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Abstract

Here we study the solutions of equations with absorption or source term

��pu = � jujq�1 u+ �

in a domain 
 of RN ; where 1 < p < N; q > p � 1; and � is a Radon measure on 
.
We introduce a notion of local entropy solution, and give necessary conditions on � for
the existence of solutions in terms of capacity. We study the question of removability
sets, and prove some stability results. Finally we give existence results in RN for the
case of absorption.
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1 Introduction

Let 
 be a regular domain in RN ; which may be unbounded, and � be a Radon measure on

: Here we consider the elliptic problem with an absorption term:

��pu+ jujq�1 u = �; in 
; (1.1)

and also the problem with a source term

��pu = jujq�1 u+ �; in 
; (1.2)

where 1 < p < N; q > p� 1; and

u 7�! �pu = div(jrujp�2ru)

is the p-Laplace operator. We study the existence of local or global solutions and the question
of removable sets E � 
 in terms of capacity conditions on � and E: This leads us to come
back to the problem without perturbation term,

��pu = �; in 
; (1.3)

for which we de�ne a notion of local entropy solution, and give convergence properties,
essential to our proofs.

We denote byM(
) the set of all the Radon measures in 
 (resp. Mb(
) the subspace
of bounded Radon measures in 
) and M+(
) (resp. M+

b (
)) the subset of nonnegative
ones. The capacity capm;r associated to W

m;r
0 (
); for any m � 1; r > 1 is de�ned by

capm;r(K;
) = inf
n
k krWm;r

0 (
) :  2 D(
); 0 �  � 1;  = 1 on K
o
;

for any compact set K � 
: In the sequel we set

q� = q=(q � p+ 1); (1.4)

so that q� = q0 = q=(q � 1) when p = 2:
The �rst question is to �nd conditions on the measure � which ensure the existence of

a solution. In the case p = 2, a necessary and su¢ cient condition was found in [3] for the
problem with absorption with Dirichlet data on @
: for any � 2Mb(
); problem�

��u+ jujq�1 u = �; in 
;
u = 0; on @
;

(1.5)
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has a (weak) solution if and only if � does not charge the sets E such that cap2;q0(E;RN) = 0.
In the case of the problem with a source term, this condition is also necessary. A precise
necessary and su¢ cient condition was given in [4] for the existence of (integral) solutions of
problem �

��u = (u+)q + �; in 
;
u = 0; on @
:

When � has a compact support and � � 0; it is equivalent to the existence of a constant
C > 0; such thatZ

K

d� � C cap2;q0(K;RN); for any compact set K � 
;

see [2]. It implies in particular a limitation of the size of the measure. In the case p 6= 2, the
question becomes more di¢ cult, because the full duality argument used in [3] and [4] is no
more available. Concerning problem (1.1) with Dirichlet data, it was recently shown in [21]
that if � charges the sets E such that cap1;R(E;RN) = 0 , for some R > pq�; then sequences
of approximate solutions do not converge to a �reasonable�solution. This suggested that in
some sense problem (1.1) might have no solution. Using our notion of local entropy solution,
we show that the result is true, local, and much more general:

Theorem 1.1 Let � 2M(
), and q > p� 1. Suppose that � charges some set E such that
cap1;R(E;RN) = 0 for some R > pq�: Then problems (1.1) and (1.2) admit no local entropy
solution. More generally, there exists no local entropy solution of problem (1.3) such that
jujq 2 L1loc(
).

Notice that we have no restriction of the sign of u and �, which is unusual in the case of
source term. This result concerns the supercritical case q � P , where

P =
N(p� 1)
N � p

is the �rst critical exponent. Indeed in the subcritical case q < P ; any nonempty set E � 

satis�es cap1;R(E;RN) > 0. In particular, problems (1.1) or (1.2) have no solution if � charges
the points and q > P : Recall that when p = 2; any set E such that cap1;R(E;RN) = 0 for
some R > 2q0 satis�es cap2;q0(E;RN) = 0 , from [1]. We have a stronger result for the
problem with source term when u and � are nonnegative, which has to be compared to the
one of [4]:
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Theorem 1.2 Let � 2M+(
). If problem

��pu = uq + �; in 
 (1.6)

has a nonnegative local entropy solution, then for any R > pq�;Z
K

d� � C (cap1;R(K;
))
pq�=R; for any compact set K � 
; (1.7)

where C = C(N; p; q; R;
):

Now we come to the second question, namely the characterization of removable sets.
When p = 2 it was shown in [3] that they are exactly the sets E with cap2;q0(E;RN) = 0: In
case p 6= 2; a recent result of [22] for problem (1.1) suggested that the compact sets K such
that cap1;R(K;RN) = 0 , for some R > pq�; are in some sense removable. We show that it is
true:

Theorem 1.3 Let F be a relatively closed set in 
; such that cap1;R(F;RN) = 0 for some
R > pq�: Let � 2 M(
) such that � does not charge the set F . Then F is removable: any
local entropy solution of problem

��pu+ jujq�1 u = �; in 
nF

is a local entropy solution of

��pu+ jujq�1 u = �; in 
:

In particular any point is removable when q > P : It applies also to problem (1.6):

Theorem 1.4 Let F be a relatively closed set in 
; such that cap1;R(F;RN) = 0 for some
R > pq�: Let � 2 M+(
) such that does not charge the set F . Then any local nonnegative
entropy solution of problem

��pu = uq + �; in 
nF;

is a local entropy solution of

��pu = uq + �; in 
:

These results are based on local a priori estimates of the solutions, given in Theorems 4.1
and 4.2. We also prove a convergence theorem for the case of absorption:
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Theorem 1.5 Let F be a relatively closed set in 
; such that cap1;R(F;RN) = 0 for some
R > pq�: Let f� ; f 2 L1loc(
) such that f� converges strongly to f in L1loc(
nF ). Let u� be a
local entropy solution of problem

��pu� + ju� jq�1 u� = f� ; in 
nF:

Then up to a subsequence, u� converges to a local entropy solution u of

��pu+ jujq�1 u = f; in 
:

We also show similar results for global solutions when 
 is bounded, see Theorem 7.3. Thus
we improve a result of [16] given for p = 2; and the result of [22] quoted above. The proof is
based upon a local stability result for the problem (1.3) following the global stability result
of [18], see Theorem 3.3. Notice that Theorem 1.5 has no corresponding in the case of source
term, due to the fact that problem (1.6) can admit no solution in the supercritical case for
some measures � 2 L1(
), independently of their size.
Another consequence of the local a priori estimates and stability is an existence result

in whole RN for the problem with absorption without growth conditions on the data, which
improves the results of [14]:

Theorem 1.6 Assume q > p � 1 > 0: Then for every f 2 L1loc(RN); there exists a local
entropy solution u of problem

��pu+ jujq�1 u = f; in RN : (1.8)

And u � 0 if f � 0:

We also give existence results in the subcritical case q < P with a measure data and 

bounded, or 
 = RN , see Theorems 8.2 and 8.3. For the problems witha source term (1.2)
and (1.6), the existence was proved in [20] when q < P , at least when p > P0; and 
, � are
bounded, and the size of � is small enough. The problem is open in the case q � P ; even
when � 2 Ls(
) with s large enough.
For simpli�cation all our results are given for the p-Laplace operator, and the nonlinear

term is jujq�1 u, but they can be extended to elliptic operators A(x;ru), with power growth
in jruj of the order p � 1, and a perturbation term �g(x; u) such that g(x; u)u � 0 and
which grows in u like jujq.
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2 Global and local entropy solutions

First recall some well-known results concerning the problem�
��pu = �; in 
;
u = 0; on @
;

(2.1)

with � 2Mb(
) and 
 bounded. We set

P0 =
2N

N + 1
; P1 = 2�

1

N
;

so that 1 < P0 < P1; and p > P0 () P > 1: When p > P1; problem (2.1) admits at
least a solution such that u 2 W 1;m

0 (
) for any 1 � m < (p � 1)N=(N � 1); in the sense of
distributions. Hence the gradient is well de�ned in L1(
): In the general case one needs to
de�ne a notion of entropy solutions, or renormalized solutions, which can be done in four
equivalent ways, as shown in [18], and allows to give a sense to the gradient. They are
solutions such that rTk(u) 2 Lp(
) for any k > 0; where

Tk(s) =

�
s if jsj � k;
k sign s if jsj > k;

(2.2)

and the gradient of u; denoted by y = ru is de�ned by

r(Tk(u)) = y � 1fjuj�kg a.e. in 
: (2.3)

Such solutions u may not be in L1(
) when p � P0: For any p > 1 there exists at least a
solution of (2.1), and it is unique if � 2 L1(
). Moreover any entropy solution satis�es the
equation in the sense of distributions.

Now we mention the usual de�nitions of entropy solutions and above all de�ne a notion
of local entropy solution. We callM0(
); the set of measures �0 2M(
) such that

�0(B) = 0 for any Borel set B � 
 such that cap1;p(B;
) = 0: (2.4)

First recall that any measure � 2M(
) admits a unique decomposition as

� = �0 + �+s � ��s (2.5)

where �0 2 M0(
) and ��s are nonnegative and singular, concentrated on sets E
� with

cap1;p(E
�;RN) = 0, see [19]. Moreover �0 is nonnegative, and ��s = 0; if � is nonnegative.

Notice also that
�+s � �+; ��s � �� and j�0j � j�j : (2.6)
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For any n; k > 0 and any r 2 R; we set

Sn;k(r) = min((jrj � n)+=k; 1) sign r;

hn;k(r) = min((r � n)+=k; 1); Hn;k(r) = 1�min((jrj � n)+=k; 1): (2.7)

1) Global entropy solutions.

