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Abstract. We consider the semilinear parabolic system with absorption terms in a bounded d@ iR’

ve — Do+ |u|?v|* v =0, inR x (0,00),

ur — Du + [P |u*u =0, ing2 x (0,00),
u(0) = uo, v(0) = vo, in 0,

wherep,q > 0 andk, ¢ > 0, with Dirichlet or Neuman conditions o2 x (0,00). We study the existence and uniqueness
of the Cauchy problem when the initial data drefunctions or bounded measures. We find invariant regions whemg are
nonnegative, and give sufficient conditions for positivity or extinction in finite time.

1. Introduction and main results

Let £2 be a bounded regular domain®f (N > 1). We consider the parabolic system with absorption
terms inQ o, = 2 x (0,00),

—A Plylk—1y =0,
ur — Au + || \ulzil u 1.1)
vy — Av + |ul?|v]* v =0,
wherep, ¢ > 0, andk, ¢ > 0, with the convention in case= 0 (resp.{ = 0):
1 if w> 0,
lu| 7ty = signpu=4{ 0 ifu=0, 1.2)
-1 ifu<O.
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We are concerned with the existence and uniqueness of the Cauchy problem, with Dirichlet or Neuman
conditions o {2 x (0,00), and initial data

u(0) =wuo,  v(0) = o,

whereug, vg lie in L1(£2) or in the setM,(£2) of bounded Radon measuressih We also study the
existence of invariant regions, and the properties of strict positivity or extinction in finite time of the
solutions, whenug, vg > 0.

In the case of nonnegative solutions, this system serves as a simple model for the joint evolution of
two interacting biological species with densitiesv, competing for a common resource, see [25,19,24].
Then it is interesting to prove the existence of a global solution and study the uniqueness. Also assuming
that at initial time one species dominates the other one, will it continue to dominate it all the time long?
This corresponds to finding the existence of invariant regions, that means stibsei®? such that if
(up, vg) € X, a.e.inf2, then {, v) € X in Q. Another question is to know also under what conditions
one of the species disappear in finite time, and what happens with the other.

Independently of the biological applications, system (1.1) offers a special interest due to the multiple
difficulties that it brings up. It is the direct extension to two functiang of the scalar equation with an
absorption term

wy — Mw + |w|® tw =0, (1.3)

where@ > 0. Nevertheless, the situation is much more complex: contrarily to the case of Eq. (1.3), no
comparison principle holds for the system, as we will see below, and thus we cannot use any technique of
supersolutions, or pass to the limit by monotone convergence arguments. One of the most striking results
is the existence of a minimal-maximal solution and a maximal-minimal one and a principle of cross
comparisons whefg, vg are honnegative, see Theorem 1.3 below, which show the specific character of
the system.

Also the problem of uniqueness is quite involved, in particular because of the lack of monotonicity.
It is easy to solve whenevefy, vg € L*>°({2) andp, q,k,¢ > 1. In the general case the nonlinear parts
of system (1.1) may be non-Lipschitz on the sats=f 0} or {v = 0}. Thus uniqueness was qualified
as an open problem by Kalashnikov in [3], and still open up to now, despite on some announcements
in [28,29], which deal with porous media operators but restricted to the Lipschitzian case. We solve the
problem in a great number of cases, see Theorems 1.6 and 1.7.

System (1.1) with nonnegativwg v has also to be compared to the problem with the other sign,

1.4
vy — Mo = udot, (1.4)

{ut — Au = vPuF,
where the nonlinear parts are source terms. It is a cooperative system, so that some comparison princi-
ples hold, see [16], even when the nonlinear part is non-Lipschitz, see [14,12]. As a consequence, Sys-
tem (1.4) has given rise to many works about blow up properties or global existef2a@ in RY, among
them [2,27,13]; see also [18] for systems with porous media operators. On the contrary, system (1.1) has
been little studied. Existence resultsIR’ and partial compact support properties are given in [21].
Some properties of shrinking of the support in the space variable of the solutions are shown in [22,23].
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Also the existence of travelling waves is analyzed in [17] in dase ¢ = 0 andN = 1. In the elliptic
case the behaviour near a singularity is described in [8].

In Section 2 we describe the solutions of the system of ordinary differential equations associated
to (1.1), namely

{ut + |vfPJul*tu = 0, (L5)

vy + |ul?fv* "t = 0.

The solutions of (1.5) are also solutions of (1.1) in the case of Neuman problem. Thus their properties of
extinction in finite time or strict positivity can give information about one can expect for system (1.1).
System (1.5) can be completely solved. Setting

a=p+1—14, b=q+1—-k,

the main point is that the region
{u>0,v>0, au® = bv}

is invariant wheneveti, b # 0. The study of particular solutions leads also to define
d=pq—(1-k)(1-19),

called the discriminant of the system. The conditiol 0 (resp.d < 0) means that, in a certain sense,
the system is superlinear (resp. sublinear). Wiaén# 0, we also introduce the quantities

0 0
P=1+-, Q=1+-, (1.6)
b a
which play a role in the sequel.
In Section 3 we study the existence and the regularity of weak solutions of the Cauchy problem with
Dirichlet (resp. Neuman) data on the lateral boundary:

uy — Du A |v|P|ulF~tu = 0, iNQwo,

v — B + [u|?v] 10 =0, N Qoo (1.7)
u=wv =0 (resp.0u/drv = dv/dr = 0), onads? x (0,0), '
u(0) = ug, v(0) = vo, in {2.

We first give an existence result for initial datafid(£2), which needs some care in the cdse: 0 or
¢ = 0, because of the lack of continuity of the function gigWe denote by

(S(t))t>0 = (Sd(t))t>o (resp.(S(t))QO = (Sn(t))t>o)’

the linear heat flow the heat equationfif(£2) with Dirichlet (resp. Neuman) conditions on the lateral
boundaryd 2 x (0,0).
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Theorem 1.1. Assume that, vg € L1(£2), and there exists, ¢ > 1 such that

(SOluol) *(SO)vol)” € Lin(@se)s (SOuo) (SO)vol)” € Line( Qoo ) (1.8)

withs > 1if k=0, 0 > 1if £ = 0. Then there exists a weak soluti@n v) of problem(1.7). And for
anyt > 0

lu(t)] < S(E)|uo|, |v@)] < S(E)vo|, a.e.inf2. (1.9
If up > 0, a.e. ing?, thenu(t) > 0, a.e. inf2. If vg > 0, a.e. inf2, thenv(t) > 0, a.e. in{2.

As a consequence, we get existence results for initial data in §dnspaces (K 6 < oo) and by
extension inM,(£2), related to the Fujita exponenv(+ 2)/N:

Corollary 1.1. Assume thaty € L%(£2) andvg € L%(£2) for somel < 61,6, < oo, and

k 14 N+2
— = . 1.10
max(al * 6, 91 * 92) N ( )

Then there exists a weak soluti@n v) to problem(1.7).
Theorem 1.2. Assume thatig, vg € M,(£2), and

N +2
N

max +p,q +€) < (1.12)

Then there exists a weak soluti@n v) to problem(1.7).

Finally we prove our cross comparison principle when initial data are nonnegative:
Theorem 1.3. Assume thatig, vo € L(£2) and(1.8) holds(or ug, vo € My(£2)) and(1.11) holdg, and
ug,vg = 0. Then there exists two nonnegative soluti¢tisl’) and (U, V) of problem(1.7), such that
any nonnegative solutiofu, v) satisfies

U<u<U and V<v<V. (1.12)

Moreover if0 < up < ugp and0 < vj < vp with the same assumptions ofy vg, then the corresponding
solutions(U’, V') and (U’, V') are ordered in the same way

U<U, ULU, V'SV, V' V. (1.13)

Section 4 concerns the question of invariant regions. It is interesting to see that pointwise correspon-
dence can remain i), between the two functions andv, despite the lack of comparison principle:

Theorem 1.4. Assume thatg,vg € L°°(§2), ug,vo = 0, andadb > 0. Let (u,v) be any solution of
problem(1.7).
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(1) Assume that
aud < bvg, a.e.inf.
Then
au® < bv®, in Qoos

in any of the following cases

O<a<b and a<1, (1.14)
O<a<b and 1l<a and ¢ >0, (1.15)
b<a<O. (1.16)

Moreover if one of the eventualities holds, with the restrict{én> 0 or 1 < b) in the case
0<a <1 andifaul # bvg, thenau® < bv® in Qu.
(2) Assume that the inequality is strict

aud < bug a.e.ing,
andl < a < bandu,v € C(Qs). Thenaub < bv® in Qu.

Hence, under the assumptions of Theorem 1.4, the regioh € bv?} of R? is invariant. Notice that
under the assumptions of Theorem kids a supersolution of the scalar equation

o\~
wt—Aw—k(E) w” =0,

where coefficienP is defined in (1.6). As a consequence we give new existence results in Section 5: we
can have existence beyond the critical case (1.11) when only one of the initial data is a measufe, when
is less than the Fuijita exponent:

Theorem 1.5. Suppos® < a < b, and that(1.14) or (1.15) holds. Assume that

up € LYN), wo=Vo+po, Vo€ L), o € My(£2), ug, Vo, 110 = 0,

and
aud < bV, ae.inf. (1.17)
If
. N+2
P:mm<1+§,1+§> c2fe (1.18)
a b N

there exists a weak nonnegative solut{@nv) of problem(1.7).
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This is a typical result for such kind of systems. Conditions of a similar type appear also in prob-
lem (1.4), see [2,16], and in elliptic systems with multipowered absorption or source terms, see for
example [8,6,9].

In Section 6 we give sufficient conditions for the strict positivity of at least one of the compoments
or v. This implies properties of extinction in finite time for the other solution, either directly, or by
combining with the comparison results of Section 4. Some of them will depend on the nature of the
lateral boundary conditions. Indeed the diffusion of the Laplacian plays its role, notably in the case of
Dirichlet conditions.

Section 7 is devoted to the difficult question of uniqueness. First we give a general result, available
without any assumption on the sign of the initial data. The proof shows that the tefindu, [v|~tv
play a real role of absorption terms, and the tefoi§ |«|? appear as trouble-makers to the absorption.

Theorem 1.6. Letp,q > 1, andk, ¢ > 0 be arbitrary. Assume thatg, vg € L°°(§2), or more generally
ug € L9(£2) andvy € L%(£2) for somed, 6> € [1, ], and

k=1 p (-1 q> 2
— — —. 1.1
max( i + RIS + e <5 (1.19)

Then problen(1.7) admits a unique solutiofw, v). And
u € C([0,00), L(2)) if b1 < oo, and v e C([0,00), L%(2)) if b < oo. (1.20)
In particular uniqueness holds for any, vg € L(£2), under condition(1.11).
Whenug, vg € L*°(£2), andug, vp > 0, we obtain new results, where the four parameters, &, ¢
are involved, by using Theorem 1.3, and also the positivity properties of Section 6. Our main result is the

following.

Theorem 1.7. Assume thatig, vg € L°°(f2) andug, vo = 0. Then uniqueness holds for probléin?7),
in any of the following cases

(i) p,q > 1 (see Theorer.6);
(i) 0<k<¢g<1l0<l<p<land

p(l—q) <l1-k) and g¢(1-p)<k(l-10); (1.21)
(i) p,k>=1,¢>0,and

1-/<q and vd(x) <cuy “(z), ae.ins2, for somec > O; (1.22)
(iv) ¢,£>1, k>0,and

1-k<p and ul(z)<cv P(z), ae.ing, for somee > O; (1.23)

(V) k¢ > 1and(1.22) (1.23)hold.
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In particular if inf,c, ug(z) > 0 and inf.c vo(x) > 0, then uniqueness holds whén? > 1. We
give more complete results in the case of Neuman problem, see Theorem 7.1, or when the comparison
properties of Section 4 hold, see Theorem 7.2.

