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Abstract

Here we study the solutions of equations with absorption or source term
—Apu=+ul" utp

in a domain © of RY, where 1 < p < N, ¢ > p — 1, and p is a Radon measure on €.
We introduce a notion of local entropy solution, and give necessary conditions on y for
the existence of solutions in terms of capacity. We study the question of removability
sets, and prove some stability results. Finally we give existence results in RY for the
case of absorption.
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1 Introduction

Let Q be a regular domain in RY, which may be unbounded, and p be a Radon measure on
(). Here we consider the elliptic problem with an absorption term:

—Ayu+ |u] u =g, in Q, (1.1)
and also the problem with a source term

A= u|Tu4p,  inQ, (1.2)
where 1 <p < N, qg>p—1, and

u— Apu = div(|Vul’~* Vu)

is the p-Laplace operator. We study the existence of local or global solutions and the question
of removable sets E C () in terms of capacity conditions on ; and E. This leads us to come
back to the problem without perturbation term,

—Ayu=p, in €, (1.3)
for which we define a notion of local entropy solution, and give convergence properties,

essential to our proofs.

We denote by M(£2) the set of all the Radon measures in © (resp. M, (€2) the subspace
of bounded Radon measures in ) and M™*(Q) (resp. M, (Q)) the subset of nonnegative
ones. The capacity cap,,, associated to W™ (Q), for any m > 1,r > 1 is defined by

capm (K, ) = inf {||@Z)||£V81L,T(Q) Y eD(N),0<y <1,9p=1o0n K} :
for any compact set K C €). In the sequel we set

¢ =q/(g—p+1), (1.4)

so that ¢* = ¢ = ¢q/(q— 1) when p = 2.

The first question is to find conditions on the measure p which ensure the existence of
a solution. In the case p = 2, a necessary and sufficient condition was found in [3] for the
problem with absorption with Dirichlet data on 0€2: for any u € M,(2), problem

. q—1 _ .
{ Au+ |ul™ u = p, in Q, (1.5)

u =0, on 0f),



has a (weak) solution if and only if 1 does not charge the sets E such that capy o (E,RY) = 0.
In the case of the problem with a source term, this condition is also necessary. A precise
necessary and sufficient condition was given in [4] for the existence of (integral) solutions of
problem
—Au= (u")?+ p, in Q,
{ u =0, on 0f).

When p has a compact support and p > 0, it is equivalent to the existence of a constant
C > 0, such that

/ dp < C capq y (K, RM), for any compact set K C €2,
K

see [2]. It implies in particular a limitation of the size of the measure. In the case p # 2, the
question becomes more difficult, because the full duality argument used in [3] and [4] is no
more available. Concerning problem (1.1) with Dirichlet data, it was recently shown in [21]
that if u charges the sets F such that cap; r(E,RY) = 0, for some R > pq*, then sequences
of approximate solutions do not converge to a ”"reasonable” solution. This suggested that in
some sense problem (1.1) might have no solution. Using our notion of local entropy solution,
we show that the result is true, local, and much more general:

Theorem 1.1 Let u € M(Q), and ¢ > p — 1. Suppose that jn charges some set E such that
capy r(E,RY) = 0 for some R > pq*. Then problems (1.1) and (1.2) admit no local entropy
solution. More generally, there exists no local entropy solution of problem (1.3) such that

lu|” € L} ().

loc

Notice that we have no restriction of the sign of v and j, which is unusual in the case of
source term. This result concerns the supercritical case ¢ > P, where

P— Np-1)

N —p
is the first critical exponent. Indeed in the subcritical case ¢ < P, any nonempty set £ C Q
satisfies cap; g(E,RY) > 0. In particular, problems (1.1) or (1.2) have no solution if ;1 charges
the points and ¢ > P. Recall that when p = 2, any set E such that cap1 r(E,RY) = 0 for
some R > 2¢ satisfies caps(E,RY) = 0, from [1]. We have a stronger result for the
problem with source term when u and p are nonnegative, which has to be compared to the

one of [4]:



Theorem 1.2 Let p € M*(Q). If problem
—Apu = u? + p, in Q (1.6)

has a nonnegative local entropy solution, then for any R > pq*,
/ du < C (capy (K, Q))P7/E, for any compact set K C (2, (1.7)
K
where C'= C(N, p,q, R, ).

Now we come to the second question, namely the characterization of removable sets.
When p = 2 it was shown in [3] that they are exactly the sets F with capyy(E,RY) = 0. In
case p # 2, a recent result of [22] for problem (1.1) suggested that the compact sets K such
that cap; r(K,RY) =0, for some R > pq*, are in some sense removable. We show that it is
true:

Theorem 1.3 Let F be a relatively closed set in Q, such that capy p(F,RY) = 0 for some
R > pqg*. Let n € M(Q) such that u does not charge the set F'. Then F' is removable: any
local entropy solution of problem

—Apu+ u) u = p, in Q\F
s a local entropy solution of
—Aju A+ |u] u =y, in Q.
In particular any point is removable when ¢ > P. It applies also to problem (1.6):

Theorem 1.4 Let F be a relatively closed set in 0, such that cap; r(F,RY) = 0 for some
R > pq*. Let i € M (Q) such that does not charge the set F. Then any local nonnegative
entropy solution of problem

—Apu = u? 4 p, in Q\F,
is a local entropy solution of
—Apu = u? 4 p, in ).

These results are based on local a priori estimates of the solutions, given in Theorems 4.1
and 4.2. We also prove a convergence theorem for the case of absorption:
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Theorem 1.5 Let F be a relatively closed set in Q, such that capy p(F,RY) = 0 for some
R > pq*. Let f,, f € L,.(Q) such that f, converges strongly to f in L} .(Q\F). Let u, be a

loc loc
local entropy solution of problem

— Ay, + |uy |, = fy, in Q\F.
Then up to a subsequence, u, converges to a local entropy solution u of
—Ayu+ |ul"u=f, in Q.

We also show similar results for global solutions when 2 is bounded, see Theorem 7.3. Thus
we improve a result of [16] given for p = 2, and the result of [22] quoted above. The proof is
based upon a local stability result for the problem (1.3) following the global stability result
of [18], see Theorem 3.3. Notice that Theorem 1.5 has no corresponding in the case of source
term, due to the fact that problem (1.6) can admit no solution in the supercritical case for
some measures p € L'(Q), independently of their size.

Another consequence of the local a priori estimates and stability is an existence result
in whole RY for the problem with absorption without growth conditions on the data, which
improves the results of [14]:

Theorem 1.6 Assume ¢ > p — 1 > 0. Then for every f € L} (RY), there exists a local
entropy solution u of problem

—Ayu A+ |ul"u=f, in RY. (1.8)
And u >0 if f > 0.

We also give existence results in the subcritical case ¢ < P with a measure data and €
bounded, or 2 = R, see Theorems 8.2 and 8.3. For the problems witha source term (1.2)
and (1.6), the existence was proved in [20] when ¢ < P, at least when p > Py, and Q, p are
bounded, and the size of ; is small enough. The problem is open in the case ¢ > P, even
when p € L*(€2) with s large enough.

For simplification all our results are given for the p-Laplace operator, and the nonlinear
term is |u|q_1 u, but they can be extended to elliptic operators A(z, Vu), with power growth
in |Vu| of the order p — 1, and a perturbation term +g(x,u) such that g(x,u)u > 0 and
which grows in u like |u|?.



2 Global and local entropy solutions

First recall some well-known results concerning the problem

—Ayu = p, in €2,
{ u =0, on 0f), (2.1)

with € My(Q2) and §2 bounded. We set

2N 1
By = N+l P =2- N
sothat 1 < Py < P, and p > Py <= P > 1. When p > P, problem (2.1) admits at
least a solution such that u € W, ™(Q) for any 1 < m < (p — 1)N/(N — 1), in the sense of
distributions. Hence the gradient is well defined in L'(2). In the general case one needs to
define a notion of entropy solutions, or renormalized solutions, which can be done in four
equivalent ways, as shown in [18], and allows to give a sense to the gradient. They are
solutions such that VT (u) € LP(Q2) for any k > 0, where

s if |s| <k,
Tils) = { ksign s if |s| > k, (2:2)

and the gradient of u, denoted by y = Vu is defined by
V(Tk(u)) =1y X 1{\U|Sk} a.e. in Q. (23)

Such solutions « may not be in L!'(Q) when p < Py. For any p > 1 there exists at least a
solution of (2.1), and it is unique if u € L'(€). Moreover any entropy solution satisfies the
equation in the sense of distributions.

Now we mention the usual definitions of entropy solutions and above all define a notion
of local entropy solution. We call M;(€2), the set of measures py € M(2) such that

to(B) =0 for any Borel set B C 2 such that cap; ,(B,2) = 0. (2.4)
First recall that any measure p € M(2) admits a unique decomposition as
= po + pf — pg (2.5)

where g € My(Q) and uf are nonnegative and singular, concentrated on sets E+ with
capy »,(EE,RY) = 0, see [19]. Moreover p is nonnegative, and pu; = 0, if 4 is nonnegative.
Notice also that

py <ptyopg <psoand pel < ful. (2.6)
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For any n,k > 0 and any r € R, we set

Spk(r) = min((|r] —n)"/k, 1) sign r,
P (r) = min((r — n)* /k, 1), H,p(r) =1 —min((|r| — n)*/k,1). (2.7)

1) Global entropy solutions.

