.b � 0), thenv (resp.u) is positive, andu (resp.v) has a compact support ifk < 1
(resp.
 < 1).

Proof. First notice that any solution satisfies (u2)t � 0, a.e. in (0,∞). Therefore, ifu0 = 0, we find
a unique solution on (0,∞): u ≡ 0, v ≡ v0; if v0 = 0, thenu ≡ u0, v ≡ 0. Thus we can suppose
u0 �= 0 andv0 �= 0. Sinceu2 andv2 are nonincreasing, they stay bounded, then alsout andvt, and global
existence and uniqueness follow from the Cauchy theorem.

Now let us assumeu0 > 0, v0 > 0. This is not restrictive, since if (u,v) is a solution, then (±u,±v)
is also a solution.

(i) If k � 1, thenut + vp0u
k � 0, thus

u(t) �

u0
(
1 + (k − 1)uk−1

0 vp0t
)1/(k−1)

, if k > 1,

u0 e−v
p
0 t, if k = 1,

henceu(t) > 0 for anyt � 0. It happens in particular whena � 0.
(ii) As long as the solutions do not vanish, they satisfy

uq−kut = −uqvp = vp−�vt.

If a, b �= 0, then

d
dt

(
bva − aub

)
= 0,

hence (2.6) holds, and we call (u[u0,C] ,v[u0,C] ) the corresponding solutions.
(iii) Let a, b > 0 andδ � 0. In caseC = 0 andδ > 0, we find

u[u0,0] = u0

(
1 +

δ

a

(
a

b

)p/a

u
δ/a
0 t

)−a/δ
, v[u0,0] =

(
a

b

)1/a

u
b/a
[u0,0]; (2.7)

notice that (u[u0,0],v[u0,0]) is nothing but a translated of (u∗,v∗) given by (2.3). In caseC = 0 andδ = 0,
then (u[u0,0],v[u0,0]) = (u∗u0

,v∗v0
); in any case the two solutions remain positive on (0,∞). Now assume

C �= 0. By symmetry we can assume thatC > 0. Thenv stays positive. As long asu remains positive, it
is given by∫ u0

u

du
uk(aub +C)p/a

= b−p/at. (2.8)

If T is the maximal value such thatu > 0, then necessarilyu→ 0 ast→ T . ThenT is finite if and only
if

∫ u0
0 du/uk <∞, that meansk < 1. In that case,v ≡ (C/b)1/a > 0 on [T ,∞). Whenk � 1,u remains

positive,u(t) → 0 andv(t) → (C/b)1/a at infinity.
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(iv) Let a, b > 0 andδ < 0. In caseC = 0, we find

u[u0,0] = u0

((
1− |δ|

a

(
a

b

)p/a

u
δ/a
0 t

)+)a/|δ|
, v[u0,0] =

(
a

b

)1/a

u
b/a
[u0,0],

hence (u[u0,0],v[u0,0]) is a translated of (u∗,v∗) given by (2.4). It has a compact support. If for example
C > 0, thenu is still given by (2.8). It has a compact support from (2.1).

(v) Let a � 0. Thenv is positive, since
 > 1. Assume moreover thatk < 1, thusb > 0. If a < 0, then
(2.6) takes the form

|a|ub +
b

v|a|
= C, (2.9)

henceC > 0, andu is given by∫ u0

u

du

uk(C − |a|ub)p/a = b−p/at; (2.10)

if a = 0< b, thenu, v are given by∫ u0

u

du

uk epub/b
= vp0 e−pu

b
0/bt, v = v0 e(ub−ub

0)/b.

In any caseu has a compact support.�

Remark 2.1. Assume thatu0,v0 > 0, anda, b > 0. Observe that conditionk < 1 does not imply thatu
has a compact support: for example ifbva0 < au

b
0, thenu stays positive. Notice also that conditionδ < 0

implies that at least one of the solutions has a compact support. Conditionδ � 0 implies that the sum
u+ v stays positive.

Remark 2.2. Assume thatu0,v0 > 0 andab > 0, and for exampleaub0 � bva0. ThenC � 0 in (2.6), so
that in any casev � (a/b)1/aub/a. Thusu,v are respectively subsolution and supersolution of ordinary
differential equations:

ut +
(
a

b

)p/a

uQ � 0, vt +
(
a

b

)−q/b
vP � 0,

whereP, Q are defined at (1.6). We will extend these properties to system (1.1) in Section 4.

3. Existence and first properties

3.1. Some useful formulas on heat equation

Here we briefly mention some well-known results. LetQT = Ω × [0,T ], for anyT > 0. We denote
byC0(Ω) the set of functionsw ∈ C(Ω) which vanish on∂Ω.
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For any (y0,F ) ∈ L1(Ω) × L1(QT ) there exists a unique functiony ∈ C([0,T ],L1(Ω)), such that
y ∈ L1((0,T ),W 1,1

0 (Ω)) (resp.L1((0,T ),W 1,1(Ω))), solution of problem


yt − ∆y + F = 0, inQT ,

y = 0 (resp.∂y/∂ν = 0), on∂Ω × (0,T ),

y(0) = y0, inΩ,

(3.1)

in the weak sense∫ T

0

∫
Ω

(−yϕt − y∆ϕ+ Fϕ) dxdt = 0, (3.2)

for anyϕ ∈ D(QT ) (resp.ϕ ∈ C∞(QT ) with compact support inΩ × (0,T ), such that∂ϕ/∂ν = 0).
And y is given by

y(t) = S(t)y0 −
∫ t

0
S(t− s)F (s) ds. (3.3)

The mappingS : (y0,F ) �→ y is compact fromL1(Ω) × L1(QT ) into Lr(QT ) for 1 � r < (N + 2)/N ,
see [4]. Also it is continuous fromL1(Ω) × L1(QT ) intoC([0,T ],L1(Ω)) and intoLs((0,T ),W 1,ρ

0 (Ω))
(resp.Ls((0,T ),W 1,ρ(Ω))) for 2/s + N/ρ > N + 1. More generally, ify0 ∈ Mb(Ω), problem (3.1)
admits a unique weak solutiony ∈ L1(QT ), such thaty(t) → y0, weakly inMb(Ω), ast→ 0. Andy is
the only solution inL1(QT ) of problem

∫ T

0

∫
Ω

(−yψt − y∆ψ + Fψ) dxdt =
∫
Ω
ψ(0) dy0, (3.4)

for anyψ ∈ C∞(QT ) with compact support inΩ × [0,T ) (resp. inΩ × [0,T ), such that∂ϕ/∂ν = 0).
Moreover, the semigroupsSd andSn share some regularizing properties: for anyy0 ∈ Lθ(Ω) and

1 � θ � τ � ∞,{∥∥Sd(t)y0
∥∥
Lτ (Ω) � Ct−(1/θ−1/τ )N/2‖y0‖Lθ(Ω),∥∥Sn(t)y0

∥∥
Lτ (Ω) � C

(
1 + t−(1/θ−1/τ )N/2)‖y0‖Lθ(Ω),

(3.5)

see, for example, [26]. In particularS(·)y0 ∈ Lρ(QT ) for 1 � ρ < θ(N+2)/N . Also for anyy0 ∈ C0(Ω),∥∥Sd(t)y0
∥∥
L∞(Ω) � C e−λ1t‖y0‖L∞(Ω),

whereλ1 is the first eigenvalue of−∆ in Ω. In the sequel we will denote byϕ1 the eigenfunction
associated toλ1 such thatϕ1 > 0 and‖ϕ1‖L∞(Ω) = 1.

Next, we recall some formulations of parabolic Kato inequality: let (y0,F ) ∈ L1(Ω) × L1(QT ) andy
be the solution of (3.1), with Dirichlet or Neuman data. Then

|y|t − ∆|y| + F sign0 y � 0, (3.6)
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in D′(QT ), and more precisely for anyt ∈ [0,T ] and a.e. inΩ,

∣∣y(t)∣∣ +
∫ t

0
S(t− s)F (s) sign0 y(s) ds � S(t)|y0|. (3.7)

In particular ifF · y � 0, a.e. inQT , then for anyt ∈ [0,T ], |y(t)| � S(t)|y0|, a.e. inΩ. If moreover
y0 � 0, a.e. inΩ, theny(t) � 0, a.e. inΩ.

3.2. Formulation of the Cauchy problem for the system

Let us come to system (1.1). Notice that it always admits (0, 0) as a solution, and also solutions of
the form (0,v) with v solution of the heat equation, and (u, 0), withu solution of the heat equation. We
consider the Cauchy problem with Dirichlet or Neuman data (1.7).

First assumeu0,v0 ∈ L1(Ω). By solution (u,v) of (1.7), we mean any couple of functionsu,v ∈
C([0,∞),L1(Ω)) such that|v|p|u|k, |u|q|v|� ∈ L1

loc(Q∞), u(0) = u0, v(0) = v0, which are weak
solutions of their respective equations in the sense of (3.2). It can be expressed in an equivalent way by

u(t) = S(t)u0 −
∫ t

0
S(t− s)

∣∣v(s)∣∣p∣∣u(s)
∣∣k−1

u(s) ds,

v(t) = S(t)v0 −
∫ t

0
S(t− s)

∣∣u(s)
∣∣q∣∣v(s)∣∣�−1

v(s) ds,
(3.8)

for any t � 0, with S = Sd or S = Sn. Assume now thatu0,v0 ∈ Mb(Ω). By solution of (1.7), we
mean any couple of functionsu,v ∈ L1

loc(Q∞), such that|v|p|u|k, |u|q|v|� ∈ L1
loc(Q∞), and are weak

solutions, and

u(t) → u0, v(t) → v0 weakly inMb(Ω), ast→ 0. (3.9)

It can be expressed equivalently as in (3.4). As a direct consequence of Kato inequality, we deduce the
following:

Lemma 3.1. For anyu0,v0 ∈ L1(Ω), any weak solution(u,v) of problem(1.7) satisfies(1.9). Moreover
if u0 � 0 (resp.v0 � 0), then, for anyt ∈ [0,∞), u(t) � 0 (resp.v(t) � 0), a.e. inΩ.

Remark 3.1. In particular if for exampleu0 ≡ 0, then uniqueness holds: indeedu ≡ 0 andv(·) =
S(·)v0.

Remark 3.2. Assume thatu0,v0 ∈ L1(Ω). From (1.9) and the regularizing effect of the semi-group
(3.5), any solution (u,v) of (1.7), if it exists, is locally bounded inQ∞. From the standard regularity
theory,u, v lie in W 2,1,m

loc (Q∞) for anym > 1, hence inC1,0
loc (Q∞) , and inC2,1

loc (Q∞) if k, 
 �= 0,
and in fact in Hölder functions spaces. Thus the equations are satisfied a.e. inQ∞. From (3.5), for any
1 � θ � σ � ∞ and 1� λ � τ � ∞,∥∥u(t)

∥∥
Lσ(Ω) � C

(
1 + t−(1/θ−1/σ)N/2)‖u0‖Lθ(Ω),

(3.10)∥∥v(t)∥∥Lτ (Ω) � Ct−(1/λ−1/τ )N/2‖v0‖Lλ(Ω).
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If u0,v0 ∈ L∞(Ω), thenu,v ∈ L∞(Q∞), henceu,v ∈ W 2,1,m(QT ) for any 1� m <∞ and any
T > 0, in particularu,v ∈ C([0,∞),Lm(Ω)). Moreover, ifu0,v0 ∈ C0(Ω) for the Dirichlet problem
(resp.u,v ∈ C(Ω) for the Neuman problem), thenu,v ∈ C(Q∞).

3.3. Proofs of existence

First we prove Theorem 1.1.

Lemma 3.2. Letu0,v0 ∈ L∞(Ω) andF1, F2 locally Lipschitz fromR
2 into R, such that

F1(0, 0)= F2(0, 0)= 0 and F1(r,s)r � 0, F2(r,s)s � 0, ∀r,s ∈ R.

Then there existu,v ∈ C([0,∞),L1(Ω)), unique, such that
ut − ∆u+ F1(u,v) = 0, in Q∞,

vt − ∆v + F2(u,v) = 0, in Q∞,

u = v = 0 (resp.∂u/∂ν = ∂v/∂ν = 0), on∂Ω × [0,∞),

u(0) = u0, v(0) = v0, in Ω.

(3.11)

Andu,v ∈ L∞(Q∞) ∩ C([0,∞), Lm(Ω)) for anym � 1.