Notice that uniqueness can hold with all the parametegsk, ¢ < 1, for example whem = ¢ and
qg=k,orwhenp =1—kandg=1—¢andp+ g > 1. The problem remains open for some ranges of
the parameters, for example in the case of the Hamiltonian system

up — Au 4 vP sigryu = 0,
vy — D 4+ u? signgv = 0,

wherek = ¢ = 0, whenp < 1org < 1.

2. Theo.d.e. problem

Here we study the ordinary differential system (1.5). We will discuss according to the different values
of a, b, 6. Notice that
a,b>0andf <0 = £k (<1, (2.1)
a,b<0 = k,/>1andj<0. (2.2)

The role of§ is enlighted by the existence of particular solutions:

w =AY vt =B % on(0,00), ifa,b>0ands >0, orifa,b<0, (2.3)
u =A@ )Y0l vt =B )Yl onR, ifa,b>0ands <0, (2.4)

are solutions of (1.5), wherd* = |b/5[P/%|a/8|=0/% and B* = |a/6|%/%|b/5|2~*)/9 Whena,b > 0
andé = 0, one gets a family of solutions, whete- 0 is arbitrary:

b/a
u, = ce(a/bret vy = (c%) e O/t (2.5)

The solutions given by (2.3) or (2.5), remain positive, but those given by (2.4) have a compact support.
Now consider the Cauchy problem with dat®) = ug € R, v(0) = v € R, and unknown, v) €
CY([0, o)),

Proposition 2.1. The problen(1.5) with initial data ug, vo € R, has a unique global solutiofu, v) on
[0, 00). If ug, vg = 0, thenu, v > 0. Wheneveig, vg > 0, the following properties hold

() If £ > 1 (resp.f > 1), thenu (resp.v) remains positive of, co). In particular if a, b < 0, then
u, v are positive.
(i) Whena, b # 0, the region{ au® = bv?} is invariant, since

bw® — aub = bv§ — aud = C. (2.6)
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(i) If a,b > 0andd > O, thenu,v are positive wher = 0; whenC' > 0 (resp.C' < 0), v (resp.u)
is positive, and: (resp.v) has a compact supportif < 1 (resp.f < 1).

(iv) If a,b > 0andé < O, thenu and v have a compact support whé&n= 0; whenC > 0 (resp.
C < 0), v (resp.u) is positive, and. (resp.v) has a compact support.

(V) If a <0 (resp.b < 0), thenv (resp.u) is positive, and: (resp.v) has a compact support if < 1
(resp.f < 1).

Proof. First notice that any solution satisfies?); < 0, a.e. in (Opc). Therefore, ifug = 0, we find
a unique solution on (@p): u = 0, v = wvg; if vg = 0, thenu = ug, v = 0. Thus we can suppose
up # 0 andvy # 0. Sinceu? andv? are nonincreasing, they stay bounded, thenajsmdv,, and global
existence and uniqueness follow from the Cauchy theorem.

Now let us assumeg > 0, vp > 0. This is not restrictive, since ifu( v) is a solution, thenHu, +v)
is also a solution.

(i) If k> 1, thenu; + viu®* > 0, thus

w(p) > | oL (b Dub= 2Dtk > 1,
" upe s, if k= 1,

henceu(t) > 0 for anyt > 0. It happens in particular when< 0.
(i) As long as the solutions do not vanish, they satisfy

wI Py, = —udoP = Py,
If a,b # 0, then

d

&(bv“ — aub) =0,

hence (2.6) holds, and we callj{, c1, v[4,,c7) the corresponding solutions.
(i) Let a,b > 0andd > 0. In case” = 0 and$ > 0, we find

d(a p/a é/a —o/? a Ya b/a
U[yp,0] = UO (1+ 2 (E) uO/ t) , Vluo,0] = (E) u[zéo,()]; (2.7)

notice that {.,,05 V[ue,07) IS NOthing but a translated of1, v*) given by (2.3). In cas€’ = 0 andé = O,
then (upu, 01 V[ue,07) = (uy,, y,); iN @ny case the two solutions remain positive omx(), Now assume
C # 0. By symmetry we can assume tliat> 0. Thenv stays positive. As long asremains positive, it
is given by

U0 du
. _p-p/a
/u T ey = 2.8)

If T is the maximal value such that> 0, then necessarily — 0 ast — T. ThenT is finite if and only
if fo° du/uk < oo, that meang < 1. Inthat casey = (C/b)l/“ > 0on|[l',o0). Whenk > 1, u remains
positive,u(t) — 0 andv(t) — (C/b)¥/* at infinity.
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(iv) Leta,b > 0ands < 0. In caseC' = 0, we find

|5| a p/a 5/a +\ a/|d] a 1/a b/a
u[uo,O] = uo((l — ; (3) uO/ t) ) y U[uo,O] = (z> u[éolo],

hence ([u,,01, V[uo,01) IS @ translated ofu(*, v*) given by (2.4). It has a compact support. If for example
C > 0, thenu is still given by (2.8). It has a compact support from (2.1).

(v) Leta < 0. Thenw is positive, since > 1. Assume moreover that< 1, thusb > 0. If a < 0, then
(2.6) takes the form

mw+i~c, (2.9)

1)“1| o

henceC > 0, andu is given by

uo du
_ —p/ay.
/. FCJafabyre 0 E (210)

if a =0 < b, thenu, v are given by

U du ) b_,b
/ ——— =V € pug/by, v = vg e "4/t
w  ukepul/b

In any case: has a compact support.0

Remark 2.1. Assume thatig, vg > 0, anda, b > 0. Observe that conditioh < 1 does not imply that
has a compact support: for examplédf < aug, thenu stays positive. Notice also that conditién< 0
implies that at least one of the solutions has a compact support. Condlitiod implies that the sum
u + v stays positive.

Remark 2.2. Assume that, vg > 0 andab > 0, and for examplaug < bvg. ThenC > 0in (2.6), so
that in any case > (a/b)Y%u"*. Thusu,v are respectively subsolution and supersolution of ordinary
differential equations:

a p/a a —q/b
Uy + (g) uQ < 01 Ut + (Z) UP 2 01

whereP, Q are defined at (1.6). We will extend these properties to system (1.1) in Section 4.

3. Existence and first properties
3.1. Some useful formulas on heat equation

Here we briefly mention some well-known results. gt = (2 x [0, T}, for anyT" > 0. We denote
by Co(£2) the set of functionsy € C(£2) which vanish ord (2.
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For any {0, F) € LY(£2) x LY(Q7) there exists a unique functiapn € C([0, T, L*(£2)), such that
y € LY(0,T), WyX(12)) (resp.LY((0, T), WL(£2))), solution of problem

yr — Dy + F =0, inQr,
y = 0 (resp.d0y/ov =0), ondf?2 x (0,7), (3.1)
y(0) = yo, in {2,

in the weak sense
T
/0 /Q (—ypr —yDp + Fp)drdt =0, (3.2)

for any o € D(Q1) (resp. € C>(Qr) with compact support if2 x (0,T), such thaty/dv = 0).
And y is given by

t
() = S(t)yo — /0 S(t — s)F(s) ds. (3.3)

The mappingS : (yo, F) — y is compact fromL(£2) x LY(Q7) into L"(Qr) for 1 < r < (N + 2)/N,

see [4]. Also it is continuous from(£2) x LY(Qr) into C([0, T], L(£2)) and intoL*((0,T), W (£2))

(resp.L*((0,T), Wtr(£2))) for 2/s + N/p > N + 1. More generally, ifyo € M,(§2), problem (3.1)
admits a unique weak solutione LY(Q7), such thaty(t) — yo, weakly in M, (£2), ast — 0. Andy is

the only solution inZ(Q7) of problem

T .
/ / (—ytby — ybp + Fup)d dlt = / (0) dyo, (3.4)
0J0N 0

for any € C°°(Q7) with compact support ifi2 x [0, T') (resp. inf2 x [0, T'), such thaBy/dv = 0).
Moreover, the semigroupS, and S,, share some regularizing properties: for agyc L%(£2) and
1<0<7<00,

{ [Sa®yoll - (0
HSn(t)yOHLT(Q)

Ct=O=YDIN2 || Lo,

3.5
C(l+t_(l/g_l/T)N/Z)HyOHLG(Q), (3.5)

<
<

see, for example, [26]. In particul&i(-)yo € LP(Qr) for 1 < p < O(N+2)/N. Also for anyyo € Co(12),

[Sa®)yol| 0oy < C e lyol| (),

where \; is the first eigenvalue of-A in (2. In the sequel we will denote by, the eigenfunction
associated td such thatp; > 0 and||¢1| L~ = 1.

Next, we recall some formulations of parabolic Kato inequality: 4gt &) € L(2) x LY(Qr) andy
be the solution of (3.1), with Dirichlet or Neuman data. Then

lyle — Aly| + F'signyy < 0, (3.6)
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in D'(Qr), and more precisely for antye [0, 7] and a.e. inf?2,

t
()] + /0 S(t — 5)F(s) signy y(s) ds < S@)lvol. (3.7)

In particular if F - y > 0, a.e. inQr, then for anyt € [0, 77, |y(t)] < S®)|yo|, a.e. ing2. If moreover
yo = 0, a.e. inf2, theny(t) > 0, a.e. inf2.

3.2. Formulation of the Cauchy problem for the system

Let us come to system (1.1). Notice that it always admits (0, 0) as a solution, and also solutions of
the form (0,v) with v solution of the heat equation, and, 0), with v solution of the heat equation. We
consider the Cauchy problem with Dirichlet or Neuman data (1.7).

First assumeug, vg € L1(£2). By solution (,v) of (1.7), we mean any couple of functionsv €
C([0, 00), L1(£2)) such thatjv|?|ul®, [u|?|v]’ € Li(Qs), u(0) = uo, v(0) = vo, which are weak
solutions of their respective equations in the sense of (3.2). It can be expressed in an equivalent way by

t
u(t) = S@)ug — /0 St — 5)‘v(5)‘pyu(s)‘k_lu(s) ds,
(3.8)

o(t) = S(t)vo — /0 t St — 8)|u(s)|*v(s)|"v(s) ds,

foranyt > 0, with S = S5 or S = S5,,. Assume now thatip, vo € My(£2). By solution of (1.7), we
mean any couple of functiong v € L} (Qw), such thatv|P|ul®, [u|?|v|* € L (Qs), and are weak
solutions, and

u(t) — ug, v(t) — vg weakly inM,(f2), ast — 0. (3.9)

It can be expressed equivalently as in (3.4). As a direct consequence of Kato inequality, we deduce the
following:

Lemma 3.1. For anyug, vg € L(£2), any weak solutiou, v) of problem(1.7) satisfie1.9). Moreover
if ug > 0 (resp.vg = 0), then, for anyt € [0, c0), u(t) = 0 (resp.v(t) = 0), a.e. in(2.

Remark 3.1. In particular if for exampleup = 0, then uniqueness holds: indeed= 0 andv(:) =
S()vo.

Remark 3.2. Assume thatug, vo € L1(£2). From (1.9) and the regularizing effect of the semi-group
(3.5), any solution, v) of (1.7), if it exists, is locally bounded i).,. From the standard regularity
theory, u, v lie in W2"(Qu) for anym > 1, hence inCQ) , and inCEXQuo) if k, £ # 0,
and in fact in Holder functions spaces. Thus the equations are satisfied @&. ifrom (3.5), for any

l1<f<o<oand 1< A <7< 0,

Hu(t)HLU(Q) < C(l+t_(l/e_l/a)N/z)||UO||L9(Q), ( )
3.10
0@y < CEHATHDNE ]| g,
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If ug,vg € L®(£2), thenu,v € L®(Qs), henceu,v € W21™(Qr) for any 1< m < oo and any
T > 0, in particularu, v € C([0, 00), L™(2)). Moreover, ifug, vo € Co({2) for the Dirichlet problem
(resp.u, v € C(£2) for the Neuman problem), thanv € C(Q).