Here 2 is bounded, and p = pg + pf — p; € My(£2). Following [18], we will say that u
is an (global) entropy solution of problem (2.1) if

u is measurable and finite a.e. in (2,
Ti(u) € Wy (Q) for every k > 0,
VulP' e L(Q),  forany 1 <r < N/(N —1), (2.10)

where the gradient is defined by (2.3), and u satisfies

D1: for any h € WH*(R) such that h' has a compact support, and any ¢ € W™ (Q) for
some m > N, such that h(u)p € Wy (),

/ IVul" > V.V (h(u)p)dz = / h(u)edpy + h(400) / odut — h(—0) / edu, . (2.11)
Q Q Q Q
Three other definitions are equivalent:

Theorem 2.1 ([18]) Let u be a function such that (2.8), (2.9) and (2.10) hold. Then D1
s equivalent to any of the conditions

D2: if w e WyP(Q) N L>2(Q) and if there exists k > 0 and w™,w™ € W (Q) N L®(Q) with
r > N, such that w = w™ a.e. on the set {u >k} and w = w™ a.e. on the set {u < —k},

then
/\Vu\p_2 Vu.dex—/wduo+/w+duj—/wdus. (2.12)
Q Q 0 Q

DS3: for any k > 0, there exist oy, B € Mo() N M (), concentrated on the sets {u = k}
and {u = —k} respectively, converging weakly to u7, u; such that

p—2 _ _
/Q|Vuk| vukv¢dx—/{u<k} wduo—i-/glﬁdak /deﬁk, (213)

for any ¢ € WyP(Q) N L™(Q).



Dy: for any h € Wh*°(R) with compact support, and o € WHP(Q) N L2(Q) such that
h(u)p € Wy™(9),

/Q V"% VY (h(u)p)de — /Q h(w)pdpio, (2.14)

and for any ¢ € C(Q) and bounded,

1 1
lim — |Vulf godx:/goduj, lim — ]Vu]pgpdx:/gpdus_. (2.15)
Q n Q

T J{n<u<2on} {—2n<u<-n}

Remark 2.1. In the definition of global entropy solution, (2.10) can be weakened in
IVulP~ e LHQ), (2.16)

and then
lwfP~t e L*(Q),  forany 1<s< N/(N —p), (2.17)

from [5, Lemma 4.1]. Also condition (2.11) has to be satisfied only for any ¢ € DT(9Q).
Indeed this implies that D3 holds for such ¢, and by density for any nonnegative ¢ €
Wy (Q) N L®(Q), then for any ¢» € W,?(Q) N L*®(2), hence D3 holds, hence also D1.

Remark 2.2 The different notions of entropy solutions are given in general for bounded
measures, since it appears to be a good frame for existence theorems. Notice however that
when p = 2, the problem
—Au = p, in ,
{ u =0, on 0f),
is well posed for possibly unbounded measures i, such that [, p(x)du(z) < oo, where p(x)
is the distance from x to 0f2. In the following we are interessed by local solutions as well as

global ones with Dirichlet data. Thus we will not always require, when it is possible, that
the measures are bounded, contrarily to most of the litterature on the subject.

2) Local entropy solutions

Here 2 and p € M(S2) are possibly unbounded. We will say that u is a local entropy
solution of problem (1.3) if u satisfies (2.8),

Ti(u) € W,oP(9Q) for any k > 0, (2.18)
P~ e L; (Q), for any 1 < s < N/(N — p), (2.19)
\VulP ' e LT (Q), forany1<r< N/(N—1), (2.20)



and

D1loc: for any h € Wh*(R) such that h' has a compact support, and o € WH™(Q) for
some m > N, with compact support, such that h(u)p € WP(Q),

/ IVul""? Vu.V (h(u)p)dz = / h(w)edpo + h(+00) / pdut — h(—0) / edu, . (2.21)
Q Q Q Q
Here also we will use equivalent definitions.

Theorem 2.2 Let u be a function such that (2.8), (2.19), (2.18) and (2.20) hold. Then
D2loc is equivalent to one of the conditions

D2loc: if w € WP(Q) N L>®(Q) with compact support in Q, and if there exists k > 0 and
whw™ € WH(Q) N L®(Q) with r > N, such that w = w* a.e. on the set {u >k} and
w=w" a.e. on the set {u < —k}, then

/|Vu\p_2 Vu.dex:/wduo—i-/erd,uj—/wdus. (2.22)
Q Q Q Q

D3loc: there exist oy, By, € Mo(Q)NMT (), concentrated on the sets {u = k} and {u = —k}
respectively, converging weakly to ul, p; such that

p—2 Nbdr — d doy, — d 2.23
/Q]Vuk\ V. Vipdx /{ugk}w /Lo—i—/ﬂ¢ Qg /Qw B, ( )

for any ¢ € WHP(Q) N L>(Q) with compact support in .

Djloc: for any h € Wh*°(R) with compact support, and o € WP(Q)NL>®(Q) with compact
support in Q, such that h(u)p € WHP(Q),

/Q V"2 V.V (h(u)p)de = /Q h(w)pdpio, (2.24)

and for any ¢ € C(2) with compact support in €2,

1 1
lim — |Vul? pdz = / odpt,  lim —
Q n

T J{n<u<2n}

]Vu|pg0dm:/g0d,us. (2.25)
Q

{—2n<u<—-n}

The proof follows the one of [18], with some modifications due to the fact that Lemma
4.3 of [17] does not apply. It is given in Appendix A for a better comprehension.

3) Solutions with a perturbation term:
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Let f be a Caratheodory function on {2 x R. For bounded 2, and p € M,(£2), an entropy
solution v of problem

u =0, on 0f2

will be a function u such that f(z,u) € L'()) and w is an entropy solution of problem in
the sense above. For general 2 and p € M(2), a local entropy solution of problem

{ ~Aju=flou) £, i

_Apu = f(x,u) + u, in 2,

will be a function u such that f(z,u) € L, () and u is a local entropy solution of problem
in the sense above.

3 Local solutions without absorption

Here also we show that the assumptions on the local entropy solutions of problem without
perturbation (1.3) can be weakened. This is the key point for all the sequel. Recall that
may be unbounded.

Theorem 3.1 Let u be a function satisfying (2.8), (2.18), and
lu|? € L},.(Q), for some q>p— 1,

[Vul’™ € Li, (%), (3-2)
and D1loc. Then
(Ju] + D1 VulP € L}, (), for any o < 0, (3.3)
and u satisfies (2.19) and (2.20). Moreover
IVulP™' € Lg.(Q), for any 1 <o <p'q/(q+1). (3.4)

Proof. Step 1: Estimate (3.3). Let o < 0. We set u, = Ty (u), for any k£ > 0. We
take
hi(u) = (1 — (Jug| +1)°) sign u (3.5)
in (2.21), and get for any ¢ € DT(),

ol [ (el + 1) Vs
Q
= —/ hi(w) |Vul" ™ Vu.Vdz + / hi(uw)edpg + (1 — (k + 1)“)/ od |ps|
Q Q Q

< / Vel [Vl de + / Yl V| do + / od ). (3.6)

11



Now from Holder inequality,

/ Vel V| da
Q

- /(|“k| + 1) T | (g + )OO |V da
Q

1/p 1/p
< (/(!ukl + 1) | Vaug)? gadx) (/(|ka + 1)(1’a)(p’1)<p1’p |Vpl? da:) ) (3.7)
Q Q

Since u satisfies (3.1), we can fix « such that

T=q/(p—1)(1—a)>1 (3.8)
Then we get

/ Ve V| da
Q

1/p' 1/mp ) , 1/7'p
< (/(|Uk| + 1) | Vau|? god:c) (/(|uk| + 1)qg0dx) (/ QTP |V¢|Tpdx> :
Q Q Q

(3.9)

hence

[ 19elde < 5 [ ug+ 0o upeds
Q Q

1/7 1/
+C (/(]u\ + 1)qg0dx> X (/ TP |Vg0\7pdx) : (3.10)
0

where C' = C'(a). Reporting (3.10) into (3.6), it comes

Ll / YoV Pipd < / VP |Vl de + / od |4l
{|u|>k} Q

+C(a) ( /Q (Jul + 1)qud:c> T ( /Q TP V| dm) " (3.11)

Going to the limit as kK — oo from (3.2), we deduce that

1/7 , /7
%/(M + 1) VulPpdr < C (/(!u\ + 1)q<pdx> (/ wlT’p\Vso!”’dm)
Q Q &

4 / od |1 (3.12)

/
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And from (3.9),

/ Vul”™ [Vl d
) 1 Ly o
(e ) (o) (o)
Q Q ’ (3.13)
where the gradient is defined in (2.3). Taking
p=¢7, wih(EDHA), .19

so that o' ™7 |Vy|"? € LY(), we deduce that (Ju| + 1) !|VulP € LL () for |a| small
enough, which implies (3.3).