Here 
 is bounded, and � = �0 + �+s � ��s 2 Mb(
): Following [18], we will say that u
is an (global) entropy solution of problem (2.1) if

u is measurable and �nite a.e. in 
; (2.8)

Tk(u) 2 W 1;p
0 (
) for every k > 0; (2.9)

jrujp�1 2 Lr(
); for any 1 � r < N=(N � 1); (2.10)

where the gradient is de�ned by (2.3), and u satis�es

D1: for any h 2 W 1;1(R) such that h0 has a compact support, and any ' 2 W 1;m(
) for
some m > N; such that h(u)' 2 W 1;p

0 (
);

Z



jrujp�2ru:r(h(u)')dx =
Z



h(u)'d�0 + h(+1)
Z



'd�+s � h(�1)
Z



'd��s : (2.11)

Three other de�nitions are equivalent:

Theorem 2.1 ([18]) Let u be a function such that (2.8), (2.9) and (2.10) hold. Then D1
is equivalent to any of the conditions

D2: if ! 2 W 1;p
0 (
) \ L1(
) and if there exists k > 0 and !+; !� 2 W 1;r(
) \ L1(
) with

r > N; such that ! = !+ a:e: on the set fu > kg and ! = !� a:e: on the set fu < �kg ;
then Z




jrujp�2ru:r!dx =
Z



!d�0 +

Z



!+d�+s �
Z



!�d��s : (2.12)

D3: for any k > 0; there exist �k; �k 2M0(
) \M+
b (
); concentrated on the sets fu = kg

and fu = �kg respectively, converging weakly to �+s ; ��s such thatZ



jrukjp�2ruk:r dx =
Z
fjuj�kg

 d�0 +

Z



 d�k �
Z



 d�k; (2.13)

for any  2 W 1;p
0 (
) \ L1(
):
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D4: for any h 2 W 1;1(R) with compact support, and ' 2 W 1;p(
) \ L1(
) such that
h(u)' 2 W 1;p

0 (
); Z



jrujp�2ru:r(h(u)')dx =
Z



h(u)'d�0; (2.14)

and for any ' 2 C(
) and bounded,

lim
1

n

Z
fn�u�2ng

jrujp 'dx =
Z



'd�+s ; lim
1

n

Z
f�2n�u��ng

jrujp 'dx =
Z



'd��s : (2.15)

Remark 2.1. In the de�nition of global entropy solution, (2.10) can be weakened in

jrujp�1 2 L1(
); (2.16)

and then
jujp�1 2 Ls(
); for any 1 � s < N=(N � p); (2.17)

from [5, Lemma 4.1]. Also condition (2.11) has to be satis�ed only for any ' 2 D+(
):
Indeed this implies that D3 holds for such '; and by density for any nonnegative ' 2
W 1;p
0 (
) \ L1(
); then for any  2 W 1;p

0 (
) \ L1(
); hence D3 holds, hence also D1.
Remark 2.2 The di¤erent notions of entropy solutions are given in general for bounded
measures, since it appears to be a good frame for existence theorems. Notice however that
when p = 2; the problem �

��u = �; in 
;
u = 0; on @
;

is well posed for possibly unbounded measures �; such that
R


�(x)d�(x) < 1; where �(x)

is the distance from x to @
: In the following we are interessed by local solutions as well as
global ones with Dirichlet data. Thus we will not always require, when it is possible, that
the measures are bounded, contrarily to most of the litterature on the subject.

2) Local entropy solutions

Here 
 and � 2 M(
) are possibly unbounded. We will say that u is a local entropy
solution of problem (1.3) if u satis�es (2.8),

Tk(u) 2 W 1;p
loc (
) for any k > 0; (2.18)

jujp�1 2 Lsloc(
); for any 1 < s < N=(N � p); (2.19)

jrujp�1 2 Lrloc(
); for any 1 � r < N=(N � 1); (2.20)
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and

D1loc: for any h 2 W 1;1(R) such that h0 has a compact support, and ' 2 W 1;m(
) for
some m > N; with compact support, such that h(u)' 2 W 1;p(
);Z




jrujp�2ru:r(h(u)')dx =
Z



h(u)'d�0 + h(+1)
Z



'd�+s � h(�1)
Z



'd��s : (2.21)

Here also we will use equivalent de�nitions.

Theorem 2.2 Let u be a function such that (2.8), (2.19), (2.18) and (2.20) hold. Then
D2loc is equivalent to one of the conditions

D2loc: if ! 2 W 1;p(
) \ L1(
) with compact support in 
; and if there exists k > 0 and
!+; !� 2 W 1;r(
) \ L1(
) with r > N; such that ! = !+ a:e: on the set fu > kg and
! = !� a:e: on the set fu < �kg ; thenZ




jrujp�2ru:r!dx =
Z



!d�0 +

Z



!+d�+s �
Z



!�d��s : (2.22)

D3loc: there exist �k; �k 2M0(
)\M+(
); concentrated on the sets fu = kg and fu = �kg
respectively, converging weakly to �+s ; �

�
s such thatZ




jrukjp�2ruk:r dx =
Z
fjuj�kg

 d�0 +

Z



 d�k �
Z



 d�k; (2.23)

for any  2 W 1;p(
) \ L1(
) with compact support in 
:
D4loc: for any h 2 W 1;1(R) with compact support, and ' 2 W 1;p(
)\L1(
) with compact
support in 
, such that h(u)' 2 W 1;p(
);Z




jrujp�2ru:r(h(u)')dx =
Z



h(u)'d�0; (2.24)

and for any ' 2 C(
) with compact support in 
,

lim
1

n

Z
fn�u�2ng

jrujp 'dx =
Z



'd�+s ; lim
1

n

Z
f�2n�u��ng

jrujp 'dx =
Z



'd��s : (2.25)

The proof follows the one of [18], with some modi�cations due to the fact that Lemma
4.3 of [17] does not apply. It is given in Appendix A for a better comprehension.

3) Solutions with a perturbation term:
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Let f be a Caratheodory function on 
�R: For bounded 
, and � 2Mb(
), an entropy
solution u of problem �

��pu = f(x; u) + �; in 
;
u = 0; on @


will be a function u such that f(x; u) 2 L1(
) and u is an entropy solution of problem in
the sense above. For general 
 and � 2M(
); a local entropy solution of problem

��pu = f(x; u) + �; in 
;

will be a function u such that f(x; u) 2 L1loc(
) and u is a local entropy solution of problem
in the sense above.

3 Local solutions without absorption

Here also we show that the assumptions on the local entropy solutions of problem without
perturbation (1.3) can be weakened. This is the key point for all the sequel. Recall that 

may be unbounded.

Theorem 3.1 Let u be a function satisfying (2.8), (2.18), and

jujq 2 L1loc(
); for some q > p� 1; (3.1)

jrujp�1 2 L1loc(
); (3.2)

and D1loc. Then

(juj+ 1)��1jrujp 2 L1loc(
); for any � < 0; (3.3)

and u satis�es (2.19) and (2.20). Moreover

jrujp�1 2 L�loc(
); for any 1 � � < p0q=(q + 1): (3.4)

Proof. Step 1: Estimate (3.3). Let � < 0 . We set uk = Tk(u); for any k > 0: We
take

hk(u) = (1� (jukj+ 1)�) sign u (3.5)

in (2.21), and get for any ' 2 D+(
);

j�j
Z



(jukj+ 1)��1jrukjp'dx

= �
Z



hk(u) jrujp�2ru:r'dx+
Z



hk(u)'d�0 + (1� (k + 1)�)
Z



'd j�sj

�
Z



jrukjp�1 jr'j dx+
Z
fjuj>kg

jrujp�1 jr'j dx+
Z



'd j�j : (3.6)
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Now from Hölder inequality,Z



jrukjp�1 jr'j dx

=

Z



(jukj+ 1)(��1)=p
0 jrukjp�1 (jukj+ 1)(1��)=p

0 jr'j dx

�
�Z




(jukj+ 1)��1 jrukjp 'dx
�1=p0 �Z




(jukj+ 1)(1��)(p�1)'1�p jr'jp dx
�1=p

: (3.7)

Since u satis�es (3.1), we can �x � such that

� = q=(p� 1)(1� �) > 1: (3.8)

Then we getZ



jrukjp�1 jr'j dx

�
�Z




(jukj+ 1)��1 jrukjp 'dx
�1=p0 �Z




(jukj+ 1)q'dx
�1=�p�Z




'1��
0p jr'j�

0p dx

�1=� 0p
;

(3.9)

henceZ



jrukjp�1 jr'j dx �
j�j
2

Z



(jukj+ 1)��1jrukjp'dx

+ C

�Z



(juj+ 1)q'dx
�1=�

�
�Z




'1��
0p jr'j�

0p dx

�1=� 0
; (3.10)

where C = C(�): Reporting (3.10) into (3.6), it comes

j�j
2

Z



(jukj+ 1)��1jrukjp'dx �
Z
fjuj>kg

jrujp�1 jr'j dx+
Z



'd j�j

+ C(�)

�Z



(juj+ 1)q'dx
�1=�

�
�Z




'1��
0p jr'j�

0p dx

�1=� 0
: (3.11)

Going to the limit as k !1 from (3.2), we deduce that

j�j
2

Z



(juj+ 1)��1jrujp'dx � C

�Z



(juj+ 1)q'dx
�1=� �Z




'1��
0p jr'j�

0p dx

�1=� 0
+

Z



'd j�j (3.12)
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And from (3.9),Z



jrujp�1 jr'j dx

�
�Z




(juj+ 1)��1 jrujp 'dx
�1=p0 �Z




(juj+ 1)q'dx
�1=�p�Z




'1��
0p jr'j�

0p dx

�1=� 0p
;

(3.13)

where the gradient is de�ned in (2.3). Taking

' = �p�
0
; with � 2 D+(
); (3.14)

so that '1��
0p jr'j�

0p 2 L1(
); we deduce that (juj + 1)��1jrujp 2 L1loc(
) for j�j small
enough, which implies (3.3).