3.3. Proofs of existence
First we prove Theorem 1.1.
Lemma3.2. Letug, v € L>(2) and Fy, F» locally Lipschitz fromiR? into R, such that
F1(0,0)= F»(0,00=0 and Fi(r,s)r >0, Fy(r,s)s>0, Vr,seR.

Then there exist, v € C([0, o0), L1(£2)), unique, such that

ur — Au + Fi(u,v) =0, iN Qoos

v — Dv + Fo(u,v) = 0, iN Qoo (3.11)
u=v =0 (resp.du/dv = dv/ov = 0), ondf? x [0, ),

u(0) = uo, v(0) = vo, in .

Andu,v € L™ (Qs) N C([0, o), L™(£2)) for anym > 1.

Proof. LetUo,n, Vo, € D(£2), uniformly bounded in2, such thatlp,,, — uo andVp,,, — vo in L1(£2)
asm — oo. Then there exists a unique solutiap,, v,,, of the problem

Ut — Dy, + F1(um, vm) = 0, in 2 x [0,T:,),
Ut — Dvpy, + Fo(up, vy) = 0, in 2 x [0,T},),
U, = Uy, = 0 (resp.0u,, /dv = 0v,,/0v = 0), ondf? x [0,T,,),
um(O) = onm, Un’m(O) = VO,m’ in Q,

defined on a maximal interval [@},,). From the Kato inequality,
[um@®)| < SOUoml, |vm)| < SEVoml, in 2,

so thatu,,(t), vy, (t) are bounded I *°(Q), Which impliesT,, = oo; and F1(um, vm), Foltm, vm)
are bounded in.>°(Q,). Now

wum(t) = S(OUom — /0 'St — )Py (tn(s), () s,
(3.12)

om(t) = S()Voum — /0 "t — ) ot (5), vm(s)) ds.

From the compactness properties&fup to a subsequence,, andv,, converge a.e. i), and in
L™(Qr) for 1 < r < (N + 2)/N and anyT’ > 0 to someu andv. Then Fi(uy,, vy,) and Fa(uy,, vp,)
converge taf (u, v) and F(u, v), strongly inL(Qr). Then we can go to the limit in (3.12) as — oo,
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thus (, v) is a solution of (3.11). Andi,v € L®(Qs), henceFi(u,v), Fo(u,v) € LY((0,T), L=({2)),
and fg St — s)F;(u(s),v(s))ds € C([0,00), L°($2)) for i = 1,2. MoreoverS(t)ug, S)vg €
C([0, ), L™(£2)) for any m > 1, thus also by additiom,v € C([0, c0), L™(£2)). Uniqueness holds
because, F5 are locally Lipschitz continuous. O

Proof of Theorem 1.1. For any real) > 0, and any» € N, let g, ,,(r) be an odd monotone locally Lip-
schitz approximation of — |r["~1r, such thatg,,(r)| < |r|" for anyr € R. Letug,, vo, be the
truncatures ofig, vg by +n. From Lemma 3.2, there exists a unique solutioy, ¢,,) of the problem

Un,t — Duy, + gn,p(‘vn‘)gn,k(un) =0, in Qooa
Unt — Avy, + gn,q(|un|)gn,€(vn) =0, in Qoo; (3 13)
Uy, = vy, = 0 (resp.du,, /v = dv,/dr = 0), onds? x [0, ), '
un(0) = uopn, vn(0) = vopu, in £2,
and
[un ()| < SE)|uonl < SWB)uol,  |va(t)] < SH)|vonl < SE)|vol in £2.
Thenu,, v, are bounded ii{%.(2 x (0,00)). Moreover,
¢
un(t) = S(t)(UO,n) - / S(t - 3)9n,p(|vn(3)|)gn,k (un(s)) ds,
0 (3.14)

t
vn(t) = S(t)(vo) — /0 S(t — 8)gnq (|n(8)]) g (v(5)) I,
and

{}gn,p(|vn|)9n,k(un)| < Gnp (SC)|vol) gnk (S()|uo]) < |S(')|u0||k}5(')|vo|}p,
‘gn,q(‘un‘)gn,f(vn)‘ < gn,q(S()’uo‘)gn,k(s()’fuo‘) < \S()’UOHq‘S()’UO\ Z;

and for anyT > 0, |S()|uol|*|SC)|vol [P, [SC)|uol|?|S()|vol[¢ € LYQr) from (1.8). Up to a subse-
quence, 4., v,) converge to someu(v), strongly in C"(Qr))* for 1 < r < (N + 2)/N, and a.e.
in Qoo

First assumek, £ # 0. Theng, ,(|vn|)gn x(un) converges tdv|P|u*~1u and g, 4(|un|)gn.¢(vy) con-
verges tdu|?|v|*~1v, a.e. iNQ, and inLY(Qr). We can pass to the limit in (3.14) by Lebesgue theorem,
then (u, v) satisfies (3.8), thus it is a solution of problem.

Now assume for example that= 0. Then

p
’

’gnvp(‘vn‘)gn,O(un)‘ < ’S()‘UOI

and from (1.8)|S(-)|vo||P € L*(Qr) for somes > 1, and anyl" > 0. Moreoveru,,, v, are bounded in
Lx.(Qr), hence als@y, y(|vn|)gn.o(wn) = Duy, — up . This implies thatu, is bounded irWIZ'l’”(QOO)

oc
for anym > 1, from Remark 3.2. Hena®u,, andu,, ; are bounded irL{’.(Q ). Then for fixedI’, after

m
loc
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extraction of a subsequence (depending eventual®)on,, ,(|vy, [)gn,0(uy,) converges weakly ih*(Q7)
to some functionb. Thereforeu satisfies

u—Du+P=0

in D'(Qr). From the compactness properties of the semi-group, we get

t
ut) = S(tyuo — /o S(t — 5)B(s) ds.

From the chain rule, we deduce that= 0, a.e. on the seti{ = 0}. And h,, ,(v,)gn0(un) CONVerges
to |v|P, a.e. on the set{ # 0}, hence® = |v|P, a.e. on this set. This shows that= |v|P sign,«, and
there holds

t
u(t) = S(t)(uo) — / S(t — s)vP(s) signy u(s) ds. O
0
Now we prove Corollary 1.1. More precisely we get the following:
Corollary 3.1. Assume thatg € L% (£2) and vo € L%(£2) for somel < 61,6> < oo, and (1.10)

holds. Then there exists a soluti¢n, v) of problem(1.7). Moreover any solution satisfigs|P|u|* ¢
L*(Qr), |ul?v| € L2(Q7), for any

k 0
1<51<(N+2)/N<9—1+9%>, 1<52<(N+2)/N<9%+9—2). (3.15)

Also|v|P|ul® € L*((0,T), L5'(£2)), |u|?|v|’ € L((0,T), L°2(£2)), for any

Ep  2\* .k p 2
1< 1/(—++--=], 1< f—+=<—, 1
Sy < /(91+92 N) Si<oo i gt <y (3.16)

qg ! 2>+ . q £ 2
1< 1/(-+—-=), 1< f— 4 — < —. 3.17
So < /<91—|—92 N So < 00 |91+92<N ( )

Thus, if61 < 0o, thenu € C([0, oo), L™1(£2)), with m1 = min(f1, S1); if 2 < oo, thenv € C([0, ),
L™2(£2)), with mp = min(f2, S).

Proof. First observe that if1, 0, = oo, the result follows directly from Theorem 1.1, sin€é)(|uo| +
lvo|) € L>®(Qo). It also follows iff1,0, = 1 under condition (1.10), which reduces to (1.11). Indeed
foranyT > 0, and any-, s > 1,

T
[ sl (5ol aros
1/r!

< < /O T/Q (S()[uo]) ™™ dxdt>l/r< /O T/Q (S(®)|vo])™*" dxdt> : (3.18)
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Now S(-)(|uo| + |vo]) € LP(Qr) for any 1< p < (N + 2)/N. Takingr = (k + p)/k, we haveksr =
psr’ = (k + p)s, and from (1.11) we can choose<ls < (N + 2)/N(k + p), so that the right-hand side
is finite. Hence (1.8) holds.

Let us come to the general casec1dy, #; < oo. From (3.5), 6(-)|uo|)® € LY(Qr) forany 0< o <
61(N + 2)/N, and S(-)|vo|)” € LY Q) forany 0< 7 < 62(N + 2)/N, sincef? is bounded. For any
r,s > 1, there still holds (3.18). Let

Nk d Np
627, =
(N + 2)b1 (N +2)0,

with the conventiore = 0if #; = oo, d = 0if 8, = co. Thenc + d < 1 from (1.10). We choose > 1
such that¢ + d)s < 1, andr > 1 such thats < 1/r < 1 — ds, so that

ksr < 01(N +2)/N and psr’ < (N +2)/N.
Then (1.8) holds, which proves the existence; aflu|* ¢ L*(Qr), for anys; given by (3.15).

Also considers andr as above, with moreoveY /(N +2) < (c+d)s and 1— ds(N +2)/N < 1/r <
¢s(N 4+ 2)/N. Thenksr > 61 > 1 andpsr’ > 6, > 1, and

1/r'

. 1/r ,
/Q (SOl (SO)lvol)” du di < ( /Q (S(O)luol) **" de dt> ( /Q (SOlvo)”" de dt>
for anyt > 0. From (3.10), we derive

1(S@luol)* (S@)vol)”|

k
LS(Q) g HS(t)’UO‘ HLkST(Q)HS(t)‘UO’ ||ipsﬂ(9)

< TR g0y g llvol (3.19)

p
Lo%2(0)’
wherea = (1/61 — 1/ksr)N/2 andB = (1/6, — 1/psr’)N/2. Thus|v|P|u|* € LY((0,T), L*(£2)) for
anys > 1/(k/61 + p/62), such thawk + fp < 1, that means /01 + p/62 — 2/N < 1/s; hence for any
s < 91 satisfying (3.16), since? is bounded. Moreove$(t)ug € C([0, c0), L1(£2)), if 6, < oo, and
u — S(t)ug € C([0, 00), L°1(£2)), henceu € C([0, oo), L™ (£2)); and similarly forv. O

Finally we come to the case of measures as initial dafay € M, (£2).
Proof of Theorem 1.2. Let ug,vo € My(§2). Letug,,, vo,, € L°(£2) such thatug,,, vo, are bounded

in L1(£2) and converge weakly tag, vg in My(£2). As above problem (3.13) admits a solutian, (v,,).
And

lun ()] < SE)|uonl, |valt)] < SE)|von| in 2.
Henceuy,(t), v, (t) are bounded idi2. (2 x (0,0)). And

p
’

{‘gn,p(‘vn‘)gn,k(un)’ < gn,p(S(')‘UO,n’)gn,k(s(')’uo,n‘) < \S()\Uo,nHk‘S()’UO,n!
‘gn,q(‘un‘)gn,f(vn)‘ < gn,q(S(')’uo,nDgn,k(s(')‘vo,n’) < ’S()’uo,an‘S()’UO,nHZ
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Moreover fors > 1 small enough such that ¢+ p)s < (IV + 2)/N, and for anyl" > 0, we find

1(SO)uonl) (SOlvonl)”|

k
Ls(Qr) < ||S()‘u0,n’ ||L(k+p)S(QT) ||S()‘UO,TZ’ ||i(k+p)S(QT)

from (3.18); andS(-)(|uo .| + |vo.|) is bounded inLE+P)s(Qr), sinceug ,, vo,, are bounded i(12).
Then|S(-)|uox||*|S(-)|vox||P is bounded inL*(Qr). Up to a subsequence,,, v,, converge strongly in
L"(Qr)for1 < r < (N +2)/N, and a.e. iQ, to someu, v. Moreoveru,, satisfies

T .
/ / (_unwt — upp + gn,p(|vn|)gn,k(un)¢) dor dt = / T;Z)(O)uo,n dz, (3.20)
0J 2

for anyy € C°°(Qr) with compact support it x [0, T) (resp. inf2 x [0, 7)), such thady /v = 0). If
k # 0, theng,, ,(|vn|)gn.k (us) converges tov|?|ult~1, a.e. inQo and inLY(Qr). Thus we can go to the
limit in (3.20) and deduce

T .
[ (= s+ ol ) doe = [ 50) i 321)

If £ =0, then, as in Theorem 3, ,(|vy|)gn,0(un) converges weakly irL*(Qr) to & = |v|? signyu,
sinces > 1, hence (3.21) is still valid. Similarly far, thus (, v) is a solution of (1.7). O

Remark 3.3. In the scalar case of Eq. (1.3) with Dirichlet (or Neuman conditions)(@) € L(£2), no
condition on the powe® is required for existence, see [11, Remark 5]. Condifor (N +2)/N, anal-
ogous to (1.11) is only required whes(0) € M;(£2). The proof of the existence when(0) € L(12)
lies essentially on the monotonicity of the nonlinear term, and cannot be extended to system (1.1).

