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We study the existence of an initial trace of nonnegative solutions of the problem
Bu—V -(Vu|P2Vu)+ u? =0 in Or =Q2x(0,7).

We prove that the initial trace is an outer regular Borel measure which may not be
locally bounded for some values of the parameters p and q. We study also the
corresponding Cauchy problems with a given generalized Borel measure as initial
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1. INTRODUCTION

Let Q be a domain in RV (N>1), possibly unbounded. The aim of this
article is to investigate the initial trace problem for the following class of
quasilinear equations with absorption:

du—V-(VulP2Vu)+u! =0  in Qr = Q2 x(0,7), (1.1)

in the range ¢ >0, p > 1. We prove the existence of an initial trace in the
class #'%(Q) of outer regular positive Borel measures in Q, not necessarily
locally bounded. Conversely, given a measure v e 4.,°(Q), we study the
initial-boundary value problem for Eq. (1.3) with initial data v.

The initial trace problem for a nonnegative solution u of the mere heat
equation (p = 2, no absorption) in Qr is classical. It is easy to establish that
there exists a unique positive Radon measure u in Q which is the initial trace
of u, in the sense that

lim /Q (e, E00) de = /Q L du), Ve e CuQ).

Moreover, when @ = R", the initial trace u satisfies the following growth
condition:

/ e H/AT du(x) < oo. (1.2)
RN

Conversely, if u is a nonnegative Radon measure in R" satisfying (1.2),
there exists a unique solution of the heat equation in RV x (0, 7) with initial
trace p.

Concerning the semilinear heat equation with absorption

O — Au+u? =0, (1.3)

a rather complete picture of the initial trace problem is provided by Marcus
and Véron [33] who prove that the initial trace is well defined in the class
A'8(Q). Their first result asserts that there exists a relatively closed subset
% < Q and a nonnegative Radon measure u on # = Q\.% such that

lim /@ u(x, 1)¢(x) dx = //’ ) dulx), Ve CA), (1.4)
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and
lirrol u(x, ) dx = 00, VV open s.t. & n V#0. (1.5)
t— v

Moreover, . and u are uniquely determined. They define in a unique way
an outer regular Borel measure v which is the initial trace of u:

tro(u) = (¥, n) ~ v.

The reverse problem is to reconstruct the solution from a given outer regular
Borel measure v = (¥, p) € 4°%(Q). The role of the critical exponent

g.=14+2/N (1.6)

is pointed out by the fact that if 1<g<g, there exist no removable
singularity for Eq. (1.3), in the sense that there exist nontrivial solutions of
(1.3) continuous in Q\{(a,0)} (where aeQ) and vanishing on
Q\{a} x {0} UAQ x [0,7). From this result follows that, always in the
subcritical case 1 <g<gq,, any outer regular Borel measure v is eligible for
being the initial trace of a nonnegative solution of (1.3). Moreover, under
minor additional assumptions, uniqueness of the solution of the generalized
Cauchy—Dirichlet problem

Ou— Au+u? =0 in Or,
u=fell(0Qx (0,T)), (1.7

tro(u) = v,

is obtained. On the opposite, if ¢=>¢, the Cauchy—Dirichlet problem (1.7)
becomes much more difficult: necessary and sufficient conditions on the
concentration of the Radon part p and the singular part & of v are
expressed in terms of Bessel capacities C,/, . When these conditions are
fulfilled existence of a maximal solution follows, but usually uniqueness does
not hold.

When the heat equation is replaced by the porous medium equation

du—Au" =0 in RY x (0,7), (1.8)

the existence of an initial trace y in the set of positive Radon measures in R
is obtained by Aronson and Caffarelli [2]. They also prove that u has to
satisfy some polynomial growth at infinity. The corresponding initial value
problem is studied in [10]. The trace question for the equation with
absorption

Ou— A" +u? =0 in Or (1.9)
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is considered by the author in [20,21] in the range 1<m<gq. If u is a
nonnegative solution of (1.9) there exists an outer regular Borel measure
v = (%, such that properties (1.4) and (1.5) hold in the same way as
above. This defines the initial trace tro(u). There are two critical values

g=m and q=qgn=m+2/N. (1.10)

If ¢ = m the diffusion is comparable to the absorption, which is superlinear.
Therefore there are only two possibilities:

(i) either ¥ = @ and v is a reduced to its regular part which is a Radon
measure with some growth at infinity,
(ii) or & = Q and u is the flat solution, that is

1 1/(m=1)
=)

If m<gq the absorption dominates the diffusion but the situation differs
according to m<g<gq, or g=q,. If m<g<gq, any outer regular Borel
measure v is eligible for being the initial trace of a nonnegative solution u of
(1.9). An existence result of a solution of the generalized Cauchy—Dirichlet
problem

O — Au™ +u? =0 in QOr,
u=feLl"oQ x (0,T), (1.11)
tro(u) = v e B4(Q)

also holds, but uniqueness is not proved except in the case where v has no
singular part and f = 0. If g>g¢,,, the situation is again more difficult as a
result of the fact that isolated points at = 0 are removable singularities for
solutions of (1.9). Some sufficient conditions for the existence of a solution
to (1.11) exist, however up to now they have not been proved to be
necessary.

The situation for the p-Laplacian-type equation is in some sense
more difficult than for the porous-medium-type equation. One of the
reasons is that the full duality argument in a L' framework, which was
at the core of Marcus and Véron or Chasseigne’s results, does not
fit with the p-Laplace operator. As a consequence the proof of the existence
of an initial trace is much more difficult to obtain. The notion of weak
solution is not at all straightforward, even in the case of the equation
without absorption

u—V-(VulP2Vu)=0  in Or = Q x (0, 7). (1.12)
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Two critical values for p exist for expressing the notion of weak solution to
(1.12) with a measure or an integrable function as initial data,

N . 2N 41
TN+ PPN

o (1.13)

If 1 < p< p the gradient is not well defined, in particular is not an integrable
function. This is why the different authors who studied as well stationary or
time-dependent equations involving the p-Laplacian were led to introduce
the notion of renormalized or entropy solutions which are solutions such that
VTi(u) € L. (Qr) for any k > 0, where

loc
e - 4 if |s|<k, (114
S) = .
. ksign(s)  if |s|> k.

Using this definition, Di Benedetto and Herrero proved in [7, 8] that any
nonnegative solution of (1.12) in RY x (0, ) admits an initial trace u which
is a nonnegative Radon measure, and the proof heavily relies on the
parabolic Harnack inequality. When p>2, it is also derived that the
measure y has to satisfy a precise polynomial growth at infinity. Moreover,
the same authors study the corresponding initial value problem with an
initial data u € Llloc([R{N ) and obtain existence and uniqueness results. If Q is
bounded, the initial value problem is considered in [3, 16] when p > p; and
in [14] (see also [15]) in the general case. When p is a Radon measure, new
difficulties appear in the range 1 < p< py. The a priori estimates show that u
may not be an integrable function, and some questions dealing with the
concentration of the measure are unavoidable.

The same kind of difficulties are present in Eq. (1.1). Since it is only
assumed that ¢ is positive, three critical values for ¢ appear

P

g=1 q=p-L  g=q¢=p-l+4

The case ¢ > p — 1 is the analogous of the superlinearity case in the case

p = 2. It means that the absorption term is dominant with respect to the

diffusion operator. The exponent ¢ = ¢ is the mere extension of the critical

values ¢, and g, for Egs. (1.3) and (1.9). When ¢ > 1, the absorption term is

dominant with respect to the diffusion operator, and (1.1) admits a

particular singular solution in RY x (0, 00), called the flat solution, which is
the function

1/(g—1)
(x,0) > W(x,t) = ( ) . (1.15)

ng—1)
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This particular solution plays an important role since it dominates any
nonnegative solution of (1.1) which is locally bounded in (0, 00) x R".