Step 2: other estimates. Let U be any domain such that U �� 
: For any v 2 L1loc(
)
we set

v = jU j�1
Z
U

vdx:

Recall the Galliardo-Niremberg estimate: for any � � 1; for any v 2 W 1;p(U) \ L�(U);

kv � vkL(
) � c kjrvjk�Lp(
) kv � vk1��L�(
) ; (3.15)

for any  2 [1;+1) and � 2 [0; 1] such that

1


= �(

1

p
� 1

N
) +

1� �

�
; (3.16)

where c = c(N; p; �; �; U). Let us take � 2 (1� p; 0) and

v = (1 + juj)�; � = (�+ p� 1)=p; � = (p� 1)=�: (3.17)

Then v 2 Lp(U); since �p < p � 1 < q and u 2 Lq(U): Moreover uk = Tk(u) 2 W 1;p(U);
hence from the chain rule, vk+1 = Tk+1(v) = (1 + jukj)� 2 W 1;p(U) and

rvk+1 = �(jukj+ 1)��1ruk sign uk:

By de�nition of the gradient, we have rvk+1 = rv � 1fjuj�kg; henceZ
U\fjuj�kg

jrvjp dx =
Z
U

jrvk+1jp dx � �p
Z
U

(jukj+ 1)��1jrukjpdx:
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And (u + 1)��1jrujp 2 L1(U) from (3.3). Thus we can go to the limit as k ! 1; and
get jrvj 2 Lp(U): This implies v 2 W 1;p(U) and the gradient above coincides with the
distributional gradient of v; see [18, Remark 2.10]. And u 2 L�(U); sinceZ

U

(juj+ 1)� � v dx

� c
�Z

U

(juj+ 1)��1 jrujp dx
��=p�Z

U

(juj+ 1)� � v(p�1)=� dx

�(1��)�=(p�1)
; (3.18)

and jujp�1 2 L1(U): Chosing � close to 1, and � close to 0; we deduce (2.19). Moreover for
any 0 < � < p; we �ndZ




jruj� dx �
�Z

U

(juj+ 1)��1 jrujp dx
��=p�Z




(juj+ 1)(1��)�=(p��)dx
�(p��)=p

; (3.19)

from Hölder inequality. Choosing again � close to 0; the left-hand side is �nite for any �
such that �=(p��) < (p�1)N=(N �p); that means 0 < � < N(p�1)=(N �1): Hence (2.20)
holds. Finally for any 1 � � < p0;Z
U

jruj(p�1)�'dx �
�Z

U

(juj+ 1)��1jrujp'dx
��=p0

�
�Z

U

(juj+ 1)(1��)=(p0=��1)'dx
�1��=p0

;

(3.20)
and the left-hand side is �nite if 1=(p0=�� 1) < q, that means � < p0q=(q+ 1); which proves
(3.4).

Remark 3.1 Estimate (3.4) was �rst observed in [14] for problem (1.1) in RN : It is stronger
than (2.20) whenever q > P :

In the same way we deduce convergence properties.

Theorem 3.2 Let (��) be a sequence of Radon measures in 
; uniformly locally bounded.
Let (u�) be a sequence of local entropy solutions of

��pu� = �� ; in 
;

such that (ju� jq) is bounded in L1loc(
); for some q > p� 1: Then

(Tk(u�)) is bounded in W 1;p
loc (
) for any k > 0; (3.21)

(ju� jp�1) is bounded in Lsloc(
) for any 1 � s < N=(N � p); (3.22)

(jru� jp�1) is bounded in Lrloc(
) for any 1 � r < max(N=(N � 1); p0q=(q + 1): (3.23)
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And up to a subsequence, �� converges weakly to a measure �; and (u�) converges locally in
measure in 
 and a:e: in 
 to some function u: And u satis�es (2.8), (2.19), (2.18) and
(2.20), (3.4), and (ru�) converges to ru locally in measure in 
:

Proof. Step 1: a priori estimates. Taking the same notations as above, and the test
function ' de�ned in (3.14), we have from (3.12) and (3.13),

j�j
2

Z



(ju� j+ 1)��1jrujp'dx �
Z



'd j�� j+ C

�Z



(ju� j+ 1)q'dx
�1=�

;

with a constant C = C(�; ') > 0: Hence for any domain U �� 
;Z
U

(ju� j+ 1)��1jrujpdx is bounded. (3.24)

In particular (u�;k) is bounded in W 1;p(U); and (3.21) holds. Then (3.22) and (3.23) follow
from (3.18), (3.19) and (3.20) applied to (u�), after noticing that the sequence (v�) de�ned
by

v� = (ju� j+ 1)�; � = (�+ p� 1)=p;
is bounded in L1loc(
); hence the sequence (v�) of its mean values on U is bounded. Moreover
considering the two functions

v0� = (u
+
� + 1)

�; v00� = (u
�
� + 1)

�;

one has

jrv0� j � �(ju� j+ 1)(��1)=p jru� j ; jrv00� j � �(ju� j+ 1)(��1)=p jru� j ;

from the chain rule applied to the trucatures u�;k, and by de�nition of the gradient. Hence
(jrv0� j) and (jrv00� j) are bounded in L

p
loc(
); so that

(v0�) and (v
00
�) are bounded in W 1;p

loc (
): (3.25)

Up to a subsequence, (��) converges weakly to a measure �; and v0� and v
00
� converge weakly

in W 1;p
loc (
); strongly in L

p
loc(
); and v

0
� ! v0; v00� ! v00 a:e: in 
. Then u� converges locally

in measure and a:e: in 
 to a function u; and jujq 2 L1loc(
); and u satis�es (2.19) from the
Fatou lemma. For �xed k > 0; (u�;k) is bounded in W

1;p
loc (
); and converges a:e: to (uk): We

can extract a subsequence (depending on k) converging weakly in W 1;p
loc (
) and a:e: in 
;

and necessarily to uk: Then uk 2 W 1;p
loc (
); and the whole sequence (u�;k) converges weakly

to uk in W
1;p
loc (
):
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Step 2: convergence of the gradients. We set

�� = ��;0 + �+�;s � ���;s;

where ��;0 2 M0(
) and ���;s are nonnegative and singular. Here we use the equation
satis�ed by the truncated functions u�;k as in [18]. From Theorem 2.2, there exist ��;k; ��;k 2
M0(
) \M+(
); concentrated on the sets fu� = kg ; fu� = �kg ; such thatZ




jru�;kjp�2ru�;k:r dx =
Z
fju� j�kg

 d��;0 +

Z



 d��;k �
Z



 d��;k;

for any  2 W 1;p(
)\L1(
) with compact support in 
: Taking  = u�;k' with ' 2 D+(
);
we get Z




jru�;kjp 'dx+
Z



u�;k jru�;kjp�2ru�;kr'dx =
Z
fju� j�kg

u�;k'd��;0

+ k

�Z



'd��;k +

Z



'd��;k

�
:

And ju�;kj � k; a:e: in 
; and ��;0- a.e. in 
; henceZ



'd��;k +

Z



'd��;k �
Z



'd j��;0j+
1

k

Z



jru�;kjp 'dx+
Z



jru�;kjp�1 jr'j dx:

Taking ' such that ' = 1 on U �� 
; we get, from (3.24),Z
U

d��;k +

Z
U

d��;k � C
�
1 + kj�j

�
for any k > 1; where C > 0 does not depend on �; since j��;0j � j�� j from (2.6). Then
��;k; ��;k are locally bounded independently on � for �xed k, hence also

��;k = �fju� j�kg��;0 + ��;k � ��;k:

And u�;k is a solution in the sense of D0(
) of equation

��pu�;k = ��;k;

with u�;k bounded in W
1;p
loc (
) and in L

1(
): Following the proof of [15, Theorem 2.1], we
deduce that, after extracting a diagonal subsequence ,which depends on k, ru�;k converges

16



a:e: in 
 and strongly to ruk in (L�loc(
))N for any 1 � � < p; hence also the whole sequence
converges. But for any " > 0; and any �; � 2 N;

fjru� �ru�j > "g � fju� j > kg [ fju�j > kg [ fjru�;k �ru�;kj > "g ;

and ju� jq is bounded in L1loc(
):Hence (ru�) is a locally a Cauchy sequence in measure. Up to
a subsequence, ru� converges a:e: in 
, and necessarily to ru; by de�nition of the gradient.
Then ru satis�es (2.20) and (3.4). And jru� jp�2ru� converges strongly to jrujp�2ru in
Lrloc(
) for any 1 � r < N=(N � 1);from the Vitali theorem.

Now we give a local stability result, following the global result of [18, Theorem 3.4]. We
have not searched to extend it completely to the local problem, because it was not needed in
our situations, where the perturbation term in fact requires stronger convergences properties.
We give the proof in Appendix B.