Remark 3.4. Letxo, yo € {2 be fixed. Consider Dirac massgs, J,, at these points. From Theorem 1.2,
if max(k + p,q + ¢) < (N + 2)/N, then problem (1.7), with initial data

ug = Up + gl vo = Vo + Body,, (3.22)
has a solution for any real numbers, 3y and anylUy, Vo € LY(£2). If the two Dirac masses are not at
the same point, that is ifg # o, and for examplé/y, Vo € L°°(£2) (in particularUp = Vp = 0), we can
improve this result: in that case we have existence whenever

max, ¢, k, £) < (N + 2)/N. (3.23)
Indeed in the proof of Theorem 1.2, we can approximatevg by

uon = Uo + aopn(- —20),  von = Vo + Bopn(- — v0),

wherep,, is a regularizing sequence with supportA¢0,m), with m = |zo — yo|/2. As above, prob-
lem (3.13) admits a solutionuf,, v,,). And there exist€' > 0, such that, for any > 0,

S®)uon| < C+ |aolSEpn(- —z0),  SW)|von] < C+[6olS(E)on(- — o), a.e.ing2.
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Then for fixedT > 0, S(-)|vo,| is bounded in £\B(yo,m) x [0,7], and S(:)|uo,| is bounded
in (2\B(xo,m) x [0,T]. Thus|S()|uo.|*|S(-)|vo.|P is bounded inL*(Qr) for somes > 1, since
k,p < (N + 2)/N. The same property holds f68(-)|uo|||S(-)|von|[¢, sinceq, £ < (N + 2)/N. More

generally, we have existence in Theorem 1.2 under the assumption (3.23), as s@ptpas M (f2)
with compact disjoint supports.

Remark 3.5. We have supposed thatq > 0 in order that the solutions, v are actually coupled. In

fact the existence theorems are still available whenO or ¢ = 0. In the same way, we get an existence

result for a scalar equation:

Proposition 3.1. For anyk > 0, anyug € L(£2) and any measurable functidi’ > 0 on Q. such that
(SO uo)* W () € Lie (@), forsomes > 1 (s > 1if k = 0), (3.24)

there exists a unique weak solutiarof problem

ug — D4 Wu[F2u =0, in Qu,
u =0 (resp.0u/drv = 0), o0ondf?2 x (0,0), (3.25)
u(0) = up, in 0.

It is also the case whemy € M,(£2) and
We Ll.(Qx), forsomen> 1, such thatn’ < (N + 2)/N. (3.26)

Moreover ifu is a subsolution, withu € L} (Q~) andu; — Au € L
thenu < v’ a.e. iNQ.

L .(Q), andu’ is a supersolution,

Proof. First assume thatig € L(£2). Let W,,, ug,, be the truncatures d¥, ug by +n andu,, be the

solution of the approximate problem

Unt — Au,, + ann,k(un) =0, in Qom
u, = 0 (resp.du,,/ov = 0), onas? x (0,00), (3.27)

Then
k
’ann,k(un)‘ < W(S()|u0|) ’
hence we obtain the existence of a solution of (3.25) from (3.24), as in Theorem 1.1. Now assume that

up € My(§2), and consider the approximate problem (3.27), whergis given as in Theorem 1.2. If
k # 0, thenWW,,|u,, ¥ is bounded inL*(Qr), for s > 1 small enough. Indeed for amy> 1,

1(SOluonl) W

k .
ro@r) < NSO [ pesr@mlW Lo @y
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Sincekn’ < (N+2)/N,we cantake K s < n/(1+knN/(N+2)), andr’ = n/s; thusksr < (N+2)/N

and the right-hand side is finite.Af= 0, theniW|u, |¥ = W € L"(Qr) and the conclusion follows again.
The existence of a solution of (3.25) follows as in Theorem 1.2. Moreover the solution is unique, from
monotonicity, and the comparison principle holds

3.4. A principle of cross comparison
Now we consider the case of nonnegative initial data, and we look for some kind of comparison

principles. Notice a simple property of contravariance. Assumeihaj énd ¢/, v’) are two nonnegative
solutions of problem (1.7), and (1.8) holds; then

v<V,iNQs = u>=1,inQu; (3.28)
indeed

ug — Du+ 0Py >0 and uy — D' + vPu’* =0,
andvPu® € LY(Qr), foranyT > 0, from (1.8); then (3.28) follows from the usual comparison principle.
Thus we cannot expect that the conditiar(®) < «/(0) andv(0) < +/(0) imply v < «/ andv < v/,
in Q. Using this idea we can prove the existence of minimal-maximal solution and a maximal-minimal

one:

Proof of Theorem 1.3. From Remark 3.1, we can suppose thatz 0 andwvg # 0. First assume that
k > 0, and? > 0. Letw be the solution of heat equation with initial datg

wy — Aw =0, iNQoos
w = 0 (resp.dw/drv = 0), 0ondf?2 x (0,00),
w(0) = uo.

We construct a first sequence of approximate solutiopsi,), such that for any. > 1,

{un = v, = 0 (resp.du, /0v = dv,, /ov = 0), ondf2 x (0,00), (3.29)

un(0) = ug, vu(0) = vo, in £2.
We take forv; the solution of heat equation
Vit — AU]_ == 01 In Q001

hencev; > 0, andv < v1 in Q4 from the maximum principle. Then we define a nonnegative function
ug = 0 by

uy — DNuq + v11)|u1|k71u1 =0, INQu.

Such a solution exists from Proposition 3.1 with = v}. Indeed ifug € L(£2), thenv; = S(-)vg, and
(3.24) holds from (1.8); ifup € My(£2), then (3.26) holds with condition (1.11), with= 1+ k/p if
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k#0,and anyp € (1, (N + 2)/Np) if k= 0. AndvP|ug|*~1u; € LL (Qo), moreoveruy, — Aug +
vP|ug[F~tug < 0, henceus < w. In the same way we define a unique> 0 by

var — Dz + ufjvp| Tt = 0, INQu,
andv, < vy. We defineu, by
up — Dup + vhluz| rup = 0, I Qo
anduy > wy. By induction we define,, > 0 andu,, > 0, for anyn > 2, by

{ Unt — Dy, + UZ_1|’Un|£_l’Un =0, in Qoo;

Upt — Dy, —i—vﬁ]unlk*lun =0, iNnQoo;
and we find
O<ur Sup < KUy CUpy1 < -+ < W, 0< - <1< <--- <2< 1. (3.30)

Then @,,v,) converges, a.e. i), to some {,V), from monotonicity. Andv?|u,|*~tu, —
VP|U|F~1U, even ifk = 0, since {i,) is nondecreasing. The convergence hold&i(Q7), from (1.8)
or (1.11), sincebuf < Wfwk. If £ > 0, thenu? v, |*" v, — UV |1V, a.e. inQu and inLY(Q7).
If £ =0, sign, v, does not converge in general to sjgnbecause the sequeneg)is nonincreasing. As
in Theorem 1.1 after exchangingandv, we deduce that! , sign,v,, converges ta = U?sign, V,
weakly in L? (Q) for somes > 1. Thus (/,V) is a solution of the system. Let(v) be any other

loc
solution. Thenu; < u, andv < vy, since

k-1 /-1
ugy — Dug + vPlug|* " ug <0, v — Dvg + ul|vg|"Tvp = 0.

By induction,u; < v andv < v, foranyn > 1, henceJ < wandv < V.
Exchanging the two equations, we define other sequeiger) satisfying also (3.29), with initial
data {9, vo), such that

alt — Aﬁl = O, in QOO,
by — Doy + @011 =0, N Qc,
and
s — Il ~p a1l =00 i
Unt Uy, + vn_1|un| up =0, 1IN Qoo;
Ot — DOy, + 0l |0,| 10, = 0, iN Qo
for anyn > 2; then
VK02 SV KVpp1 <. <0, UK S Uppl S Uy S -0 < U2 < Uy,

and (., ,,) converges to a solutiort/(| V) of the system, and < U andV < v.
Now assume & up < ug and 0< vy < vo. By induction we find easily that,, < u,, v

ne Uy, < vy, and
u, <, 0, < 0, with obvious notations, hence (1.13) followsOd

/
n
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Remark 3.6. Consider problem (1.7) with Neuman conditions, and assume ithaty € L°°((2),
ug,vo = 0, and inf.cvo(z) > 0. Let (/,v’) be the unique solution of the o.d.e. problem (1.5) such
thatu/(0) = ||uol| e<() andv’(0) = inf,eq, vo(x). Then any solutiomy, v) of (1.7) satisfies

"and v <, inQ.

u<u
Indeed takinguy = |luol|ze<(2) andvy = infyc vo(z), the sequences() and @/,) constructed above
only depend o, and converge respectively td andv’.

4, Linksbetween v and v

Here we study the question of invariant regions whenexgty € L°°(£2) andab > 0, and prove
Theorem 1.4. Our method is based on the ideas of [6] for elliptic systems, also used in [9], namely a
comparison between two powers®findv, chosen in a suitable way. First let us give a scheme of the
proof of the main points of Theorem 1.4. The basic idea is to consider the function

Y = v — \ube,
where
M = (a/b)Y°. (4.1)

Whenb/a > 1, the formal computation dfY leads to an equation of the form
Y, -AY + K =M,

where M = cub/*=2|Vul?, with ¢ = A*(b/a)(b/a — 1) > 0, andK has the sign ot if a < 1, and

the opposite sign it > 1. Formally, ifa < 1, if Y(0) > 0, thenY > 0 from the maximum principle.
Moreover, if 6 > 0, we prove thatk’ < CY for someC > 0, henceY > 0 or Y = 0 from the strict
maximum principle. Ifa > 1, andd > 0, then we prove thak’ < C'Y~, hence agairy’ (0) > 0, then

Y > 0 from the maximum principle. Technically, one has to justify the use of these maximum principles,
because functiof” is not regular enough: in particulaky” is not defined a.e., due of the terh. This

is the purpose of next lemma.