Proof. LetU0,m,V0,m ∈ D(Ω), uniformly bounded inΩ, such thatU0,m → u0 andV0,m → v0 in L1(Ω)
asm→ ∞. Then there exists a unique solutionum,vm of the problem

um,t − ∆um + F1(um,vm) = 0, inΩ × [0,Tm),

vm,t − ∆vm + F2(um,vm) = 0, inΩ × [0,Tm),

um = vm = 0 (resp.∂um/∂ν = ∂vm/∂ν = 0), on∂Ω × [0,Tm),

um(0) = U0,m, vn,m(0) = V0,m, inΩ,

defined on a maximal interval [0,Tm). From the Kato inequality,∣∣um(t)
∣∣ � S(t)|U0,m|,

∣∣vm(t)
∣∣ � S(t)|V0,m|, inΩ,

so thatum(t), vm(t) are bounded inL∞(Q∞), which impliesTm = ∞; andF1(um,vm), F2(um,vm)
are bounded inL∞(Q∞). Now

um(t) = S(t)U0,m −
∫ t

0
S(t− s)F1

(
um(s),vm(s)

)
ds,

vm(t) = S(t)V0,m −
∫ t

0
S(t− s)F2

(
um(s),vm(s)

)
ds.

(3.12)

From the compactness properties ofS, up to a subsequence,um andvm converge a.e. inQ∞ and in
Lr(QT ) for 1 � r < (N + 2)/N and anyT > 0 to someu andv. ThenF1(um,vm) andF2(um,vm)
converge toF1(u,v) andF2(u,v), strongly inL1(QT ). Then we can go to the limit in (3.12) asm→ ∞,
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thus (u,v) is a solution of (3.11). Andu,v ∈ L∞(Q∞), henceF1(u,v),F2(u,v) ∈ L1((0,T ),L∞(Ω)),
and

∫ t
0 S(t − s)Fi(u(s),v(s)) ds ∈ C([0,∞),L∞(Ω)) for i = 1, 2. MoreoverS(t)u0,S(t)v0 ∈

C([0,∞),Lm(Ω)) for anym � 1, thus also by additionu,v ∈ C([0,∞),Lm(Ω)). Uniqueness holds
becauseF1, F2 are locally Lipschitz continuous.�

Proof of Theorem 1.1. For any realη � 0, and anyn ∈ N, let gn,η(r) be an odd monotone locally Lip-
schitz approximation ofr �→ |r|η−1r, such that|gn,η(r)| � |r|η for any r ∈ R. Let u0,n, v0,n be the
truncatures ofu0, v0 by ±n. From Lemma 3.2, there exists a unique solution (un,vn) of the problem

un,t − ∆un + gn,p
(
|vn|

)
gn,k(un) = 0, inQ∞,

vn,t − ∆vn + gn,q
(
|un|

)
gn,�(vn) = 0, inQ∞,

un = vn = 0 (resp.∂un/∂ν = ∂vn/∂ν = 0), on∂Ω × [0,∞),

un(0) = u0,n, vn(0) = v0,n, inΩ,

(3.13)

and ∣∣un(t)
∣∣ � S(t)|u0,n| � S(t)|u0|,

∣∣vn(t)
∣∣ � S(t)|v0,n| � S(t)|v0| in Ω.

Thenun,vn are bounded inL∞
loc(Ω × (0,∞)). Moreover,

un(t) = S(t)(u0,n) −
∫ t

0
S(t− s)gn,p

(∣∣vn(s)
∣∣)gn,k

(
un(s)

)
ds,

vn(t) = S(t)(v0,n) −
∫ t

0
S(t− s)gn,q

(∣∣un(s)
∣∣)gn,�

(
vn(s)

)
ds,

(3.14)

and 
∣∣gn,p

(
|vn|

)
gn,k(un)

∣∣ � gn,p
(
S(·)|v0|

)
gn,k

(
S(·)|u0|

)
�

∣∣S(·)|u0|
∣∣k∣∣S(·)|v0|

∣∣p,∣∣gn,q
(
|un|

)
gn,�(vn)

∣∣ � gn,q
(
S(·)|u0|

)
gn,k

(
S(·)|v0|

)
�

∣∣S(·)|u0|
∣∣q∣∣S(·)|v0|

∣∣�,
and for anyT > 0, |S(·)|u0||k|S(·)|v0||p, |S(·)|u0||q|S(·)|v0||� ∈ L1(QT ) from (1.8). Up to a subse-
quence, (un,vn) converge to some (u,v), strongly in (Lr(QT ))2 for 1 � r < (N + 2)/N , and a.e.
in Q∞.

First assumek, 
 �= 0. Thengn,p(|vn|)gn,k(un) converges to|v|p|u|k−1u andgn,q(|un|)gn,�(vn) con-
verges to|u|q|v|�−1v, a.e. inQ∞ and inL1(QT ). We can pass to the limit in (3.14) by Lebesgue theorem,
then (u,v) satisfies (3.8), thus it is a solution of problem.

Now assume for example thatk = 0. Then∣∣gn,p
(
|vn|

)
gn,0(un)

∣∣ �
∣∣S(·)|v0|

∣∣p,
and from (1.8),|S(·)|v0||p ∈ Ls(QT ) for somes > 1, and anyT > 0. Moreoverun, vn are bounded in
L∞

loc(QT ), hence alsogn,p(|vn|)gn,0(un) = ∆un − un,t. This implies thatun is bounded inW 2,1,m
loc (Q∞)

for anym > 1, from Remark 3.2. Hence∆un andun,t are bounded inLmloc(Q∞). Then for fixedT , after
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extraction of a subsequence (depending eventually onT ), gn,p(|vn|)gn,0(un) converges weakly inLs(QT )
to some functionΦ. Thereforeu satisfies

ut − ∆u+ Φ = 0

in D′(QT ). From the compactness properties of the semi-group, we get

u(t) = S(t)u0 −
∫ t

0
S(t− s)Φ(s) ds.

From the chain rule, we deduce thatΦ = 0, a.e. on the set {u = 0}. And hn,p(vn)gn,0(un) converges
to |v|p, a.e. on the set {u �= 0}, henceΦ = |v|p, a.e. on this set. This shows thatΦ = |v|p sign0u, and
there holds

u(t) = S(t)(u0) −
∫ t

0
S(t− s)vp(s) sign0 u(s) ds. �

Now we prove Corollary 1.1. More precisely we get the following:

Corollary 3.1. Assume thatu0 ∈ Lθ1(Ω) and v0 ∈ Lθ2(Ω) for some1 � θ1,θ2 � ∞, and (1.10)
holds. Then there exists a solution(u,v) of problem(1.7). Moreover any solution satisfies|v|p|u|k ∈
Ls1(QT ), |u|q|v|� ∈ Ls2(QT ), for any

1 � s1 < (N + 2)
/
N

(
k

θ1
+
p

θ2

)
, 1 � s2 < (N + 2)

/
N

(
q

θ1
+



θ2

)
. (3.15)

Also|v|p|u|k ∈ L1((0,T ),LS1(Ω)), |u|q|v|� ∈ L1((0,T ),LS2(Ω)), for any

1 � S1 < 1
/(

k

θ1
+
p

θ2
− 2
N

)+

, 1 � S1 <∞ if
k

θ1
+
p

θ2
<

2
N

, (3.16)

1 � S2 < 1
/(

q

θ1
+



θ2
− 2
N

)+

, 1 � S2 <∞ if
q

θ1
+



θ2
<

2
N
. (3.17)

Thus, ifθ1 <∞, thenu ∈ C([0,∞),Lm1(Ω)), withm1 = min(θ1,S1); if θ2 <∞, thenv ∈ C([0,∞),
Lm2(Ω)), withm2 = min(θ2,S2).

Proof. First observe that ifθ1,θ2 = ∞, the result follows directly from Theorem 1.1, sinceS(·)(|u0| +
|v0|) ∈ L∞(Q∞). It also follows if θ1,θ2 = 1 under condition (1.10), which reduces to (1.11). Indeed
for anyT > 0, and anyr,s > 1,

∫ T

0

∫
Ω

(
S(t)|u0|

)ks(
S(t)|v0|

)ps
dxdt

�
( ∫ T

0

∫
Ω

(
S(t)|u0|

)ksr
dxdt

)1/r( ∫ T

0

∫
Ω

(
S(t)|v0|

)psr′
dxdt

)1/r′

. (3.18)
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Now S(·)(|u0| + |v0|) ∈ Lρ(QT ) for any 1� ρ < (N + 2)/N . Takingr = (k + p)/k, we haveksr =
psr′ = (k + p)s, and from (1.11) we can choose 1� s < (N + 2)/N (k + p), so that the right-hand side
is finite. Hence (1.8) holds.

Let us come to the general case 1� θ1,θ2 � ∞. From (3.5), (S(·)|u0|)σ ∈ L1(QT ) for any 0< σ <
θ1(N + 2)/N , and (S(·)|v0|)τ ∈ L1(QT ) for any 0< τ < θ2(N + 2)/N , sinceΩ is bounded. For any
r,s > 1, there still holds (3.18). Let

c =
Nk

(N + 2)θ1
, d =

Np

(N + 2)θ2
,

with the conventionc = 0 if θ1 = ∞, d = 0 if θ2 = ∞. Thenc+ d < 1 from (1.10). We chooses > 1
such that (c+ d)s < 1, andr > 1 such thatcs < 1/r < 1− ds, so that

ksr < θ1(N + 2)/N and psr′ < θ2(N + 2)/N.

Then (1.8) holds, which proves the existence; and|v|p|u|k ∈ Ls1(QT ), for anys1 given by (3.15).
Also considers andr as above, with moreoverN/(N + 2) � (c+ d)s and 1− ds(N + 2)/N � 1/r �

cs(N + 2)/N . Thenksr � θ1 � 1 andpsr′ � θ2 � 1, and

∫
Ω

(
S(t)|u0|

)ks(
S(t)|v0|

)ps
dxdt �

( ∫
Ω

(
S(t)|u0|

)ksr
dxdt

)1/r( ∫
Ω

(
S(t)|v0|

)psr′
dxdt

)1/r′

for anyt > 0. From (3.10), we derive

∥∥(
S(t)|u0|

)k(
S(t)|v0|

)p∥∥
Ls(Ω) �

∥∥S(t)|u0|
∥∥k
Lksr(Ω)

∥∥S(t)|v0|
∥∥p
Lpsr′ (Ω)

� t−(αk+βp)‖u0‖kLθ1(Ω)‖v0‖pLθ2(Ω)
, (3.19)

whereα = (1/θ1 − 1/ksr)N/2 andβ = (1/θ2 − 1/psr′)N/2. Thus|v|p|u|k ∈ L1((0,T ),Ls(Ω)) for
anys � 1/(k/θ1 + p/θ2), such thatαk + βp < 1, that meansk/θ1 + p/θ2 − 2/N < 1/s; hence for any
s � S1 satisfying (3.16), sinceΩ is bounded. MoreoverS(t)u0 ∈ C([0,∞),Lθ1(Ω)), if θ1 <∞, and
u− S(t)u0 ∈ C([0,∞),LS1(Ω)), henceu ∈ C([0,∞),Lm1(Ω)); and similarly forv. �

Finally we come to the case of measures as initial data:u0,v0 ∈ Mb(Ω).

Proof of Theorem 1.2. Let u0,v0 ∈ Mb(Ω). Let u0,n,v0,n ∈ L∞(Ω) such thatu0,n, v0,n are bounded
in L1(Ω) and converge weakly tou0, v0 in Mb(Ω). As above problem (3.13) admits a solution (un,vn).
And ∣∣un(t)

∣∣ � S(t)|u0,n|, |vn(t)| � S(t)|v0,n| in Ω.