Theorem 3.3 Let � 2 M(
). Let f� ; f 2 L1loc(
), such that f� converges weakly to f in
L1loc(
). Let u� be a local entropy solution of problem

��pu� = f� + �; in 
; (3.26)

such that (ju� jq) is bounded in L1loc(
); for some q > p � 1: Then up to a subsequence, u�
converges a:e: in 
 to a local entropy solution u of

��pu = f + �; in 
: (3.27)

4 Estimates for absorption or source term

Here we give universal a priori estimates for problems (1.1) and (1.6). First consider the
case of absorption :

Theorem 4.1 Let u be any local entropy solution of problem (1.1). Then for any R > pq�;
there exists C = C(N; p; q; R;
) such that for any � 2 D+(
);Z




(juj+ 1)q�Rdx � C

�Z



�Rdx+

Z



�Rd j�j+
Z



jr�jR dx
�
: (4.1)

And for any � < 0; there exists C = C(�;N; p; q; R;
) such thatZ



(juj+ 1)��1jrujp�Rdx � C

�Z



�Rdx+

Z



�Rd j�j+
Z



jr�jR dx
�
: (4.2)
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Proof. Let R > pq�: By hypothesis jujq 2 L1loc(
); and q > p � 1; hence Theorem 3.1
applies. We take the test functions hk de�ned in (3.5), and get, for any ' 2 D+(
);

j�j
Z



(jukj+ 1)��1jrukjp'dx+
Z



jujq�1 uhk(u)'dx

= �
Z



hk(u) jrujp�2ru:r'dx+
Z



hk(u)'d�0 + (1� (k + 1)�)
Z



'd j�sj

�
Z



jrukjp�1 jr'j dx+
Z
fjuj>kg

jrujp�1 jr'j dx+
Z



'd j�j :

This estimate is similar to (3.6), with an additional nonnegative term
R


jujq�1 uhk(u)'dx in

the left-hand side, since jujq�1 u is an absortion term. Applying the Fatou lemma, we �nd,
as in (3.12),

j�j
2

Z



(juj+ 1)��1jrujp'dx+
Z



jujq (1� (juj+ 1)�)'dx

�
Z



'd j�j+ C

�Z



(juj+ 1)q'dx
�1=�

�
�Z




'1��
0p jr'j�

0p dx

�1=� 0
;

where � is de�ned in (3.8). And 1 � (juj + 1)� � 1 � 2� > 0 on the set fjuj � 1g : We can
choose � < 0 small enough such that

� 0p = R;

and take ' = �R; where � 2 D+(
): De�ning

X =

Z



(juj+ 1)q�Rdx; Y =

Z



(juj+ 1)��1jrujp�Rdx;

we �nd

X + Y � C

�Z



�Rdx+

Z



�Rd j�j+ C(�)X1=�

�
(4.3)

with C(') =
�R



jr�jR dx

�p=R
and C = C(�; q): Then from Young inequality, with a new

C = C(�; p; q);

X + Y � C

�Z



�Rdx+

Z



�Rd j�j+
Z



jr�jR dx
�
: (4.4)

Hence (4.1) follows for such �; from (4.3), and then (4.2) follows for any � < 0:

Now we consider the problem with a source term. In case of nonnegative � and u; we
have more precise results.
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Theorem 4.2 Let � 2 M+(
) and u be any nonnegative local entropy solution of problem
(1.6). Then for any R > pq�, there exists C = C(N; p; q; R;
) > 0 such that for any
� 2 D+(
); with 0 � � � 1 in 
;Z




�Rd�+

Z



uq�Rdx � C

�Z



jr�jR dx
�pq�=R

: (4.5)

And for any � < 0; there exists C = C(�;N; p; q; R;
) > 0 such thatZ



(u+ 1)��1jrujp�Rdx � C

�
1 +

Z



uq�Rdx

��Z



jr�jR dx
�p=R

: (4.6)

Proof. It has been given in [3] in case of global entropy solutions of the problem with
Dirichlet data, but it is still valid for local solutions. It is based on the use of test functions

~hk(r) = (Tk(r
+) + ")�; k > 0; " > 0; (4.7)

which are nondecreasing, contrarily to the ones de�ned in (3.5), and then of the test function
h(r) = 1:

Remark 4.1 These ideas were already used in [10] to obtain upper estimates for more general
problems with possible singularities, and also in [9] to study the initial trace problem for a
parabolic equation with absorption.

5 Necessary conditions of existence

Here we prove our general necessary conditions of existence:

Proof of Theorem 1.1. It is enough to consider a solution a local entropy solution u
of (1.3), such that jujq 2 L1loc(
): Hence Theorem 3.1 applies. Let R > pq�; then we still can
choose � < 0 such that � given by (3.8) satis�es

p� 0 = R:

Let E be a Borel set such that cap1;R(E;RN) = 0: There exist two measurable disjoint sets
A;B such that 
 = A [B and �+(B) = ��(A) = 0: Let us show that

�+(A \ E) = ��(B \ E) = 0:

Let K be any �xed compact set in A\E: Since ��(K) = 0; there exists an open set ! �� 

containing K; such that ��(!) < ": From [3, Lemma 2.1], there exists �n 2 D(!) such that
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0 � �n � 1; and �n = 1 on a neighborhood of K contained in !; and �n ! 0 in W 1;R(RN) .
We choose ' = 'n = �Rn in (2.21). From (3.12) we have

j�j
2

Z



(juj+ 1)��1jrujp'ndx �
Z



'nd j�j+ C

�Z



(juj+ 1)q'ndx
�1=� �Z




jr�njR dx
�p=R

:

where C = C(�;R): But Z



'nd j�j �
Z
supp	K

d j�j ;

lim
n!1

Z



(juj+ 1)q'ndx = 0; (5.1)

since u 2 Lqloc(
): Then Z



(juj+ 1)��1jrujp'ndx is bounded. (5.2)

And from (3.13),Z



jrujp�1 jr'nj dx � C

�Z



(juj+ 1)��1 jrujp 'ndx
�1=p0 �Z




(juj+ 1)q'ndx
�1=�p

�
�Z




jr�njR dx
�1=R

;

hence

lim
n!1

Z



jrujp�1 jr'nj dx = 0:

Let us apply (2.21) with now h(u) = 1 and the same 'n: We �ndZ



'nd� =

Z



jrujp�2ru:r'ndx

hence limn!1
R


'nd� = 0: And

�+(K) �
Z
!

'nd�
+ =

Z
!

'nd�+

Z
!

'nd�
�;

hence �+(K) � "; for any " > 0; hence �+(A \ E) = 0; and similarly ��(B \ E) = 0:
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Proof of Theorem 1.2. Here we apply the estimates of Theorem 4.2. Let R > pq� and
K be a compact set contained in 
: Let  n 2 D(
) such that

0 �  n � 1;  n � �K and k nkRW 1;R(
) ! cap1;R(K;
):

Choosing ' =  Rn in (4.5), we deduce that, with new constants C = C(N; p; q; R;
);Z
K

d� � C

�Z



jr njR dx
�pq�=R

� C k nkpq
�

W 1;R(
)
;

and (1.7) follows.

6 Removable singularities

Now we consider the question of removable sets. Here the results are based on the estimates
of Section 4.

Proof of Theorem 1.3. By hypothesis, u is measurable and �nite a:e: in 
nF; hence
in 
; since F has a Lebesgue measure zero, and jujq 2 L1loc(
nF ), Tk(u) 2 W 1;p

loc (
nF ) for
every k > 0; and jrujp�1 2 L1loc(
nF ): And u satis�esZ




jrujp�2ru:r(h(u)')dx+
Z



jujq�1 uh(u)'dx =
Z



h(u)'d�0

+ h(+1)
Z



'd�+s � h(�1)
Z



'd��s

(6.1)

for any h 2 W 1;1(R) and h0 has a compact support, and ' 2 D+(
nF ).
Step 1: jujq 2 L1loc(
): From Theorem 4.1 in 
nF; for any � 2 D+(
nF );Z




(juj+ 1)q�Rdx � C

�Z



�Rdx+

Z



�Rd j�j+
Z



jr�jR dx
�

(6.2)

where C = C(N; p; q; R;
; F ); and for any � < 0;Z



(juj+ 1)��1jrujp�Rdx � C

�Z



�Rdx+

Z



�Rd j�j+
Z



jr�jR dx
�
; (6.3)

with C = C(�;N; p; q; R;
; F ). Let � 2 D+(
): Let K = F\supp�, hence K is compact
with cap1;R(K;RN) = 0: Let �n 2 D(RN) such that

0 � �n � 1 in RN ; �n = 1 in a neighborhood of K;
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and �n ! 0 in W 1;R(RN) and everywhere on RNnN; where cap1;R(N;RN) = 0; see [3]. We
take

� = �n = �(1� �n); (6.4)

and get Z



(juj+ 1)q�Rn dx � C

�Z



�Rn dx+

Z



�Rn d j�j+
Z



jr�njR dx
�

� C

�Z



�Rdx+

Z



�Rd j�j+
Z



jr�njR dx
�
:

But jr�nj is bounded in LR(RN), and 'n ! �R a:e: in 
. Hence from the Fatou lemma,Z



(juj+ 1)q�Rdx <1;

so that jujq 2 L1loc(
):
Step 2: jrujp�1 2 L1loc(
): As above, from (6.3),Z




(juj+ 1)��1jrujp�Rn dx is bounded. (6.5)

Now Z



jrujp�1�Rn dx �
�Z




(juj+ 1)��1jrujp�Rn dx
�1=p0 Z




(juj+ 1)(1��)(p�1)�Rn dx;

from Hölder inequality. Since (1� �)(p� 1) < q; we deduce thatZ



jrujp�1�Rn dx is bounded,

hence the conclusion.

Step 3: uk = Tk(u) 2 W 1;p
loc (
) and jruj

p�1 2 L1loc(
): Let k > 0 be �xed. From (6.5),Z



jrukjp�Rn dx is bounded. (6.6)

Let us set for �xed k > 0;
wn = uk�

R=p
n 2 W 1;p(
):
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We have jwnj � k�R=p; hence wn is bounded in L1(
): And wn ! uk�
R=p a:e: in 
: Now

rwn = �R=pn ruk +
R

p
uk�

R=p�1
n r�n;

and in particular r�n is bounded in Lploc(RN); hence rwn is bounded in Lp(
), from (6.6).
It follows that uk�R=p 2 W 1;p(
); hence uk 2 W 1;p

loc (
): Now the gradient of u has a sense in

; it is de�ned by (2.3), hence it coincides with the gradient still de�ned a:e: in 
nF:
Step 4: jrujp�1 2 LR0loc(
): For any 1 � � < p0;Z
U

jruj(p�1)��Rn dx �
�Z

U

(juj+ 1)��1jrujp�Rn dx
��=p0 �Z

U

(juj+ 1)(1��)=(p0=��1)�Rn dx
�1��=p0

;

hence as in (3.20), Z



jruj(p�1)��Rn dx is bounded,

for any � < p0q=(q + 1); hence jrujp�1 2 L�loc(
), in particular for � = R0.