1.1. Existence Results for the Initial Trace

Our main result which states the basis of the definition of the initial trace
of nonnegative solution of (1.1) is the following:

e Let u be a nonnegative weak solution of (1.1) in Q7. Then for any
v € Q the following alternative occurs:

(1) either for any open subset U < Q containing y
lim [ u(x,t)dx = oo,
t—0 U

(ii) or there exist an open neighborhood U < Q of y and a Radon
measure ¢y on U such that for any { € C.(U),

lim /U (e, D) de = Lo (©).

Owing to this result it follows the definition of the initial trace of u as an
outer regular Borel measure v = (%, p) € 4 %(Q). Notice that this result also
applies to Eq. (1.12) with v = (@, 1), and our proof does not require the
Harnack inequality, which, among others, brings some simplification to the
proofs in [7, §].

The first case in which the singular set % is empty is the following:

e When 0<g<1, and p<2 the initial trace is reduced to a Radon
measure.

If 0<g<p—1 and p>2, the absorption term is dominated and the
initial trace derives from the diffusion operator. However, the situation
differs completely according to 0<g<1 or ¢ > 1, and Q is bounded or R".

e When 0<g<l1, p>2, Q= RY, and u is continuous in Or, the initial
trace is a Radon measure.
The proof of the last result is based upon the notion of concentration of
mass on a single point.
e When 0<g<1, p>2, and Q is bounded, then
(i) either the initial trace of u is a Radon measure in Q,
(ii) or

lim ionf P Dy(x, 1) = v(x),
—
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where v = vg is the unique nonnegative solution of

—V-(Vol" Vo) =5 in @,
v=20 on 092.

Notice that in that case the function Vo(x, ) = ~'/(?~yq(x) is a particular
singular solution of

du—V-(VulP>Vu)=0  in Q x (0,00),
u=20 on 0Q x (0, 00).

When ¢ = p — 1 the same dichotomy holds with vo replaced by w = wg
unique nonnegative solution of

V- (VWP VW) +wh T = Shwin @,
w=20 on 0Q.

When 1<g<p—1 the absorption term is still dominated but the
existence of the particular flat singular solution W creates a more
complicated situation. In the case of RY we prove the following.

e When 1 <g<p—1and Q =R", then
(i) either the initial trace of u is a Radon measure in R,

(i1) or

1/(g=1)

it ez (G 5)

If u(.,¢) is bounded for any ¢ > 0, assertion (ii) becomes
(i) or

u(x,t) = W(x,t).

When Q is bounded, the situation is very intricated because of the existence
of many different types of singular solutions, and the role of the boundary
conditions, if any, may be dominant.

1.2. The Generalized Initial Value Problem

The reverse problem is to construct a solution u of (1.1) with a given
initial trace v = (<, ).

We begin with the case where the initial trace is a Radon measure, i.e.
& = (. Similarly to the case p =2, g. is a critical exponent. If ¢>¢. and
q > 1, Eq. (1.1) admits no solution with isolated singularities, see [27] when
p>2,and [23] when p<2. If 1 <g<gq., for any k > 0, there exists a unique
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solution Wy of problem

{atwk — V- (IVn|P 2 Vi) +wf =0 in RY x (0, 0), 116

wi(.,0)=kdy  in RV,

from [32] when p>2 and [23] when p<2. Our existence result is the
following:

® Assume g<q., p> po, and p — 1 <gq, or p<2. For any nonnegative
Radon measure u on RY, there exists a weak solution u of (1.1) in RY x
(0, 00) with initial trace u.

Notice that no growth condition is assumed, since p — 1 <gq, or p<2. In
the case where Q is bounded, we also extend the results of [3] from p > p; to
P> Po-

Next, we come to the general problem of existence of a solution for a
given outer regular nonnegative Borel measure v = (&, u) as initial trace.
Since in the case ¢ < p — 1, where the diffusion term is dominant, either the
solutions are almost explicit and . = R", or the initial trace is a Radon
measure and &% = (), we concentrate on the case

g >max(l, p— 1), (1.17)

where the absorption is dominant. In the subcritical case ¢ < ¢., we construct
solutions by approximating v by a sequence of Radon measures {, }. Since
q > 1, the corresponding sequence of solutions {u;} is dominated by the flat
solution W. Hence {u;} remains locally uniformly bounded and the
truncation plays no role. Moreover, since ¢ > p — 1, no growth condition
is needed. Nevertheless, the problem is still complicated by the possible
nonuniqueness of the u,, and we show that we can construct a
nondecreasing sequence of such solutions, that we call constructive. We
get the following.

® When max(l, p— 1)<g<gq., for any given nonnegative Borel
measure v in RV there exists a nonnegative solution u of (1.1) in RY x
(0, 00) with initial trace v.

In the supercritical case g > ¢, the situation is much more delicate and we
give a sufficient condition on v to be an initial trace. This condition is the
natural extension of the one discovered by Marcus and Véron [33] in the
case p = 2. In their case this condition is expressed in terms of Bessel
capacity.
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2. PRELIMINARIES

In this section, we assume that Q is an any domain in RY, T>0, and set
Or = Qx (0,7).

We denote by .# () the set of nonnegative Radon measures on Q. In the
sequel, for any open set U, we write U < = Q whenever U has a compact
closure in Q.

We consider a more general equation than (1.1), namely

Ot — YV - ([VulP>Vu) 4 a(x)u? = 0, (2.1)

where a € L} (Q).

C

DEerINITION 2.1. A nonnegative function u is said to be a weak solution
of (2.1) in Qr, if

u € Ly (Or), au’ € L},(Or), VuelLl (Or)

and
T
/ / (—H(u)o,p + |Vu|p72Vu -V(h(w) o) + h(wulp)dedt =0 (2.2)
0 Jo

for any ¢eCX(Qr) and any function he C(R)n W'°(R) where
H'(r) =h(r).
It follows from the definition that for any 5 € C.(€Q),

t— /QH(u(x, )M (x) dx,

i1s continuous and there holds

0
/ / (—Hw)d,p + |Vul?>Vu - V(h(u)p) + h(u)au? ¢) dx dt
¢ Ja

= / H(u(x, t)o(x, t) dx — / H(u(x, 0)p(x, 0) dx (2.3)
Q Q

for any 0<t<0<T and ¢ € C*(Q x [0, T]).
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As a consequence of (2.3) there holds
0
/ / (h(W)|Vul?"2Vu - VE + K W) VulPE + h(u)au?&) dx dt
¢ Jo
— [t e - [ Hot o) ds (24)
Q Q

for any 0<t<0<T and £ e CX(Q).

Remark 2.1. In the definition of the weak solution, we can impose to the
function /4 to be constant outside [—£, k] for some &k > 0. Therefore the term
|[Vu|? in identity (2.2) is only considered on the set

{(X, t) € QT : |u(x, t)| <k}

p

The assumption Vu e L

(Or) can be replaced by
VulP ' e LL(Or),  VTi(w) € LL(Or),

where T} is defined in (1.14), and the gradient of u, denoted by y = Vu, is
defined by

V(Ti(w)) = ¥ X <k a.e. in Qr.