Henceun(t), vn(t) are bounded inL∞
loc(Ω × (0,∞)). And

∣∣gn,p
(
|vn|

)
gn,k(un)

∣∣ � gn,p
(
S(·)|v0,n|

)
gn,k

(
S(·)|u0,n|

)
�

∣∣S(·)|u0,n|
∣∣k∣∣S(·)|v0,n|

∣∣p,∣∣gn,q
(
|un|

)
gn,�(vn)

∣∣ � gn,q
(
S(·)|u0,n|

)
gn,k

(
S(·)|v0,n|

)
�

∣∣S(·)|u0,n|
∣∣q∣∣S(·)|v0,n|

∣∣�.
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Moreover fors > 1 small enough such that (k + p)s < (N + 2)/N , and for anyT > 0, we find

∥∥(
S(·)|u0,n|

)k(
S(·)|v0,n|

)p∥∥
Ls(QT ) �

∥∥S(·)|u0,n|
∥∥k
L(k+p)s(QT )

∥∥S(·)|v0,n|
∥∥p
L(k+p)s(QT )

from (3.18); andS(·)(|u0,n| + |v0,n|) is bounded inL(k+p)s(QT ), sinceu0,n, v0,n are bounded inL1(Ω).
Then|S(·)|u0,n||k|S(·)|v0,n||p is bounded inLs(QT ). Up to a subsequence,un, vn converge strongly in
Lr(QT ) for 1 � r < (N + 2)/N , and a.e. inQ∞ to someu, v. Moreoverun satisfies

∫ T

0

∫
Ω

(
−unψt − un∆ψ + gn,p

(
|vn|

)
gn,k(un)ψ

)
dxdt =

∫
Ω
ψ(0)u0,n dx, (3.20)

for anyψ ∈ C∞(QT ) with compact support inΩ × [0,T ) (resp. inΩ × [0,T ), such that∂ϕ/∂ν = 0). If
k �= 0, thengn,p(|vn|)gn,k(un) converges to|v|p|u|k−1, a.e. inQ∞ and inL1(QT ). Thus we can go to the
limit in (3.20) and deduce∫ T

0

∫
Ω

(
−uψt − u∆ψ + |v|p|u|k−1uψ

)
dxdt =

∫
Ω
ψ(0) du0. (3.21)

If k = 0, then, as in Theorem 3,gn,p(|vn|)gn,0(un) converges weakly inLs(QT ) to Φ = |v|p sign0 u,
sinces > 1, hence (3.21) is still valid. Similarly forv, thus (u,v) is a solution of (1.7). �

Remark 3.3. In the scalar case of Eq. (1.3) with Dirichlet (or Neuman conditions), ifw(0) ∈ L1(Ω), no
condition on the powerQ is required for existence, see [11, Remark 5]. ConditionQ < (N+2)/N , anal-
ogous to (1.11) is only required whenw(0) ∈ Mb(Ω). The proof of the existence whenw(0) ∈ L1(Ω)
lies essentially on the monotonicity of the nonlinear term, and cannot be extended to system (1.1).

Remark 3.4. Letx0,y0 ∈ Ω be fixed. Consider Dirac massesδx0, δy0 at these points. From Theorem 1.2,
if max(k + p, q + 
) < (N + 2)/N , then problem (1.7), with initial data

u0 = U0 + α0δx0, v0 = V0 + β0δy0, (3.22)

has a solution for any real numbersα0, β0 and anyU0,V0 ∈ L1(Ω). If the two Dirac masses are not at
the same point, that is ifx0 �= y0, and for exampleU0,V0 ∈ L∞(Ω) (in particularU0 = V0 = 0), we can
improve this result: in that case we have existence whenever

max(p, q,k, 
) < (N + 2)/N. (3.23)

Indeed in the proof of Theorem 1.2, we can approximateu0, v0 by

u0,n = U0 + α0ρn(· − x0), v0,n = V0 + β0ρn(· − y0),

whereρn is a regularizing sequence with support inB(0,m), with m = |x0 − y0|/2. As above, prob-
lem (3.13) admits a solution (un,vn). And there existsC > 0, such that, for anyt � 0,

S(t)|u0,n| � C + |α0|S(t)ρn(· − x0), S(t)|v0,n| � C + |β0|S(t)ρn(· − y0), a.e. inΩ.
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Then for fixedT > 0, S(·)|v0,n| is bounded in (Ω\B(y0,m) × [0,T ], and S(·)|u0,n| is bounded
in (Ω\B(x0,m) × [0,T ]. Thus |S(·)|u0,n||k|S(·)|v0,n||p is bounded inLs(QT ) for somes > 1, since
k,p < (N + 2)/N . The same property holds for|S(·)|u0,n||q|S(·)|v0,n||�, sinceq, 
 < (N + 2)/N . More
generally, we have existence in Theorem 1.2 under the assumption (3.23), as soon asu0,v0 ∈ Mb(Ω)
with compact disjoint supports.

Remark 3.5. We have supposed thatp, q > 0 in order that the solutionsu,v are actually coupled. In
fact the existence theorems are still available whenp = 0 orq = 0. In the same way, we get an existence
result for a scalar equation:

Proposition 3.1. For anyk � 0, anyu0 ∈ L1(Ω) and any measurable functionW � 0 onQ∞ such that

(
S(·)|u0|

)k
W (·) ∈ Lsloc

(
Q∞

)
, for somes � 1 (s > 1 if k = 0), (3.24)

there exists a unique weak solutionu of problem


ut − ∆u+W |u|k−1u = 0, in Q∞,

u = 0 (resp.∂u/∂ν = 0), on∂Ω × (0,∞),

u(0) = u0, in Ω.

(3.25)

It is also the case whenu0 ∈ Mb(Ω) and

W ∈ Lηloc

(
Q∞

)
, for someη > 1, such thatkη′ < (N + 2)/N. (3.26)

Moreover ifu is a subsolution, withu ∈ L1
loc(Q∞) andut − ∆u ∈ L1

loc(Q∞), andu′ is a supersolution,
thenu � u′ a.e. inQ∞.

Proof. First assume thatu0 ∈ L1(Ω). LetWn, u0,n be the truncatures ofW ,u0 by ±n andun be the
solution of the approximate problem


un,t − ∆un +Wngn,k(un) = 0, inQ∞,

un = 0 (resp.∂un/∂ν = 0), on∂Ω × (0,∞),

un(0) = u0,n, inΩ.

(3.27)

Then

∣∣Wngn,k(un)
∣∣ � W

(
S(·)|u0|

)k
,

hence we obtain the existence of a solution of (3.25) from (3.24), as in Theorem 1.1. Now assume that
u0 ∈ Mb(Ω), and consider the approximate problem (3.27), whereu0,n is given as in Theorem 1.2. If
k �= 0, thenWn|un|k is bounded inLs(QT ), for s > 1 small enough. Indeed for anyr > 1,

∥∥(
S(·)|u0,n|

)k
Wn

∥∥
Ls(QT ) �

∥∥(
S(·)|u0|

)∥∥k
Lksr(QT )

∥∥W∥∥
Lsr′ (QT );
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Sincekη′ < (N+2)/N , we can take 1� s < η/(1+kηN/(N+2)), andr′ = η/s; thusksr < (N+2)/N
and the right-hand side is finite. Ifk = 0, thenW |un|k = W ∈ Lη(QT ) and the conclusion follows again.
The existence of a solution of (3.25) follows as in Theorem 1.2. Moreover the solution is unique, from
monotonicity, and the comparison principle holds.�

3.4. A principle of cross comparison

Now we consider the case of nonnegative initial data, and we look for some kind of comparison
principles. Notice a simple property of contravariance. Assume that (u,v) and (u′,v′) are two nonnegative
solutions of problem (1.7), and (1.8) holds; then

v � v′, inQ∞ =⇒ u � u′, inQ∞; (3.28)

indeed

ut − ∆u+ v′puk � 0 and u′t − ∆u′ + v′pu′k = 0,

andv′puk ∈ L1(QT ), for anyT > 0, from (1.8); then (3.28) follows from the usual comparison principle.
Thus we cannot expect that the conditionsu(0) � u′(0) andv(0) � v′(0) imply u � u′ andv � v′,
inQ∞. Using this idea we can prove the existence of minimal–maximal solution and a maximal–minimal
one:

Proof of Theorem 1.3. From Remark 3.1, we can suppose thatu0 �≡ 0 andv0 �≡ 0. First assume that
k � 0, and
 > 0. Letw be the solution of heat equation with initial datau0:

wt − ∆w = 0, inQ∞,

w = 0 (resp.∂w/∂ν = 0), on∂Ω × (0,∞),

w(0) = u0.

We construct a first sequence of approximate solutions (un,vn), such that for anyn � 1,{
un = vn = 0 (resp.∂un/∂ν = ∂vn/∂ν = 0), on∂Ω × (0,∞),

un(0) = u0, vn(0) = v0, inΩ.
(3.29)

We take forv1 the solution of heat equation

v1t − ∆v1 = 0, inQ∞,

hencev1 > 0, andv � v1 in Q∞ from the maximum principle. Then we define a nonnegative function
u1 � 0 by

u1t − ∆u1 + vp1|u1|k−1u1 = 0, inQ∞.

Such a solution exists from Proposition 3.1 withW = vp1. Indeed ifu0 ∈ L1(Ω), thenv1 = S(·)v0, and
(3.24) holds from (1.8); ifu0 ∈ Mb(Ω), then (3.26) holds with condition (1.11), withη = 1 + k/p if
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k �= 0, and anyη ∈ (1, (N + 2)/Np) if k = 0. And vp|u1|k−1u1 ∈ L1
loc(Q∞), moreoveru1t − ∆u1 +

vp|u1|k−1u1 � 0, henceu1 � w. In the same way we define a uniquev2 � 0 by

v2t − ∆v2 + uq1|v2|�−1v2 = 0, inQ∞,

andv2 � v1. We defineu2 by

u2t − ∆u2 + vp2|u2|k−1u2 = 0, inQ∞,

andu2 � u1. By induction we definevn � 0 andun � 0, for anyn � 2, by{
vnt − ∆vn + uqn−1|vn|�−1vn = 0, inQ∞,

unt − ∆un + vpn|un|k−1un = 0, inQ∞;

and we find

0 � u1 � u2 � · · · � un � un+1 � · · · � w, 0 � · · · � vn+1 � vn � · · · � v2 � v1. (3.30)

Then (un,vn) converges, a.e. inQ∞, to some (U ,V ), from monotonicity. Andvpn|un|k−1un →
V p|U |k−1U , even ifk = 0, since (un) is nondecreasing. The convergence holds inL1(QT ), from (1.8)
or (1.11), sincevpnu

k
n � vp1w

k. If 
 > 0, thenuqn−1|vn|�−1vn → U q|V |�−1V , a.e. inQ∞ and inL1(QT ).
If 
 = 0, sign0 vn does not converge in general to sign0 v, because the sequence (vn) is nonincreasing. As
in Theorem 1.1 after exchangingu andv, we deduce thatuqn−1 sign0 vn converges toΨ = U q sign0V ,
weakly inLsloc(Q∞) for somes > 1. Thus (U ,V ) is a solution of the system. Let (u,v) be any other
solution. Thenu1 � u, andv � v2, since

u1t − ∆u1 + vp|u1|k−1u1 � 0, v2t − ∆v2 + uq|v2|�−1v2 � 0.

By induction,u1 � u andv � vn for anyn � 1, henceU � u andv � V .
Exchanging the two equations, we define other sequence (ũn, ṽn) satisfying also (3.29), with initial

data (u0,v0), such that{
ũ1t − ∆ũ1 = 0, inQ∞,

ṽ1t − ∆ṽ1 + ũq1|ṽ1|�−1ṽ1 = 0, inQ∞,

and {
ũnt − ∆ũn + ṽpn−1|ũn|k−1ũn = 0, inQ∞,

ṽnt − ∆ṽn + ũqn|ṽn|�−1ṽn = 0, inQ∞

for anyn � 2; then

ṽ1 � ṽ2 � · · · � ṽn � ṽn+1 � .. � v, u � · · · � ũn+1 � ũn � · · · � ũ2 � ũ1,

and (̃un, ṽn) converges to a solution (̃U , Ṽ ) of the system, andu � Ũ andṼ � v.
Now assume 0� u0 � u′0 and 0� v′0 � v0. By induction we find easily thatun � u′n, v′n � vn, and

ũn � ũ′n, ṽ′n � ṽn, with obvious notations, hence (1.13) follows.�
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Remark 3.6. Consider problem (1.7) with Neuman conditions, and assume thatu0,v0 ∈ L∞(Ω),
u0,v0 � 0, and infx∈Ω v0(x) > 0. Let (u′,v′) be the unique solution of the o.d.e. problem (1.5) such
thatu′(0) = ‖u0‖L∞(Ω) andv′(0) = infx∈Ω v0(x). Then any solution (u,v) of (1.7) satisfies

u � u′ and v′ � v, inQ∞.

Indeed takingu′0 = ‖u0‖L∞(Ω) andv′0 = infx∈Ω v0(x), the sequences (u′n) and (v′n) constructed above
only depend ont, and converge respectively tou′ andv′.

4. Links between u and v

Here we study the question of invariant regions wheneveru0,v0 ∈ L∞(Ω) andab > 0, and prove
Theorem 1.4. Our method is based on the ideas of [6] for elliptic systems, also used in [9], namely a
comparison between two powers ofu andv, chosen in a suitable way. First let us give a scheme of the
proof of the main points of Theorem 1.4. The basic idea is to consider the function

Y = v − λ∗ub/a,

where

λ∗ = (a/b)1/a. (4.1)

Whenb/a � 1, the formal computation of∆Y leads to an equation of the form

Yt − ∆Y +K = M ,

whereM = cub/a−2|∇u|2, with c = λ∗(b/a)(b/a − 1) � 0, andK has the sign ofY if a � 1, and
the opposite sign ifa > 1. Formally, if a � 1, if Y (0) � 0, thenY � 0 from the maximum principle.
Moreover, if δ � 0, we prove thatK � CY for someC > 0, henceY > 0 or Y ≡ 0 from the strict
maximum principle. Ifa > 1, andδ � 0, then we prove thatK � CY −, hence againY (0) � 0, then
Y � 0 from the maximum principle. Technically, one has to justify the use of these maximum principles,
because functionY is not regular enough: in particular,∆Y is not defined a.e., due of the termM . This
is the purpose of next lemma.