Step 5: u is a local entropy solution in 
: Let h 2 W 1;1(R) such that h0 has a compact
support. Let  2 D+(
) be �xed. Taking now the test function

 n =  (1� �n)
R;

we have Z



jrujp�2ru:r(h(u) n)dx+
Z



jujq�1 uh(u) ndx

=

Z



h(u) nd�0 + h(+1)
Z



 nd�
+
s � h(�1)

Z



 nd�
�
s : (6.7)

And �n ! 0 everywhere on RNnN; but � does not charge N; henceZ



 nd j�0j !
Z



 d j�0j ;
Z



 nd�
�
s !

Z



 d��s :

And ����Z



h(u)( �  n)d�0

���� � khkL1(R) Z



( �  n)d j�0j ;

hence Z



h(u) nd�0 !
Z



h(u) d�0:
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Also jujq 2 L1loc(
); hence from the Lebesgue theorem,Z



jujq�1 uh(u) ndx!
Z



jujq�1 uh(u) dx:

And jrujp�1 2 LR
0

loc(
), thus����Z



h(u) jrujp�2ru:r( �  n)dx

���� � C
jrujp�1

LR0 (
0)
kjr( �  n)jkLR(
0) ;

where 
0 contains supp  : But

r( �  n) = (1� (1� �n)
R)r �R (1� �n)

R�1r�n;

hence r( �  n)! 0 a:e: in 
; and

jr( �  n)jR � C(jr jR + jr�njR)

where C > 0 does not depend on n: Then from the Lebesgue theorem, r( �  n) ! 0
strongly in LR(
); andZ




h(u) jrujp�2ru:r ndx!
Z



h(u) jrujp�2ru:r dx:

At last ����Z



h0(u) jrujp ( �  n)dx

����! 0

from the Lebesgue theorem, since jrukj 2 Lploc(
) for any k; and h0 has a compact support.
Then u satis�es the equationZ




jrujp�2ru:r(h(u) )dx+
Z



jujq�1 uh(u) dx

=

Z



h(u) d�0 + h(+1)
Z



 d�+s � h(�1)
Z



 d��s ;

for any  2 D+(
); hence u is a local entropy solution of the problem in 
:

Proof of Theorem 1.4. From (4.5), for any � 2 D+(
nF ); with 0 < � � 1 in 
;Z



�Rd�+

Z



uq�Rdx � C

�Z



jr�jR dx
�pq�=R

;
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with C = C(N; p; q; R;
; F ); and for any � < 0; there exists > 0 such thatZ



(u+ 1)��1jrujp�Rdx � C

�
1 +

Z



uq�Rdx

��Z



jr�jR dx
�p=R

;

with C = C(�;N; p; q; R;
; F ): Taking �R = �n de�ned in (6.4), we deduce thatZ



�Rn d�+

Z



uq�Rn dx+

Z



(u+ 1)��1jrujp�Rn dx is bounded,

and the proof follows as above, after minor change due to the signs.

7 Stability properties

Let us recall a well-known stability property for global solutions:

Theorem 7.1 ([5]) Let f� ; f 2 L1(
), with 
 bounded, such that f� converges strongly to
f in L1(
). Let u� be the unique entropy solution of problem�

��pu� + ju� jq�1 u� = f� ; in 
;
u� = 0; on @
:

Then u� converges a:e: in 
 to the unique entropy solution u of�
��pu+ jujq�1 u = f; in 
;

u = 0; on @
:

Now we prove analogous stability properties for the local entropy solutions, which we
need for proving Theorem 1.5. Here 
 may be unbounded.

Theorem 7.2 Let f� ; f 2 L1loc(
) , such that f� converges strongly to f in L1loc(
). Let u�
be local entropy solution of problem

��pu� + ju� jq�1 u� = f� ; in 
: (7.1)

Then up to a subsequence, u� converges a:e: in 
 to a local entropy solution u of

��pu+ jujq�1 u = f; in 
: (7.2)
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Proof. Step 1: A priori estimates. Let u� be a local entropy solution of (7.1):
From Theorem 4.1, for any R > pq�; there exists C = C(N; p; q; R;
) such that, for any
� 2 D+(
); Z




(ju� j+ 1)q�Rdx � C

�Z



�Rdx+

Z



�R jf� j dx+
Z



jr�jR dx
�

(7.3)

Hence (ju� jq) is bounded in L1loc(
). Writing the equation under the form

��pu� = �� ; where �� = f� � ju� jq�1 u� ; (7.4)

then after an extraction (u�) converges to a function u satisfying conclusions of Theorem
3.2.

Step 2: Convergence of the nonlinear term. Following [5] and [14] we prove the local
equiintegrability of (ju� jq) : for any domain U �� 
 and any " > 0; any subset A � U such
that measA � "(k + 1)�q; we haveZ

A

ju� jq dx � "+

Z
A\fju� j�k+1g

ju� jq dx;

for any k � 0: Now from D1loc,Z



jru� jp�2ru� :r(h(u�)')dx+
Z



ju� jq�1 u�'dx =
Z



h(u�)f�'dx;

for any h 2 W 1;1(R) such that h0 has a compact support, and any ' 2 D(
), such that
h(u�)' 2 W 1;p(
): Taking ' 2 D+(
) such that ' = 1 on U and h = Sk;k de�ned in (2.7),
we getZ

U\fk�ju� j�k+1g
jru� jp 'dx+

Z
U\fju� j�k+1g

ju� jq 'dx �
Z
fju� j�kg

jf� j'dx

+

Z
fju� j�kg

jru� jp�1 jr'j dx:

Since f� and jru� jp�1 converge strongly in L1loc(
), there exists g 2 L1(U) such thatZ
U\fju� j�k+1g

ju� jq dx �
Z
U\fju� j�kg

gdx:

Now (ju� jq) is bounded in L1loc(
); hence meas fju� j � kg � Ck�q; where C > 0 does not
depend on �: Hence Z

A\fju� j�k+1g
ju� jq dx � ";
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for k large enough. Then ju� jq�1 u� converges strongly in L1loc(
) to juj
q�1 u.

Step 3. Conclusion. Let us apply Theorem 3.3 with f� replaced by �� ; and � = 0: Since
�� converges (strongly) in L1loc(
) to f�juj

q�1 u; we deduce that u is a local entropy solution
of equation

��pu = f � jujq�1 u; in 
;

that means a solution of (7.2).

Theorem 1.5 follows as a direct consequence of Theorem 7.2:

Proof of Theorem 1.5. From Theorem 7.2, up to a subsequence, u� converges to a
local entropy solution u of

��pu+ jujq�1 u = f; in 
nF:

From Theorem 1.3, it is a solution in 
; since f does not charge F; since measF = 0:

This implies also a global result:

Theorem 7.3 Assume that 
 is bounded. LetK be a compact set in 
, with cap1;R(K;RN) =
0 for some R > pq�: Let f� ; f 2 L1(
) such that f� converges strongly to f in L1loc(
nK).
Let u� be the entropy solution of problem�

��pu� + ju� jq�1 u� = f� ; in 
;
u� = 0; on @
:

(7.5)

Then u� converges to the entropy solution u of�
��pu+ jujq�1 u = f; in 
;

u = 0; on @
:
(7.6)

Proof. From Theorem 1.5, up to a subsequence, (u�) converges a:e: in 
 to a local
entropy solution u of the problem. Let U;U 0; U 00 be any regular bounded open sets such that
K � U �� U 0 �� U 00 �� 
: By hypothesis u�;k = Tk(u�) 2 W 1;p

0 (
) for any k > 0; and
from D1,Z




jru� jp�2ru� :r(h(u�)')dx+
Z



ju� jq�1 u�h(u�)'dx =
Z



h(u�)f�'dx; (7.7)

for any h 2 W 1;1(R) and h0 has a compact support, and ' 2 W 1;m(
) for some m > N;
such that h(u)' 2 W 1;p

0 (
): We can take h = Tk; and ' 2 C1(
) with values in [0; 1] ; such
that ' = 1 on 
nU 0; with support in 
nU : Denoting 
0 = 
nU 0; we obtainZ




jru�;kjp 'dx+
Z



ju� jq�1 u�u�;k'dx =
Z



u�;k jru� jp�2ru� :r'dx+
Z



u�;kf�'dx;
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hence
1

k

Z

0
jru�;kjp dx �

Z

nU

' jf� j dx+
Z
U 0nU

jru� jp�1 jr'j dx � C (7.8)

where C > 0 does not depend on � and k. Indeed U
0nU is compact, contained in 
nK,

and jru� jp�1 is bounded in L1loc(
nK) from Theorem 3.2 applied in 
nK; and f� converges
to f in L1(
nU): Then for �xed k > 0; (u�;k) is bounded in W

1;p
0 (
0). But for any k > 0;

u�;k converges a:e: to uk; hence uk 2 W 1;p
0 (
0) \W 1;p

loc (
); that means uk 2 W 1;p
0 (
); and u

satis�es (2.9). Also going to the limit in (7.8), we haveZ

0
jrukjp dx � Ck:

But u is a local entropy solution in 
; hence (juj+ 1)��1jrujp 2 L1loc(
) for any � < 0 from
Theorem 3.1. As a consequence,Z

U 00
jrukjp dx � C(1 + k)1+j�j;

with another C > 0 depending on U 00; �; but not on k: HenceZ



jrukjp dx � C(1 + k)1+j�j:

This estimate implies (2.10) and (2.17), see for example [6, Lemma 6.2]. And u is a local
solution of the problem, hence from Remark 2.1, it is the unique entropy solution of (7.6),
and the whole sequence converges to u:

Remark 7.1 Let us recall the result of [22]: if 
 is bounded and K1; K2 are two disjoint
compact sets with cap1;R(Ki;RN) = 0 for some R > pq�; and if f 2 L1(
) and f1;� ; f2;� 2
L1(
) are nonnegative and f1;� converge strongly to f+ in L1loc(
nK1); and f2;� converge
strongly to f� in L1loc(
nK1); the entropy solution u� of problem�

��pu� + ju� jq�1 u� = f1� � f2;� ; in 
;
u� = 0; on @
;

converges to a solution, in the sense of distributions, of problem�
��pu+ jujq�1 u = f; in 
;

u = 0; on @
:

Corollary 7.3 improves this result since it does not require sign conditions on the approxi-
mating sequence, and proves that the limit u is an entropy solution.