Step 2: other estimates. Let U be any domain such that U CC Q. For any v € L}, (Q)

loc
we set
U= |U|_1/ vdz.
U

Recall the Galliardo-Niremberg estimate: for any A\ > 1, for any v € W?(U) N LMU),
_ 0 —1-0
1o =Tl 1y < VOl oy llo = llzagy - (3.15)
for any v € [1,+00) and # € [0, 1] such that

1 :g(l_l)Jrﬂ’ (3.16)

where ¢ = ¢(N,p, \,0,U). Let us take o € (1 — p,0) and

v=Q0+ )’ B=(atp-1)/p, A=(-1)/B (3.17)

Then v € LP(U), since Bp < p— 1 < q and u € LY(U). Moreover u; = Ty(u) € W'P(U),
hence from the chain rule, vy = Tj11(v) = (1 + |ug])? € WHP(U) and

Vi1 = Blug| + 1) Vuy, sign ug.

By definition of the gradient, we have Vv, = Vv X 1g,<k, hence

/ |Vv|pd$:/ Vg P do < 5P/<|uk| 1) Vg P
Un{lul<k} U U

13



And (u + 1)*7 ! |VulP € LY(U) from (3.3). Thus we can go to the limit as & — oo, and
get |Vv| € LP(U). This implies v € WP(U) and the gradient above coincides with the
distributional gradient of v, see [18, Remark 2.10]. And u € L?(U), since

[ a1 =7 da
U
0/p (1-60)v8/(p—1)
<o ([evrtourar) ([ uey o0 ar) SNERE
U U

and |ul’~" € LY(U). Chosing 6 close to 1, and « close to 0, we deduce (2.19). Moreover for
any 0 < n < p, we find

n/p (p—m)/p
/|Vu|”dx < (/(|u| 1) (VP da:> (/(|u| + 1)<1a>n/<p">dx) (3.19)
Q U Q

from Holder inequality. Choosing again « close to 0, the left-hand side is finite for any n
such that n/(p—n) < (p—1)N/(N —p), that means 0 < n < N(p—1)/(N —1). Hence (2.20)
holds. Finally for any 1 < o < p/,

o/p 1—o/p’
[ s < ( i+ 1>°‘-1|W|%das) % ( [+ 1)(1-a>/<p’/0—1>¢dx) |
U U U

(3.20)
and the left-hand side is finite if 1/(p//o — 1) < ¢, that means o < p'q/(q+ 1), which proves
(3.4). n

Remark 3.1 Estimate (3.4) was first observed in [14] for problem (1.1) in RY . Tt is stronger
than (2.20) whenever g > P.

In the same way we deduce convergence properties.

Theorem 3.2 Let (u,) be a sequence of Radon measures in 2, uniformly locally bounded.
Let (u,) be a sequence of local entropy solutions of

—Apu, = py, in €,

such that (Ju,|?) is bounded in L}, (), for some q > p — 1. Then
(T (uy)) s bounded in WEP(Q)  for any k > 0, (3.21)
(Juy|"™") is bounded in L3 (Q)  for any 1 <s < N/(N —p), (3.22)
(|Vu,[P™Y)  is bounded in L], ()  for any 1 <r < max(N/(N —1),p'q/(g+1). (3.23)

14



And up to a subsequence, i, converges weakly to a measure p, and (u,) converges locally in
measure in 0 and a.e. in Q to some function u. And u satisfies (2.8), (2.19), (2.18) and
(2.20), (3.4), and (Vu,) converges to Vu locally in measure in Q.

Proof. Step 1: a priori estimates. Taking the same notations as above, and the test
function ¢ defined in (3.14), we have from (3.12) and (3.13),

1/7
S LGl vewupets < [ et +0 ([ tuld+1rds)
2 Ja Q Q
with a constant C' = C'(«, ¢) > 0. Hence for any domain U CC 2,
/(]ul,| +1)* ! VulPdz  is bounded. (3.24)
U

In particular (u, ) is bounded in W'?(U), and (3.21) holds. Then (3.22) and (3.23) follow
from (3.18), (3.19) and (3.20) applied to (u,), after noticing that the sequence (v,) defined
by

vo=(ul+1)7%  B=(at+p-1)/p,
is bounded in L}

1e(£2); hence the sequence (7)) of its mean values on U is bounded. Moreover
considering the two functions

v, = (uf + 1% o) = (u, +1)°
one has
Vo | < B(luy| + 1)@ D7 [V, |, Vo] < B(lu,| + 1) D7 |V, |

from the chain rule applied to the trucatures u, j, and by definition of the gradient. Hence
(|Vv,|) and (|Vv!|) are bounded in LY (£2), so that

(v}) and (v") are bounded in W?(Q). (3.25)
Up to a subsequence, (u,) converges weakly to a measure p, and v/, and v!/ converge weakly
in W'?(Q), strongly in L? (), and v/, — v/, v/ — v a.e. in Q. Then u, converges locally

loc loc
in measure and a.e. in Q to a function u; and |u|? € L}, (), and u satisfies (2.19) from the
Fatou lemma. For fixed k& > 0, (u,) is bounded in W,2*(Q), and converges a.c. to (u). We
can extract a subsequence (depending on k) converging weakly in W,2"(Q) and a.e. in Q,
and necessarily to uz. Then uy € WEP(Q), and the whole sequence (u,,;) converges weakly

to g in W22 (Q).
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Step 2: convergence of the gradients. We set

Hy = Ky 0 + /“L:s - M;s’

where j,0 € My(2) and ,uis are nonnegative and singular. Here we use the equation
satisfied by the truncated functions u,, as in [18]. From Theorem 2.2, there exist o, x, B, €
Mo(Q) N MT(Q), concentrated on the sets {u, = k}, {u, = —k}, such that

/|Vu,,,k|p_2 VUV’kVQ/JdJI—/ wd,u/y’o—f-/wd()é,,’k—/'(ﬂdﬁuk,
Q {|uv|<Kk} Q Q

for any ¢ € WP(Q)N L>®(Q) with compact support in . Taking ¢ = u,, ¢ with p € D(Q),
we get

/ |V, " pdx + / Uy i |Vu,,7k|%2 Vu, ,Vodr :/ Uy kPt 0
Q Q {

uw | <k}

+ k (/ @dau,k + / @dﬁu,k) .
Q Q

And |u, ;| <k, a.e. in Q, and p1,,0- a.e. in €, hence

1 _
/ oy + / pdfp < / od o] + - / Vi |? e + / Vel Vo] do.
Q (9] Q k (9] Q

Taking ¢ such that ¢ =1 on U CC €, we get, from (3.24),

/ dev +/ Bk < O (1 + K1)
U U

for any £ > 1, where C' > 0 does not depend on v, since |u, 0| < |p| from (2.6). Then
Ay i, v are locally bounded independently on v for fixed £, hence also

Pk = X{Juw|<k} w0 + Qe — By k-
And u,, is a solution in the sense of D'(§2) of equation
_Apuu,k = Hu,k,

with u,,;, bounded in W'?(Q) and in L=(Q). Following the proof of [15, Theorem 2.1], we
deduce that, after extracting a diagonal subsequence ,which depends on &, Vu,  converges
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2 Q)N for any 1 < X < p, hence also the whole sequence
converges. But for any € > 0, and any v, p € N,

a.e. in  and strongly to Vuy in (L}

{1V — V| > €} € {Jun| > k} U {|wy] > k} U {|Vans — Vapu] > €},

1oe(£2). Hence (Vu,) is a locally a Cauchy sequence in measure. Up to
a subsequence, Vu, converges a.e. in ), and necessarily to Vu, by definition of the gradient.
Then Vu satisfies (2.20) and (3.4). And |Vu,|"~* Vu, converges strongly to |Vu|’~ Vu in
L7 () for any 1 <r < N/(N — 1),from the Vitali theorem. n

loc

and |u,|? is bounded in L}

Now we give a local stability result, following the global result of [18, Theorem 3.4]. We
have not searched to extend it completely to the local problem, because it was not needed in
our situations, where the perturbation term in fact requires stronger convergences properties.
We give the proof in Appendix B.