Lemma 4.1. Let (u,v) be any solution of(1.7), with u0,v0 ∈ L∞(Ω), u0,v0 � 0. Letα � 1 � β > 0,
such thatβ − 1 + 
 � 0, and

Y = vβ − λuα, λ > 0, (4.2)

K = βuq|v|β−2+�v − αλvp|u|α−2+ku, (4.3)

with the convention(1.2). Then for any realC > 0, and anyt > 0,

e−Ct
∫
Ω

(
Y −)2

(t) dx �
∫
Ω

(
Y −)2

(0) dx+
∫ t

0

∫
Ω

e−Cτ
(
2K(τ ) − CY −(τ )

)
Y −(τ ) dxdτ. (4.4)
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MoreoverW (t) = Y (t) + S(t)Y (0)− satisfies∫
Ω

(
W−)2

(t) dx �
∫ t

0

∫
Ω

2K(τ )W−(τ ) dxdτ. (4.5)

Also for anyC ′ > 0, Z(t) = eC
′tY (t) − S(t)Y (0) satisfies∫

Ω

(
Z−)2

(t) dx �
∫ t

0

∫
Ω

(
2K(τ ) − C ′Y (τ )

)
Z−(τ ) dxdτ. (4.6)

Proof. Let T > 0 be fixed, and

F = vp|u|k−1u, G = uq|v|�−1v,

henceF ,G ∈ L∞(QT ). Let (u0,n,Fn), (v0,n,Gn) ∈ D(Ω) × D(QT ) with Fn,Gn � 0, converging
respectively to (u0,F ), (v0,G) in L2(Ω) × L2(QT ), with u0,n,v0,n bounded inL∞(Ω) andFn, Gn

bounded inL∞(QT ). Then there exist unique classical solutionsun,vn of problems
un,t − ∆un + Fn = 0, vn,t − ∆vn +Gn = 0, inQT ,

un = vn = 0 (resp.∂un/∂ν = ∂vn/∂ν = 0), on∂Ω × (0,T ),

un(0) = u0,n, vn(0) = v0,n, inΩ.

(4.7)

And un,vn are bounded inL∞(QT ) and converge tou,v, strongly inC([0,T ],L2(Ω)), and a.e. inQT ,
and inL2((0,T ),W 1,2(Ω)). Let ε > 0, andε′ = (λεα)1/β . Let us define

fn,ε = (un + ε)α, gn,ε′ = (vn + ε′)β, Yn,ε = gn,ε′ − λfn,ε.

Then in the classical sense{
(fn,ε)t − ∆fn,ε + α(un + ε)α−1Fn = −α(α− 1)(un + ε)α−2|∇un|2 � 0,

(gn,ε′)t − ∆gn,ε′ + β(vn + ε′)β−1Gn = β(1− β)(vn + ε′)β−2|∇vn|2 � 0.

ThusYn,ε satisfies the equation

(Yn,ε)t − ∆Yn,ε +Kn,ε = Mn,ε, (4.8)

whereKn,ε,Mn,ε ∈ L∞(QT ) are defined by{
Kn,ε = β(vn + ε′)β−1Gn − αλ(un + ε)α−1Fn,

Mn,ε = β(1− β)(vn + ε′)β−2|∇vn|2 + α(α − 1)λ(un + ε)α−2|∇un|2 � 0.

For the Dirichlet problem, there holdsYn,ε = 0 on∂Ω × (0,T ), from the choice ofε′. For the Neuman
problem, we find∂Yn,ε/∂ν = β(vn + ε′)β−1∂vn/∂ν − αλ(un + ε)α−1∂un/∂ν = 0. In any case

Yn,ε(t) = S(t)
(
Yn,ε(0)

)
+

∫ t

0
S(t− s)(Mn,ε −Kn,ε)(s) ds.
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Now for anyC > 0, multiplying (4.8) by e−CtY −
n,ε, and integrating overΩ, we find

eCt
d
dt

(
e−Ct

∫
Ω

(
Y −
n,ε

)2
dx

)
�

∫
Ω

(
2Kn,ε(t) − CY −

n,ε(t)
)
Y −
n,ε(t) dx.

We derive, for anyt ∈ [0,T ],

e−Ct
∫
Ω

(
Y −
n,ε

)2
(t) dx �

∫
Ω

(
Y −
n,ε

)2
(0) dx+

∫ t

0

∫
Ω

e−Cτ
(
2Kn,ε(τ ) − CY −

n,ε(τ )
)
Y −
n,ε(τ ) dxdτ. (4.9)

In the same way, let

Wn,ε(t) = Yn,ε(t) + S(t)
(
Yn,ε(0)−

)
;

thenWn,ε satisfies the same equation (4.8) asYn,ε, and multiplying byW−
n,ε, we obtain

∫
Ω

(
W−

n,ε
)2

(t) dx � 2
∫ t

0

∫
Ω
Kn,ε(τ )W−

n,ε(τ ) dx dτ. (4.10)

Also, for anyC ′ > 0,

Zn,ε(t) = eC
′tYn,ε(t) − S(t)Yn,ε(0)

satisfies the equation

(Zn,ε)t − ∆Zn,ε = eC
′t(Mn,ε + C ′Yn,ε −Kn,ε).

Multiplying by Z−
n,ε, we deduce that

d
dt

( ∫
Ω

(
Z−
n,ε

)2
dx

)
�

∫
Ω

(
2Kn,ε(t) − C ′Yn,ε(t)

)
Z−
n,ε(t) dx,

hence∫
Ω

(
Z−
n,ε

)2
(t) dx �

∫ t

0

∫
Ω

(
2Kn,ε(τ ) −C ′Yn,ε(τ )

)
Z−
n,ε(τ ) dxdτ. (4.11)

For fixedε,Kn,ε is bounded inL∞(QT ), andMn,ε is bounded inL1(QT ). Hence asn→ ∞, Yn,ε con-
verges to

Yε = gε′ − λfε = (v + ε′)β − λ(u+ ε)α,

strongly inC([0,T ],L1(Ω)), and a.e. inQT ; and inLm(QT ) for anym > 1, sinceYn,ε is bounded in
L∞(QT ). AndKn,ε converges to

Kε = β(v + ε′)β−1uq|v|�−1v − α(u+ ε)α−1vp|u|k−1u
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in Lm(QT ) and a.e. inQT . Takingm = 2, we can pass to the limit in (4.9), and obtain

e−Ct
∫
Ω

(
Y −
ε

)2
(t) dx �

∫
Ω

(
Y −
ε

)2
(0) dx+

∫ t

0

∫
Ω

e−Cτ
(
2Kε(τ ) − CY −

ε (τ )
)
Y −
ε (τ ) dxdτ. (4.12)

Now let us go to the limit asε→ 0. ThenKε converges to functionK defined by (4.3) (even when
 = 0,
since in that caseβ = 1), a.e. inQT , and strongly inL2(QT ). Indeed

(v + ε′)β−1uq|v|�−1v � uqvβ−1+�,

anduqvβ−1+� is bounded inQT , from the assumptionβ − 1 + 
 � 0. AndYε converges toY defined
by (4.2), a.e. inQT , and strongly inL2(QT ). And Yε(0) converges tovβ0 − λuα0 , strongly inL2(Ω).
Then we can go to the limit in (4.12), and deduce (4.4). Similarly (4.5) and (4.6) follow from (4.10)
and (4.11). �

Remark 4.1. For studying the invariance property of the region {aub � bva}, the simplest choice would
be to compareub andva, that means to chooseα = b andβ = a in Lemma 4.1, andλ = a/b. It works
in a restrictive case

0< a � 1 � b, (4.13)

that means
− 1< p � 
 andk � q. Indeed in that case

K = 0, Y = va − (a/b)ub.

Applying (4.6) withC ′ = 0, we deduce that

va(t) − (a/b)ub(t) � S(t)
(
va0 − (a/b)ub

)
. (4.14)

Therefore, ifaub0 � bva0, a.e. inΩ, thenaub � bva in Q∞. Moreover ifaub0 �≡ bva0, thenaub < bva

in Q∞. Thus Theorem 1.4 is proved in that special case. A first step had been done in that case inR
N

by Kalashnikov in [21], with assumption (4.13) and moreoverk, 
 < 1, in order to get strict positivity
or extinction properties. Also his method only proved the existence of invariant regions of the form
{aub + ε � bva} for someε > 0.

Now we prove the comparison theorem in the general case:

Proof of Theorem 1.4. (1) Under our assumptions, we haveab > 0, andb/a � 1. First takeα = b/a
andβ = 1 in Lemma 4.1 andλ = λ∗, whereλ∗ is defined in (4.1), hence

Y = v − λ∗ub/a, K = uqv� sign0 v −
b

a
λ∗ub/a−1vpuk sign0u.

We can writeK under the forms

K = uqvp
(
v1−a −

(
λ∗ub/a

)1−a)
, if a � 1, (4.15)

K =
(
λ∗

)1−a
udv�

((
λ∗ub/a

)a−1 − va−1), if a > 1, (4.16)
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where

d = q +
b

a
(1− a) =

b

a
+ k − 1 � k � 0;

in particularK = 0 if a = 1. Whena � 1, notice that
 �= 0, and (4.15) holds even whenk = 0, since in
that caseb > a.

(i) First suppose that 0< a � b.
• If a � 1, thenK � 0 on the set {Y � 0} = { v � λ∗ub/a}, from (4.15). TakingC = 0 in (4.4), we

deduce that∫
Ω

(
Y −)2

(t) dx �
∫
Ω

(
Y −)2

(0) dx.

Thus the region {aub � bva} = {λ∗ub/a � v} = {Y � 0} is invariant: ifY (0) � 0, thenY � 0 inQ∞.
Assume moreover thatδ � 0. Sinceλ∗ub/a � v, we can write

K = uqvp
(
v1−a −

(
λ∗ub/a

)1−a) � uqvp−a
(
v − λ∗ub/a

)
�

(
λ∗

)−qa/b
vqa/b+p−a

(
v − λ∗ub/a

)
=

(
λ∗

)−qa/b
vδ/b

(
v − λ∗ub/a

)
.

Now (λ∗)qa/bvδ/b is bounded by a constantC ′ > 0, henceK � C ′Y in Q∞. From (4.6),Z(t) =
eC

′tY (t) − S(t)Y (0) satisfiesZ−(t) = 0 for anyt > 0, that means

Y (t) � e−C
′tS(t)Y (0). (4.17)

As a consequence, ifY (0) �≡ 0, thenY > 0 inQ∞. This is also true when 1� b, from Remark 4.1.
• If a > 1, thenK has the opposite sign ofY , from (4.16). On the set {Y � 0}, there holds

(
λ∗ub/a

)a−1 − va−1 � ca
(
λ∗ub/a

)a−2(
λ∗ub/a − v

)
,

at any point whereu �= 0, with ca = max(1,a − 1). Assume moreover thatδ � 0. Observing that
d+ (a− 2 + 
)b/a = δ/a � 0, we find

K � ca
(
λ∗

)�−1
uδ/a

(
λ∗ub/a − v

)
,

on the set {Y � 0} = { v � λ∗ub/a}, from (4.16), even at the points whereu = 0. Sinceuδ/a is bounded,
it follows thatK � CY − for someC > 0. We can apply (4.4) with this value ofC. As a consequence,
if Y (0) � 0, thenY � 0 inQ∞, that means the region {aub � bva} is still invariant. TakingC ′ = 0 in
Lemma 4.1, the functiont �→ Z(t) = Y (t) − S(t)Y (0) satisfies∫

Ω

(
Z−)2

(t) dx �
∫ t

0

∫
Ω
K(τ )Z−(τ ) dxdτ � 0,

henceY (t) � S(t)Y (0), that means

v(t) − λ∗ub/a(t) � S(t)
(
v0 − λ∗ub/a0

)
; (4.18)
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thus ifY (0) �≡ 0, thenY > 0, inQ∞.
(ii) Assume thatb � a < 0. ThenK has the sign ofY sincea < 1, hence as above the region{

λ∗ub/a � v
}

=
{
aub � bva

}
=

{
|b|u|b| � |a|v|a|

}
is invariant. Moreover 1− a > 1, hence from (4.15),

K � C ′(v − λ∗ub/a),
for someC ′ > 0, so that (4.17) holds again; then ifY (0) �≡ 0, thenY > 0 inQ∞.