Lemmad4.l. Let(u,v) be any solution of1.7), with ug,vg € L°°(£2), ug,v0 > 0. Leta > 1> G > 0,
suchthat3 — 1+ /¢ > 0, and

Y=o = Xu®, A>0, (4.2)

K = Bullv]?~2 0 — axoP|u|* 2 Ry, (4.3)

with the conventiorg1.2). Then for any real’ > 0, and anyt > O,

_C 2 . o ot o B -
et /9 (YAt dr < /Q (Y)2(0)de + /0 /Qe QK@) - CY ()Y (Ndedr.  (4.4)
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MoreoverW (t) = Y (t) + S(t)Y (0)~ satisfies
2 t _
/Q (W) de < /o /Q 2K (F)W (r) d dir. (4.5)
Also for anyC’ > 0, Z(t) = €“"tY (t) — S(t)Y (0) satisfies

/Q (Z7)) de < /0 t/Q (2K(r) — C'Y (1) Z~ () de dr. (4.6)
Proof. LetT > 0O be fixed, and

F=ouf Y, G =ulo| L,
henceF,G € L>®(Qr). Let (uop, F), (von, Gn) € D(2) x D(Qr) with F,,,G,, > 0, converging
respectively to ¢o, F), (vo,G) in L*(2) x L*(Q7), with ug,, v, bounded inL>(£2) and F,, G,

bounded inL>°(Qr). Then there exist unique classical solutiensv,, of problems

Un,t — Auy, + Fp, =0, Un,t — Av, +Gp, =0, in QT;
uy, = vy, = 0 (resp.du,,/0v = dv,/ov =0), ondf2 x (0,7), 4.7)
un(o) = UQn» Un(o) = Von, in 2.

And u,,, v, are bounded iL.>°(Qr) and converge ta, v, strongly inC([0, T, L3(£2)), and a.e. irQr,
and inL2((0,7), W14(2)). Lete > 0, ande’ = (\e®)Y/A. Let us define

fn,a = (un + 5)a1 dne = (Un + 5/)'61 Yn,a = 0Onge — )\fn,a-

Then in the classical sense

(fn,a)t - Afn,a + a(un + 5)0{71Fn = _a(a - 1)(un + 5)a72’vun’2 < O,
(gn,e’)t - Agn,z—:’ + B(Un + 5/)'671Gn = B(l - ﬁ)(vn + 51)572’vvn’2 Z 0.
ThusY,, . satisfies the equation
(Yn,s)t - AYn,s + Kn,s = n,e1 (48)

whereK,, ., M, . € L>(Qr) are defined by

Ko = B, +)°71G, — aX(uy, + €)*1F,,
M, . = @A - B)(v, + 5')5*2]V1}n[2 + ala — DA(uy + a)a*ZNun]Z > 0.

For the Dirichlet problem, there holds,. = 0 ond{2 x (0,7, from the choice ot’. For the Neuman
problem, we fin®Y,, . /0v = B(v, + ')’ 10, /ov — a(u, + €)* 1du, /ov = 0. In any case

t
Yoe(t) = S@) (Yo (0) + /O S(t — 5) (M — Ke)(s) ds.
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Now for anyC' > 0, multiplying (4.8) by €CtYnj€, and integrating ovef?, we find

(e [ (P w) < [ (2K - OYn )0

We derive, for any € [0, T7,

_C —\2 —\2 t _Cr — —

e Ct /Q (V)2 de < /Q (Y;)2(0) de + /0 /Q & C7 (2K, o(r) — OY,(7))Y,u(r) dz dr. (4.9)
In the same way, let

Wn,e(t) = Yn,e(t) +5(t) (Yn,s(o)_);

thenW,, . satisfies the same equation (4.8)Yas, and multiplying by, _, we obtain

n,e!

/Q (W) () dr < 2 /0 t /Q Koo (r)W,r(r) d dr. (4.10)
Also, for anyC’ > 0,

Zn () = €Y, 2(t) — S(H)Yn,0)
satisfies the equation

(Zne)e = DZpe = €My + C'Yy o — Ko).

Multiplying by Z~_, we deduce that

n,e?

% (/Q (Z..)" dx) < /Q (2K () = 'Y e(9) Z,, o ()
hence
_\2 ¢ , B
/Q (Zne) () dz < /0 /Q (2K, (1) — C'Yp (7)) Z,, (7) dz dr. (4.11)

For fixede, K, . is bounded inL>°(Qr), andM,, . is bounded inL(Q7). Hence as — oo, Y,,. con-
verges to

Yo=go = Me=@+) = Nu+e)?,

strongly inC([0, T, L*(£2)), and a.e. inQr; and in L™(Qr) for anym > 1, sinceY;, . is bounded in
L>(Qr). And K,, . converges to

K. = Bo+) o[t — alu+ ) Mol lul Ty
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in L™(Qr) and a.e. irQr. Takingm = 2, we can pass to the limit in (4.9), and obtain

t
e_Ct/Q(Ya_)Z(t)dx</Q(Ys_)z(o)err/o/Qe_CT(ZKg(T)—CY;‘(T))Y;(T)dde. (4.12)

Now let us go to the limit as — 0. ThenkK. converges to functiok defined by (4.3) (even wheh= 0,
since in that casg = 1), a.e. inQr, and strongly inL?(Qr). Indeed

(w + )P~ 1wty < w1,

andu?v”~ ¢ is bounded inQ7, from the assumptio — 1 + ¢ > 0. And Y. converges td” defined

by (4.2), a.e. inQr, and strongly inZ2(Qr). And Y2(0) converges tajy — Aug, strongly in L%(12).
Then we can go to the limit in (4.12), and deduce (4.4). Similarly (4.5) and (4.6) follow from (4.10)
and (4.11). O

Remark 4.1. For studying the invariance property of the regian{ < bv®}, the simplest choice would
be to compare* andv?, that means to choose= b and3 = a in Lemma 4.1, and\ = a/b. It works
in a restrictive case

0<a<1<b, (4.13)
that meang — 1 < p < £ andk < ¢. Indeed in that case

K=0, Y =uv"—(a/bu’
Applying (4.6) withC” = 0, we deduce that

v(t) — (a/bu’(t) > S)(vg — (a/buu). (4.14)

Therefore, ifauf < bvg, a.e. inf2, thenau® < bv® in Qu. Moreover ifaud # bvgd, thenaub < bv®

in Q. Thus Theorem 1.4 is proved in that special case. A first step had been done in thatRé&se in
by Kalashnikov in [21], with assumption (4.13) and moreokef < 1, in order to get strict positivity

or extinction properties. Also his method only proved the existence of invariant regions of the form
{aub + ¢ < bv*} for somee > 0.

Now we prove the comparison theorem in the general case:

Proof of Theorem 1.4. (1) Under our assumptions, we hawe > 0, andb/a > 1. First takea = b/a
andg = 1in Lemma 4.1 and = \*, where\* is defined in (4.1), hence

) b )
Y = v — X/, K = uiv’signyv — e Signy u.
a
We can writeK under the forms

K= uqvp(vl_“ — ()\*ub/“)l_a), ifa <1, (4.15)
K= (A*)lfaudvg(()\*ub/“)afl — v“il), ifa>1, (4.16)
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where

d:q+9(1_a):9+k—1>k>0;
a a

in particularK = 0 if a = 1. Whena < 1, notice that # 0, and (4.15) holds even whén= 0, since in
that casé > a.
(i) First suppose that & a < b.

olf a < 1,thenkK < Oonthesety <0} ={v < \ub/?}, from (4.15). TakingC' = 0 in (4.4), we
deduce that

/Q(Y‘)Z(t)dxg /Q (Y7)?(0) d.

Thus the region qu® < bv?} = {\*u¥* < v} ={Y > O}is invariant: if Y(0) > 0, thenY > 0in Q.
Assume moreover that> 0. Since\*u?/¢ < v, we can write

K = ufP (v — (\ub/9) ) < utoP (v — X*ul/e)
< ()\*)*qa/bvqa/b—kp—a(v o )\*ub/a) _ (A*)*qa/bvé/b(v o )\*ub/a).

Now (\*)?%/%9/ is bounded by a constart’ > 0, henceK < C'Y in Q. From (4.6),Z(t) =
e“"tY (t) — S(t)Y (0) satisfiesZ~(¢) = 0 for anyt > 0, that means

Y(t) > e “tS)Y(0). (4.17)

As a consequence, Y(0) # 0, thenY > 0in Q). This is also true when ¥ b, from Remark 4.1.
e If ¢ > 1, thenK has the opposite sign af, from (4.16). On the set{ < 0}, there holds

()\*ub/a)a—l _ ,Uafl < Ca()\*ub/a)a—z(A*ub/a _ ’U),

at any point where, # 0, with ¢, = max(l,a — 1). Assume moreover that > 0. Observing that
d+(a—2+¥0)b/a=6/a >0, we find

K <ec, (A*)gilu‘s/“ (A*ub/“ —v),
onthe sety < 0} = {v < \*u?/%}, from (4.16), even at the points where= 0. Sinceu’/? is bounded,
it follows that K < CY ~ for someC > 0. We can apply (4.4) with this value 6f. As a consequence,

if Y(0) > 0, thenY > 0in Q, that means the regioru{® < bv?} is still invariant. TakingC’ = 0 in
Lemma 4.1, the function— Z(t) = Y (¢) — S(¢)Y (0) satisfies

_\2 t _
| @ Pows< [ [ Koz @dd <o,
henceY (t) > S(t)Y (0), that means

o) — N ub/(t) > S(t)(vo — A ul®); (4.18)
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thus if Y'(0) # 0, thenY > 0, in Q.
(i) Assume thab < a < 0. ThenK has the sign o¥ sincea < 1, hence as above the region

(A ub? < v} = {au® < v} = {|plul? < |avlel}
is invariant. Moreover - a > 1, hence from (4.15),
K<C'v— )\*ub/“),

for someC’ > 0, so that (4.17) holds again; thenti{0) # 0, thenY > 0 in Q.

(2) Here 1< a < bandu,v € C(Quo), andaug < bug in £2. The functionK has the opposite sign
of Y, andY € C(Q), and for any balB = B(zo, ) such thatB C (2, we have mir; Y (0) = mp > 0.
Hence there exists > 0 such that mig Y'(t) > 0 for anyt € [0, 7). Let

TR = Sup{T > 0: minY(t) > 0, Vt € [0,7)}.
B

If 7 < o0, there exists: € B such thatY'(z,75) = 0. ButY > 0 ondB x (0,7), and consequently
Y (t) > Sp(t)ymp, whereSp is the semi-group i with Dirichlet conditions; henc& > 0in [0,7] x B,
and we reach a contradiction. Thep = co, so thatY > 0 in Q., that meansiu® < bv® in Qu,
and (4.18) holds again.O

Remark 4.2. If0 <a<banda <1, 0orifb < a < 0, we can compara andwv at any timet > 0,
without comparison assumptions on the initial data vo: we claim that

o(t) — N ub/o(t) = =S (v — XY, in g, (4.19)

for anyt > 0. Indeed taking again = b/a and$ = 1in Lemma 4.1, and = v — A*u"¢, the function
W =Y + S()Y(0)" satisfies, from (4.5),

/Q (W) de < /0 t /Q K@EW(r)dz dr <0,

sinceY < 0onthe sety < 0}, and K < 0 on the set fV < 0} from (4.15). TheniW > 0, in Q,
which proves (4.19).

Remark 4.3. Under any of the assumptions (i) or (ii) of Theorem 1.4, one can easily show that the region
{\ub/e < v} is invariant for any\ > \*.