Theorem 3.3 Let A € M(Q). Let f,,f € L,.(), such that f, converges weakly to f in
Li,.(R2). Let u, be a local entropy solution of problem
—Ayu, = f, + A, n §2, (3.26)

such that (|u,|?) is bounded in Li,.(Q), for some ¢ > p — 1. Then up to a subsequence, u,

converges a.e. in ) to a local entropy solution u of

—Apu = f+A, in Q. (3.27)

4 Estimates for absorption or source term

Here we give universal a priori estimates for problems (1.1) and (1.6). First consider the
case of absorption :

Theorem 4.1 Let u be any local entropy solution of problem (1.1). Then for any R > pq*,
there exists C' = C'(N,p,q, R,Q) such that for any ¢ € D(Q),

qrR R R R
/Q(|u|+1)§d:c§0(/QC d:U—i—/Q( d|,u\+/Q]VC| da:). (4.1)

And for any o < 0, there exists C' = C(«, N, p,q, R, Q) such that

/Q(|u|+1)a_1|Vu|pCRdx§ C’(/QCRda:—i-/QCRd|u|+/Q|VC|Rdx). (4.2)
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Proof. Let R > pqg*. By hypothesis |u|? € L} (), and ¢ > p — 1, hence Theorem 3.1

loc

applies. We take the test functions hj, defined in (3.5), and get, for any ¢ € DT (Q),
|| /(|uk| + l)a_1|Vuk|pg0dx+/ lul" uhg (u)pda
Q 0
— _/ hi(w) [VulP~? Vu.Vpds + / hi(w)pdpo + (1 — (k + 1)0‘)/ od |ps|
Q 0 0

< / Vel Vo di + / V" V| de + / od ).
Q {Ju|>k} Q

This estimate is similar to (3.6), with an additional nonnegative term |, | uhy(u)edz in

the left-hand side, since |u|q_1 u is an absortion term. Applying the Fatou lemma, we find,
as in (3.12),

Bt v iupode + [ Jult (0= (] + 1)gds

1/7 1/
< / od |l +C ( / (lul + 1>wm) % ( / sol-T’ﬂwrpdx) |
Q Q Q

where 7 is defined in (3.8). And 1 — (Ju| +1)* > 1 — 2% > 0 on the set {|u| > 1}. We can
choose a < 0 small enough such that

p=R,
and take ¢ = (¥, where ¢ € D(Q). Defining

X = / (lul + 1)°cRde, Y = / (lul + 1) [Vul’ e,
Q Q

we find
X+vY<C (/ ¢Bdx + / CBd || + O(g)Xl/T) (4.3)
Q Q
. R p/R . . .
with C'(p) = (fQ e dx) and C' = C(a, q). Then from Young inequality, with a new
C'=Cla,p.q),
X+Y§(J(/ CRdx+/CRd|u|+/ |VC|Rdx>. (4.4)
Q Q Q
Hence (4.1) follows for such «a, from (4.3), and then (4.2) follows for any o < 0. u

Now we consider the problem with a source term. In case of nonnegative p and u, we
have more precise results.
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Theorem 4.2 Let 1 € MT(Q) and u be any nonnegative local entropy solution of problem
(1.6). Then for any R > pq*, there exists C = C(N,p,q,R,Q) > 0 such that for any
CeDH(Q), with0 < (<1 inQ,

pq* /R
Rq 1(hdy < C de) . 4.
[ Faus [t < (/me (45)

And for any a < 0, there exists C' = C(«, N, p,q, R,Q) > 0 such that

p/R
/(u + 1) YVulpfde < C <1 + / quRd:c) (/ |v<dex> : (4.6)
Q Q Q

Proof. It has been given in [3] in case of global entropy solutions of the problem with
Dirichlet data, but it is still valid for local solutions. It is based on the use of test functions

hi(r) = (Te(r™) +¢)°, k>0,e>0, (4.7)

which are nondecreasing, contrarily to the ones defined in (3.5), and then of the test function
h(r) = 1. u

Remark 4.1 These ideas were already used in [10] to obtain upper estimates for more general
problems with possible singularities, and also in [9] to study the initial trace problem for a
parabolic equation with absorption.

5 Necessary conditions of existence

Here we prove our general necessary conditions of existence:

Proof of Theorem 1.1. It is enough to consider a solution a local entropy solution u
of (1.3), such that |u|? € L}, .(©2). Hence Theorem 3.1 applies. Let R > pq*, then we still can
choose o < 0 such that 7 given by (3.8) satisfies

pt = R.

Let E be a Borel set such that cap; gr(E,RY) = 0. There exist two measurable disjoint sets
A, B such that Q = AU B and p™(B) = = (A) = 0. Let us show that

p(ANE)=p (BNE)=0.

Let K be any fixed compact set in AN E. Since u~ (K) = 0, there exists an open set w CC 2
containing K, such that p~(w) < €. From [3, Lemma 2.1], there exists (, € D(w) such that
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0<¢, <1, and ¢, =1 on a neighborhood of K contained in w, and ¢, — 0 in WI#(RY) |
We choose ¢ = ¢, = ¢ in (2.21). From (3.12) we have

1/7 p/R
l%/ﬂw+W“WM%Mx§/%ﬂw+c(/mwuy%m) (/W@ﬁm) _
Q Q Q 0

where C' = C(a, R). But
Jewdlal= [ aul
Q suppV¥ i

lim [ (Ju| 4+ 1)%p,dx =0, (5.1)
n—oo 0
since u € L (92). Then
/(|u| + 1) VulPp,dr is bounded. (5.2)
Q

And from (3.13),

1/p' 1/7p
/Q|Vu|p1 Vo,|de < C </Q(|u| + 1) | Vul? gpndx) </Q(|u| + 1)qgond:v)

/R
an> ,
X(AWH .

lim [ |Vul’" |[Vp,|dz = 0.
n—oo [¢)

hence

Let us apply (2.21) with now h(u) = 1 and the same ¢,,. We find

/@ndu:/ ]Vu|p72 Vu.V,dx
Q Q

hence lim,, fQ ©ndp = 0. And

AN@S/

w

@MﬁZ/%W+/%w,

hence put(K) < ¢, for any € > 0, hence (AN E) = 0, and similarly u~ (BN E) = 0. u
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Proof of Theorem 1.2. Here we apply the estimates of Theorem 4.2. Let R > pg* and
K be a compact set contained in Q. Let ¢, € D(Q2) such that

0<v, <14 >xkg and ||¢n||§/1»R(Q) — cap,r(K, Q).

Choosing ¢ = 92 in (4.5), we deduce that, with new constants C' = C(N, p, q, R, ),

n pg*/R .
/ d[L S C (/Q |V77/Jn| dl’) S C ||¢n||€{g1,R(Q) )
K

and (1.7) follows. =

6 Removable singularities

Now we consider the question of removable sets. Here the results are based on the estimates
of Section 4.

Proof of Theorem 1.3. By hypothesis, u is measurable and finite a.e. in Q\ F, hence
in Q, since F has a Lebesgue measure zero, and |u|* € L. (Q\F), Ti(u) € WLP(Q\F) for
every k> 0, and |Vu|’™" € L] _(Q\F). And u satisfies

loc

/Q \VulP 7 V.V (h(u)p)ds + /

|~ wh(u)pdz = / h(w)pdpio
Q

9)
+h(o0) [t = h(=00) [ e,
’ "’ (6.1)
for any h € WH>(R) and /' has a compact support, and ¢ € DT(Q\F).
Step 1: |u]? € L}, .(Q). From Theorem 4.1 in Q\F, for any ¢ € DT(Q\F),

loc

/(|u| +1)%¢%dr < C (/ ¢Rdx+/¢Rd|u| —I—/ |V¢|Rdx) (6.2)
Q Q Q Q
where C'= C(N,p,q, R,Q, F), and for any a < 0,

a—1 p LR R R R
/Q(]u\—i-l) |VulP¢ d:USC(/Q¢ d:U—l—/ng d|,u\+/Q]V¢] dx), (6.3)

with C = C(a, N,p,q, R,Q, F). Let ( € DT(2). Let K = Fnsupp(, hence K is compact
with cap; r(K,RY) = 0. Let &, € D(R"Y) such that

0<& <1 inRY, &, =1 in a neighborhood of K,

21



and &, — 0 in WHH(RY) and everywhere on RY\ N, where cap; z(N,RY) = 0, see [3]. We
take

¢ = Gn=C(1=6), (6.4)

[l 1y < (/chdx+/ﬂ<5dm|+/Q\V<n\Rdx>
<C (/Qngx+/Q§Rdm|—i—/Q|VCn\Rdx>.

But |V(,| is bounded in LE(RY), and ¢,, — ¢(* a.e. in Q. Hence from the Fatou lemma,

and get

/ (lu| + 1)¢Rdz < oo,
Q

so that |u|? € L}, ().

loc
Step 2: |[Vul""' € LL_(9). As above, from (6.3),

/(]u| + 1)* N VulP¢fdr  is bounded. (6.5)
Q

Now

/v
[ vurican < ([ Qul+ newapctas) [ ul 00 gas
Q Q Q
from Holder inequality. Since (1 — a)(p — 1) < ¢, we deduce that
/ |VulP~*¢fdz  is bounded,
Q

hence the conclusion.

Step 3: uy = Ti(u) € WLP(Q) and |Vul’~' € LL(Q). Let k > 0 be fixed. From (6.5),

/Q |Vug|[P¢Rdr  is bounded. (6.6)

Let us set for fixed & > 0,
w, = uCRP € WhP(Q).
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We have |w,| < k¢*/P, hence w, is bounded in L>(Q2). And w, — ur(*/? a.e. in Q. Now
R
Vi, = GV, + Eukéf/ PV G

and in particular V¢, is bounded in L (R"), hence Vw, is bounded in L?(2), from (6.6).
It follows that u,¢™*? € W'P(Q), hence u, € WLP(Q). Now the gradient of u has a sense in
Q; it is defined by (2.3), hence it coincides with the gradient still defined a.e. in Q\ F.