(2) Here 1< a � b andu,v ∈ C(Q∞), andaub0 < bva0 in Ω. The functionK has the opposite sign
of Y , andY ∈ C(Q∞), and for any ballB = B(x0, r) such thatB ⊂ Ω, we have minB Y (0) = mB > 0.
Hence there existsτ > 0 such that minB Y (t) > 0 for anyt ∈ [0, τ ). Let

τB = sup
{
τ > 0: min

B
Y (t) > 0, ∀t ∈ [0, τ )

}
.

If τB < ∞, there existsx ∈ B such thatY (x, τB) = 0. ButY � 0 on∂B × (0,T ), and consequently
Y (t) � SB(t)mB , whereSB is the semi-group inB with Dirichlet conditions; henceY > 0 in [0,τ ]×B,
and we reach a contradiction. ThenτB = ∞, so thatY > 0 in Q∞, that meansaub < bva in Q∞,
and (4.18) holds again.�

Remark 4.2. If 0 < a � b anda � 1, or if b � a � 0, we can compareu andv at any timet > 0,
without comparison assumptions on the initial datau0, v0: we claim that

v(t) − λ∗ub/a(t) � −S(t)
(
v − λ∗ub/a0

)−
, inΩ, (4.19)

for anyt > 0. Indeed taking againα = b/a andβ = 1 in Lemma 4.1, andY = v− λ∗ub/a, the function
W = Y + S(·)Y (0)− satisfies, from (4.5),∫

Ω

(
W−)2

(t) dx �
∫ t

0

∫
Ω
K(τ )W−(τ ) dxdτ � 0,

sinceY � 0 on the set {W � 0}, andK � 0 on the set {W � 0} from (4.15). ThenW � 0, inQ∞,
which proves (4.19).

Remark 4.3. Under any of the assumptions (i) or (ii) of Theorem 1.4, one can easily show that the region
{λub/a � v} is invariant for anyλ � λ∗.

Remark 4.4. Consider the Neumann problem. If (0< a � b anda � 1 andδ � 0) or b � a < 0, and
moreover

λ∗u
b/a
0 + ε � v0, a.e. inΩ,

for someε > 0, then from (4.17), there existsC ′ > 0 such that

λ∗u(t)b/a + εe−C
′t � v(t), inQ∞.
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If a � 1 � b, then from (4.14) the region ofR2

{
aub + ε � bva

}
is invariant. If 1� a � b and (δ � 0,oru,v ∈ C(Q∞)), then from (4.18) the region

{
λ∗ub/a + ε � v

}
is invariant.

Remark 4.5. Under any of the assumptions of Theorem 1.4, we can extend Remark 2.2 to system (1.1).
We haveλ∗ub/a � v in Q∞, hence 0� (λ∗)pu1+δ/a � vp|u|k−1u. Thusu satisfies the scalar inequality

ut − ∆u+
(
a

b

)p/a

uQ � 0 (4.20)

in D′(Q∞), whereQ is defined at (1.6), and more precisely

u(t) � S(t)u0 −
(
a

b

)p/a ∫ t

0
S(t− s)uQ(s) ds. (4.21)

Similarly uq|v|�−1v � (λ∗)−aq/bv1+δ/b, andv1+δ/b = vP ∈ L1(QT ), hence

vt − ∆v +
(
a

b

)−q/b
vP � 0 (4.22)

in D′(Q∞), and

v(t) � S(t)u0 −
(
a

b

)−q/b ∫ t

0
S(t− s)vP(s) ds. (4.23)

Thusu, v are respectively subsolution and supersolution of scalar equations of type (1.3) with the expo-
nentsQ > 1 andP > 1.

5. New existence results

Using the comparison properties, we can improve the existence result of Theorem 1.1 in case of non-
negative solutions:

Proof of Theorem 1.5. We set

u0,n = min(u0,n), w0,n = min
(
v0,λ∗nb/a

)
,
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and considerµ0,n ∈ L1(Ω), µ0,n � 0, bounded inL1(Ω), such thatµ0,n converges weakly toµ0 in

Mb(Ω), and definev0,n = w0,n + µ0,n. Thenu0,n,v0,n ∈ L∞(Ω), andλ∗ub/a0,n � w0,n � v0,n, a.e. inΩ.
From Theorem 1.1, there exists at least one nonnegative solution (un,vn) of problem


un,t − ∆un + vpn|un|k−1un = 0, inQ∞,

vn,t − ∆vn + uqn|vn|�−1vn = 0, inQ∞,

un = vn = 0 (resp.∂un/∂ν = ∂vn/∂ν = 0), on∂Ω × (0,T ),

un(0) = u0,n, vn(0) = v0,n, onΩ.

From Theorem 1.4, one hasλ∗ub/an � vn in Q∞. Hence

0 � vpn|un|k−1un �
(
λ∗

)−ak/b
v
p+ka/b
n =

(
λ∗

)−ak/b
v

1+δ/b
n =

(
λ∗

)−ak/b
vP
n,

0 � uqn|vn|�−1vn �
(
λ∗

)−aq/b
v
�+qa/b
n =

(
λ∗

)−aq/b
v

1+δ/b
n =

(
λ∗

)−aq/b
vP
n.

Now vn(t) � S(t)v0,n, and (v0,n) is bounded inL1(Ω), henceS(t)v0,n is bounded inLr(QT ) for any
T > 0 and 1� r < (N + 2)/N , in particular for somer > P. As in the proof of Theorem 1.2, up
to a subsequence, (un,vn) converge to some (u,v), a.e. inQ∞ and strongly inLr(QT ) for 1 � r <
(N + 2)/N , and anyT > 0, and (u,v) is a solution of problem. �

Remark 5.1. Assumption (1.18) is an improvement of (1.11): indeed ifa � b, thenp+k � q+
, hence
(1.11) impliesq + 
 < (N + 2)/N , and it is easy to verify thatP � q + 
. Notice that (1.18) can be
written under the form

max
(
a

δ
,
b

δ

)
= max

(
p+ 1− 


δ
,
q + 1− k

δ

)
>
N

2
.

It defines a condition which is well adapted to the system, linked to the particular solutions defined
in (2.3), (2.4). It appears also in the study of the stationary solutions of system (1.1) withN/2 replaced
by (N − 2)/2, see [8, Theorem 7.1]. Whenk = 
 = 0, the region inR2 defined by the relation

max
(
p+ 1
pq − 1

,
q + 1
pq − 1

)
>
N

2

is delimited by to arcs of hyperbolas, intersecting at point (p, q) = ((N + 2)/N , (N + 2)/N ).

Remark 5.2. It seems difficult to prove that the existence results of Theorems 1.2 and 1.5 are optimal.
Indeed the first question is the possible nonuniqueness of the solutions. For proving nonexistence when
(1.11) or (1.18) does not hold, we have to restrict ourselves to the “reachable” solutions, that means those
which can be obtained by limits of solutions of regular problems. Then nonexistence results can follow
from suitable upper-estimates for the solutions. We give some results in that sense in [7].
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6. Positivity or extinction properties

In this section we give sufficient conditions for positivity of one of the componentsu,v of the solutions
of system (1.1), according to the values ofp, q,k, 
, when the initial data are bounded. Our first result
extends the result of Proposition 2.1(i) for the o.d.e. system (1.5):

Theorem 6.1. Suppose thatu0,v0 ∈ L1(Ω), and(1.8) holds. Ifu0 � 0, u0 �≡ 0, andk � 1, then for any
solution(u,v) of (1.7),

u > 0, in Q∞.

Similarly if v0 � 0, v0 �≡ 0, and
 � 1, thenv > 0 in Q∞.

Proof. Let (u,v) be any solution of the problem. Sinceu0 � 0, we know thatu � 0 in Q∞, from
Lemma 3.1. From (1.8) and Remark 3.5, there exists a weak nonnegative solution of problem


ũt − ∆ũ+

(
S(·)|v0|

)p
ũk = 0, inQ∞,

ũ = 0 (resp.∂ũ/∂ν = 0), on∂Ω × (0,∞),

ũ(0) = u0, inΩ.

Moreover (S(·)|v0|)puk ∈ L1
loc(Q∞) from (1.8), and

ut − ∆u+
(
S(·)|v0|

)p
uk � 0, inQ∞,

henceu � ũ in Q∞ from Proposition 3.1. Sinceu0 �≡ 0 and ũ ∈ C([0,∞),L1(Ω)) ∩ C(Q∞), for
anyε > 0 sufficiently small, there exists a ballBε or radiusε, such thatBε ⊂ Ω, and infBε

ũ(ε) > 0.

Otherwise (S(t)|v0|)p is bounded onΩ × [ε,∞) by a constantCε, andCεũk ∈ L∞(Ω × [ε,∞)), and

ũt − ∆ũ+ Cεũk � 0, inΩ × [ε,∞).

Sinceũ(ε) ∈ L∞(Ω), there exists a solutionξ of problem


ξt − ∆ξ + Cεξk = 0, inΩ × (ε,∞),

ξ = 0 (resp.∂ξ/∂ν = 0), on∂Ω × (ε,∞),

ξ(ε) = ũ(ε), inΩ,

andξ > 0 by the strict maximum principle, sincek � 1. This impliesũ � ξ > 0, inΩ × (ε,∞), by the
usual comparison principle. Lettingε tend to 0, it follows thatu > 0 inQ∞. �

If the initial data are bounded, we obtain more precise lower estimates:

Proposition 6.1. Assume thatu0,v0 ∈ L∞(Ω), u0 � 0, u0 �≡ 0 andk � 1. Then for any solution(u,v)
of (1.7),
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(i) there exists a constantC > 0 such that, for anyt > 0,

e−CtS(t)u0 � u(t) � S(t)u0, in Ω; (6.1)

(ii) for the Dirichlet problem, there exists a constantC ′ > 0 such that, for anyt > 0,

C ′Sd(t)u0 � u(t) � Sd(t)u0, in Ω; (6.2)

(iii) for the Neuman problem, ifinfx∈Ω u0(x) = δ > 0, there existsC > 0 such that, for anyt > 0,

u(t) �
(
δ1−k + C(k − 1)t

)1/(1−k)
, in Ω.

Proof. (i) Under our assumptions, (S(·)|v0|)p(S(·)u0)k−1 is bounded onQ∞ by some constantC > 0,
hence

ut − ∆u+ Cu � 0, inQ∞.

Let z be the solution of problem
zt − ∆z + Cz = 0, inQ∞,

z = 0 (resp.∂z/∂ν = 0), on∂Ω × (0,∞),

z(0) = u0, inΩ.

(6.3)

Thenu(t) � z(t) = e−CtS(t)u0, inΩ, for anyt � 0, which proves (6.1).
(ii) With Dirichlet conditions, there existsC ′′ > 0 such that for anyt � 1,∥∥Sd(t)|v0|

∥∥p
L∞(Ω)

∥∥Sd(t)|u0|
∥∥k−1
L∞(Ω) � C ′′ e−λ1(p+k−1)(t−1),

from (3.5) between 1 andt. Thenu � Z in Ω × [1,∞), whereZ is the solution of problem
Zt − ∆Z + C ′′ e−λ1(p+k−1)(t−1)Z = 0, inΩ × (1,∞),

Z = 0, on∂Ω × (1,∞),

Z(1) = u(1), inΩ.

By computation, for anyt � 1,

Z(t) � exp
(
−

∫ ∞

1
e−λ1(p+k−1)s ds

)
Sd(t− 1)u(1) � exp

(
−C −

∫ ∞

1
e−λ1(p+k−1)s ds

)
Sd(t)u0

from (6.1), hence (6.2) holds, by considering separately [1,∞) and [0, 1].
(iii) Here (S(t)|v0|)p is bounded onQ∞ by a constantC, henceu � ζ, whereζ is the solution of the

o.d.e. problem{
ζt + Cζk = 0, in (0,∞),

ξ(0) = δ,

which is given byζ(t) = (δ1−k + C(k − 1)t)1/(1−k). �
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Next we apply the results of Section 4 to deduce supplementary positivity or extinction results, under
comparison assumptions on the initial data.

Theorem 6.2. Assume that0< a � b, andu0,v0 ∈ L∞(Ω), u0,v0 � 0 such that

aub0 � bva0, a.e. inΩ, and aub0 �≡ bva0 .

Let (u,v) be any solution of(1.7).

(i) If δ � 0 or a � 1 � b, thenv > 0 in Q∞.
(ii) If δ < 0, anda � 1 or (1 < a andaub0 < bv

a
0 , a.e. inΩ, with u,v ∈ C(Q∞)), thenu(·, t) ≡ 0 for

t large enough.