We will again say that u is a weak solution. This class corresponds to the
classes of entropy or renormalized solutions defined in [1,44], and is closely
related to the ones of [8, 14, 15, 39,40], see Remark 2.4.

2.1. Integral Estimates

We give below some integral estimates valid for the solutions of Eq. (1.1).
The method employed here is formally settled upon multiplying successively
the equation by (1 + u)”n with o <0 and n € C°(Q) and by 5. This technique
has been used in [8] for proving the Harnack inequality in the case of the
mere diffusion equation

S — V- (|VulP2Vu) = 0, (2.5)

in the case 1< p<2. It has also been employed by Bidaut-Véron and
Pohozaev [13] and Mitidieri and Pohozaev [37] for getting estimates and
nonexistence results of solutions of the stationary equation

—V - ([VulP2Vu) + u? = 0. (2.6)

ProPOSITION 2.1. Let <0, a# — 1, and 0<t<O0<T. Let u be a non-
negative weak solution of (2.1) in Qr. For any nonnegative function { € C°(Q),
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and any © > p,

1
o+ 1

1 g ’ +o gt
<m/g(l+u(x,9)) C(x)dx—s—C/t/Q(1+u)q ¢ dv dt

at1 g1 M ‘ a—1 psT
/Q(1+u(x,t)) C(x) dx + 2/t/9(1+u) \VulPC dx dt

0
+C / / (1 4wy P71 P|IVLP dx di (2.7)
t Q

and

0
[a+unrwas [arumorwasc [ [ avoraa
0
w0y [Vl ¢ dv d
+c[4(+w Vul? " d di

0
+C / / VP + w) PP =P gy d, (2.8)
t JQ

where C = C(x, p,q,7, |lally~q)). Conversely, if a(x)=>0 a.e. in Q, then

1 I
—/ (1 4+ u(x, )" (x) dx + —/ / aul(" dx dt
4 Ja 2Ji Ja
6
< / (1 + u(x, )" (x) dx + C/ / (1 4wy ' |VulPC dx dt
Q t Ja
0
+C / / IVEP(L 4 w) 20D =P gy d, (2.9)
t Ja
where C = C(a, p,q,7).
Proof. We set for any a<0, a# — 1,

1 u I+
g =+, G="0

and take

n=_ and H(u) = G,(u) (2.10)
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for test functions in (2.4). Then

0
/ / (ega)C [VUl? 2V -V + gL @) Vul? + guu)C a) d di
t Q

_ / G, )L () s — / Gou(x, )L () d,
Q Q

or, equivalently,

1
o+ 1

0
/(1 +u(x,t))“+‘¢f(x)dx+|a|//(1 + ) |\Vul? dx dt
Q t Q

B 1
CES

0
+r//(1 + u)* N YulP 2V - VE dx dt. (2.11)
t JQ

0
/Q(l + u(x, 0))* 11 (x) dx + /t /Q(l + w)*au? dx dt

Writing
IVul? 1NV = (Va0 )@Y PN, (2.12)

we derive for a <0,
0
r//(l + u)* N Vu|P2Vu - VE dx dt
t Q

0
<M/ (1 + w)* \VulPC dx dt
2 )i Ja

0
+ C//(l + u) PP VP dx dt. (2.13)
t JQ

Hence (2.7) holds.
As a particular case of (2.11) (with oy = 0),

0
/Q(l + u(x, )" (x) dx = /Q(l + u(x, 0)){"(x) dx + /t /QCTauqudt

0
+r//§“‘|vu|P*2vu.vgdxdz. (2.14)
t JQ
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From (2.12) we derive, for any o <0,

0
/ / VP Y e dr
t Q

0
<//|W|P(1+u)“—‘¢fdxdt
t JQ
0
+ / / [VEP(L 4 u) 2D gy gy, (2.15)
t JQ

Estimate (2.8) follows from (2.14), (2.15) and (2.7).
Next, we set

duw)=1—-g,u)=1—-((1+u)* and D, = (1+u)— G,.

Subtracting (2.11) from (2.14) infers

0
/Da(u(x,G))CT(x)dx+|oc|//(1 + u) N \VulPC dx dt
Q t Jo

+ /t ' /Q au d,(u)(* dx dt

0
= / Dy (u(x, )" (x) dx — t / / dy )N VulP AV - Vdx dt.  (2.16)
Q t Q
But d,(#) > 0 and 1 + u>D,(u). Moreover,
Dy,(w)=>u/4 and d,u)=1/2 on {(x,7) € Or:u(x,t)=22""* - 1)}.

Henceforth, since a is nonnegative,

1 1[0
—/ u(x, 0)*(x) dx +—/ / aul(" dx dt
4 Jo 2Ji Ja
0
<C+ / u(x, £)C(x) dx + r/ / CNVuP YV dede. (2.17)
Q tJa
Thus (2.9) follows from (2.15) and(2.17). 1
Remark 2.2. In case o = —1, the term ﬁfg (1 + ux, )" ' (x) dx at
time 7 in (2.7) has to be replaced by [, In(1 + u(x, 1)){"(x) dx, similarly for the
term at time 6.
Remark 2.3. If we consider the notion of weak solutions as it is defined

in Remark 2.1, we have to replace the test function g, with a<0 by
Juk = go° Tr. Up to this change, relations (2.11), (2.14), (2.15) and estimates
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(2.7), (2.8) remain valid with u replaced by T;(u). The term u? remaining
unchanged.

2.2. Regularity Properties

Here we derive regularity properties of the solutions under assumptions
of boundedness for some integrals of u. We assume that Q is an any domain
in R, and recall that Q7 = Q x (0, 7).

PROPOSITION 2.2.  Let u be a nonnegative solution of (2.1) in Qr, with
ae Ly (Q). Let 0<0<T. Assume that two of the three following conditions
hold, for any open set U < < Q:

sup / u(x, £) dx < 00, (2.18)
te(0,0] U
0
//(Ialuq+up_l)dxdt<oo, (2.19)
0 JU
0
/ / |Vul|P~! dx dt < co. (2.20)
0 JU

Then the third one holds for any U < < Q. Moreover,

0
//u“dxdt<oo, Vo € (0,qc) (2.21)
0 Ju

and
/9/|V |" dx dt < Vr e OL =10 N (2.22)
0 U u 007 r ,N + qu - > p N + 1 . .
Finally, there exists a Radon measure € € M (Q) such that for any & € C¥(Q),
lina / u(x, )é(x) dx = €(&) (2.23)
1= Q
and u satisfies
0
/ / (—ud,@ + |Vul?>Vu - Vup) + au?p) dx dt
0Ja
— [ otx0raec - [ u0potx.0)av, (224)
Q Q

for any 0<0<T and ¢ € C(Q x [0,T)).
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Proof. (i) Assume that (2.18) and (2.20) hold. Let { and 7 be as in
Proposition 2.1. From (2.14) it follows that au? € L'((0,0), L\ .(Q)). Now let
us prove that u?~! € L'((0,0),L] .(Q)). Let U be any open subset such that
Ucc QIf p<2, taking { =1 in U, we observe that

0 0
//(1+u)”’ldxdt<//(l—i—u)CfdxdtéC.
t JU t JQ

If p> 2, we use Poincaré’s inequality,

/|u(x,t)—a(t)|f’*ldx<c/ [Vu(x, )P~ dx,
U U

where, for any v € L'(U), we have set & = |U|™! fU vdx. Hence

0 0
//|u(x,t)|P*‘dx<c//|vu(x,t)|f’*‘dx+c
t U t U

follows from (2.18), and (2.19) holds.