Remark 4.4. Consider the Neumann problem. If @a < banda < l1landd > 0)orb < a < 0, and
moreover

)\*ug/“ +e< vy, a.e.ing2,
for somes > 0, then from (4.17), there exist&' > 0 such that

Nu(t)* + e e ¢ < v(t), 1IN Qoo
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If a < 1< b, then from (4.14) the region @2
{aub +e <}

is invariant. If 1< a < band ¢ > 0,0ru,v € C(Q)), then from (4.18) the region
{)\*ub/“ +e< v}

is invariant.

Remark 4.5. Under any of the assumptions of Theorem 1.4, we can extend Remark 2.2 to system (1.1).
We have*u"/® < v in Qu, hence 0< (\*)Pult/e < vP|u|F~1u. Thusu satisfies the scalar inequality

a\P/e
w — Du+ <5> u® <0 (4.20)

in D'(Qs), WwhereQ is defined at (1.6), and more precisely

a

pla ¢
u(t)<S(t)u0—<g> /0 S(t — s)uQ(s) ds. (4.21)

Similarly u?|v|~ v < (\*)~2/by1+9/0  andvl*t9/b = P ¢ LY(Qr), hence

—q/b
v — Do + <%> TS0 (4.22)
in D'(Qs), and
a\ "4t gt
o) = S(tuo — <5> /0 S(t — s)oP(s) ds. (4.23)

Thusu, v are respectively subsolution and supersolution of scalar equations of type (1.3) with the expo-
nentsQ > 1 andP > 1.

5. New existence results

Using the comparison properties, we can improve the existence result of Theorem 1.1 in case of non-
negative solutions:

Proof of Theorem 1.5. We set

g, = Min(uo, n), wo,, = Min(vo, )\*nb/“),
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and considetg,, € LY(f2), pon = 0, bounded inL(£2), such thatug,, converges weakly tgiy in
M, (£2), and defineyg,, = wo,, + 1on- TheNug,, vo, € L2(£2), and)\*ug{s < wo, < Von, a.e.inf2.
From Theorem 1.1, there exists at least one nonnegative solution,() of problem

Un g — Dty 4 VP |up |F~1u, = 0, iNQoos

Vi — Doy + ud v, [, =0, iNQoos

uy, = vy, = 0 (resp.du,,/0v = dv, /v = 0), ondf2 x (0,7),
un(0) = uopn, v,(0)=2voy, on{2.

From Theorem 1.4, one haguf’/“ < vy in Q. Hence

(A*)fak/bvg-f—k;a/b — ()\*)*ak/bv?]i-f—é/b — (A*)*ak/bvp

n?

(A*)faq/byfb—l—qa/b _ ()\*)faq/bui—l—é/b _ ()\*)faq/bvg.

Now v,,(t) < S(t)vo,., and @o,,) is bounded inL(£2), henceS(t)vo,, is bounded inL"(Qr) for any
T>0and 1< r < (N + 2)/N, in particular for some: > P. As in the proof of Theorem 1.2, up
to a subsequencey,(, v,) converge to someu(v), a.e. inQ,, and strongly inL"(Qr) for 1 < r <
(N +2)/N, and anyT" > 0, and {, v) is a solution of problem. O

Remark 5.1. Assumption (1.18) is an improvement of (1.11): indeed i b, thenp+ k£ < ¢+ ¢, hence
(1.11) impliesq + ¢ < (N + 2)/N, and it is easy to verify tha® < ¢ + ¢. Notice that (1.18) can be
written under the form

max(g é) —max(p+l_€ Q+1_k) SN
5'6) 0 ' 0 2

It defines a condition which is well adapted to the system, linked to the particular solutions defined
in (2.3), (2.4). It appears also in the study of the stationary solutions of system (1.1)NWatheplaced
by (N — 2)/2, see [8, Theorem 7.1]. Whén= ¢ = 0, the region irR? defined by the relation

(p+l q+1) N
maxX| , > —
pqg—1 pg—1 2

is delimited by to arcs of hyperbolas, intersecting at pgingX = (N + 2)/N, (N + 2)/N).

Remark 5.2. It seems difficult to prove that the existence results of Theorems 1.2 and 1.5 are optimal.
Indeed the first question is the possible nonuniqueness of the solutions. For proving nonexistence when
(1.11) or (1.18) does not hold, we have to restrict ourselves to the “reachable” solutions, that means those
which can be obtained by limits of solutions of regular problems. Then nonexistence results can follow
from suitable upper-estimates for the solutions. We give some results in that sense in [7].
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6. Positivity or extinction properties
In this section we give sufficient conditions for positivity of one of the component®f the solutions
of system (1.1), according to the valuespof, k, £, when the initial data are bounded. Our first result

extends the result of Proposition 2.1(i) for the o.d.e. system (1.5):

Theorem 6.1. Suppose thatg, vo € L(£2), and(1.8) holds. Ifug > 0, ug # 0, andk > 1, then for any
solution(u, v) of (1.7),

u>0, INQx.
Similarly if vg > 0, vg £ 0, and? > 1, thenv > 0in Q.

Proof. Let (u,v) be any solution of the problem. Sineg > 0, we know thatu > 0 in )., from
Lemma 3.1. From (1.8) and Remark 3.5, there exists a weak nonnegative solution of problem

iy — A+ (S()|vo]) @ =0,  inQu,
u = 0 (resp.du/ov = 0), ond s x (0,00),
QNL(O) = UQ, in £2.

Moreover G(-)vo|)Pu” € Li.(Q) from (1.8), and

1

loc
up — Du + (S(-)]vo])puk >0, iNQu,

henceu > @ in Q. from Proposition 3.1. Sinceg # 0 and@ € C([0, 00), LY(2)) N C(Qoo), for

anye > 0 sufficiently small, there exists a badll. or radiuse, such thatB, C 2, and infB—gﬂ(e) > 0.

Otherwise G(t)|vo|)? is bounded o2 x [&, 00) by a constanC;, andC.a* € L>=(12 x [, o)), and
Gy — D+ C.a® >0, inf2 x[e,0).

Sinceu(e) € L*°(£2), there exists a solutiofiof problem

& — N+ C.6F =0, in 2 x (g, 00),
¢ =0 (resp.0¢/orv =0), onas? x (g,00),
&(e) = ule), in $2,

and¢ > 0 by the strict maximum principle, sinde> 1. This impliesz > £ > 0, in 2 x (g, c0), by the
usual comparison principle. Lettingtend to 0, it follows that, > 0in Q.. O

If the initial data are bounded, we obtain more precise lower estimates:

Proposition 6.1. Assume thatig, vg € L>°(f2), ug = 0, ug Z 0andk > 1. Then for any solutioffu, v)
of (1.7),
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(i) there exists a constaxit > 0 such that, for any > O,
e ' S(Hup < ut) < S(t)ug, in £2; (6.1)
(i) for the Dirichlet problem, there exists a constaft > 0 such that, for any > 0,
C’'Sq(t)ug < ult) < Sg(t)ug, in £2; (6.2)
(iii) for the Neuman problem, iifif .., uo(xz) = § > O, there exist€ > 0 such that, for any > 0,
u(t) > (0% F + otk — 1))Y P in .

Proof. (i) Under our assumptionsS(-)|vo|)P(S(-)uo)*~* is bounded orQ, by some constant’ > 0,
hence

u—Du+Cu >0, INQ.

Let = be the solution of problem

2z — DNz +Cz=0, iN Qoo,
z =0 (resp.0z/0v = 0), onas? x (0,00), (6.3)
z(0) = uo, in 2.

Thenu(t) > z(t) = e “*S(t)uo, in 2, for anyt > 0, which proves (6.1).
(i) With Dirichlet conditions, there exist§” > 0 such that for any > 1,

IS a®lvol |7 gy | Sa®luo] [ =gy < C” & MEHEDE1),

from (3.5) between 1 and Thenu > Z in {2 x [1, 00), whereZ is the solution of problem

Zy — D7 + C" e Mbth-Di-1 7 — 0, in2 x (1,00),
Z =0, onoy? x (1,00),
Z(1) = u(1), in 2.

By computation, for any > 1,
Z(@t) > exp<— / g Mlptk—1)s ds) Syt — Lu(l) > exp(—C — / g Milpth—1)s ds> Sa(t)uo
1 1

from (6.1), hence (6.2) holds, by considering separatelydland [0, 1].
(iii) Here (S(t)|vo|)? is bounded o), by a constant”, henceu > ¢, where( is the solution of the
0.d.e. problem
{Q +C¢k =0, in(0,00),
£(0) =9,

which is given by((t) = (6% + C(k — 1))Y/A-R. O
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Next we apply the results of Section 4 to deduce supplementary positivity or extinction results, under
comparison assumptions on the initial data.

Theorem 6.2. Assume tha < a < b, andug, vo € L°(£2), ug, vo = 0such that
auo buvg, a.e.inf?, and aug Z bug.

Let (u,v) be any solution of1.7).

() féd>00ra<1<b thenv > 0in QOO o
(i) Ifs <0, anda < 1 or (1 < aandauf < bvg, a.e. in2, withu,v € C(Qx)), thenu(:, t) = 0 for
t large enough.

Proof. (i) From Theorem 1.4, in any case v satisfyaub < bv® in s, and the result follows. 1§ > 0,
we can also conclude from Remark 4.5, simde a supersolution of the scalar equation

a\ ~/b
— Aw + (E) U)P =0,

with the exponenP =1+ 6/b > 1
(i) In any case there holdsu® < bv® in Q+., hence from Remark 4.5, is a subsolution of the scalar
equation

a\P/?
— Aw + (E) U)Q = O,

and the exponer® = 1+ §/a € (0, 1); indeed < 0 impliesQ < 1, and alsd, ¢ < 1 from (2.1), hence
a+9d=plg+ 1)+ k(1 —¥¢) > 0. Thenu has a compact supportin O

Concerning the Neuman problem, we can extend some other results of Proposition 2.1 by using Re-
marks 3.6 and 4.4:

Theorem 6.3. Letug,vg € L*(£2), uo,vo = 0, and for examplenf,c, vo(x) > 0. Let(u, v) be any
solution of(1.7), with Neuman conditions.

(i) Assume that < 0. Thenv > 0in Q; if moreoverk < 1, thenu(-,t) = 0 for large ¢.

(i) Assume thad < a, b (and not necessarily < b) and

b supud(z) < a |nf vo(ac) (6.4)
TEL

Thenv > 0in Q; if moreoverk < 1, thenu(-,t) = O for large ¢.
(i) Assume that < 0 < b. Then

b :
lalu® + =7 < lal SUIOUo(HC) + N Qoo (6.5)

inf,eovl!(z)

andinf(x,t)ero v > 0.
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(iv) Assumethad < a <1< b,orl<a<band(d > 0orug vg € C(2)), and that
aug +e <y, a.e.in {2,
for somes > 0. If £ < 1, thenu(-,t) = O for larget.
Proof. From Remark 3.6, we know that< «' andv’ < v in Q,, Wwhere {/,v") be the unique solution
of the 0.d.e. problem (1.5) such th&(0) = ||uo|| () andv’(0) = inf,cq vo(z).
() Sincea < 0, we havel > 1; thenv is positive, from Theorem 6.1. Moreovef has a compact

support, from Proposition 2.1(v), hence also
(if) From (6.4) and (2.6),

W' — au’® = buf — au = C' > 0.
Thusv' is positive, and:’ has a compact support irif k£ < 1, from Proposition 2.1(iii), (iv), hence the

conclusions hold.
(iif) Here we obtain, from (2.6),

b
laju’ + — < |a|u”® + = |a|uf + =C'>0,

a /la /la
ol vlal Jal

0

andv > o' > (b/C")Yldl, L
(iv) From Theorem 1.4 and Remark 4.4, there exiSts- 0 such thatv > C in Q. Thenu is a
subsolution of the scalar equation
wy — Aw + CPuw* =0,

with the exponenk < 1, hence it has a compact supportin O

We end this paragraph with some properties of positivity of the gufw. We already know that it
remains positive it or ¢ > 1 from Theorem 6.1. Thus we consider the chse< 1.