Proof. (i) From Theorem 1.4, in any caseu, v satisfyaub < bva inQ∞, and the result follows. Ifδ � 0,
we can also conclude from Remark 4.5, sincev is a supersolution of the scalar equation

wt − ∆w +
(
a

b

)−q/b
wP = 0,

with the exponentP = 1 + δ/b � 1.
(ii) In any case there holdsaub � bva in Q∞, hence from Remark 4.5,u is a subsolution of the scalar

equation

wt − ∆w +
(
a

b

)p/a

wQ = 0,

and the exponentQ = 1+ δ/a ∈ (0, 1); indeedδ < 0 impliesQ < 1, and alsok, 
 < 1 from (2.1), hence
a+ δ = p(q + 1) + k(1− 
) > 0. Thenu has a compact support int. �

Concerning the Neuman problem, we can extend some other results of Proposition 2.1 by using Re-
marks 3.6 and 4.4:

Theorem 6.3. Let u0,v0 ∈ L∞(Ω), u0,v0 � 0, and for exampleinfx∈Ω v0(x) > 0. Let (u,v) be any
solution of(1.7), with Neuman conditions.

(i) Assume thata � 0. Thenv > 0 in Q∞; if moreoverk < 1, thenu(·, t) ≡ 0 for large t.
(ii) Assume that0< a, b (and not necessarilya � b) and

b sup
x∈Ω

ub0(x) < a inf
x∈Ω

va0(x). (6.4)

Thenv > 0 in Q∞; if moreoverk < 1, thenu(·, t) ≡ 0 for large t.
(iii) Assume thata < 0< b. Then

|a|ub +
b

v|a|
� |a| sup

x∈Ω
ub0(x) +

b

infx∈Ω v
|a|
0 (x)

, in Q∞, (6.5)

and inf(x,t)∈Q∞ v > 0.
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(iv) Assume that0< a � 1 � b, or 1 � a � b and(δ � 0 or u0,v0 ∈ C(Ω)), and that

aub0 + ε � va0, a.e. in Ω,

for someε > 0. If k < 1, thenu(·, t) ≡ 0 for large t.

Proof. From Remark 3.6, we know thatu � u′ andv′ � v in Q∞, where (u′,v′) be the unique solution
of the o.d.e. problem (1.5) such thatu′(0) = ‖u0‖L∞(Ω) andv′(0) = infx∈Ω v0(x).

(i) Sincea � 0, we have
 � 1; thenv is positive, from Theorem 6.1. Moreoveru′ has a compact
support, from Proposition 2.1(v), hence alsou.

(ii) From (6.4) and (2.6),

bv′a − au′b = bv′a0 − au′b0 = C ′ > 0.

Thusv′ is positive, andu′ has a compact support int if k < 1, from Proposition 2.1(iii), (iv), hence the
conclusions hold.

(iii) Here we obtain, from (2.6),

|a|ub +
b

v|a|
� |a|u′b +

b

v′|a|
= |a|u′b0 +

b

v
′|a|
0

= C ′ > 0,

andv � v′ � (b/C ′)1/|a|.
(iv) From Theorem 1.4 and Remark 4.4, there existsC > 0 such thatv � C in Q∞. Thenu is a

subsolution of the scalar equation

wt − ∆w + Cpwk = 0,

with the exponentk < 1, hence it has a compact support int. �

We end this paragraph with some properties of positivity of the sumu + v. We already know that it
remains positive ifk or 
 � 1 from Theorem 6.1. Thus we consider the casek, 
 < 1.

Theorem 6.4. Suppose thatu0,v0 ∈ L∞(Ω), u0,v0 � 0, andu0 + v0 �≡ 0. Assumek, 
 < 1, and

min(p, q,pq) � (1− k)(1− 
). (6.6)

Letu,v be any solutions of(1.7). Thenu+ v remains positive inQ∞.

Proof. First assume thatp � 1− k andq � 1− 
: in that case

(u+ v)t − ∆(u+ v) + vpuk + uqv� � 0,

andu, v are bounded, hence there existsC > 0 such thatu+ v is a supersolution of the equation

wt − ∆w + CwQ = 0,

whereQ = min(p+ k, q + 
) � 1. Thusu+ v remains positive.
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In the general case we prove that an expression of the formuα+vβ is a supersolution of an equation of
the same type, for someα,β � 1. Here again we use the approximationsun,vn of u,v defined by (4.7),
and we put

fn,ε = (un + ε)α − εα, gn,ε = (vn + ε)β − εβ,

for 0< ε � 1, and 0< α,β � 1. Then{
(fn,ε)t − ∆fn,ε + α(un + ε)α−1Fn = α(1− α)(un + ε)β−2|∇un|2 � 0,

(gn,ε)t − ∆gn,ε + β(vn + ε)β−1Gn = β(1− β)(vn + ε)β−2|∇vn|2 � 0.

Consider the sum

Yn,ε = fn,ε + gn,ε.

It also satisfies Dirichlet or Neuman conditions, and an equation of the form

(Yn,ε)t − ∆Yn,ε +Hn,ε = Ln,ε,

whereHn,ε,Ln,ε ∈ L∞(QT ) are defined by{
Hn,ε = α(un + ε)α−1Fn + β(vn + ε)β−1Gn,

Ln,ε = α(1− α)(un + ε)α−2|∇vn|2 + β(1− β)(vn + ε)β−2|∇vn|2 � 0.

We can go to the limit asn→ ∞ for fixedε, as in the proof of Lemma 4.1. ThenYn,ε converges to

Yε = (u+ ε)α + (v + ε)β − εα − εβ,

a.e. inQ∞, andHn,ε converges to

Hε = αvp(u+ ε)α−1|u|k−1u+ βuq(v + ε)β−1|v|�−1v � vp(u+ ε)α−1+k + uq(v + ε)β−1+�.

From assumption (6.6), we can findα ∈ [1 − k, 1] andβ ∈ [1 − 
, 1] such that

1− k
p

� α

β
� q

1− 
 . (6.7)

Then

Hε �
(
Yε + εα + εβ

)p/β+(α−1+k)/α +
(
Yε + εα + εβ

)q/α+(β−1+�)/β � C
(
Yε + εα + εβ

)
, (6.8)

for someC > 0. The constantC does not depend onε, since the two exponents in (6.8) are bigger than
1 andYε is bounded independently onε. The functiont �→ Zn,ε(t) = eCtYn,ε(t) − S(t)Yn,ε(0) satisfies

(Zn,ε)t − ∆Zn,ε = eCt(Ln,ε + CYn,ε −Hn,ε).
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Multiplying by Z−
n,ε, we obtain∫

Ω

(
Z−
n,ε

)2
(t) dx �

∫ t

0

∫
Ω

(
Hn,ε(τ ) − CYn,ε(τ )

)
Z−
n,ε(τ ) dxdτ.

Going to the limit asn→ ∞, and settingγ = min(α,β), the functiont �→ Zε(t) = eCtYε(t)−S(t)Yε(0)
satisfies∫

Ω

(
Z−
ε

)2
(t) dx�

∫ t

0

∫
Ω

(
Hε(τ ) − CYε(τ )

)
Z−
ε (τ ) dxdτ � 2Cεγ

∫ t

0

∫
Ω
Z−
ε (τ ) dxdτ

� Cεγ
(

1 +
∫ t

0

∫
Ω

(
Z−
ε

)2
(τ ) dxdτ

)
.

By the Gronwall lemma, for anyT > 0 and anyt ∈ [0,T ],∫
Ω

(
Z−
ε

)2
(t) dx � Cεγ eCε

γt � C eCT εγ .

Going to the limit asε→ 0, and denotingY = uα + vβ, it follows that

eCtY (t) − S(t)Y (0) � 0, inΩ,

for any t ∈ [0,T ]; in particularY remains positive inQT , sinceY (0) �≡ 0, from the strict maximum
principle, hence also inQ∞. �

Remark 6.1. It would be interesting to know if the result of Proposition 6.4 is still valid under the only
conditionpq � (1− k)(1− 
), that meansδ � 0, as it is the case for system (1.5), from Remark 2.1.

7. Uniqueness results

In the scalar case of Eq. (1.3), uniqueness comes from monotonicity, for anyQ > 0, for any initial
data inL1(Ω). In the case of system (1.1), the problem is much harder. First recall that uniqueness holds
if u0 ≡ 0 orv0 ≡ 0, from Remark 3.1. Thus we can assume thatu0 �≡ 0 andv0 �≡ 0.

7.1. The casep, q � 1

If p, q,k, 
� 1, the function (u,v) �→ (|v|p|u|k−1u, |u|q|v|k−1v) is locally Lipschitz continuous, hence
uniqueness follows from Lemma 3.2 whenu0,v0 ∈ L∞(Ω). This result can be improved: in fact, using
the monotonicity of the terms|u|k−1u and|v|�−1v, we prove Theorem 1.6, which requires onlyp, q � 1,
and does not assume that the initial data are bounded:

Proof of Theorem 1.6. Assumep, q � 1, andu0 ∈ Lθ1(Ω), v0 ∈ Lθ2(Ω), satisfying (1.19). Let
(u,v), (û, v̂) be two solutions of the system. By difference we find

(û− u)t − ∆(û− u) + |v̂|p|û|k−1û− |v|p|u|k−1u = 0, inQ∞,

(v̂ − v)t − ∆(v̂ − v) + |û|q|v̂|�−1v̂ − |u|q|v|�−1v = 0, inQ∞,

(û− u)(0) = 0, (̂v − v)(0) = 0, inΩ.

(7.1)
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We can write the two equations under the form{
(û− u)t − ∆(û− u) + |v̂|p

(
|û|k−1û− |u|k−1u

)
=

(
|v|p − |v̂|p

)
|u|k−1u,

(v̂ − v)t − ∆(v̂ − v) + |û|q
(
|v̂|�−1v̂ − |v|�−1v

)
=

(
|u|q − |û|q

)
|v|�−1v.

Then, from the Kato inequality,

∣∣(û− u)(t)
∣∣ +

∫ t

0
S(t− s)

(
|v̂|p

(
|û|k−1û− |u|k−1u

)
sign0(û− u)

)
(s) ds

�
∫ t

0
S(t− s)

((
|v|p − |v̂|p

)
|u|k−1u sign0(û− u)

)
(s) ds.

Using the monotonicity of functionr �→ |r|k−1r, we derive

∣∣(û− u)(t)
∣∣ �

∫ t

0
S(t− s)

(
|u|k

∣∣|v̂|p − |v|p
∣∣)(s) ds, (7.2)

and similarly

∣∣(v̂ − v)(t)∣∣ �
∫ t

0
S(t− s)

(
|v|�

∣∣|û|q − |u|q
∣∣)(s) ds. (7.3)

First suppose thatu0,v0 ∈ L∞(Ω). Thenu,v ∈ L∞(Q∞), hence there existsC > 0 such that, for any
t � 0,

∣∣(û− u)(t)
∣∣ � C

∫ t

0
S(t− s)

(
|v̂ − v|

)
(s) ds,

∣∣(v̂ − v)(t)∣∣ � C

∫ t

0
S(t− s)

(
|û− u|

)
(s) ds.

Settingf = ‖û− u‖L1(Ω) + ‖v̂ − v‖L1(Ω) � 0, we obtain, by addition,

f (t) � C

∫ t

0
f (s) ds.

Thenϕ(t) = sup [0,t]f (s) satisfiesϕ(t) � Ctϕ(t), henceϕ(t) = 0 on [0, 1/C]; and by induction on
[0,∞), thusû = u andv̂ = v.

Now consider the general caseu0 ∈ Lθ1(Ω), v0 ∈ Lθ2(Ω). Existence follows from Corollary 3.1.
Indeed (1.19) implies (1.10), since

k

θ1
+
p

θ2
<

1
θ1

+
2
N

� N + 2
N

.

Moreover (1.20) follows from (3.16) and (3.17) withS1 = θ1 andS2 = θ2. We claim that there exists a
constantC > 0 and real numbersµ,γ � 0, such thatµ+ γ < 1, and

∥∥(û− u)(t)
∥∥
Lθ1(Ω) � C

∫ t

0

(
1 + (t− s)−µ

)(
1 + s−γ

)∥∥(v̂ − v)(s)
∥∥
Lθ2(Ω) ds (7.4)

for anyt � 0. The proof is divided in two cases.
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(i) Caseθ1 � θ2. Here we use in (7.2) the regularizing effect (3.5), successively fromLθ2(Ω) toLθ1(Ω),
and fromLθ1(Ω),Lθ2(Ω) toL∞(Ω). Definingµ = (1/θ2 − 1/θ1)N/2 andγ = (k/θ1 + (p− 1)/θ2)N/2,
we obtain

1
p

∥∥(û− u)(t)
∥∥
Lθ1(Ω) �

∫ t

0

(
1 + (t− s)−µ

)∥∥|u|k(|v̂|p−1 + |v|p−1)|v̂ − v|(s)∥∥Lθ2(Ω) ds

�
∫ t

0

(
1 + (t− s)−µ

)∥∥u(s)
∥∥k
L∞(Ω)

(∥∥v(s)∥∥p−1
L∞(Ω) +

∥∥v̂(s)∥∥p−1
L∞(Ω)

)∥∥(v̂ − v)(s)
∥∥
Lθ2(Ω) ds

� C‖u0‖kLθ1(Ω)‖v0‖p−1
Lθ2(Ω)

∫ t

0

(
1 + (t− s)−µ

)(
1 + s−γ

)∥∥(v̂ − v)(s)
∥∥
Lθ2(Ω) ds,

for someC > 0. This proves (7.4), andµ+ γ < 1, from (1.19).