(1) Assume (2.19) and (2.20). Then (2.18) holds: indeed, we can chose
0 > 0 such that fQ u(x, 0))(x) dx is finite, since u € L}, (Or).

(iii) Assume that (2.18) and (2.19) hold. Let o € (max(1 — p,—1),0) be
fixed. From (2.7) we get for any 0 <¢<0,

|O(| 0 o—1 T
Ll (1 4 ) \VulPC" dx dt
2 )i Jo

1 o+1 et 0 bt

0
+C / / (1 + w)"™¢" dx dr. (2.25)
t JQ
Since (1 +u)"™*<(1 +u)?, and (1 + u)? "< (1 + u)?~", we find
0
/ (1 4wy " VulPC dedt<C
t JQ

(and in fact for any o <0), hence

0
//(1+u)“*1|vu|f’dxdt<oo. (2.26)
0JU
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We recall the Gagliardo—Nirenberg estimate: for any p, m>1, y € [1, +00)

and s € [0, 1] such that

%:S<l_]lv>+lms’ (2.27)
there exists ¢ = ¢(N, p,m,s, Q) > 0 such that for any v e WHP(U) n L™(U),
o = &l <Vl oo llo — Bllinis, (2.28)
We apply it to v where
o) = (1 +u ),  B=@+p—1)/p. (2.29)
Choosing
v pr 2P 2l (2.30)
Np 7 p
for which (2.27) holds, then
(2.31)

10~ (0,0y < C

is derived from (2.18) and the Holder inequality, because f e (0,1).

Therefore, for almost all ¢ € (0, 0),

57/
/ I(1 + u(x, ))F — 8(6)[ dx < c( / (A + ulx, )" | Vulx, z)|de> ’
U U
(I=spp
X (/ 11+ u(x, ) — (0)|"/P dx)
U
< C( / (1 + uCx, )" [Vulx, 1)|? dx>

U

(I=syp
x ( / (1 + ute, ) — 50)]/P dx)
U

and
[ vuny s asc, [ s a=wme <.
U U

from (2.18) and (2.31). Therefore

/ (1 + u(x, 1))" deC/ (1 + u(x, 0))* " |Vu(x, )P dx + C.
U U
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Integrating on (0, 0) we get

0 0
//(1+u(t))ﬂ>'dx<c//(1+u)°‘*1|vu|f’dxdt+cegc,
0 JU 0 JU

from (2.26). If we set ¢ = fy, this means

/OH/U(l + u(t))’ dx<C,

for any o such that p/N 4+ max(p —2,0)<o<p—1+ p/N = g., and for
any 0 <o <gq. by the Holder inequality. This proves (2.21).
Next for any 0 <r< p, and any o <0, we find

0 0 r/p
//|vu|'dx< (//(l+u)“_]|Vu|pdxdt>
0 JU 0 JU
0 (p—n)/p
X ( / / (1+u)(1°‘)’/(”r)dx) . (232
0 JU

Hence

0
//|vu|"dx<c,
0 JU

holds if 7 is such that 0 <r<Ng./(N + 1). This proves (2.22), which implies
(2.20) in particular, since p—l<p—N/(N +1). Now from (2.4) with
h =1, for any £ € C*(22) and any 0<r<0<T,

/ u(x, 1)E(x) dx = / u(x, 0)&(x) dx
Q 0

0
P2y, . q . 2.
+/t/g(|Vu| Vu-VE+ulé)dxdt (2.33)

Because the right-hand side of (2.11) has a finite limit when ¢ — 0, the
same holds with 7+ [, u(x,)é(x)dx. The mapping & +— lim,q [, u(x, )
E(x)dx is clearly a positive linear functional over the space C*(Q). It
can be extended in a unique way as a Radon measure £ on @, and (2.23)
holds in Q.
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Finally, let O0<r<0 be fixed. Taking Ah=1 in (2.3) with @eCy®
(2x[0, 7)), infers

0
/ /(fuat(p + |VulP"2Vu - Vue) + ul @) dx dt
t JQ

= / u(x, H)p(x, t) dx — / u(x, 0)p(x, 0) dx.
Q Q

Letting ¢ go to 0 in the left-hand side of the above equality and using
(2.18)—(2.20) yields to

‘/ u(x, H)(px,t) — (x, O)dx‘ SCK/ u(x, t) dx.
Q Q
Therefore,
[ 0ot~ [ o0t
Q 0

from (2.23). This proves (2.24), and the proof is complete. 1

Remark 2.4. Estimates (2.21) and (2.22) are still valid for the weak
solutions defined in Remark 2.1, by considering 7;(x) and going to the limit
as k — 00, and using the definition of the gradient. Next, we consider the
class 2 of solutions introduced in [8] with a = 0 and p<?2, defined by the
conditions

ueC((0,7),Li(2), VL) eLi(Or),  Ti(w) € Lio(Or)

and satisfying

T
/ / (o —u) O+ IVul?>Vu - V(¢ — u) ))dxdt=0 (2.34)
0 Ja

for any ¢ € C*(Qr). By a straightforward argument, it is shown in [8,
Lemma 3.2] that any ue X satisfies (1 + u)* '|[Vu|” € Ll (Or) for any
o € (1 — p,0). Then, by the Gagliardo—Nirenberg estimate applied on (¢, 6)
instead of (0, 8), we deduce that u® € LIIOC(QT) for any ¢ € (0, ¢.), and |Vu|" €
L}OC(QT) for any r € (0,Ngq./(N + 1)). In particular VP! eLlloc(QT). By
[8, Proposition 2.1],

T
/ / (GOUHW) + [VulP~ >V - V(b)) d dt = 0
0 Q
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for any ¢eCX(Qr) and any function he C{R) W (R) where
H'(r) = h(r). Consequently,

T
/ / (—H ()0, + |VulP>Vu - V(h(u)e)) dx dt = 0. (2.35)
0 Jo

In order to prove uniqueness of solutions with a given initial data
! eL}OC(RN), they introduced in [8, Proposition 2.1] a class 2* < X2 of
functions which satisfies

T
lim (/ / |Vu|1’dxdt> =0,
k=00 \Jo JKn{k<u<k+1}

for any compact K < Qr. Since it can be proved that (2.35) remains true for
any h € C(R) n WH*(R) constant outside [k, k] for some k>0, any u e X*
is a weak solution.

Next, we consider the class of solutions introduced in [15] for initial data
u e L'(Q) for bounded Q. They satisfy u € C([0, T], L' (€2)) and (2.35) for any
¢ € C*(Qr) and any function 4 € C}(R) n W*(R) where H'(r) = h(r), with

T
lim </ / |Vu|”dxdt> =0.
k=00 \Jo Jik<u<k+1}

Because these above integrals are bounded, for any o <0, there holds

0
//(l+u)°‘_1|Vu|pdxdt
0 JU

00 0 00
<Z(1+k)°‘"// \Vul? dedt<C»_ (1+k)"".
k=0 0 J{k<u<k+1}

k=0

By (2.32) in the proof of Proposition 2.2, it follows that (2.20) is valid, hence
also (2.19), and u is a weak solution of the problem.

3. EXISTENCE OF THE INITIAL TRACE

The main result of this section which settled the basis of the definition of
the initial trace of a nonnegative solution of (1.1) is the following.

THEOREM 3.1. Let u be a nonnegative weak solution of (1.1) in Qr. Then
for any y € Q the following alternative holds:
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(1) either for any open subset U < Q containing y
lim/ u(x,t) dx = o0, (3.1
t—0 U

(i) or there exist an open neighborhood U* < Q of y and a nonnegative
Radon measure €y« € M1 (U*) such that for any & € Co(U*),

im [ e 060 de = o2, (32)
=0/«
and (2.21) and (2.22) hold in any open set U < < U*.