Step 4: |Vu|P~' € L (Q). Forany 1 < o < 7,

loc

a/p
[ v ctae < ([ a0 vupeias)
U U

hence as in (3.20),

/

1—-o/p’
([[du+ pr-errongzar)
U

/ V| P~ D7 Ry is bounded,
Q

for any o < p'q/(¢+ 1), hence |VulP~t € Lg (Q2), in particular for o = R/.

loc

Step 5: u is a local entropy solution in Q. Let € W1 (R) such that 4’ has a compact
support. Let ¢ € DT(Q) be fixed. Taking now the test function

Un = 9(1 = &),

we have
/ IVul""? Vu.V (h(u),)dz + / || uh(u),dx
Q Q
— [ hndno + h(+00) [ wadit = h(=00) [ v (6.7)
Q Q Q

And &, — 0 everywhere on RV\ N, but z does not charge N, hence

Und o] = [ e |pao], ndpis — | by
Q Q Q Q

/Q B(u) (6 — o) dp

And

< [l / (6 = ) ol

hence

[ mwdi = [ hwidya
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Also |ul? € L},.(Q), hence from the Lebesgue theorem,

[l e — [l bty

And |Vul'' € LI (Q), thus

/ h(u) |Vul" > Vu.V (¢ — o, )da
Q

< C IV N1V = ) e
where 2’ contains supp . But

VW - wn> = (1 - (1 - fn)R)Vw - R¢(1 - Sn)Rilvé‘na
hence V(¢ — 1) — 0 a.e. in Q, and

V(3 — )| < (VY + | VENT)

where C' > 0 does not depend on n. Then from the Lebesgue theorem, V(¢ — 1,) — 0
strongly in L#(2), and

/ h(u) [Vul" ™ Vu. Vi, a:—>/ ) [Vul’? Vu.Vipda.
Q

At last

— 0

/hwowmww—wmm

from the Lebesgue theorem, since |Vug| € L} () for any k, and &' has a compact support.
Then u satisfies the equation

/Q Vul”? V.V (h(u))da + / " wh(u)da

:/Q (u)bdpg + h(+oo /WMS /Wﬂw

for any 1) € DT(Q), hence u is a local entropy solution of the problem in . |

Proof of Theorem 1.4. From (4.5), for any ¢ € DT (Q\F), with 0 < ¢ < 11in Q,

pg*/R
/gde,u—l-/uquRdl‘S c(/ |V¢|Rdx) ,
Q Q Q

24



with C' = C(N,p,q, R,Q, F), and for any a < 0, there exists > 0 such that

p/R
/(u + 1) VulPolidz < C <1 + / uq¢Rd:c> (/ |V¢\Rdx) :
Q Q Q

with C = C(a, N, p,q, R,Q, F). Taking ¢ = (, defined in (6.4), we deduce that

/ CBdu + / wlClda + / (u+ 1) VulP¢Fdr  is bounded,
Q Q Q

and the proof follows as above, after minor change due to the signs. ]

7 Stability properties

Let us recall a well-known stability property for global solutions:

Theorem 7.1 ([5]) Let f,, f € L'(Q), with Q bounded, such that f, converges strongly to
fin LY(Q). Let u, be the unique entropy solution of problem

—Ayu, + \u,,]qfl Uy = fo, in €,
u, =0, on 0f).

Then u, converges a.e. in §2 to the unique entropy solution u of

—Ayu+ |ulu = f, in Q,
u =0, on 0N).

Now we prove analogous stability properties for the local entropy solutions, which we
need for proving Theorem 1.5. Here {2 may be unbounded.

Theorem 7.2 Let f,, f € L} () , such that f, converges strongly to f in L} (). Let u,
be local entropy solution of problem

—Apuy, + u |, = £, in Q. (7.1)
Then up to a subsequence, u, converges a.e. in ) to a local entropy solution u of

—Aju+ |u| =, in Q. 7.2
P
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Proof. Step 1: A priori estimates. Let u, be a local entropy solution of (7.1).
From Theorem 4.1, for any R > pq*, there exists C' = C(N,p,q, R,2) such that, for any

¢ € DH(Q),
q, R R R R
/Q(|u,,|—|—1)gdx§C’(/QC da:+/QC |fy|dx+/Q|VC| dm) (7.3)

Hence (|u,|?) is bounded in L (£2). Writing the equation under the form
—Ayu, = p,, where u, = f, — |ul,]q_1 Uy, (7.4)

then after an extraction (u,) converges to a function u satisfying conclusions of Theorem
3.2.

Step 2: Convergence of the nonlinear term. Following [5] and [14] we prove the local
equiintegrability of (|u,|?) : for any domain U CC Q and any € > 0, any subset A C U such
that measA < e(k 4+ 1)7%, we have

/ |u,,\qu§8—|—/ lu, |* dz,
A AN{juy |>k+1}

for any k£ > 0. Now from D1loc,

/Q]Vu,,\p_2 Vu,,.V(h(ul,)@)d:c—i-/

\u,,\q_l uypdr = / h(w,) f,edz,
Q Q

for any h € W1°°(R) such that 4’ has a compact support, and any ¢ € D(f2), such that

h(u,)p € WP(Q). Taking ¢ € DT (Q2) such that ¢ =1 on U and h = Sy, defined in (2.7),
we get

/ Y, |? pda + / |1 pde < / o e
UN{k<|uy|<k+1} UN{juy|>k+1} {Juy|>k}

—I—/ |V, [P~ V| da.
{luv|=k}

Since f, and |Vu, |~ converge strongly in L. (), there exists g € L'(U) such that

loc

/ u, | dz < / gdzx.
UN{Ju |>k-+1} UN{Jus | >k}

Now (|u,|?) is bounded in L} .(Q), hence meas {|u,| > k} < Ck™%, where C' > 0 does not

loc
depend on v. Hence
/ lu, |Tde < e,
An{juy |>k+1}
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for k large enough. Then |u,|* " u, converges strongly in L} (Q) to |u|* " u.

Step 3. Conclusion. Let us apply Theorem 3.3 with f, replaced by u,, and u = 0. Since
11, converges (strongly) in L% (€) to f—|u|’"" u, we deduce that u is a local entropy solution

of equation
—ANju=f—|ul" ", in Q,

that means a solution of (7.2). n

Theorem 1.5 follows as a direct consequence of Theorem 7.2:

Proof of Theorem 1.5. From Theorem 7.2, up to a subsequence, u, converges to a
local entropy solution u of

—Apu+ u) = f, in Q\F.
From Theorem 1.3, it is a solution in €2, since f does not charge F, since measF = 0. ]
This implies also a global result:

Theorem 7.3 Assume that Q) is bounded. Let K be a compact set in Q, with cap; r(K,RY) =

0 for some R > pq*. Let f,, f € LY() such that f, converges strongly to f in L} (Q\K).
Let u,, be the entropy solution of problem
—Apu, + |uV|q*1 Uy, = fo, in €,
{ u, =0, on 0N). (7.5)
Then u, converges to the entropy solution u of
—Ayu+ |ultu = f, in Q,
{ u =0, on 0N. (7.6)

Proof. From Theorem 1.5, up to a subsequence, (u,) converges a.e. in {2 to a local
entropy solution u of the problem. Let U, U’, U” be any regular bounded open sets such that
K c U ccU cc U" cc Q. By hypothesis u,, = Ti(u,) € Wy (Q) for any k > 0, and
from D1,

/|Vuy|p_2Vuy.V(h(uV)g0)dx+/ |ul,]q_1uyh(uy)<pdx:/h(uy)fl,gpdx, (7.7)
Q Q Q

for any h € WH*(R) and I/ has a compact support, and ¢ E_Wlm(Q) for some m > N,
such that h(u)p € W, 7(Q). We can take h = Ty, and ¢ € C" (€2) with values in [0, 1], such
that ¢ =1 on Q\U’, with support in Q\U . Denoting €' = Q\U’, we obtain

/|Vu,,,k|pgpdx+/ |uV|[F1 ul,uy7kg0dx:/uy7k|Vu,,|p2 Vul,.V<pd9:+/u,,7kfygpd:v,
0 Q 0

Q
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hence
1

—/ |V, | de < / o|f,|dx +/ IV, |~ [Vl de < C (7.8)
k Jo o\ UNU

where C' > 0 does not depend on v and k. Indeed U/\U is compact, contained in Q\ K,
and |Vu,|P~! is bounded in L}, (Q\K) from Theorem 3.2 applied in Q\K; and f, converges
to f in L'(Q\U). Then for fixed k > 0, (u,) is bounded in W,*(€). But for any k > 0,
), converges a.e. to ug, hence uy, € W,y P(Q) N WEP(Q), that means u;, € W, (), and u

satisfies (2.9). Also going to the limit in (7.8), we have
VP dx < Ck.
QI

But u is a local entropy solution in €, hence (|u| + 1)*"}VulP € L} .(Q) for any o < 0 from
Theorem 3.1. As a consequence,

/ V|’ de < C(1 + k)l
with another C' > 0 depending on U”, r, but not on k. Hence
/ V|’ de < C(1 + k)l
Q

This estimate implies (2.10) and (2.17), see for example [6, Lemma 6.2]. And u is a local
solution of the problem, hence from Remark 2.1, it is the unique entropy solution of (7.6),
and the whole sequence converges to u. ]
Remark 7.1 Let us recall the result of [22]: if Q is bounded and K;, K> are two disjoint
compact sets with cap; r(K;, RY) = 0 for some R > pg*, and if f € L'(Q) and f,, f2, €
L>(Q) are nonnegative and f;, converge strongly to f* in L} (Q\K;), and f,, converge

=~ loc
strongly to f~ in L}, .(Q\K}), the entropy solution wu, of problem

_APUV + |uu|q71 Uy, = flu - f2,1/7 in Qa
u, =0, on 02,

converges to a solution, in the sense of distributions, of problem

—ANju A [u| u = f, in Q,
u =0, on 0f).