(ii) Caseθ1 < θ2. SinceS(·) is a contraction inLθ1(Ω), we have

1
p

∥∥(û− u)(t)
∥∥
Lθ1(Ω) �

∫ t

0

∥∥(
|u|k

(
|v̂|p−1 + |v|p−1)|v̂ − v|)(s)∥∥Lθ1(Ω) ds.

Let η, r � 1 be two parameters, withη > 1 if k > 0 andη = 1 if k = 0, andr = 1 if p = 1. We derive
successively∥∥|u|k(|v̂|p−1 + |v|p−1)|v̂ − v|(s)∥∥Lθ1(Ω)

�
( ∫

Ω
u(s)kη

′θ1

)1/η′θ1∥∥(
|v̂|p−1 + |v|p−1)|v̂ − v|(s)∥∥Lηθ1(Ω)

�
( ∫

Ω
u(s)kη

′θ1

)1/η′θ1∥∥|v̂ − v|(s)∥∥Lrηθ1(Ω)

∥∥(
|v̂|p−1 + |v|p−1)(s)∥∥

Lr′ηθ1(Ω),

where by convention (
∫
Ω u(s)kη

′θ1)1/η′θ1 = 1 if k = 0, and‖(|v̂|p−1 + |v|p−1)(s)‖
Lr′ηθ1(Ω) = 1 if p = 1.

• First suppose that

(1− k)θ2 � pθ1 (7.5)

(which holds in particular whenk � 1). If k > 0 andp > 1, we can chooseη such thatkη′ � 1 and
θ2 � pηθ1 < pθ2; then we chooser = θ2/ηθ1, hencer′ = θ2/(θ2 − ηθ1). Settingh = (p − 1)r′ηθ1 =
(p− 1)ηθ1θ2/(θ2 − ηθ1), there holdsh � θ2 from (7.5), and∥∥|u|k(|v̂|p−1 + |v|p−1)|v̂ − v|(s)∥∥Lθ1(Ω)

� C
∥∥u(s)

∥∥k
Lkη′θ1(Ω)

∥∥(
|v̂| + |v|

)
(s)

∥∥p−1
Lh(Ω)

∥∥(v̂ − v)(s)
∥∥
Lθ2(Ω).

Using the regularizing effect, we obtain

∥∥(û− u)(t)
∥∥
Lθ1(Ω) � C‖u0‖kLθ1(Ω)

∫ t

0

(
1 + s−(αk+β(p−1)))∥∥(v̂ − v)(s)

∥∥
Lθ2(Ω) ds,
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whereα = (1− 1/kη′)N/2θ1 andβ = (θ2 − 1/h)N/2. After computation,

αk + β(p − 1) =
N

2

(
k − 1
θ1

+
p

θ2

)
< 1

from our assumption. Thus there existsλ ∈ [0, 1) such that

∥∥(û− u)(t)
∥∥
Lθ1(Ω) � C

∫ t

0

(
1 + s−λ

)∥∥(v̂ − v)(s)
∥∥
Lθ2(Ω) ds. (7.6)

This is also true in the limiting cases:k = 0, p > 1, since takingr = θ2/θ1, we still haveh =
(p − 1)θ1θ2/(θ2 − θ1) � θ2; alsok > 0, p = 1, since choosingη = θ2/θ1 we still havekη′ � 1; and
finally k = 0, p = 1, by choosing againη = θ2/θ1. Thus (7.4) holds withµ = 0 andγ = λ.
• Now assume that

(1− k)θ2 > pθ1, (7.7)

thenk < 1. We chooseη = 1/(1− k) if k > 0 andr = p if p > 1. Let us set̃θ2 = pθ1/(1− k). In any
casek � 0 andp � 1, we deduce∥∥|u|k(|v̂|p−1 + |v|p−1)|v̂ − v|(s)∥∥Lθ1(Ω)

�
∥∥u(s)

∥∥k
Lθ1(Ω)

∥∥(
|v̂| + |v|

)
(s)

∥∥p−1

Lθ̃2(Ω)

∥∥(v̂ − v)(s)
∥∥
Lθ̃2(Ω)

� ‖u0‖kLθ1(Ω)

∥∥(
|v̂0| + |v0|

)
(s)

∥∥p−1

Lθ̃2(Ω)

∥∥(v̂ − v)(s)
∥∥
Lθ̃2(Ω)

,

with the conventions‖u0‖kLθ1(Ω)
= 1 if k = 0 and‖(|v̂| + |v|)(s)‖p−1

Lθ̃2(Ω)
= 1 if p = 1. Then (7.6) holds

again withλ = 0, sinceLθ2(Ω) ⊂ Lθ̃2(Ω). Thus (7.4) holds withµ = γ = 0.
In any case claim (7.4) is proved. In the same way, there existµ̃, γ̃ � 0 such that̃µ+ γ̃ < 1 andC̃ > 0

such that for anyt � 0,∥∥(v̂ − v)(t)
∥∥
Lθ2(Ω) � C̃

∫ t

0

(
1 + (t− s)−µ̃

)(
1 + s−γ̃

)∥∥(v̂ − v)(s)
∥∥
Lθ2(Ω) ds. (7.8)

Defining

ϕ(t) = sup
s∈[0,t]

(∥∥(û− u)(s)
∥∥
Lθ1(Ω) +

∥∥(v̂ − v)(s)
∥∥
Lθ2(Ω)

)
,

we find, for anyt ∈ [0, 1],∥∥(û− u)(t)
∥∥
Lθ1(Ω) +

∥∥(v̂ − v)(t)
∥∥
Lθ2(Ω) � 2ϕ(t)

(
C

∫ t

0
(t− s)−µs−γ ds+ C̃

∫ t

0
(t− s)−µ̃s−γ̃ ds

)
,

therefore

ϕ(t) � 4ϕ(t)
(
C

∫ 1

0
s−(µ+γ) ds+ C̃

∫ 1

0
s−(µ̃+γ̃) ds

)
,

so thatϕ(t) = 0 on some [0,T0] with T0 � 1 small enough, and on [0,∞) by induction. �
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Remark 7.1. In particular, ifp, q � 1, andu0,v0 ∈ Lθ(Ω) with

θ >
N

2
max(k + p− 1,q + 
− 1),

then problem (1.7) admits a unique solution (u,v), andu,v ∈ C([0,∞),Lθ(Ω)). This result has to be
compared to the result of [10, Theorem 1] for the scalar equation with source term

wt − ∆w = wQ,

with w(0) ∈ Lθ(Ω), andθ > N (Q− 1)/2.

7.2. The caseu0,v0 � 0

In the proof of Theorem 1.6 we have only used the inequalities (7.2), (7.3), issued from (7.1) by ap-
plying Kato’s inequality. In this way we have neglected the parametersk, 
. By taking them into account,
we can improve the results when the initial data are nonnegative and bounded.

Proof of Theorem 1.7. We exclude the casep, q � 1, still treated in Theorem 1.6. Any of our other
assumptions impliesk, 
 > 0. Here we consider the solutions (U ,V ) and (̃U , Ṽ ) defined in Theorem 1.3
and prove that they coincide. Recall thatŨ − U � 0 andV − Ṽ � 0. They satisfy{(

Ũ − U
)
t − ∆

(
Ũ − U

)
+ Ṽ pŨk − V pUk = 0,(

V − Ṽ
)
t − ∆

(
V − Ṽ

)
+ U qV � − Ũ qṼ � = 0.

(7.9)

LetA > 0 be a parameter. Let

Φ = A
(
Ũ − U

)
+ V − Ṽ ,

G(u,v) = Avpuk − uqv�, ∀u,v � 0.

ThenΦ � 0, Φ(0) = 0, and

Φt − ∆Φ = G(U ,V ) −G
(
Ũ , Ṽ

)
= G(U ,V ) −G

(
Ũ ,V

)
+G

(
Ũ ,V

)
−G

(
Ũ , Ṽ

)
.

At any point whereU > 0, there existsη ∈ (U , Ũ ) such that

G(U ,V ) −G
(
Ũ ,V

)
= −∂G

∂U
(η,V )

(
Ũ − U

)
=

(
qηq−1V � −AkV pηk−1)(Ũ − U

)
.

At any point whereU = 0, we find

G(U ,V ) −G
(
Ũ ,V

)
= −G

(
Ũ ,V

)
= Ũ qV � −AV pŨk

=

{(
Ũ q−1V � −AV pŨk−1)(Ũ − U

)
, if Ũ �= 0,

0, if Ũ = 0.
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Then, there existsC > 0 such that

G(U ,V ) −G
(
Ũ ,V

)
� C

(
Ũ − U

)
,

whenever for anyξ ∈ (U , Ũ ],

ξq−1V � −mAV pξk−1 � C, (7.10)

wherem = min(1,k/q). In the same way

G(U ,V ) −G
(
Ũ ,V

)
� C(V − U )

whenever for anyζ ∈ (Ṽ ,V ],

ζp−1Ũk − m′

A
Ũ qζ�−1 � C, (7.11)

wherem′ = min(1,
/p). If, for fixed T > 0, we can findA andC, possibly depending onT , such that
(7.10) and (7.11) hold inQT , then

Φt − ∆Φ = G(U ,V ) −G
(
Ũ , Ṽ

)
� CΦ,

and uniqueness inQT follows from the maximum principle, sinceG(U ,V )−G(Ũ ,V ) andΦ ∈ L∞(Q∞).
Consider for example (7.10). It is satisfied in any of the following cases:
• Whenq � 1: sinceξq−1V � � Ũ q−1V �, andŨ q−1V � is bounded.
• When

0< k � q < 1 and p(1− q) � 
(1− k).

Indeed from Young inequality, for anys > 1,

ξq−1V � =
(
ξk−1V p)1/s(

ξq−1+(1−k)/sV �−p/s) � ξk−1V p +
(
ξq−1+(1−k)/sV �−p/s)s′ .

If q > k, we can chooses such that

p



� s � 1− k

1− q ,

thenξq−1+(1−k)/sV �−p/s � Ũ q−1+(1−k)/sV �−p/s, and this term is bounded; thus (7.10) holds forA large
enough. Ifq = k, thenp � 
, henceξq−1(V � −mAV p) � 0, forA large enough.
• When 1− 
 � q < 1 � k and (1.22) holds. Sinceq < 1 � k, for anyT > 0, there existsCT > 0

such that for any (x, t) ∈ Ω × (0,T ] and anyξ ∈ (U (t)(x), Ũ (t)(x)],

ξq−1V � � Cq−1
T

((
S(t)u0

)
(x)

)q−1((
S(t)v0

)
(x)

)�
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in Ω × (0,T ], from Proposition 6.1(i). From (1.22) and the maximum principle, we have

S(t)v0 � c1/�S(t)u(1−q)/�
0 .

One easily proves that(
S(t)w

)r � S(t)wr, for anyr � 1, and anyw ∈ L∞(Ω),w � 0, (7.12)

see, for example, [14]. Takingr = 
/(1− q), we deduce that

S(t)v0 � c1/�
(
S(t)u0

)(1−q)/�
,

thusξq−1V � is still bounded.
Similar sufficient conditions hold for (7.11). Conclusions follow by considering all the possible com-

binations of such conditions.�

Remark 7.2. Condition (1.22) is clearly satisfied whenq � 1. When q < 1, it holds as soon as
infx∈Ω u0(x) > 0. Also for the Dirichlet problem it holds when

C1v0(x) � ϕ1(x) � C2u0(x), a.e. inΩ, for someC1,C2 > 0;

in particular when

u0,v0 ∈ C0
(
Ω

)
∩ C1 (

Ω
)

and u0 > 0 inΩ and
∂u0

∂ν
< 0 on∂Ω, (7.13)

from the Hopf lemma. Similarly for (1.23) after exchangingu andv.

Remark 7.3. The proof used for Theorem 1.7 consists into showing thatV − AU = Ṽ − AŨ , where
A > 0 is a suitable parameter. Thus it is linked to the uniqueness of the functionv − Au. Notice that in
any case, uniqueness ofv−Au implies uniqueness of (u,v). Indeed assume that (u,v) and (̂u, v̂) be two
solutions such thatv −Au = v̂ −Aû = y. Thenu andû are two solutions of the scalar equation

ut − ∆u+ uq(Au+ y)p = 0.