As a consequence we deduce the following, which extends to the case p 6= 2 the result of
Brézis [16] , but for the critical case q = P :
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Corollary 7.4 Assume that 
 is bounded, and q > P : Let a 2 
; and f� ; f 2 L1(
) such
that f� converges strongly to f in L1loc(
n fag). Let u� be the entropy solution of problem
(7.5). Then u� converges to the entropy solution of problem (7.6).

Remark 7.2 Concerning the problem with source term (1.6), there is no global (or local)
stability result, even if p = 2. Indeed when q � N=(N � 2); there exists a nonnegative
function f 2 L1(
), with compact support, such that problem�

��u = uq + �f; in 
;
u� = 0; on @
;

has no solution, for any � > 0, from [4, Corollary 3.3]. And there exists f� ; f 2 L1(
), such
that f� converges strongly to f in L1(
), such that for � > 0 small enough, problem�

��u� = uq� + �f� ; in 
;
u� = 0; on @
;

(7.9)

has a solution for any � 2 N. Indeed if (��) is a sequence of molli�ers, we can take f� = �� �f .
From [4, Corollary 3.2], there exists �� > 0 such that problem (7.9) admits a solution for
� = �� : Then from [11, Remark 3.4] it has a solution for any � > 0 such that � kf�kL1(
) �
C = C(N; q;
) independent on �; hence for � < C= kfkL1(
) :

8 Existence results

In the case of absorption the a priori estimates allow to give existence results in RN for data
in L1loc(RN); without growth conditions. This was noted �rst in [14], where the case p > P1
was solved:

Theorem 8.1 ([14]) Assume p > P1 and q > p � 1: Then for every f 2 L1loc(RN); there
exists a function u 2 W 1;r

loc (RN) for any r 2
�
1; P

�
solution of

��pu+ jujq�1 u = f; in D0(RN);

and u � 0 if f � 0:

They gave also an existence result when p � P1 but q > 1=(p � 1), so that the gradient
is well de�ned in L1loc(
) from (3.4): With our stability result, we now prove Theorem 1.6,
which does not assume the condition on p or q; and shows the existence of a local entropy
solution.
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Proof of Theorem 1.6. Let Br = fjxj < rg for any r > 0: For any � 2 N; there exists
a unique global entropy solution of problem�

��pu� + ju� jq�1 u� = f; in B� ;
u� = 0; on @B� ;

since f 2 L1(Br); from [5].

Let r > 0 be �xed. Then for any � > 2r; u� is a local entropy solution in B2r . Hence from
Theorem 4.1, as in (7.3), (ju� jq)�>2r is bounded in L1(Br). Then from Theorem 3.2, (u�)�>2r
satis�es (3.21), (3.22), and (3.23) in Br and one can extract a subsequence converging locally
in measure and a:e: in Br:

Therefore, we can extract a diagonal subsequence (u�), such that u� converges locally in
measure and a:e: in RN to a function u: And u satis�es (2.8), (2.18), (2.19) and (2.20), (3.4) in
RN , and ru� converges locally in measure to ru: But u� is a local entropy solution in Br for
� > 2r; hence from Theorem 7.2 applied with f� = f; there exists a subsequence, depending
on r; converging a:e: to a local entropy solution of the equation in Br: Necessarily it coincides
with u; and the whole sequence (u�) converges to u: Then u is a local entropy solution in any
ball Br; hence it is a local entropy solution of problem (1.8) in RN : In particular it satis�es
the equation

��pu+ jujq�1 u = f; in D0(RN):
If f � 0; then un � 0 from [5, Theorem 7.1], hence u � 0 a:e: in RN :
Now we assume that q is subcritical: We �rst give a global existence result for measures

when 
 is bounded, by using the global stability properties shown in [18, Theorem 3.4].
Recall that the �rst results were given in [12] when P > p1: We get the following:

Theorem 8.2 Assume that 
 is bounded, and p � 1 < q < P . Then for any � 2 Mb(
);
there exists an entropy solution of problem�

��pu+ jujq�1 u = �; in 
;
u = 0; on @
:

(8.1)

Proof. From [13], � can be decomposed as

� = f � divg + �+s � ��s ;

with f 2 L1(
); g 2
�
Lp

0
(
)
�N

; and �+s ; �
�
s 2 M+

b (
) are singular. And there exists an
approximation of � by a sequence (��) such that

�� = f� � divg + �� � �� ; f� ; �� ; �� 2 Lp
0
(
);
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hence �� 2 W�1;p0(
) \Mb(
) \M0(
); and f� converges weakly in L1(
) to f; and ��
(resp. ��) converges to �+s (resp.�

�
s ) in the narrow topology. Then there exists a (unique)

weak solution u� of problem�
��pu� + ju� jq�1 u� = �� ; in 
;

u� = 0; on @
;

such that u� 2 W 1;p
0 (
)\Lq+1(
): It is also an entropy solution, since it satis�es D2. From

Theorem 4.1, (ju� jq) is bounded in L1loc(
): From Theorem 3.2, up to a subsequence, (u�)
converges locally in measure in 
 and a:e: in 
 to some function u, and

�
ju� jp�1

�
is bounded

in Lsloc(
); for 1 < s < N=(N � p): In fact the estimate is global. Indeed, by hypothesis,Z



jru� jp�2ru� :r(h(u�)')dx+
Z



juvjq�1 u�h(u�)'dx =
Z



h(u�)'d�� (8.2)

for any h 2 W 1;1(R) and h0 has a compact support, and ' 2 W 1;m(
) for some m > N;
such that h(u)' 2 W 1;p

0 (
): Taking h = Tk for any k > 0, and ' = 1; one gets

1

k

Z
fju� j<kg

jru� jp dx �
Z



u�;kd�� �
Z



d j�� j � C;

where C > 0 does not depend on � and k: Then
�
ju� jp�1

�
is bounded in Ls(
); for 1 <

s < N=(N � p); from [5, Lemma 4.1]. Therefore ju� jq�1 u� converges strongly in L1(
) to
jujq�1 u, since q < P : From [18, Theorem 3.4] applied with f� � ju� jq�1 u� instead of f� ; up
to a subsequence, u� converges a:e: in 
 to an entropy solution w of�

��pw = �� jujq�1 u; in 
;
w = 0; on @
:

Necessarily w = u; and u is an entropy solution of problem (1.1).

In turn using this result and the local stability result of Theorem 3.3, we can show an
existence result in RN :

Theorem 8.3 Assume p�1 < q < P: Then for any � 2M(RN); there exists a local entropy
solution of problem (1.1).

Proof. For any � 2 N; let �xB� be the restriction of � to B� : Then there exists an
entropy solution u� of problem�

��pu� + ju� jq�1 u� = �xB� ; in B� ;
u� = 0; on @B�;
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since �xB� 2 Mb(B�); from Theorem 8.2. And from Theorem 4.1, (u�) satis�es the same
estimates as in Theorem 1.6. Hence up to a subsequence, u� converges a:e: in RN to some
function u: For � > 2r; u� is a local solution in Br of

��pu� + ju� jq�1 u� = �xBr:

Thus we can extract a diagonal subsequence, (u�), such that u� converges locally in measure
and a:e: in RN to a function u satisfying the conclusions of Theorem 3.2 in RN . As above,
ju�jq�1 u� converges strongly in L1loc(RN) to juj

q�1 u; since q is subcritical. Now we apply
Theorem 3.3 in Br with second member � ju�jq�1 u� + �xBr: We can extract a subequence
which depends on r, converging a:e: in Br; to a local entropy solution w of

��pw + jwjq�1w = �xBr:

Necessarily w = u; and the whole sequence converges, and u is a local entropy solution in
RN :

9 Appendix A: Proof of Theorem 2.2

Step 1: D1loc=)D3loc. Let u be a local entropy solution. Consider any domain U �� 
:
Taking in (2.21) h = hk;" de�ned in (2.7) with 0 < " < k, and 'U 2 D+(
) such that 'U = 1
on U; we get

1

"

Z
U\fk<u<k+"g

jrujp dx �
Z



hk;"(u)'Ud�0 +

Z



'Ud�
+
s �

Z



jrujp�2ru:r'Uhk;"(u)dx

� C(U)

where C(U) does not depend on "; k; from (2.20); and similarly

1

"

Z
U\fk<juj<k+"g

jrujp dx � C(U): (9.1)

Taking now h = Hk;" de�ned in (2.7) and ' 2 D(U) in (2.21), we deduce thatZ



jrujp�2ru:r'Hk;"(u)dx =
1

"

Z
fk<u<k+"g

jrujp 'dx� 1
"

Z
f�k�"<u<�kg

jrujp 'dx

+

Z



Hk(u)'d�0 � C(U) k'kL1(U) :
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And Hk;"(u)! �fjuj�kg a:e. in 
: Hence from (2.20), for any ' 2 D(U);����Z



jrukjp�2ruk:r'dx
���� � C(U) k'kL1(U) :

As a consequence, there exists a measure �k 2M(
); such thatZ



jrukjp�2ru:r dx =
Z



 d�k; (9.2)

for any  2 D(
); hence in particular �k 2 W�1;p0
0 (U): By density (9.2) holds for any