Corollary 7.3 improves this result since it does not require sign conditions on the approxi-
mating sequence, and proves that the limit « is an entropy solution.

As a consequence we deduce the following, which extends to the case p # 2 the result of
Brézis [16] , but for the critical case ¢ = P :
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Corollary 7.4 Assume that §) is bounded, and q > P. LetacQ, and f,, f € LY(Q) such
that f, converges strongly to f in L} (Q\{a}). Let u, be the entropy solution of problem

loc

(7.5). Then u, converges to the entropy solution of problem (7.6).

Remark 7.2 Concerning the problem with source term (1.6), there is no global (or local)
stability result, even if p = 2. Indeed when ¢ > N/(N — 2), there exists a nonnegative
function f € L'(Q), with compact support, such that problem

—Au =u? 4+ \f, in €,
u, = 0, on 0f),

has no solution, for any A > 0, from [4, Corollary 3.3]. And there exists f,, f € L'(Q), such
that f, converges strongly to f in L'(€2), such that for A\ > 0 small enough, problem

— — 14 1
{ Au, =ul + \f,, in €2, (7.9)

u, =0, on 02,

has a solution for any v € N. Indeed if (p,) is a sequence of mollifiers, we can take f, = p,* f.
From [4, Corollary 3.2], there exists A, > 0 such that problem (7.9) admits a solution for
A = A,. Then from [11, Remark 3.4] it has a solution for any A > 0 such that A || f,[[ ;1) <
C = C(N,q,9) independent on v, hence for A < C/ || f]| 11(q) -

8 Existence results

In the case of absorption the a priori estimates allow to give existence results in R for data
in L} (RY), without growth conditions. This was noted first in [14], where the case p > P

loc
was solved:

Theorem 8.1 ([14]) Assume p > Py and q¢ > p — 1. Then for every f € L;,.(RY), there
exists a function u € WI’T(RN) for any r € [1, P) solution of

loc
—Apu+ u) u = f, in D'(RY),

andu >0 f>0.

They gave also an existence result when p < P; but ¢ > 1/(p — 1), so that the gradient
is well defined in L} _(Q) from (3.4). With our stability result, we now prove Theorem 1.6,
which does not assume the condition on p or ¢, and shows the existence of a local entropy
solution.
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Proof of Theorem 1.6. Let B, = {|z| < r} for any r > 0. For any v € N, there exists
a unique global entropy solution of problem

—Ayu, + ]ul,|q_1 u, = f, in B,
u, =0, on 08,

since f € L'(B,), from [5].

Let r > 0 be fixed. Then for any v > 2r, u, is a local entropy solution in B,, . Hence from
Theorem 4.1, as in (7.3), (|u,|?),>2, is bounded in L!(B,). Then from Theorem 3.2, (u,),>2,
satisfies (3.21), (3.22), and (3.23) in B, and one can extract a subsequence converging locally
in measure and a.e. in B,.

Therefore, we can extract a diagonal subsequence (u,), such that u, converges locally in
measure and a.e. in RY to a function u. And u satisfies (2.8), (2.18), (2.19) and (2.20), (3.4) in
RY, and Vu, converges locally in measure to Vu. But u, is a local entropy solution in B, for
p > 2r, hence from Theorem 7.2 applied with f, = f, there exists a subsequence, depending
on 1, converging a.e. to a local entropy solution of the equation in B,. Necessarily it coincides
with u, and the whole sequence (u,) converges to u. Then u is a local entropy solution in any
ball B,, hence it is a local entropy solution of problem (1.8) in RY. In particular it satisfies
the equation

—Ayu+u) u = f, in D'(RY).

If f >0, then u,, > 0 from [5, Theorem 7.1], hence v > 0 a.e. in RY. n

Now we assume that ¢ is subcritical. We first give a global existence result for measures
when Q is bounded, by using the global stability properties shown in [18, Theorem 3.4].
Recall that the first results were given in [12] when P > p;. We get the following:

Theorem 8.2 Assume that Q is bounded, and p —1 < q < P. Then for any u € M,(f),
there exists an entropy solution of problem

{ —Ayu A+ |u" u =y, in €,

u =0, on 0f). (8.1)

Proof. From [13], ;1 can be decomposed as

p=f—divg + pf — pg,

with f € LYQ), g € (Lp/(Q))N, and pf, uy € M (Q) are singular. And there exists an
approximation of u by a sequence (y,) such that

py = f, — divg + X, — 1, fua)‘wnl/ELp,(Q)a
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hence 1, € W17 (Q) N My(Q) N M(Q), and f, converges weakly in L'(Q) to f, and A,
(resp. 7,) converges to uf (resp.u; ) in the narrow topology. Then there exists a (unique)
weak solution u, of problem

—Apu, + |ul,|q_1 Uy = [y, in 0,
u, =0, on 0f2,

such that u, € WyP(Q) N LItH(Q). It is also an entropy solution, since it satisfies D2. From

Theorem 4.1, (|u,|?) is bounded in L} (). From Theorem 3.2, up to a subsequence, (u,)

converges locally in measure in {2 and a.e. in §2 to some function u, and(\u,,|p _l)is bounded
in L; .(Q), for 1 <s < N/(N — p). In fact the estimate is global. Indeed, by hypothesis,

loc

/|Vu,,\p_2 Vul,.V(h(u,,)@)dw—i—/\uv\q_lul,h(ul,)godx:/h(ul,)@d,ul, (8.2)
Q Q Q

for any h € WH(R) and i/ has a compact support, and ¢ € WH™(Q) for some m > N,
such that h(u)p € WyP(Q). Taking h = Ty for any k > 0, and ¢ = 1, one gets

1
—/ |Vu,|” dx S/u,,kduy g/dmyl <,
k J{ju 1<k} Q 0

where C' > 0 does not depend on v and k. Then (|u,,|p71) is bounded in L*(2), for 1 <
s < N/(N —p), from [5, Lemma 4.1]. Therefore |u,|" " u, converges strongly in L*(Q) to
lu|*"" u, since ¢ < P. From [18, Theorem 3.4] applied with f, — |u, | u, instead of f,, up
to a subsequence, u, converges a.e. in §2 to an entropy solution w of

—ANw = p — |u|* in Q,
w =0, on 0f).
Necessarily w = u, and u is an entropy solution of problem (1.1). [

In turn using this result and the local stability result of Theorem 3.3, we can show an
existence result in RY :

Theorem 8.3 Assume p—1 < q < P. Then for any u € M(RY), there exists a local entropy
solution of problem (1.1).

Proof. For any v € N, let u_B, be the restriction of y to B,. Then there exists an
entropy solution u, of problem

—Ayu, + |uy|q’_1 u, = pLB,, in B,,
u, =0, on 0B,
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since pLB, € My(B,), from Theorem 8.2. And from Theorem 4.1, (u,) satisfies the same
estimates as in Theorem 1.6. Hence up to a subsequence, u, converges a.c. in RY to some
function u. For v > 2r, u, is a local solution in B, of

—Apu, + |u,,\q_1 u, = uLB,.

Thus we can extract a diagonal subsequence, (u,), such that u, converges locally in measure
and a.e. in RY to a function u satisfying the conclusions of Theorem 3.2 in RY. As above,

|u,|*" u, converges strongly in L% (RY) to |u|* " u, since ¢ is subcritical. Now we apply

Theorem 3.3 in B, with second member — |up|q*1 u, + puB,. We can extract a subequence
which depends on r, converging a.e. in B,., to a local entropy solution w of

~Ayw + [w|*w = pLB,.