We can observe that the solution is unique, since the functionr �→ rq(r + y(x))p defined forr � −y(x)
is nondecreasing; thenu = û, andv = v̂.

In the particular casep = 
 andq = k, takingA = 1, we getG = 0, hence uniqueness follows
immediately. We can find it in another way: the functiony = v − u, satisfies preciselyyt − ∆y = 0,
hencey is unique:y(t) = S(t)(v0 − u0), hence again uniqueness follows.

In the case of Neuman problem, we can improve again the results:

Theorem 7.1. Assume thatu0,v0 ∈ L∞(Ω) andu0,v0 � 0. Then problem(1.7) with Neuman data has
a unique solution in any of the following cases:



280 M.-F. Bidaut-Véron et al. / On a semilinear parabolic system of reaction–diffusion with absorption

(i) p, q � 1;
(ii) 0 < k � q < 1, 0< 
 � p < 1 andp(1− q) � 
(1− k), andq(1− p) � k(1− 
);
(iii) k, 
 � 1 and infx∈Ω u0(x) > 0, infx∈Ω v0(x) > 0;
(iv) p, 
 � 1 and0< k � q, andinfx∈Ω v0(x) > 0;
(v) q,k � 1 and0< 
 � p, andinfx∈Ω u0(x) > 0.

Proof. (i) and (ii) are given in Theorem 1.7.
(iii) Since k � 1, and infx∈Ω u0(x) > 0, for anyT > 0, there existscT > 0 such thatU � cT in

QT , from Proposition 6.1. Thenξq−1V � � Ũ q−1V � , andŨ q−1V � is bounded inQT , thus (7.10) holds.
Similarly since
 � 1, and infx∈Ω v0(x) > 0, (7.11) holds.

(iv) In the same way, there existscT > 0 such thatV � cT > 0 in QT , since 
 � 1, and
infx∈Ω v0(x) > 0, and

ξq−1V � −mAV pξk−1 = ξk−1(ξq−kV � −mAV p) � Uk−1(Ũ q−kV � −mAV p) � 0

for largeA, sincek � q. Thus (7.10) holds. Otherwise (7.11) holds becausep � 1.
(v) Follows by symmetry. �

We deduce also uniqueness results from the comparison properties:

Theorem 7.2. Assume thatu,v ∈ C(Q∞), and that any of the following conditions holds:

(i) p � 1, 0< k � q < 1, and0< a � b, with aub0 < bv
a
0 in Ω.

(ii) 0 < a � b, 0< k � q, with Neuman conditions, andaub0 + ε � bva0 in Ω, for someε > 0.

Then there exists a unique solution of the problem(1.7).

Proof. (i) Since p � 1, condition (7.11) is satisfied. We know that any solution satisfiesaub � bva

in Q∞, from Theorem 1.4. Let us verify (7.10). Sincek � q, for anyξ ∈ (U , Ũ ),

ξq−k � Ũ q−k �
(
λ∗

)a(q−k)/b
Ṽ a(q−k)/b �

(
λ∗

)a(q−k)/b
V a(q−k)/b � mAV p−�

for A large enough. IndeedV a(q−k)/b+�−p is bounded, because

a(q − k) + b(
− p) = a(b− 1)− b(a− 1) = b− a � 0.

Then (7.10) follows.
(ii) Notice that 1� b. From Remark 4.4, for anyT > 0, there existscT > 0, such thatV � Ṽ � cT

in QT . SinceV , Ũk are bounded inQT , condition (7.11) holds. And condition (7.10) is also satisfied,
becausẽU q−k is bounded. �

7.3. Estimates and comments

Finally we give upper estimates of the difference between two (possibly signed) solutions, in case of
nonuniqueness.
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Proposition 7.1. Assumeu0,v0 ∈ L∞(Ω). Let(u,v), (û, v̂) be two solutions of problem(1.7). If p, q < 1,
there existsC > 0 such that∣∣û(t) − u(t)

∣∣ � Ct(p+1)/(1−pq),
∣∣v̂(t) − v(t)∣∣ � Ct(q+1)/(1−pq), (7.14)

in Q∞. Moreover ifu0,v0 � 0, with Dirichlet conditions, then there existsC > 0 such that

|û− u| � u and |v̂ − v| � v, in Q∞,

where(u, v) is the solution of the system with source terms{
ut − ∆u = Cvp,

vt − ∆v = Cuq,
(7.15)

such thatu(0) = v(0) = 0 andu > 0, v > 0 in Q∞.
If p < 1 � q, the same results hold withq replaced by1.

Proof. (i) Assumep < 1. Sinceu is bounded, we obtain, from (7.2),

|û− u|(t) � C

∫ t

0
S(t− s)

∣∣|v̂|p − |v|p
∣∣(s) ds � C

∫ t

0
S(t− s)|v̂ − v|p(s) ds,

for someC > 0 independent oft. Now using (7.12) withr = 1/p, and Hölder inequality, we derive

|û− u|(t) � C

∫ t

0

(
S(t− s)|v̂ − v|(s)

)p
ds � Ct1−p

( ∫ t

0
S(t− s)|v̂ − v|(s) ds

)p

� Ct1−p
( ∫ t

0
S(t− s)

( ∫ s

0
S(s− σ)|û− u|q(σ) dσ

)
ds

)p

.

If p, q < 1, denotingψ(t) = supΩ×[0,t] |û− u|, we deduce

ψ(t) � Ct(1−p)
( ∫ t

0
S(t− s)

( ∫ s

0
S(s − σ)ψ(σ) dσ

)q

ds
)p

� Ctp+1ψpq(t),

with anotherC > 0. This proves the first estimate of (7.14), and the second one follows by symmetry. If
p < 1 � q, then with new constantsC > 0,

|v̂ − v|(t) � C

∫ t

0
S(t− s)

∣∣|û|q − |u|q
∣∣(s) ds � C

∫ t

0
S(t− s)|û− u|(s) ds

and we deduce the estimates∣∣û(t) − u(t)
∣∣ � Ct(p+1)/(1−p),

∣∣v̂(t) − v(t)∣∣ � Ct2/(1−p),

relative top and 1.
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(ii) Assumeu0,v0 � 0, with Dirichlet conditions. We consider the solutions (U ,V ) and (̃U , Ṽ ), defined
in Theorem 1.3. Recall that̃U − U � 0 andV − Ṽ � 0, andU � u � Ũ , U � û � Ũ , Ṽ � v � V ,
Ṽ � v̂ � V . If p, q < 1, then{(

Ũ − U
)
t − ∆

(
Ũ − U

)
� C

(
Ṽ − V

)p
,(

Ṽ − V
)
t − ∆

(
Ṽ − V

)
� C

(
Ũ − U

)q
,

for someC > 0. As in [14, Lemma 2.5], [12], it follows that

|û− u| � Ũ − U � u and |v̂ − v| � V − Ṽ � v,

where (u, v) is the solution of (7.15) which uniqueness is proved in [14, Lemma 3.1]. Recall that (7.15)
admits precisely the solutions (0, 0), (u, v) and its translated in time (u(t− t0)+, v(t− t0)+), wheret0 > 0
is arbitrary. Similar results hold whenp < 1 � q, after replacingq by 1 in system (7.15). �

Remark 7.4. In conclusion, some questions arise. Does uniqueness requires the assumptionsp, q � 1
in the case whereu0,v0 are signed functions? Does it hold for anyp, q,k, 
 > 0 whenu0,v0 � 0? What
happens whenk = 0 or 
 = 0? The result of Theorem (1.6) has also to be compared with the one of [5]
for the (cooperative) system{

ut − ∆u+ uk = vp,

vt − ∆v + v� = uq,
(7.16)

which holds under the same conditionsp, q � 1, k, 
 � 0. The problem of uniqueness for system (7.16)
is also open whenp < 1 or q < 1.

References

[1] J. Aguirre and M. Escobedo, A Cauchy problem forut−∆u = up with 0 < p < 1. Asymptotic behaviour of the solutions,
Ann. Fac. Sci. Toulouse8 (1987), 175–203.

[2] D. Andreucci, M.A. Herrero and J.J. Velazquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion
systems,Ann. Inst. H. Poincaré Anal. Non Linéaire14 (1997), 1–53.

[3] V.I. Arnold et al., Some unsolved problems in the theory of differential equations and mathematical physics,Russian
Math. Surveys44 (1989), 157–171.

[4] P. Baras, J.-C. Hassan and L. Véron, Compacité de l’opérateur définissant la solution d’une équation d’évolution non
homogène,C. R. Acad. Sci. Paris284 (1977), 799–802.

[5] N. Bedjaoui and P. Souplet, Critical blow-up exponents for a system of reaction–diffusion equations with absorption,
Z. Angew. Math. Phys.53 (2002), 197–210.

[6] M. Bidaut-Véron, Local behaviour of the solutions of a class of nonlinear elliptic systems,Adv. Differential Equations5
(2000), 147–192.

[7] M. Bidaut-Véron, The problem of initial trace for a system of parabolic semilinear equations with absorption, in prepara-
tion.

[8] M. Bidaut-Véron and P. Grillot, Singularities in elliptic systems with absorption terms,Ann. Scuola Norm. Sup. Pisa28
(1999), 229–271.

[9] M. Bidaut-Véron and C. Yarur, Semilinear elliptic equations and systems with measure data: existence and a priori esti-
mates,Adv. Differential Equations7 (2002), 257–296.

[10] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data,J. Anal. Math.68 (1996), 277–304.
[11] H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions,J. Math. Pures Appl.

62 (1983), 73–97.



M.-F. Bidaut-Véron et al. / On a semilinear parabolic system of reaction–diffusion with absorption 283

[12] F. Dickstein and M. Escobedo, A maximum principle for semilinear parabolic systems and applications,Nonlinear Anal.
45 (2001), 825–837.

[13] M. Escobedo and M.A. Herrero, Boundedness and blow up for a semilinear reaction–diffusion system,J. Differential
Equations9 (1991), 176–202.

[14] M. Escobedo and M.A. Herrero, A semilinear parabolic system in a bounded domain,Ann. Mat. Pura Appl.167 (1993),
315–336.

[15] M. Escobedo and M.A. Herrero, A uniqueness result for a semilinear reaction–diffusion system,Proc. Amer. Math. Soc.
112 (1991), 175–185.

[16] M. Escobedo and H. Levine, Critical blowup and global existence numbers for a weakly coupled system of reaction–
diffusion equations,Arc. Rational Mech. Anal.129 (1995), 47–100.

[17] J. Esquinas and M.A. Herrero, Travelling wave solutions to a semilinear diffusion system,SIAM J. Math. Anal.21 (1990),
123–136.

[18] V. Galaktionov, S. Kurdyumov, A. Mikhailov and A. Samarskii,Blow-up in Quasilinear Parabolic Equations, de Gruyter,
Berlin, New York, 1995.

[19] M.E. Gurtin and A.C. Pipkin, A note on interacting populations that disperse to avoid crowding,Quart. Appl. Math.42
(1984), 87–94.

[20] M.A. Herrero and J.J. Velazquez, On the dynamics of a semilinear heat equation with strong absorption,Comm. Partial
Differential Equations14 (1989), 1653–1715.

[21] A.S. Kalashnikov, On some nonlinear systems describing the dynamics of competing biological species,Math. USSR-Sb.
61 (1988), 9–22.

[22] A.S. Kalashnikov, Instantaneous compactification of supports of solutions to semilinear parabolic equations and systems
thereof,Mat. Zametki47 (1990), 74–80.

[23] A.S. Kalashnikov, Instantaneous shrinking of the support for solutions to certain parabolic equations and systems,Rend.
Mat. Accad. Lincei9 (1997), 263–272.

[24] Y.M. Romanovskii, N.V. Stepanova and D.S. Tchernavskii,Mathematical Biophysics, Nauka, Moscow, 1984.
[25] V. Volterra,Leçons sur la théorie mathématique de la lutte pour la vie, Gauthiers-Villars, Paris, 1931.
[26] L. Véron,Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach, Publ. Math.

Univ. Besançon, Vol. 3, 1976–77.
[27] M. Wang, Global existence and finite time blow up for a reaction diffusion system,Z. Angew. Math. Phys.51 (2000),

160–167.
[28] Z. Wu and J. Yin, Uniqueness of the solutions of the Cauchy problem for the system of dynamics of biological groups,

Northeast. Math. J.9 (1993), 134–142.
[29] Z. Wu and J. Yin, Uniqueness of generalized solutions for a quasilinear degenerate parabolic system,J. Partial Differential

Equations8 (1995), 89–96.