Theorem 6.4. Suppose thatg, vg € L*°(£2), ug,vp > 0, andug + vg # 0. Assume:, ¢ < 1, and
min(p, ¢,pq) = (1 — k)(1 - 0). (6.6)

Letu, v be any solutions dfL.7). Thenu + v remains positive ).

Proof. First assume that > 1— kandg > 1 — /: in that case
(u+ v); — Mu + v) + vPu” + ul’ >0,

andu, v are bounded, hence there exiéts> 0 such that: + v is a supersolution of the equation
wt—Aw—i-CwQ =0,

where) = min(p + k,q + £) > 1. Thusu + v remains positive.
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In the general case we prove that an expression of thed6rw? is a supersolution of an equation of

the same type, for some 5 < 1. Here again we use the approximatiansv,, of u, v defined by (4.7),
and we put

fn,s = (un + 5)a — €%, Ine = (vn + 5)5 - 561
forO<e<1,and0< o, < 1. Then

(fn,z—:)t - Afn,s + a(un + 6)a_an = a(l - O‘)(un + 5)5_2|vun|2 >0,
(gn,a)t - Agn,e + B(Un + 5)671Gn = B(l - ﬁ)(vn + 5)672‘V0n‘2 2 0.

Consider the sum
Yie = fne+ gne-

It also satisfies Dirichlet or Neuman conditions, and an equation of the form
(Yne)t =AYy + Hpe = Ly,

whereH,, ., L, . € L*>°(Qr) are defined by

Hn,a = a(un + 5)a71Fn + ﬁ(vn + g)ﬁilan
Lne = a1 — a)(un +€)* 2|V, |2 + B — B)(vn + €)°2|Vu,|? > 0.

We can go to the limit as — oo for fixed ¢, as in the proof of Lemma 4.1. Théf, . converges to
Vo= (u+e)*+ @w+e) —e —&f,
a.e. inQ~, andH,, . converges to
H. = avP(u + ) Hu " tu + Bul(v 4 )° Y| to < oP(u + &) HE 4 wd(v + )P,
From assumption (6.6), we can finde [1 — &k, 1] andg3 € [1 — ¢, 1] such that

1-k
— <
p

g
< —. .
S1¢ (6.7)

=IQ

Then
Hg g (}/8 +€O¢ +€ﬁ)p/ﬁ+(a71+k)/a + (}/5 _’_ga _i_&_ﬂ)Q/CH*(B*:H*Z)/B < C(}/a +€O¢ +€B), (68)

for someC > 0. The constanf’ does not depend an since the two exponents in (6.8) are bigger than
1 andY. is bounded independently enThe functiont — Z,, .(t) = e“'Y;, .(t) — S(t)Y, -(0) satisfies

(Zn,a)t - AZn,a - eCt(Ln,a + CYn,e - Hn,e)-
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Multiplying by Z_, we obtain

n,e?

_\2 t _
/Q (Z:)%(t) do < /0 /Q (Hpo(7) — OV (7)) Z () d 7.

Going to the limit as: — oo, and settingy = min(«, ), the functiont — Z.(t) = €“*Y.(t) — S(t)Y(0)
satisfies

/Q (Z0)4() de < /o t /Q (H.(r) — COY.(r) Z- (7) de dr < 207 /0 t /Q Z-(r)de dr

< Ce <1 + /ot/g (27)2(r) de d7> .

By the Gronwall lemma, for any’ > 0 and anyt € [0, T7,
/ (Z2)P(t)do < Ce7 957t < Ce“Te,
9

Going to the limit ag — 0, and denoting” = u® + vP, it follows that
e“lY (t) — S(H)Y(0) = 0, in2,

for anyt € [0,T7; in particularY remains positive irQr, sinceY (0) 0, from the strict maximum
principle, hence also iY,,. O

Remark 6.1. It would be interesting to know if the result of Proposition 6.4 is still valid under the only
conditionpq > (1 — k)(1 — £), that meansg > 0, as it is the case for system (1.5), from Remark 2.1.

7. Uniquenessresults

In the scalar case of Eq. (1.3), uniqgueness comes from monotonicity, fap any, for any initial
data inL(£2). In the case of system (1.1), the problem is much harder. First recall that uniqueness holds
if up = 0 orvg = 0, from Remark 3.1. Thus we can assume tha# 0 andvg # 0.

7.1. Thecase,q > 1

If p,q, k, £ > 1, the function ¢, v) — (Jv|P|u|*~1u, |u|?|v|*~1v) is locally Lipschitz continuous, hence
uniqueness follows from Lemma 3.2 wheg, vo € L°°(£2). This result can be improved: in fact, using
the monotonicity of the termjs|*~1« and|v|*~1v, we prove Theorem 1.6, which requires oply; > 1,
and does not assume that the initial data are bounded:

Proof of Theorem 1.6. Assumep,q > 1, andug € L%(2), vo € L%(£2), satisfying (1.19). Let
(u, ), (&r, ) be two solutions of the system. By difference we find

(@ — ) — B — u) + [pP|al* 1 — [v[P[u]*tu = 0, in Qu,

(0 —v); — A© —v) + |a|9]0] 20 — |ul?v] v =0,  INQs, (7.1)
(6 —u)(0)=0, (©—v)0)=0, in .
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We can write the two equations under the form

(@ — w)e — A — u) + [ofP ([a]* i — [ul*~ ) = (jfP = [0]P)[ul*tu,
(@ = v)e = A© — ) + [al? (Jo] 10 — o] Tv) = (lul? = Jal?) [v]“ .

Then, from the Kato inequality,
t
=)0 + [ St = s) (ol (" — [ul"*u) signy(a — ) () ds
t
— ) ((lv]? = |9P)|ulFLusi w —u))(s)ds.
< [t = (el = o) u* usigny(i - w)(s)d

Using the monotonicity of function — |r|*~r, we derive

t
=) O] < [ S0 =) (ulljo = o)) ds, 72)
and similarly
t
©@=)0] < [ S =)ol lal" = ul?]) ) . (7.3)

First suppose thatg, vg € L°(f2). Thenu,v € L*°(Q), hence there exist§ > 0 such that, for any
t >0,

t
@@ <C [ St=9(0 =) ds,

(0= 00] < € [ 56— s)(li—u))ds
Settingf = ||i — ull Ly + 10 — vl 1) = O, we obtain, by addition,
sy <c [ reads
Thenp(t) = suppo,qf(s) satisfiesp(t) < Ctp(t), hencep(t) = 0 on [0, 1/C]; and by induction on
[0, 0), thust = w and? = v.

Now consider the general casg € L%(12), vo € L%(£2). Existence follows from Corollary 3.1.
Indeed (1.19) implies (1.10), since

Moreover (1.20) follows from (3.16) and (3.17) wifhh = 61 and.S, = 6,. We claim that there exists a
constantC' > 0 and real numberg,~ > 0, such thaj, + v < 1, and

t
16— Ol ey < € [[ (0= )L+ 570 = )] g I (7.4

for anyt > 0. The proof is divided in two cases.
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() Casefdy > 6,. Here we use in (7.2) the regularizing effect (3.5), successively fitaf12) to LI1(£2),

and fromL%(£2), L%(£2) to L>°(£2). Definingy = (1/62 — 1/61)N/2 andy = (k/01+ (p — 1)/02)N/2,
we obtain

1,.. t _ o p— 1y~
1= 0@ oy < ) @+ = Tl o1+ ol )16 = 016y O

t
< [ @+ =9 0o )l

— 0)(8)|| 12 () Os
t
< Cluolfn oyl [ (1 €= 7) (L 5~ 6 oy 0

for someC' > 0. This proves (7.4), and + ~ < 1, from (1.19).

(i) Casef; < #>. SinceS(:) is a contraction in.%(£2), we have

1, . ¢ o 1\ .
) (@ = w)()|| Loy </0 I (Jul* (|87~ + [vP~) [0 = 0]) (5)]| Loy ) D

Letn,r > 1 be two parameters, with> 1if £ > 0andnp = 1if £k = 0, andr = 1 if p = 1. We derive
successively

Il (121~ + [P [0 = vl()]| pox

kn'o Y 1 1
s (/Qu(s) ! ) 1217+ ol 10 = vl($)]] res o

1/ ]/61
(%

where by conventionfi, u(s)*" %)%/ 7% = 1if k = 0, and|| (|7~ + [0[P1)($)|| Lrnay ) = L1 p = 1.
e First suppose that

0 — U’(S)HLM%(Q)H (‘@’pil + ’U’pil)(S)HLr’nel(Q)’

(1 — k)02 < pth (7.5)
(which holds in particular whek > 1). If £ > 0 andp > 1, we can choose such thatkr/’ > 1 and
0, < pnb1 < pbo; then we choose = 6,/n61, hencer’ = 6,/(02 — nb1). Settingh = (p — Ly'nhy =
(p — 1)nb1602/(02 — nb1), there holdsh > 6, from (7.5), and

el (0P~ + [P ™) 0 = vl()]] o2

< Cluls) [ rros | (191 + o)) Iy |0 = 0)(3) | 02y

Lh

Using the regularizing effect, we obtain

t
6= 00 g0y < Cllollfngey ) (1 57+ |6 )] sy o



276 M.-F. Bidaut-Véron et al. / On a semilinear parabolic system of reaction—diffusion with absorption

wherea = (1 — 1/kn')N /26, and = (§, — 1/h)N/2. After computation,

ak+ B(p — 1) = <k911+£><1

from our assumption. Thus there exigtg [0, 1) such that

1@ = @O ougey < c/ot (L 576 = 0)6) a5 (7.6)

This is also true in the limiting cases: = 0, p > 1, since takingr = 6,/60;, we still haveh =
(p — 1)0102/(62 — 61) > 65; alsok > 0, p = 1, since choosing = #,/6; we still havekr’ > 1; and
finally £ = 0, p = 1, by choosing again = 6,/61. Thus (7.4) holds with, = 0 andy = .

e Now assume that

(1 — k)02 > pba, (7.7)

thenk < 1. We choose) = 1/(1 — k) if k > 0andr =pif p > 1. Letus set, = pb1/(1 — k). In any
casek > 0 andp > 1, we deduce

lal® (121~ + [P~ o = vl(8)]| o o
@)

< Il e 06+ D5 160 = D)6

HUOHLel(Q)H |U0| + |’U()| ( )HL92(Q) L%(Q)’

with the conventiondug||%, =1if k = 0and|(|o]| + |v])(s) Pl —1ifp=1.Then (7.6) holds
L 1(£2) ~ L92(92)

again with\A = 0, sinceL?2(£2) c L%(£2). Thus (7.4) holds with, = v = 0. B
In any case claim (7.4) is proved. In the same way, there gxist> 0 such thafi +4 < 1 andC > 0
such that for any > 0,

~ [t _ -
(@ — v)(t)HLez(Q) < C/O L+ @¢—s)"MQ+s)|(@ - v)(s)”Lez(Q) ds. (7.8)

Defining
(t) = sup (||(a—
s€[0,t]