It will be proved below and precised according to the different values of ¢

with respect to p — 1. With Theorem 3.1 we can define a set # (depending
on u) by

?A’—{yeQ:HU open < Q, yeU, limsup/ u(x,t)dx<oo}. (3.3)
U

t—0

Then £ is an open subset of Q and there exists a unique Radon measure
u e A" (R) such that

hg(}/} (e, () dx = /} ) dul), Ve € Cum). (3.4)

By Proposition 2.2, u satisfies

0
/ / (—ud,@ + |VulP>Vu - Vup) + ul@) dx dt
0 Jz
:/q)(x,O)d,u(x)—/u(x, 0)o(x, 0) dx, (3.5
R R

for any 0<80<T and ¢ € C*(Z x [0,T)), and (2.21) and (2.22) hold in any
open set U < < A.

The next definition is parallel to the one introduced by Marcus and Véron
[33-35].

DEerFINITION 3.1. Let u be a nonnegative weak solution of (1.1) in Q7. A
point y € Q is called a regular point if y € #. Otherwise it is called a singular
point. The set of singular points is denoted ¥ = Q\%; it is a relatively closed
subset of Q. We shall denote

trQ(u) = ((V’ ,l,t),
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where p is the Radon measure in (3.4) and call it the initial trace of u at
t=0.

The initial trace can also be represented in a unique way by a positive,
outer regular Borel measure v with the following values on any Borel
subset 4:

oo i AnS#0,
v(4) = (3.6)
wd) ifd = .
It is known that there is a one-to-one correspondence between the sets
%j(;g(Q) = {v outer regular Borel measure on 2, v=0}
and

CM(Q) = {(Z,n): & relatively closed in Q, pue.#(Q\7)}.

When considering the initial trace of u as an element of %;g(Q), we shall

denote it by Tro(u) = v. If & = @, we will say that u admits for initial trace
the Radon measure pu.

3.1. The Case q>p—1>0
In this case the proof of Theorem 3.1 is based upon the following lemma.
LemwmA 3.2, Let g > p— 1> 0. Under the assumptions of Theorem 3.1, let

> pq/(q — p—1). For any nonnegative function { € C*(Q) the following
dichotomy occurs:

(i) either [ [, u!l" dxdi<oco, then
t / u(x, )(*(x) dx
Q

remains bounded near t = 0.

(i) or [y [, utl" dvdt = 0o, then
lim / u(x, ) (x) dx = 0.
t-0/0

Proof. Step 1. Let o € (max((1 — p), —%), 0) and 0<6<T. We start from
(2.7). Sinced = (g+ ) /(e + p—1)>1and t > pd' = pd/(d — 1), it follows
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by Holder’s inequality
0
/ / (1 4wy P 1P |IVEP dx dt
t JQ
0 ! U
< / / (U + 0™ 4 0P 9Py d di
t JQ

0
<C+//(1+u)q+“§fd_xdt, (3.7)
t JQ

where C = C(a, p, g, 1,(). Therefore from (2.7), since o > —1,

|O(| 0 o—1 T
— (I +w)  |VulP{ dxdt
2 Jo
1 0
<—/ (1 + uCx, 0))* 7' (x) dx + C + C/ / (I +uw)™Fdedt  (3.8)
a+1Jg t Jo

with another C = C(«, p,q,1,0).

Step 2. Next we use (2.15). Since g > p — 1, we can choose a such that
6 =¢q/(1 —a)(p—1)>1,and |¢| small enough in order to have t > pdé' > pd’
(remember that from assumption t > pq/(q¢ — p + 1), and notice that §' >d’

is equivalent to pg+ 1> p —ap+ a since a<0). Therefore, by Holder’s
inequality,

0
/ / VP + w) PP gy dt
t JQ

</t0/§2(1+u)qéfdxdt+/[0/g VP P dt. (3.9)

Combining this estimate with (2.8) and (3.7), (3.8) yields

0
T T qsT
/Qu(x,t)C (x)dx<C+/Qu(x,0)C (x)derC/l/QuC dx dt, (3.10)

where C = C(z, p,q,0, ).
Step 3. We start from (3.8) and the converse estimate (2.9). Using (3.8)
and Holder’s inequality as in (2.15), (3.9), for any ¢ > 0,

0
r//cf”wuv’*‘wadxdt
t JQ

0 0
<£M//(1 +u)°‘—1|vu|Pcfdxdt+s//qufdxdwrcs,
2 t JQ t JQ

0
<2 / (u(x, 0)(*(x) dx + &(1 + C) / / W dx dt + C,,
Q t JQ



162 BIDAUT-VERON, CHASSEIGNE, AND VERON

where C, = Cy(t, p,q,0,(,¢). If we choose & such that —2e>¢
and $—¢&(1+C)>4, and combine this inequality with (2.9), we
obtain

0
/Qu(x,Q)CT(x)dx—l—/t/QquTdxdt<8/9u(x,t){r(x)dx+C, (3.11)

where C = C(z, p,q,, ().
Step 4. Assume first that [ [, u?(" dvdi <oo, and let 0<0<T such that
Jou(x,0)(" dx<o0. Then

/ u(x, )(*(x) dx < 00, (3.12)
Q

for almost all 0 <z <6, from (3.10). Since 6 can be taken arbitrarily close to
T, (2.11) holds a.e. on (0,T). Suppose now that fOTfQ u{" dx dt = o0, and
that there exists a sequence {#,} converging to 0 such that [,u(x,,){" x
(x) dx <M for some constant M. Taking t =¢, and T =0 in (2.11) yields a
contradiction. 1

Remark 3.1. The result is still valid for the weaker solutions defined in
Remark 2.2. Indeed, estimates (3.8) and (3.9) remain valid with u replaced

by Ti(u), the term u? remaining unchanged. Therefore (3.10) holds under the
form

/Q Te(ute, )0 (x) dx
0
<C+C/9Tk(u(x, 0))¢ (x)dx+C/ /Qqu dx d. (3.13)

In estimate (2.16) u? can be replaced by T;(u)? which is smaller. Therefore
(2.17) holds with u replaced by Tj(u). Since (3.9) holds with (1 + u)? replaced
by (1 + Tr(w))?, (2.11) is valid under the form

1 . LY .
§ | s+ g [ @ dsa
< [ B c. (314
Q

Letting £ — oo in (3.13) and (2.11) implies that (3.10) and (2.11) are still
valid and the conclusion of Lemma 3.2 follows.