Necessarily w = u, and the whole sequence converges, and w is a local entropy solution in
RY. n

9 Appendix A: Proof of Theorem 2.2

Step 1: D1lloc=-D3loc. Let u be a local entropy solution. Consider any domain U CC (2.
Taking in (2.21) h = hy defined in (2.7) with 0 < ¢ < k, and ¢y € D1(Q2) such that oy =1
on U, we get

1
-/ Vil do < [ hue@evdio + [ godud ~ [ [Vl VuV ot (s
Un{k<u<k+e} Q Q Q

£
< C(U)
where C'(U) does not depend on ¢, k, from (2.20); and similarly

1

—/ |Vul? de < C(U). (9.1)
€ Jun{k<|u|<k+e}

Taking now h = Hy, . defined in (2.7) and ¢ € D(U) in (2.21), we deduce that

_ 1 1
/ \Vul""* Vu.VoH, (u)ds = —/ |Vul? pdx — —/ |Vul” pdx
Q € J{k<u<k+e} € J{—k—e<u<—k}

n / Hi(uw)edpo < CU) @]l g -
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And Hy,.(u) — X{u<k} a-e. in Q. Hence from (2.20), for any ¢ € D(U),

< CO) el ooy -

/ V[P~ Vg, Vipda
0

As a consequence, there exists a measure u; € M(2), such that

/ (V[P Vu.Vipdr = / bdp, (9.2)
Q Q

for any ¢ € D(Q), hence in particular gy, € W, "(U). By density (9.2) holds for any
€ WHP(Q) N L>®(Q) with compact support. And (y;) is uniformly bounded in U . Hence

there exists a sequence (k,) — oo such that ug, converges weakly to a measure A € M(Q).
And for any ¢ € D(Q),

lim/@/)d,ukn zlim/ |V, [P Vukn.V¢dx:/|Vu|p_2 Vu.V@szx:/z/)d,u,
v 0 Q Q

from (2.21) with h(r) = 1, hence A = p. Following the proof of [17, Lemma 5.1] in U and
using a partition of unity, there exists a measure v € My(2) such that the restrictions
vi{|u| = k}and pe{|u| = k} coincide for any ¢ > k > 0. Hence vi{|u| = k} = p{|u| = k}.
Considering ;LU and following [17, Lemma 5.3], we find that

/ d|pk| =0, for any k£ > 0.
{lul>k}

Defining
o = pp{u =k}, B = —p{u = —k}
and taking ¢ = hy_..(u)¢ in (9.2), where ¢ € D(Q2), we get

1
. / VP gdz = / P e ()il — / hie() [VulP > VuV .
€ J{k—e<u<k} Q {k—e<u<k}
Hence )
lim — |Vu|pgbdx:/ qbd,uk:/qbdak,
208 Jik—c<u<k} {u>k} Q

so that a; > 0, and S > 0 in the same way. Taking now h = Hj_.. defined in (2.7) for
0<e<k,and ¢ € D(U) in (2.21), we obtain from (9.1),
1

/ \Vul"? Vu.VoHy_. . (u)dr = —/ \Vul? pdz
Q € J{k—e<u<k}

1
——/ |Vu|pg0dx—|—/Hk_57€(u)gpduo.
€ J{—k<u<—k+e} Q

33



Then as € — 0,

/|Vuk\p_2 Vuk.Vgodx:/godak—/cpdﬁk+/ od .
Q Q Q {lul<k}

By density it holds for any ¢ € WH?(2) N L>(Q) with compact support in 2, so that (2.23)
holds. Also ay < |uk|, Br < |px|, hence using a partition of unity, there exists a sequence
(k) — oo such that ay,, B, converge weakly respectively to some measures «, 3 € M™(Q).
Changing k into 2k in (2.23) and taking ¢ = hy, x(u)¢, with ¢ € D(Q2), we find

1
/ hiek(u) [Vul ™ Vu.Vodr + — / Vulf ¢da
{0<u<2k} k {k<u<2k}

Z/hk,k(u)¢d@k—/hk,k(u)¢d5k+/ e e (w) pd o
Q Q {lu|<2k}

:/ngdozk—l—/ hkvk(u)gbd,uo.
Q {lu|<2k}

And hmf{|u|§2k} hi k. (w)pdpg = 0, since hy g (u) — 0, po-a.e. in 2. But from (2.21) we get

_ 1
Q {k<u<2k} Q Q

i [ oday = [ oa,
Q Q

Step 2: D3loc=D2loc=D4loc=-D1loc The proofs are the same as in [18], after
choosing test functions with compact support in €.

hence

that means o = pf and 8 = p; .

10 Appendix B: Proof of Theorem 3.3
We essentially follow the proof of [18, Theorem 3.2] and adapt it to the local case. Let
A=Xo+ A=A

be the decomposition of A given by (2.5), and E*, E~ be the disjoint sets where A}, A\ are

Ca S

concentratred. Let u, be any solution of (3.26). By definition, if w € WP(Q) N L>(Q) with
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compact support in €, and if there exists ¥ > 0 and w™,w™ € W1 (Q) N L>®(Q) with r > N,
such that w = w™ a.e. on the set {u, > k} and w = w™ a.e. on the set {u, < —k}, then

/|Vu,,|p_2 Vu,,.dex:/wf,,da:+/wd)\o+/w+d)\j—/wd)\s. (10.1)
0 Q Q 0 Q
Assuming that |u,|? is bounded in L} (2), then Theorem 3.2 applies, hence (3.21), (3.22),

(3.23) hold, and after an extraction we can assume that (u,) converges a.e. to some function
u. Let ', Q" be two fixed regular domains such that ' CC Q" CC 2, and

E'"=ETNQ’, FE =B nQ.

Let o, ¥ € D(Q2) be a fixed functions with values in [0, 1], such that ¢ = 1 on ¥, with
support in 7, and ¥ =1 in ".

For any 0,7 > 0 and n,v € N, we denote by w(n, J, n,v) any quantity such that

lim lim sup lim sup lim sup |w(7n, d,n,v)| = 0.

n—0 d—0 n—oo V—00
Let §,n7 > 0.From [18, Lemma 5.1, we can define two compacts sets K , K; such that
M(E"NET) <6, AJ(E"\K;) <,

and i 5 € D(Q") with values in [0,1] and disjoint supports, such that ) = 1 on K,
1y =1 on Ky, and

+|P —|p — + + _
/Q,, (Vi |? do + /Q (Vs |7 da + /Q Py dNT + /Q Yrdr; <6, (10.2)
//1(1 — Y )dA; + /”(1 — Y50 )dAT <0+ (10.3)

Step 1. Behaviour near E". Let ¢, ¢, € W1e(Q), with values in [0,1], and compact
support in ", such that

/ ¢, dXf +/ ordA; <. (10.4)
QII Q”
First we extend [18, Lemma 6.1}, showing that
1
— (/ |V, |” ¢, dx +/ |V, [f gbidx) < w,(n,v) +1n. (10.5)
n {n<u,<2n} {—2n<u,<-n}
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Indeed we first take in (10.1) w = hy, ,(u, ) ¥, where h,, , is defined in (2.7) and obtain

1
1 / V[P Uz — / Fo o (1) Udar + / o (1) TN
{n<u,<2n} Q Q

n

- / B (1) |V, [P~2 Vi, VW + / WdA!.
Q Q

Hence from (3.23),

1

—/ [V, [P Wdz < || ¥ 1) + / Ud |\ +/ |V, P de < C
N J{n<u,<2n} Q supp ¥

where C' depends on A\, ¥, f, but not on n and v. Then

1

—/ |V, |P de = |Vhpn(u,) | de < Cn'P. (10.6)
N Jrn{n<u,<2n} Qr

As v — 00, hy () — hpn(u) a.e. in €, is bounded in L*(2), hence converges strongly in
WP(Q") from (10.6), so that

|V hpp(u)f de < Cn'~?. (10.7)

QII

Asn — 00, hyn(u) — 0 a.e. in £, is bounded in L*°(), hence converges strongly in W1 (Q)")
from (10.7).

Then we take in (10.1) w = hy, ,(u, )@, , and get

1
1 / IV, [P ¢, do = / Fohn(uy) by dz + / h (1) 67y Ao
{n<u,<2n} Q Q

n
- / hn,n(uu) |vuu|p72 Vuu-v@;dﬂf + / ¢;d/\:.
Q Q
And |Vu, |’ Vu, converges strongly in (L"(Q"))" for any 1 < r < N/(N — 1). Then

/ P (1)) |Vu,,|p72 Vu, Vo, dv = / P (w0) |Vu|p*2 Vu.Vo, dv + @y, (v) = w,(n,v),
Q Q

/Q (1) 6 Ao = / ()0 + @ () = (1, ).

Q
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Also from [18, Proposition 2.8],

/ Johnn(w)o, dv = / fhnn(u)é, dx + @y (V) = @y (n, v).
Q Q

hence from (10.2),

1
ﬁ/{ o }|Vul,|p<;§;da: < wy,(n,v)+n,

and (10.5) follows, after exchanging ¢, into ¢, and hy,,(r) into hy,,(—7).
Now we extend [18, Lemma 6.3], showing that for fixed & > 0, and for any 7, > 0,

/ Vi [P b3 by da + /Q [V, il 5, de = @ (n,d,v). (10.8)

We take w = Hyp,(u,)(k — wy i )5 ;5 in (10.1), where H,,,, is defined in is defined in (2.7),
and obtain

- / [V k” Hy ()35 4 de +- / V[P Vu, VY Hyp(u,) (k — Uy i )1, d
Q Q

+ / |V, [P Vo, N Hy, () (k= )05 do + / Vo, P Hy, () (k= )15 )y da
Q Q

_ / Fu — ) Ho (0 5545+ / (k= ) Ho ()55 05 . (10.9)
Q

Q
As v — oo, H,,(u,) — Hppn(u) and a.e. in ©, is bounded, and strongly in W'?(Q") from
(10.6) and the corresponding estimate on 2" N{—2n < u, < —n}. From (10.5) applied with
Gy =

2k
/Q|wu|pH;,n<uy><k—uV,k> 5 ¥y do = — [V [* 45 by d

{—2n<u<—-n}

2k
<

(Vo [P 4 da

{—2n<u<—n}
< @y(n,v) +n=w(n,n,v).