 2 W 1;p(
) \ L1(
) with compact support. And (�k) is uniformly bounded in U : Hence
there exists a sequence (kn)!1 such that �kn converges weakly to a measure � 2 M(
):
And for any  2 D(
);

lim

Z



 d�kn = lim

Z



jruknj
p�2rukn :r dx =

Z



jrujp�2ru:r dx =
Z



 d�;

from (2.21) with h(r) = 1; hence � = �: Following the proof of [17, Lemma 5.1] in U and
using a partition of unity, there exists a measure � 2 M0(
) such that the restrictions
�xfjuj = kgand �`xfjuj = kg coincide for any ` � k > 0: Hence �xfjuj = kg = �xfjuj = kg :
Considering �kxU and following [17, Lemma 5.3], we �nd thatZ

fjuj>kg
d j�kj = 0; for any k > 0:

De�ning
�k = �kxfu = kg ; �k = ��kxfu = �kg

and taking  = hk�";"(u)� in (9.2), where � 2 D(
); we get
1

"

Z
fk�"<u<kg

jrujp �dx =
Z



hk�";"(u)�d�k �
Z
fk�"<u<kg

hk�";"(u) jrujp�2rur�dx:

Hence

lim
"!0

1

"

Z
fk�"<u<kg

jrujp �dx =
Z
fu�kg

�d�k =

Z



�d�k;

so that �k � 0; and �k � 0 in the same way. Taking now h = Hk�";" de�ned in (2.7) for
0 < " < k; and ' 2 D(U) in (2.21), we obtain from (9.1),Z




jrujp�2ru:r'Hk�";"(u)dx =
1

"

Z
fk�"<u<kg

jrujp 'dx

� 1
"

Z
f�k<u<�k+"g

jrujp 'dx+
Z



Hk�";"(u)'d�0:
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Then as "! 0;Z



jrukjp�2ruk:r'dx =
Z



'd�k �
Z



'd�k +

Z
fjuj�kg

'd�0:

By density it holds for any ' 2 W 1;p(
)\L1(
) with compact support in 
; so that (2.23)
holds. Also �k � j�kj ; �k � j�kj ; hence using a partition of unity, there exists a sequence
(kn)!1 such that �kn ; �kn converge weakly respectively to some measures �; � 2M+(
):
Changing k into 2k in (2.23) and taking  = hk;k(u)�; with � 2 D(
); we �ndZ

f0<u<2kg
hk;k(u) jrujp�2ru:r�dx+

1

k

Z
fk<u<2kg

jrujp �dx

=

Z



hk;k(u)�d�k �
Z



hk;k(u)�d�k +

Z
fjuj�2kg

hk;k(u)�d�0

=

Z



�d�k +

Z
fjuj�2kg

hk;k(u)�d�0:

And lim
R
fjuj�2kg hk;k(u)'d�0 = 0; since hk;k(u)! 0; �0-a:e: in 
: But from (2.21) we getZ




jrujp�2ru:r�hk;k(u)dx+
1

k

Z
fk<u<2kg

jrujp �dx =
Z



hk;k(u)�d�0 +

Z



�d�+s ;

hence

lim

Z



�d�k =

Z



�d�+s ;

that means � = �+s and � = ��s :

Step 2: D3loc=)D2loc=)D4loc=)D1loc The proofs are the same as in [18], after
choosing test functions with compact support in 
.

10 Appendix B: Proof of Theorem 3.3

We essentially follow the proof of [18, Theorem 3.2] and adapt it to the local case. Let

� = �0 + �+s � ��s

be the decomposition of � given by (2.5), and E+; E� be the disjoint sets where �+s ; �
�
s are

concentratred. Let u� be any solution of (3.26). By de�nition, if ! 2 W 1;p(
)\L1(
) with
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compact support in 
; and if there exists k > 0 and !+; !� 2 W 1;r(
)\L1(
) with r > N;
such that ! = !+ a:e: on the set fu� > kg and ! = !� a:e: on the set fu� < �kg ; thenZ




jru� jp�2ru� :r!dx =
Z



!f�dx+

Z



!d�0 +

Z



!+d�+s �
Z



!�d��s : (10.1)

Assuming that ju� jq is bounded in L1loc(
), then Theorem 3.2 applies, hence (3.21), (3.22),
(3.23) hold, and after an extraction we can assume that (u�) converges a:e: to some function
u. Let 
0;
00 be two �xed regular domains such that 
0 �� 
00 �� 
; and

E 00+ = E+ \ 
00; E 00� = E� \ 
00:

Let ';	 2 D(
) be a �xed functions with values in [0; 1] ; such that ' � 1 on 
0; with
support in 
00; and 	 � 1 in 
00:
For any �; � > 0 and n; � 2 N; we denote by $(�; �; n; �) any quantity such that

lim
�!0

lim sup
�!0

lim sup
n!1

lim sup
�!1

j$(�; �; n; �)j = 0:

Let �; � > 0:From [18, Lemma 5.1], we can de�ne two compacts sets K+
� ; K

�
� such that

�+s (E
00+nK+

� ) � �; ��s (E
00�nK�

� ) � �;

and  +� ;  
�
� 2 D(
00) with values in [0; 1] and disjoint supports, such that  +� = 1 on K+

� ;
 �� = 1 on K

�
� ; andZ

00

��r +� ��p dx+ Z

00

��r �� ��p dx+ Z

00
 �� d�

+
s +

Z

00
 +� d�

�
s � �; (10.2)Z


00
(1�  +�  

+
� )d�

+
s +

Z

00
(1�  ��  

�
� )d�

�
s � � + �: (10.3)

Step 1. Behaviour near E 00: Let �+� ; �
�
� 2 W 1;1(
); with values in [0; 1] ; and compact

support in 
00; such that Z


00
��� d�

+
s +

Z


00
�+� d�

�
s � �: (10.4)

First we extend [18, Lemma 6.1], showing that

1

n

�Z
fn�u��2ng

jru� jp ��� dx+
Z
f�2n�u���ng

jru� jp �+� dx
�
� $�(n; �) + �: (10.5)
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Indeed we �rst take in (10.1) ! = hn;n(u�)	; where hn;n is de�ned in (2.7) and obtain

1

n

Z
fn<u�<2ng

jru� jp	dx =
Z



f�hn;n(u�)	dx+

Z



hn;n(u�)	d�0

�
Z



hn;n(u�) jru� jp�2ru� :r	dx+
Z



	d�+s :

Hence from (3.23),

1

n

Z
fn<u�<2ng

jru� jp	dx � kf�	kL1(
) +
Z



	d j�j+
Z
supp 	

jru� jp�1 dx � C

where C depends on �;	; f; but not on n and �: Then

1

n

Z

00\fn<u�<2ng

jru� jp dx =
Z

00
jrhn;n(u�)jp dx � Cn1�p: (10.6)

As � !1; hn;n(u�)! hn;n(u) a:e: in 
; is bounded in L1(
), hence converges strongly in
W 1;p(
00) from (10.6), so that Z


00
jrhn;n(u)jp dx � Cn1�p: (10.7)

As n!1; hn;n(u)! 0 a:e: in 
; is bounded in L1(
), hence converges strongly inW 1;p(
00)
from (10.7).

Then we take in (10.1) ! = hn;n(u�)�
�
� ; and get

1

n

Z
fn<u�<2ng

jru� jp ��� dx =
Z



f�hn;n(u�)�
�
� dx+

Z



hn;n(u�)�
�
� d�0

�
Z



hn;n(u�) jru� jp�2ru� :r��� dx+
Z



��� d�
+
s :

And jru� jp�2ru� converges strongly in (Lr(
00))N for any 1 � r < N=(N � 1): ThenZ



hn;n(u�) jru� jp�2ru� :r��� dx =
Z



hn;n(u) jrujp�2ru:r��� dx+$�;n(�) = $�(n; �);Z



hn;n(u�)�
�
� d�0 =

Z



hn;n(u)�
�
� d�0 +$�;n(�) = $�(n; �):

36



Also from [18, Proposition 2.8],Z



f�hn;n(u�)�
�
� dx =

Z



fhn;n(u)�
�
� dx+$�;n(�) = $�(n; �):

hence from (10.2),
1

n

Z
fn�u��2ng

jru� jp ��� dx � $�(n; �) + �;

and (10.5) follows, after exchanging ��� into �
+
� and hn;n(r) into hn;n(�r):

Now we extend [18, Lemma 6.3], showing that for �xed k > 0; and for any �; � > 0;Z



jru�;kjp  +�  +� dx+
Z



jru�;kjp  ��  �� dx = $(�; �; �): (10.8)

We take ! = Hn;n(u�)(k � u�;k) 
+
�  

+
� in (10.1), where Hn;n is de�ned in is de�ned in (2.7),

and obtain

�
Z



jru�;kjpHn;n(u�) 
+
�  

+
� dx+

Z



jru� jp�2ru� :r +� Hn;n(u�)(k � u�;k) 
+
� dx

+

Z



jru� jp�2ru� :r +� Hn;n(u�)(k � u�;k) 
+
� dx+

Z



jru� jpH 0
n;n(u�)(k � u�;k) 

+
�  

+
� dx

=

Z



f�(k � u�;k)Hn;n(u�) 
+
�  

+
� dx+

Z



(k � u�;k)Hn;n(u�) 
+
�  

+
� d�0: (10.9)

As � ! 1; Hn;n(u�) ! Hn;n(u) and a:e: in 
; is bounded, and strongly in W 1;p(
00) from
(10.6) and the corresponding estimate on 
00 \f�2n < u� < �ng : From (10.5) applied with
�+� =  +� ; Z




jru� jpH 0
n;n(u�)(k � u�;k) 

+
�  

+
� dx =

2k

n

Z
f�2n<u��ng

jru� jp  +�  +� dx

� 2k

n

Z
f�2n<u��ng

jru� jp  +� dx

� $�(n; �) + � = $(�; n; �):