Remark 3.2. The results make use essentially of the term ¢ in
Eq. (1.1). They extend to Eq. (2.1) under the condition a(x)>C > 0 a.c. in Q.
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Proof of Theorem 3.1. Caseq> p—1>0. We first assume that for any
open subset U of © containing y and any nonnegative { € C°(U) with value
1 in a neighborhood of y, and > pg/(¢ — p— 1),

T
//uqcfdxdt:
0 JU

Then (3.1) holds from Lemma 3.2. ;
Assume now that there exists an open neighborhood U < @ of y
and a C*(U)-function { with value in [0, 1] and value 1 in a neighborhood

U; = U* of y such that
T
//uqfrdxdt<oo.
0JU

t»—»/ u(x,t) dx
U*

Then

remains bounded in a neighborhood of ¢t = 0 from Lemma 3.2. Moreover,
we have

T
// |Vu|P~! dx dt < 0. (3.15)
0 JU*

Indeed from (2.12),

//|W|P W dxde < //|vu|P(1+u)’ L™ d dr
//(1+u)“ W=Dt gedt  (3.16)

and, without using Proposition 2.2 but the assumption ¢ > p — 1,

0 0
//(1+u)“*“>(l’*”«:fdxdz<//(1+u)4z:fdxdt
t JQ t JQ

by choosing « such that (1 — a)(p — 1)<g. Then (3.15) follows from (3.8).
Thus we can apply Proposition 2.2 in U*, and deduce (3.2) and the
regularity results. 1

3.2. The Case g<1 and p<?2

In this case we prove that any solution of (1.1) admits an initial trace
reduced to a Radon measure. Moreover, we can treat the case of (2.1).
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THEOREM 3.3. Let 0<g<1 and p<?2. Let u be a nonnegative weak

solution of (2.1) in Qr, with a € L (Q). Then there exists a Radon measure
e M (Q) such that

lim /Q (e, 0E06) de = /Q QO dul), Ve e Q).

Then (2.24) holds, (2.21) and estimates (2.22) are satisfied in any open set
Ucc Q.

_Proof. We claim that for any open subset U with compact closure
UcQ,

t— /u(x,t)dx
U

remains bounded near t = 0. Let o, ¢, 0, { and 7 be as in Proposition 2.1 with
o>—1and 7> p/(2 — p). We have

0
/ / (1 + uy P PP d
t Q

0
<//(1+u)“+‘cfdxdt
t Q

0
n / / (=0 2/ Q=) £ (D21 gy gy (3.17)
t JQ
since p<2, and

0 0
//(1+u)“+q:fdxdz<//(1+u)“+‘:fdxdz,
t JQ t JQ

since ¢<1. Owing to (2.7) it follows that
[ sy s
Q

0
< /9(1 + u(x, 9))“+1gf(x)dx+c[ /9(1 +u)! " dedt + C
(3.18)

where C, C" depend on «, {,||al|;~(o) and the exponents. If we set

X@t) = /tg/g(l + u)' T dx dt,
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then with another C > 0,
X +CX+CH+ / u(x, ) (x) dx=0. (3.19)
Q
Integrating (3.19) between ¢ and 6 implies that X(¢) is bounded on (0, 0).

Now we use (2.8). Since p<2 we can choose a such that (1 —a)(p — 1)<1
and we derive

/ (1 + ur, D)0 () de < / (1 + u(r, ) () dx
Q Q
0
+ C/ (1 + u)* dx dr. (3.20)
t Q

Putting

Y(1) = /te/g(l + )" dx dt

and integrating differential inequality (2.11) yields to
/ (1 + e, ) () de < (@O 4 1) / (1 + u(x, 0)C*(x) i,
Q Q

for 0 <¢<0, which implies the claim. Then (2.18) holds. It implies (2.19),
since ¢<1 and p<2, hence we can apply Proposition 2.2 in Q. 1

Remark 3.3. Theorem 3.3 shows, in particular, that in the case
p— 1<g<]1, the first alternative of Theorem 3.1 cannot happen, which
means & = and # = Q.

3.3. The Case g<p—1, p>2

In this range of exponents we can deal with the more general equation
(2.1). The proof of Theorem 3.1 is a consequence of the following lemma.

LEMMA 3.4, Assume 0<g<p—1 and p>2. Let u be any nonnegative

weak solution of (2.1) in Qr, with a € L}, (Q). Assume that for any open set
UccQ,

t— / u(x,t) dx
U

remains bounded near t = 0. Then for any 0<0<T,

0 0
//up—‘(x,z)dx+//|Vu(x,z)|1’*‘dx<oo.
0 JU 0 JU
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Proof. Let o e (1 — p,0) be fixed, a# — 1, and { € C*(£2) as above. We
start from (2.25) where possibly o+ 1<0. Therefore, by (2.18), since
g<p—1,

0 0
L;"//(1+u)1*1|vu|1'gfdxdt<c+c//(1+u)1’*1+“cfdxdr. (3.21)
t Jo t JQ

If U,U* are any open sets with U c < U* < < Q, taking { € C°(Q2) with
0<{<1, with value 1 on U, and 0 outside of U*, we get

0 0
//(1+u)“+P*1+P/Ndxdt< c+c/ (1 + w)* Y |\Vul? dx dt
t JU t JU
0
<c+c// (A +uw) P Vaxd.  (3.22)
t JU*

Hence any estimate of (I 4+uw)*™”' in L'((0,0),L}.(Q)) implies the
same estimate for (1-+u)*™?~"P/N We first take o9 =2 — p. Since
p + oo — 1 = 19

u” € L'((0,0), Lioe(2).
with
or=a+p—1+p/N=0 =1+ p/N.
Defining by induction,
Oni1 = 0y + p/N, o,=d,+p—1, VneN,
we get
(1 4+ w)™" e L'((0,0) x L, (Q))

as long as o, =np/N +2 — p<0. Let ny be the largest integer such that
o, <0. Then (1 +u)"™*" € L'((0,0) x Ll (Q)). And a,,,1>p— 1. Then in

loc
(3.21) one can now take <0 arbitrarily close to 0 and deduce that

0
M/ (1 + w)?* |\ VulPC dedi<C.
2)i Jo

Then from (3.22) we get (1 + u)* 71 7P/N € L1((0,0) x L. (Q)). In particular

loc

uP~l e L(0,0),L] (Q). From (2.32), we deduce that |Vu|e L"((0,0) x L!

loc loc

(Q)) for any r such that

(1—oy/(p—r)<o+ p—1+ p/N.
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Since o is arbitrary, this happens for any r<g., in particular
[Vul e LP71((0,0) x L] (2)). 1

Proof of Theorem 3.1. Case q<p—1, p>2 Let ye Q. Then either
statement (i) of Theorem 3.1 holds, or there exists an open subset U* < Q
containing y such that ;. u(x,7)dx is bounded near = 0. By Lemma 3.4
and Proposition 2.2 in U* statement (ii) holds. §

4. COMPLEMENTARY PROPERTIES FOR p>2

4.1. The Case q<l<p—1, Q=R"

In this section, we prove that the absorption term is negligible, therefore
the initial trace of a solution is reduced to a Radon measure, equivalently
g =0.

THEOREM 4.1.  Assume g<l<p—1 and ue CR" x (0,T)) is a non-
negative weak solution of (1.1) in RN x (0, T). Then the initial trace of u is a
Radon measure e 4+ (RY).

Proof.  We show that for any b € R" there exists p > 0 such that

lim sup / u(x, £) dx < 0. (4.1)
B, (b)

t—0

By contradiction we assume that it does not hold. Then there exists some
b € RY such that for any p > 0 there exists a sequence {tnp} converging to 0
with the property that

lim u(x, t,.,) dx = 0. (4.2)
tnp = 0) B, (b)

Let £ >0 be fixed. For any p > 0 there exists n, such that for any n=n,,

/ u(x, typ) dx>=k. (4.3)
B,(b)

By continuity of the integral with respect to the domain, there exists some
0 < p<p such that

/ u(x, by, ) dx = k. (4.4)
B;(b)

Moreover, p is uniquely determined if we impose it to be the largest as
possible (in order to avoid the axiom of the choice in what follows). When
p— 0,1, ,— 0since ¢ — u(.,?) is continuous from (0, 7) into LIIOC(IRN). Let
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w = w, be the solution of

{8,w —V-(VWPPVw) +wf =0  in RY x (0,00), ws)
)
. N
w(.,0) = u(.,t,,ﬂ,p)xgﬁ(h), in R™.
Since u is nonnegative it follows by the comparison principle that
u(,t + 1) =wy(x, ) in RY x (0,7 — 1,,).
When p — 0, w, converges [29-32] to W solution of
Oy — V- (VP2 Vi) + ! =0 in RY x (0, 00), *6)
wi(.,0)=kd,  in RV, '

By construction and uniqueness, the function Wy is radial with respect to b,
and radially decreasing for ¢ > 0. Moreover,

u(x,)=wi(x,t)  in RY x (0, 7).
By the comparison principle, the mapping k — Wy is increasing. The key
point is to notice that, since 0 <g <1, lim;_,, Wy = Wy, a.e. cannot exist.