As in the proof of [18, Lemma 6.3], since 1/);{ has a compact support, we get successively
/ IV, [P N, Vb iy () (k= )0, doe = @06, v),
Q
/ |V, [P~ Vo, N Hy () (k= vy )03 do = @y (0, 1),
Q

/ fu(k - ul/,k)Hn,n(uu) ;Yﬂ;—dl' = wn,n(éa V)a
Q
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and

/Q(k - uu,k)Hn,n(uv)w(_S‘—w;_d)‘O - /Q(k - uk)Hn,n(u>w;w;d/\0 + wn,n,§<7/) = wn,n(57 V)-

Indeed Ao € Mo(Q) and (k — wyp)Hp ()05 ¥ converges weakly in WyP(Q") to (k —
Uy ) Hy o (0, )05 0} as v — 00, because u,,j, converges weakly to u in W'?(Q") from (3.21);
also (k — ) Hy ()5 ;" converges strongly to 0 in Wy (Q") from (10.2) as § — 0. Hence
from (10.9),

Khwm@$vzzmxu»w;w;¢r=wvmﬁn¢2ux

and more precisely

/ IV i | P (1 )05 4 do = / Vi |” 5 4y de = w(n,d,v)
Q Q

since n > k. We deduce (10.8) after replacing the test function by w = H, ,(u,)(k +
Uy,k)%_%?

Step 2. Behaviour far from E”. Now we define
q)é,n = ;w; + w(;w;
and following [18, Lemma 7.1], we show that for fixed k& > 0,

(9wl = [907) (1 = 85, )ds = (. 6,0). (10.10)
Q

In that aim we first prove as in [18, Lemma 7.3] that

/ (VP (1 — @5, pdr — / upp |V’ Vg, V&;,dx + / D i | Vug”™* Vg, Vpdz
Q Q Q

= / f(1— ®s,)uppdr + /(1 — &5, )uppdAg + w(n, 5, v). (10.11)
Q Q

Indeed we choose w = (1 — ®5,,)u,, k¢ as test function, and obtain
/Q|Vuy,k|p (1 — ®s,)pdr — /Qu%kgo V|2 V. Vs, da
+ /QCID(;,nu,,JC \Vu,,7k|p_2 Vu, . Vodr
— /ny(l — &5, )uy ppde + /Q(l — D, ) uy kpdAg

+k/u—¢mww1—@/u—¢wmw;
Q Q

38



we get successively, as in [18, Lemma 7.3],

/ Uy P |Vuy7k|p*2 Vo, ) N5 pdx = / upp |Vug P2 Vup. V®s,dx + wys(v);
Q Q

/ Dty |Vt P2 Vi, . Vioda = / D5,k |Vur""? Vg, Vodz 4w, 5(v);
Q Q
/ Jo(L = ®s ) pipda = / (1= @5 )unpdz + w5 (v);
Q Q

/(1 — (I)(;’n)ul,jkg@d)\o = /(1 — @57n)uk(pdA0 + wm(;(l/);
Q Q

and from (10.3), since ¢ has a compact support in 2”, and values in [0, 1],

Ja-viupean + [ a-vivpeay <o+

hence, since k is fixed,

b [0 aedx =k [ (1= @), =l
Q Q

and this shows (10.11).
Then as in [18, Lemma 7.4], we show that

1
— / |V, " (1 — ®5,,)pdx = w(n,d,n,v). (10.12)
{n<|uv|<2n}

n

Indeed we have

1
—/ |Vu, " (1 — ®s,)pdx
n {n<|uy|<2n}
1 1
- Vb (L= o eds — o VP 605 pda
N J{n<u,<2n} N J{n<u,<2n}
1 o 1
s f Vb (L= w5y o — - [ VP 607
 J{—2n<u,<—n} N J{—2n<u,<—n}

Using the fact that ¢ has values in [0,1], we conclude to (10.12) by applying (10.5) to
G5y = (1 —o,b;?,b;r)cp and ¢§r+n = (L =459, g, since (10.3) holds; and then to ¢;, = 59, ¢
and gbj{n = 5o, since (10.2) holds for 1, , ;" and 5, ¢y take their values in [0, 1].
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Finally as in [18, Lemma 7.5] we show that
/ Vgl (1 — ®5,,)pdx — / upp |Vul"~? Vu.V @, da + / Dsup [ VulP > Vu.Vods
0 0 Q

= / f(1 = @5, )uppdr + /(1 — &5, Jurpdo + w(n, 9). (10.13)
Q Q

Indeed first observe that H,, ,(u,) — Hp,(u) a.e. in €2, is bounded in L>(£2), and converges
strongly in WP(Q") as v — oo. Also H,,(u) — 1 a.e. in ©, is bounded in L*(£), and
converges to 1 strongly in W?(Q2"), as n — 0o. Choosing w = (1 — s, )ur H,, . (u, )¢ as test
function in (10.1) with n > k, we obtain

/(1 — s Hpo (1) 0 |V, [P Vi, Vugda

Q

- / UpHy (1) | Vg | V. V®s da + /(1 — B ) Hypo () )y, |V, P2 Vipda
0 Q

+/ (V[P ur(1 = ®5,) H,, , () pda
Q

_ / F(1 = Dy Vg Ho (1o + / (1= @5, Yur Hoy (1) 0.
Q Q

As in [18, Lemma 7.5], we deduce
/ (1= Dg,)) oo (1) [V P2 Vupda
Q
_ / (1= ®5,) Hyon ()0 [Vtion "2 Vs + oy 5.n(v)
Q

= /Q |Vug|” (1 — @5, pdx + wy s(n, v),

/ up Hy, () ]Vuk\p_2 Vu, Vs, dx = / upHy, () \Vu\p_2 VuN®s,dx + w5, (V)
Q Q

= / upp |Vul""? Vu.V @5, da + w, 5(n, v);
Q

/ (1= Dy, ) Ho oty Y |V [P~ Vs = / (1= By, Vutg [Vl 2 Vphn (1) + (1)
Q Q

= /9(1 — s, ug |Vul"? Vu.Vodr + w, 5(n, v);
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and also

/Q IV (1 — By,) L () ol

from (10.12), since k is fixed. And

< w(n,d,n,v)

/ f(1 = @5 upHypn(w,)pde = / f(1 = @5, upHyn(w)pdr + @y 5.,(v)
Q Q
= / f(1 = @5, )uppdx + wy, 5(n, v);
Q
/(1 — & )up Hy  (w,)pd Ao = /(1 — & )upHy p (w)pd g + @y 5.0 (1)
Q Q
= /(1 — &5 )uppdg + @, 5(n, v).
Q

Hence (10.13) holds, because all the terms do not depend on n or v. At last (10.10) follows
from (10.11) and (10.13).

Step 3. Strong convergence of trucates in T/Vlif(ﬂ)

We consider the difference

| (90l = 19up) g

Q

— / (IVuyi” = [Vug|”) (1 — s, pdx +/ |V, " spdr — / |Vug|” @5 d.
Q Q Q

From (10.8), we have
[ 9 @i = (0.5.0)
Q

Since |Vui|” € LY(Q") and ®5,, converges to 0 a.e. in Q and is bounded in L*°("), we have

/Q Val? Bspde = (1, )

hence from (10.10), we deduce that

/ (Vanal” = [Var?) pda = w(n, 6,v) = w(v);
Q
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now |Vu, | Vu, . converges a.e in Q, hence strongly in L*(Q'), hence in Lj,.(Q2)and Vu,
converges strongly in LP()'), hence in L} (Q).

Step 4: wu is a local entropy solution of (3.27). We have, from D1loc,

/Q 'V, [P~% Vu, .V (h(u,)¢)dz = /Q h(uy) fopdr + /Q h(u,)pdAg
00 = h(-o0 s .
+hio0) [ wds = h=oc) [ vax; (10.14)

for any h € W1*°(R) such that 1/ has a support in some interval [—k, k], and ¢ € D (Q).
And h(u,) converges to h(u) a.c. in Q and strongly in W,2?(2), hence Ag-a.c. in Q and h(u,)
is bounded in L>®(€2), and |Vu, "> Vu, converges strongly in L. (), hence

loc
lim / h(w,) |V, [P~ Vu, Vidr = / h(u) |[Vul’ > Vu.Vipdz,
Q Q
lim/ h(u,) f,bdx = / h(u) fidx,
Q Q
lim / By )bd N = / h(u)ibdho,
0 Q
and h’'(u,) converges to h'(u) a.e. in 2 and is bounded in L>(£2), hence from Step 3,
lim/ b (u,) |Vuy,|? de = lim/ h (uy k) |Vuy P Yde = / h'(u) |Vu|” yda.
Q Q Q
Thus
/ B (u) [Vul? dx = / h(u) fiypde — / h(uw) |[Vul’ ™ Vu.Vipda
Q Q Q
+ / h(w)ibdo + h(+00) / P — h(—o0) / vl
Q Q Q

and the conclusion follows.
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