As in the proof of [18, Lemma 6.3], since  +� has a compact support, we get successivelyZ



jru� jp�2ru� :r +� Hn;n(u�)(k � u�;k) 
+
� dx = $�;n(�; �);Z




jru� jp�2ru� :r +� Hn;n(u�)(k � u�;k) 
+
� dx = $�;n(�; �);Z




f�(k � u�;k)Hn;n(u�) 
+
�  

+
� dx = $�;n(�; �);
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andZ



(k � u�;k)Hn;n(u�) 
+
�  

+
� d�0 =

Z



(k � uk)Hn;n(u) 
+
�  

+
� d�0 +$�;n;�(�) = $�;n(�; �):

Indeed �0 2 M0(
) and (k � u�;k)Hn;n(u�) 
+
�  

+
� converges weakly in W 1;p

0 (
00) to (k �
u�;k)Hn;n(u�) 

+
�  

+
� as � !1; because u�;k converges weakly to uk in W 1;p(
00) from (3.21);

also (k � uk)Hn;n(u) 
+
�  

+
� converges strongly to 0 in W

1;p
0 (
00) from (10.2) as � ! 0: Hence

from (10.9), Z



jru�;kjpHn;n(u�) 
+
�  

+
� dx = $(�; n; �; �);

and more preciselyZ



jru�;kjp hn;n(u�) +�  +� dx =
Z



jru�;kjp  +�  +� dx = $(�; �; �)

since n > k: We deduce (10.8) after replacing the test function by ! = Hn;n(u�)(k +
u�;k) 

�
�  

�
� :

Step 2. Behaviour far from E 00: Now we de�ne

��;� =  +�  
+
� +  ��  

�
�

and following [18, Lemma 7.1], we show that for �xed k > 0;Z



(jru�;kjp � jrukjp) (1� ��;�)'dx = $(�; �; �): (10.10)

In that aim we �rst prove as in [18, Lemma 7.3] thatZ



jru�;kjp (1� ��;�)'dx�
Z



uk' jrukjp�2ruk:r��;�dx+
Z



��;�uk jrukjp�2ruk:r'dx

=

Z



f(1� ��;�)uk'dx+
Z



(1� ��;�)uk'd�0 +$(�; �; �): (10.11)

Indeed we choose ! = (1� ��;�)u�;k' as test function, and obtainZ



jru�;kjp (1� ��;�)'dx�
Z



u�;k' jru�;kjp�2ru�;k:r��;�dx

+

Z



��;�u�;k jru�;kjp�2ru�;k:r'dx

=

Z



f�(1� ��;�)u�;k'dx+
Z



(1� ��;�)u�;k'd�0

+ k

Z



(1� ��;�)'d�+s � k

Z



(1� ��;�)'d��s ;
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we get successively, as in [18, Lemma 7.3],Z



u�;k' jru�;kjp�2ru�;k:r��;�dx =
Z



uk' jrukjp�2ruk:r��;�dx+ !�;�(�);Z



��;�u�;k jru�;kjp�2ru�;k:r'dx =
Z



��;�uk jrukjp�2ruk:r'dx+ !�;�(�);Z



f�(1� ��;�)u�;k'dx =
Z



f(1� ��;�)uk'dx+$�;�(�);Z



(1� ��;�)u�;k'd�0 =
Z



(1� ��;�)uk'd�0 +$�;�(�);

and from (10.3), since ' has a compact support in 
00; and values in [0; 1] ;Z



(1�  +�  
+
� )'d�

+
s +

Z

00
(1�  ��  

�
� )'d�

�
s � � + �;

hence, since k is �xed,

k

Z



(1� ��;�)'d�+s � k

Z



(1� ��;�)'d��s = !(�; �);

and this shows (10.11).

Then as in [18, Lemma 7.4], we show that

1

n

Z
fn<ju� j<2ng

jru� jp (1� ��;�)'dx = $(�; �; n; �): (10.12)

Indeed we have

1

n

Z
fn<ju� j<2ng

jru� jp (1� ��;�)'dx

=
1

n

Z
fn<u�<2ng

jru� jp (1�  +�  
+
� )'dx�

1

n

Z
fn<u�<2ng

jru� jp  +�  +� 'dx

+
1

n

Z
f�2n<u�<�ng

jru� jp (1�  ��  
�
� )'dx�

1

n

Z
f�2n<u�<�ng

jru� jp  +�  +� 'dx:

Using the fact that ' has values in [0; 1] ; we conclude to (10.12) by applying (10.5) to
���+� = (1� +�  +� )' and �+�+� = (1� ��  �� )'; since (10.3) holds; and then to ���;� =  ��  

�
� '

and �+�;� =  +�  
+
� '; since (10.2) holds for  

�
� ;  

+
� and  

+
� ;  

�
� take their values in [0; 1] :
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Finally as in [18, Lemma 7.5] we show thatZ



jrukjp (1� ��;�)'dx�
Z



uk' jrujp�2ru:r��;�dx+
Z



��;�uk jrujp�2ru:r'dx

=

Z



f(1� ��;�)uk'dx+
Z



(1� ��;�)uk'd�0 +$(�; �): (10.13)

Indeed �rst observe that Hn;n(u�)! Hn;n(u) a:e: in 
; is bounded in L1(
); and converges
strongly in W 1;p(
00) as � ! 1: Also Hn;n(u) ! 1 a:e: in 
; is bounded in L1(
); and
converges to 1 strongly in W 1;p(
00); as n!1: Choosing ! = (1���;�)ukHn;n(u�)' as test
function in (10.1) with n > k; we obtainZ




(1� ��;�)Hn;n(u�)' jru� jp�2ru� :rukdx

�
Z



ukHn;n(u�)' jrukjp�2ruk:r��;�dx+
Z



(1� ��;�)Hn;n(u�)uk jru� jp�2 :r'dx

+

Z



jru� jp uk(1� ��;�)H 0
n;n(u�)'dx

=

Z



f(1� ��;�)ukHn;n(u�)'dx+

Z



(1� ��;�)ukHn;n(u�)'d�0:

As in [18, Lemma 7.5], we deduceZ



(1� ��;�)Hn;n(u�)' jru� jp�2 :rukdx

=

Z



(1� ��;�)Hn;n(u)' jru2njp�2 :rukdx+ !�;�;n(�)

=

Z



jrukjp (1� ��;�)'dx+ !�;�(n; �);

Z



ukHn;n(u�)' jrukjp�2ruk:r��;�dx =
Z



ukHn;n(u)' jrujp�2ru:r��;�dx+$�;�;n(�)

=

Z



uk' jrujp�2ru:r��;�dx+$�;�(n; �);

Z



(1� ��;�)Hn;n(u�)uk jru� jp�2 :r'dx =
Z



(1� ��;�)uk jrujp�2 :r'hn;n(u)dx+$�;�;n(�)

=

Z



(1� ��;�)uk jrujp�2ru:r'dx+$�;�(n; �);
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and also ����Z



jru� jp uk(1� ��;�)H 0
n;n(u�)'dx

���� � $(�; �; n; �)

from (10.12), since k is �xed. AndZ



f(1� ��;�)ukHn;n(u�)'dx =

Z



f(1� ��;�)ukHn;n(u)'dx+$�;�;n(�)

=

Z



f(1� ��;�)uk'dx+ !�;�(n; �);

Z



(1� ��;�)ukHn;n(u�)'d�0 =

Z



(1� ��;�)ukHn;n(u)'d�0 +$�;�;n(�)

=

Z



(1� ��;�)uk'd�0 +$�;�(n; �):

Hence (10.13) holds, because all the terms do not depend on n or �. At last (10.10) follows

from (10.11) and (10.13).

Step 3. Strong convergence of trucates in W 1;p
loc (
).

We consider the di¤erenceZ



(jru�;kjp � jrukjp)'dx

=

Z



(jru�;kjp � jrukjp) (1� ��;�)'dx+
Z



jru�;kjp��;�'dx�
Z



jrukjp��;�'dx:

From (10.8), we have Z



jru�;kjp��;�'dx = $(�; �; �):

Since jrukjp 2 L1(
00) and ��;� converges to 0 a:e: in 
 and is bounded in L1(
00), we haveZ



jrukjp��;�'dx = $(�; �)

hence from (10.10), we deduce thatZ



(jru�;kjp � jrukjp)'dx = $(�; �; �) = $(�);
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now jru�;kjru�;k converges a:e in 
; hence strongly in L1(
0); hence in L1loc(
)and ru�;k
converges strongly in Lp(
0); hence in Lploc(
):

Step 4: u is a local entropy solution of (3.27). We have, from D1loc,Z



jru� jp�2ru� :r(h(u�) )dx =
Z



h(u�)f� dx+

Z



h(u�) d�0

+ h(+1)
Z



 d�+s � h(�1)
Z



 d��s (10.14)

for any h 2 W 1;1(R) such that h0 has a support in some interval [�k; k], and  2 D+(
).
And h(u�) converges to h(u) a:e: in 
 and strongly in W

1;p
loc (
), hence �0-a:e: in 
 and h(u�)

is bounded in L1(
); and jru� jp�2ru� converges strongly in L1loc(
); hence

lim

Z



h(u�) jru� jp�2ru� :r dx =
Z



h(u) jrujp�2ru:r dx;

lim

Z



h(u�)f� dx =

Z



h(u)f dx;

lim

Z



h(u�) d�0 =

Z



h(u) d�0;

and h0(u�) converges to h0(u) a:e: in 
 and is bounded in L1(
), hence from Step 3,

lim

Z



h0(u�) jru� jp  dx = lim
Z



h0(u�;k) jru�;kjp  dx =
Z



h0(u) jrujp  dx:

Thus Z



h0(u) jrujp  dx =
Z



h(u)f dx�
Z



h(u) jrujp�2ru:r dx

+

Z



h(u) d�0 + h(+1)
Z



 d�+s � h(�1)
Z



 d��s ;

and the conclusion follows.
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