When 0 <g <1 there exists a scaling invariance of the equation, namely, if
w is a solution of (1.1), Ny(w) defined by

New)(x, 1) = €9 Dy(b + €' (x — b), t1), 4.7)

with y =(g+ 1 — p)/(p(g — 1)) and £>0, is also a solution, and conse-
quently

Ne(Wi) = Wp1/g-n-m.
Letting £ — oo leads to the invariance property
Ne(Wy) = W, V¢ >0,
from which follows the self-similar form of wy,,
Wao(x, ) = /079 £(77(x — b)), Y(x, 1) e RY x (0, 00). (4.8)
This estimate implies, in particular, that f(0) is finite and
wi(b, ) <t'/1"D F(0)<u(b,t),  Vie(0,T),

which contradicts the fact that wy(b,f) - 0o when ¢ — 0, since g<1.
When ¢ =1 (and p#2 otherwise the result is well known), Eq. (1.1) is
invariant with respect to the transformation M,(w) defined (for £ > 0) by

Mo(w)(x, 1) = tw(b + L P/P(x — b), 1),
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which yields to
M(W) = Wyprivip-2yp-
As in the previous case w., satisfies the invariant property
Mi(Weo) = W, e > 0.
This estimate implies
0<wi(b, T/2) <Woo(b, T/2) = twoo(b, T/2) <u(b,T/2), ve>0,

which is again a contradiction. If U is any bounded open of R" it follows by
compactness that

t— /Uu(x,t)dx

remains bounded near ¢ = 0, and the singular set is empty. |}

Remark 4.1.  Actually this proof works for any p> py. But the case
p<2 is still covered by Theorem 3.3.

Remark 4.2. The argument used below implies that if u is any
continuous, nonnegative solution of (1.12) in RY x (0,7), then for any
relatively compact subset U € R, Jy u(x, 1) dx remains bounded when ¢
remains bounded.

4.2. The Case 1<q<p—1, Q=R"

Since g > 1, the main difference with the previous section comes from the
existence of the flat singular solution W defined in (1.15).

THEOREM 4.2. Let 1<q<p—1. Assume ue C(RY x (0,T)) is a non-
negative weak solution of (1.1) in RN x (0, T). Then

() either ¥ =R and in fact u=W,
(i) & = 0 and the initial trace of u is a Radon measure e 4+ (RY).

Proof. The scheme of the proof is very similar to the one of Theorem
4.1. Either for any b € RY there exists p >0 such that (4.1) holds, hence
(2.18) holds. And Lemma 3.4 applies as above, since g<p— 1 and p> 2,
thus (2.20) holds, and statement (ii) follows by Proposition 2.2. Or there
exists some b € R such that for any p >0 there exists a sequence {tnp}
converging to 0 satisfying (4.2). Let k> 0 be fixed. For any p there exists
tn,p > 0 such that (4.3) holds, and there exists some 0 <p < p such that (4.4)
holds. Letting p — 0, implies that « is bounded from below by the solution
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of (4.6), which does exist since 1 <g<gq., and the convergence result quoted
in Theorem 4.1 applies. Since this estimate from below holds for any £ > 0, it
follows that

UZ Wy = khm W.
—00

Such a W, exists and is a solution of (1.1) by the classical theory. Moreover,
Wi <Woo <W. (4.9)

Using the same scaling operator N, defined in (4.7) infers that Wy, is a self-
similar solution of (1.1) which means

Waolx, ) = ¢ 1/@=D £(+77(x — b)), V(x,5) e RY x (0,00)  (4.10)

withy = (¢ + 1 — p)/(p(g — 1)). The function f is nonnegative and radially
symmetric. Because of (4.9) 1 is smaller than (1/(g — 1))1/ @D Moreover, it
satisfies the following equation:

{ PN LY S S~ =0 in (0,00),
£1(0) = 0.

Clearly f=(1/(q— 1)@ is a solution and any solution satisfies in
particular f(0)<(1/(g — 1))'/@=D It remains to show that in any case, fis
constant. Suppose it were not true. Since <0 f is a nonincreasing
neighborhood of » =0, and it remains decreasing on (0,00) (by contra-
diction). If y <0, then, writing

(4.11)

(rN_l}f/|p_2f/)/< . V’N.f/-
a straightforward but lengthy computation implies that
< =2 Cy 2,
for some Cy ,>0, contradicting the nonnegativity of f. If y =0 (or

equivalently ¢ = p — 1), f admits a nonnegative limit / at co. If this limit is
not zero, there holds

VY <N (f”“ L 2f> <,
p—
for some m <0 and »>1. This inequality implies

o r
L7 Zf’(r)émﬁ +q,
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for r>1 and some real Cj, contradicting the nonnegativity of f. If / =0
there exists R > 0 such that

“VA(VAVNZ 55 in ye R > RY.

1
(r—2)
Such an inequality admits no nonnegative, nontrivial solution [12,28].

Actually, this is a particular case of a more general result stating that any
nonnegative solution of

~V-(VAPV =S

in an exterior domain of RY is identically zero whenever 0<s<N X
(p—1)/(N — p) (no condition on s if p=N). Thus f is constant, hence
u=W. 1In particular, for any bounded open set U c R",
lim,—o [, u(x, ) dx = oo, which means that & = RY. 1

Remark 4.3. 1f we assume that the solution u of (1.1) is such that u(. , ¢) is
bounded in R" for any ¢ > 0, then u < W, thus the statement of Theorem 4.2
becomes

(i) eitheru=Ww,
(ii) or the initial trace of u is a measure u € . (RY).

4.3. The Case g<1< p— 1, Q Bounded

Although the absorption term is dominated by the diffusion one,
the fact that Q is bounded, infers that the singular set of the
initial trace of a solution may be nonempty, and, in such a case, it is
whole Q.

THEOREM 4.3. Assume q<l<p—1, Q is bounded with a smooth
boundary and u is a continuous and nomnegative solution of (1.1) in
(0,7) x Q. Then

(1) either & = Q and, more precisely,
lim ionf tl/(”’z)u(x, 1) = vo(x), Vx e Q,
t—

(i) or & = 0 and the initial trace of u is a Radon measure u € M (Q).

For the proof, we start from the following classical result.
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LEmMMA 4.4, Assume p>2 and Q is bounded, then there exists a unique
nonzero function v = vg € WOLP(Q) N CY(Q) satisfying

—V - (IV0]?2V) = v in Q,

p—2 (4.12)
v=0 in Q.

Moreover, v>0 in .

The existence of a nonnegative nontrivial solution is obtained by
minimization. The positivity follows by the Hopf boundary lemma
as in [41] and the regularity from [24]. This function vq plays a fundamental
role in describing the set of solutions of (1.12) in Q x (0,00) since the
function

(x, 1) > Volx, 1) = t /P Dyox) (4.13)
is a solution with full blow-up at t = 0 and vanishes on 02 x (0, 00).