0~ U)(S)HL(’Z(Q))’
we find, for anyt € [0, 1],

(@ — w)E)]| Loy + 1B = V) o2y < 20(2) <c /0 t(t —§)FsVds+ C /o t(t — sy hsTT ds),
therefore

o(t) < 4¢(t)(c /0 F ) gs 4 6 /0 ") ds),

so thatp(t) = 0 on some [07p] with Tp < 1 small enough, and on [6¢) by induction. O
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Remark 7.1. In particular, ifp, ¢ > 1, andug, vg € L?(£2) with
N
0> Emax(k+p—1,g+£—1),

then problem (1.7) admits a unique solutian«), andu,v € C([0, o), LY(£2)). This result has to be
compared to the result of [10, Theorem 1] for the scalar equation with source term

—Aw = wQ,
with w(0) € LY(£2), andd > N(Q — 1)/2.
7.2. The caseg,vg = 0
In the proof of Theorem 1.6 we have only used the inequalities (7.2), (7.3), issued from (7.1) by ap-
plying Kato’s inequality. In this way we have neglected the paraméteiBy taking them into account,
we can improve the results when the initial data are nonnegative and bounded.
Proof of Theorem 1.7. We exclude the casg,q > 1, still treated in Theorem 1.6. Any of our other

assumptions implies, £ > 0. Here we consider the solutions (1) and U V) defined in Theorem 1.3
and prove that they coincide. Recall that- U > 0andV — V > 0. They satisfy

{ (U-U), - AU - U) +VPU* - VPU* = 0, 7.9)

(V—=V),=A(V - V) + UV - TV =0,
Let A > 0 be a parameter. Let

d=AU-U)+V -V,

G(u,v) = AvPuF —ut?, Yu,v > 0.
Thend > 0, ¢(0) =0, and

@, — A0 =GU,V)-GU,V)=GU,V)-GU,V)+GU, V) -G(U,V).
At any point wherdJ > 0, there exists) € (U, U) such that

GU,V)-G(U,V) = —%m V(U - U) = (g V' — AkVPy ) (U - U).
At any point wherdJ = 0, we find

GWU,V)-G(U,V)=-G(U,V) =0V’ - AVPU*
 [(UTWVE— AVPURY (U - U), U #0,
o, if U = 0.
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Then, there exist§’ > 0 such that

GU,V)-G(U,V)<CU -U),
whenever for any € (U, U],

¢yt —mAvPeRTl L o, (7.10)
wherem = min(1,k/q). In the same way

GU,V)-G(U,V)<CV -T)

whenever for any € (V, V],
¢Pigh — ZU%H <C, (7.11)

wherem’ = min(1,¢/p). If, for fixed ' > 0, we can find4 andC, possibly depending oft, such that
(7.10) and (7.11) hold iQ, then

&, — AP = G(U,V) - G(U,V) < CP,
and uniqueness i@ follows from the maximum principle, sing&(U, V)—G(U, V) and® € L°(Qx).
Consider for example (7.10). It is satisfied in any of the following cases:
e Wheng > 1: since¢? 1Vt < U 1v*, andU? 1V ! is bounded.
e When
O<k<g<1l and p(1—q)<l1-Fk).
Indeed from Young inequality, for ary> 1,
qulvf _ (gkflvp)l/s (gqflJr(lfk:)/sVpr/s) < gkflvp + (gqfl+(lfk)/svéfp/s)3/.
If ¢ > k, we can choose such that

< <1—l<:
IS —»
1-g¢

SIS

thengd—1+(A-k)/syt=p/s < [a-1+A=k)/sy/t=p/s and this term is bounded:; thus (7.10) holds Adarge
enough. Ifg = k, thenp < ¢, hencetd=1(V¢ — mAVP) < 0, for A large enough.

eWhen1-/ < g <1< kand(1.22) holds. Sincg < 1 < k, for anyT > 0, there exist&'r > 0
such that for any, t) € 2 x (0,77 and any¢ € (U(¢)(z), U(t)(2)],

€W < O ((S(t)uo) () qil((S(t)UO) (x))g
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in 2 x (0,77, from Proposition 6.1(i). From (1.22) and the maximum principle, we have
S(tyo < /S Eul /"
One easily proves that
(S(t)w)" < S(t)w", foranyr > 1, and anyw € L>°(£2),w > 0, (7.12)
see, for example, [14]. Taking= ¢/(1 — ¢), we deduce that
S(t)vo < Cl/Z(S(t)uO)(liq)/éi
thus&?—1V* is still bounded.
Similar sufficient conditions hold for (7.11). Conclusions follow by considering all the possible com-

binations of such conditions.O

Remark 7.2. Condition (1.22) is clearly satisfied whep> 1. When ¢ < 1, it holds as soon as
inf,c o uo(x) > 0. Also for the Dirichlet problem it holds when

Crug(x) < p1(x) < Crup(x), a.e.ing?, for someCy, Cy > 0;
in particular when

_ — . 0
uo,v0 € Co(2)NCH(N2) and up>0 in2 and $<O ondy, (7.13)

from the Hopf lemma. Similarly for (1.23) after exchangingndv.

Remark 7.3. The proof used for Theorem 1.7 consists into showing that AU = V — AU, where
A > 0 is a suitable parameter. Thus it is linked to the uniqueness of the functioAw. Notice that in
any case, uniguenessof Awu implies uniqueness ofi( v). Indeed assume that,(v) and , ©) be two
solutions such that — Au = v — A4 = y. Thenu andu are two solutions of the scalar equation

uy — Du + u?(Au + y)? = 0.

We can observe that the solution is unigue, since the funetienr?(r + y(x))? defined forr > —y(x)
is nondecreasing; then= 4, andv = 0.

In the particular case = ¢ andg = k, taking A = 1, we getG = 0, hence uniqueness follows
immediately. We can find it in another way: the functipn= v — u, satisfies precisely, — Ay = 0,
hencey is unique:y(t) = S(t)(vo — up), hence again unigueness follows.

In the case of Neuman problem, we can improve again the results:

Theorem 7.1. Assume thatyg, vg € L°°(f2) andug, vo > 0. Then problen{1.7) with Neuman data has
a unique solution in any of the following cases
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() pa=>1,
(i) 0<k<g<l O0</l<p<landp(l—gq) <41-k),andq(l—p) < k(1-2);
(iii) k,¢ > 1andinf,co uo(x) > 0, inf,cn vo(x) > O;
(iv) p,f > 1land0 < k < ¢, andinf,c vo(x) > 0;
(V) ¢,k >1and0 < ¢ < p, andinf,cp ug(x) > O.

Proof. (i) and (ii) are given in Theorem 1.7.

(iii) Since k > 1, and inf.cn ug(x) > 0O, for anyT > 0, there existg; > 0 such thaty > ¢y in
Qr, from Proposition 6.1. Thegt—1V¢ < U~ 1v*  andU?~1V* is bounded inQr, thus (7.10) holds.
Similarly since/ > 1, and inf.c vo(x) > 0, (7.11) holds.

(iv) In the same way, there existeyr >0 such thatV > ¢y >0 in Qp, since /> 1, and
inf,co vo(x) > 0, and

€Vl — mAVPeht = h=L(eamkyt _mAVP) S URFYUFVE — mAVP) <0

for large A, sincek < ¢. Thus (7.10) holds. Otherwise (7.11) holds becausel.
(v) Follows by symmetry. O

We deduce also uniqueness results from the comparison properties:

Theorem 7.2. Assume that,, v € C(Q), and that any of the following conditions holds

() p=21 0<k<g<land0<a<b, Wlthauo<bvo in (2.
(i) 0 < a<b, 0< k< g, with Neuman conditions, ant + ¢ < bvg in §2, for somes > 0.

Then there exists a unique solution of the prob(@ri).

Proof. (i) Sincep > 1, condition (7.11) is satisfied. We know that any solution satisfids< bu®
in Qoo, from Theorem 1.4. Let us verify (7.10). Sinke< ¢, for any¢ € (U, U),

fq_k < ﬁq_k < ()\ )a(q k)/bva(q k)/b ()\*)a(q k)/bva(q k)/b < mAVP~ -
for A large enough. Indeed*—#)/b+(-7 is bounded, because
alg—k)+b(l—p)=ab—-—1)—bla—1)=b—a>0.
Then (7.10) follows.
(ii) Notice that 1< b. From Remark 4.4, for any’ > 0, there existgy > 0, such thal/ >V > ¢r
in Qr. SinceV, U* are bounded i)7, condition (7.11) holds. And condition (7.10) is also satlsfled,
becausd/?~* is bounded. O

7.3. Estimates and comments

Finally we give upper estimates of the difference between two (possibly signed) solutions, in case of
nonunigueness.
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Proposition 7.1. Assumeug, vg € L*°({2). Let(u, v), (u, ©) be two solutions of probleid.7). If p,q < 1,
there exists”' > 0 such that

|a(t) — u(t)] < CtetD/A=pa), [i(t) — v(t)| < et/ A=pa), (7.14)
in Q. Moreover ifug, vg > 0, with Dirichlet conditions, then there exists > 0 such that

|t —ul <u and [0—v| <V, InQ,

where(u, v) is the solution of the system with source terms

(7.15)

u; — Au = CvP,
vy — Av = Cud,

such thatu(0) = v(0) = 0andu > 0, v > 0in Q.
If p < 1< q, the same results hold withreplaced byl.

Proof. (i) Assumep < 1. Sinceu is bounded, we obtain, from (7.2),
t "t
i — u|(t) < c/ S(t — 9)|[6] — [u]?|(s)ds < c/ S(t — 8)[i — v]P(s) ds,
0 0
for someC > 0 independent of. Now using (7.12) withr = 1/p, and Holder inequality, we derive

i — ul(t) < c/ot (S(t — 8)|6 — v](s))" ds < Ctl_p</0t St — 8)|o — v(s) ds>p

< Ct1p</ot S(t — s)</os S(s — o)) — u|*(0) do> ds)p.

If p,q < 1, denotingy(t) = Supoxog|t — u|, we deduce

b(t) < Ct(lp)< /o "S- 5)< /0 " S(s — oY(o) do>qu>p < CpHLypa(y),

with anotherC' > 0. This proves the first estimate of (7.14), and the second one follows by symmetry. If
p < 1 < g, then with new constants > 0,

t t
16— o|(t) < c/ St — s)[al? — [u]?](s) ds < c/ S(t — 8)|it — ul(s) ds
0 0

and we deduce the estimates
|a(t) — u(t)| < CteTV/A=P - 5() — u(t)| < Ot/ P,

relative top and 1.
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(ii) Assumeug, vg > 0, with Dirichlet conditions. We consider the solutions {') and U V), defined
in Theorem 1.3. Recallthdf — U > 0andV —V > 0,andU < u < U, U<a<U, V<ov<V,
V<v§V.pr,q<1,then

(U-U),-AU-U) <OV -V)?,
{~ ~ AV -V)<CU-U)",

for someC' > 0. As in [14, Lemma 2.5], [12], it follows that
li—u <U—-U<u and [6—v|<V -V <V

where (1, V) is the solution of (7.15) which uniqueness is proved in [14, Lemma 3.1]. Recall that (7.15)
admits precisely the solutions (0, Q), ¢) and its translated in timeu(t — to) ™, v(t — to) ), wheretg > 0
is arbitrary. Similar results hold when< 1 < ¢, after replacing by 1 in system (7.15). O

Remark 7.4. In conclusion, some questions arise. Does unigueness requires the assumptiong

in the case whereg, vg are signed functions? Does it hold for amyy, k, £ > 0 whenug, vg > 0? What
happens whek = 0 or¢ = 0? The result of Theorem (1.6) has also to be compared with the one of [5]
for the (cooperative) system

—A k— P,
{W whu = (7.16)

— Av +vf =l

which holds under the same conditiong > 1, k,¢ > 0. The problem of uniqueness for system (7.16)
is also open whep < 1 org < 1.
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