LEmMMA 4.5. Assume 0<qg<p—1, p>2and Q is bounded. For k >0 and
b e Q let W= Wy, be the solution of

oW —V-(IVWP2UW) + W =0  in Q x (0,00),
Ww=0  in0Q x (0,00), (4.14)
W(.,0) =kop()  in Q.

Then limy_,oo Wkp = Woop €XISLS; Weop IS a solution of (1.1) dominated by Vg,
and

lim /772 (x, ) = vo(x)

uniformly on Q.

Proof. The function w is a limit of solutions of (1.1) with smooth
initial data and zero lateral boundary data. Therefore Ww;,<Vp in
Q x (0,00). The sequence {Wy,} is increasing and its limit Wy, is a
solution of (1.1) in € x (0,00). Moreover Ws, is dominated by Va.
For £> 0 we set

Se(W)(x, 1) = €/ P Dyi(x, €).
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Then S;(W) = W' satisfies

o' — V- (VW P2V + e 1-0/-D(p0)7 = 0 in Q x (0, 00),
W =0 in 0Q x (0, 00), (4.15)
Wi(.,0) =P D5 () in Q.

Since
O’ — V- (IVW|"7200) + () = (1 — £ /2y,
S¢(W) is a subsolution for £>1, and therefore
Se(Wip) < Wprsio-p -
Letting k& — oo yields
St(Woo,p) KWt/ p-

Taking ¢ =t/¢ (with >0 arbitrary) and replacing 1/¢ by ¢/t €(0,1]
yields to

/(-2 )
Wasi, 0> (%) Wocp(nT) in @ x (0,1]

This implies that ¢ — ¢//?=2p_ ,(x, ) is nonincreasing. Since W, (b, 7) >0
for T small enough, there holds

() < 1P 4 (x, 1) S vo(x),

for some function x — @(x) which is positive at x = b (if 0<g<1 all the
functions Wy, vanishes for ¢ large enough). Put

Y(x,s) = /P 4(x, 1) where s =Int,
then

asw _ 1 le - v . (|v‘//|p—2v‘//) + eS(P*I*‘I)/(pfz)l//q = 0 in Q X R,
p—
Y =0 on 092 x R.
(4.16)

Moreover, s — Y(x,s) is nonincreasing and & (x) <y(x, s) <vgo(x) for s<Int.
Therefore lim,_,_ Y(x,s) = w(x) exists for any xe Q. Since Y(.,s) is
bounded in L®(Q) uniformly with respect to s, it is bounded in C'(Q),
which infers lim,,_~ ¥(.,s) = () in C'(Q). Multiplying (4.16) by



174 BIDAUT-VERON, CHASSEIGNE, AND VERON

te Wol’p(Q) and integrating on Q x (n — 1,n) (n<0) yields to

/Q W) — Y(n — 1,2)E00)

— / ’ / (Lwéﬂwv’—zw-vg) dx ds
n—1JQ \P — 2
:/n/QS(pflfq)/(pﬁ)[/,qédxds.
n—1JQ

Since lim,_, _o Y(.,s) is independent of s, we obtain
/ (1 oé + |VolP Vo - vg) dx ds = 0.
o\p—2

Since w > @, it infers w = vo by Lemma 4.4, which ends the proof. 1

Proof of Theorem 4.3. As in the proof of Theorem 4.2, either (ii) holds,
or there exists b € Q such that u>W;, in Or for any k> 0. In that case,
Lemma 4.4 implies that (i) holds. |

Remark 4.4. The above technique also applies to Eq. (1.12). Actually,
Lemma 4.5 is valid under the following form: Assume p > 2, Q is bounded,
and let w = Wy, be the solution of

oW — V- (VWP 2VW) =0  in Q x (0,00),
w=0  on dQ x (0,0), (4.17)
W(.,0) =kdy()  in Q.

Then limy_, o Wi = Vo (see the proof of Lemma 4.5). Actually, the proof is
simpler since Eq. (1.12) is invariant under the similarity transformation S.
As a consequence the following result holds.

THEOREM 4.6.  Assume 2< p, Q is bounded with a smooth boundary and u
is a continuous and nonnegative solution of (1.12) in (0,T) x Q. Then

() either u(x,t)=Vo(x,t) =t~/ P Dpo(x, 1),
(ii) or the initial trace of u is a Radon measure yu e M+ (Q).

4.4. The Case 1 <g<p—1, Q Bounded

In this range of exponents the function W defined by (1.15) is a singular
solution of (1.1). Therefore, if 1 <¢g< p — 1 we have to compare u with the
two functions ¥ and W. In the case ¢ = p — 1, V has to be replaced by W,
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defined by
Wolx, 1) = t /P Dyo(x), (4.18)

where wgq is a solution of

1
—V - (VWP Vw) +wPl=——w  in Q,
p—2 (4.19)

w=0 on 0%2.

Notice that ¢ /®#2 = 14D and that the constant solution
(1/(p— 2)/(?=2) is a particular solution of (4.19).

THEOREM 4.7. Assume g= p—1>2, Q is bounded with a smooth
boundary and u is a continuous and nonnegative solution of (1.1) in
(0,7) x Q. Then

() either u(x,t)=Wo(x,t) = t /P Dwo(x, 1),
(ii) or the initial trace of u is a Radon measure e M+ (Q).

The proof is similar to the one of Theorem 3.1, by using the next lemmas.

LeEMMA 4.8.  Assume p>2 and Q is bounded, then there exists a unique
nonzero function w = wq € WOI’P(Q) N CY(Q) satisfying (4.19).

The proof is similar to the one of Lemma 4.4.

LEMMA 4.9. Assume p>2 and Q is bounded, and let W = Wy, (for k>0
and some a € Q) be the solution of

oW —V - (VWP 2V + w71 =0  in Q x (0,00),
Ww=0  indQ x (0,00), (4.20)
W(.,0) =kd,()  in Q.

Then limy_,o Wi, = Wq uniformly on Q.
The proof is simpler than the one of Lemma 4.5 since Eq.(1.1) and

domain Q are invariant under the similarity transformation S, defined by
Se(W)(x, 1) = €/(P=2yi(x, £1). This implies

Se(Wia) = Werjo-245 Yk, £>0.
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Therefore limy_,o, Wiy = Woo, 1s self-similar since Sy(Wao ) = Wooq- Then
Wooa 1) = 177D o (x, 1),
Because wq 4(x, 1) is not identically zero and satisfies (4.19), wo 4(x, 1) = wa.
The case 1 <g< p — 1 appears more difficult to deal with, and up to now
we do not have a full answer (notice that here r~!/(?=2 <41/~ pear ¢ = 0).
THEOREM 4.10. Assume l<g<p—1, Q is bounded with a smooth

boundary and u is a continuous and nonnegative solution of (1.1) in
(0,7) x Q. Then

(1) either

lim inf MNP Dy(x, )= v0(x),  VxeQ,
t—

(ii) or the initial trace of u is a Radon measure p € 4" (Q). Moreover, if
lim sup,_, tl/(f"’2)um(x, t) = ¢, for some ¢ >0, then

lim sup /P~ 2u(x, 1) <vo(x) + c. 4.21)

t—0

Finally, if lim inf, o £'/4 Du_,(x,£) = p > 0 and lim,_o u(x, 1) = 0o, uniformly
in Q, then

lim inf 1@ Dy (x, y=min(p, (1/(q — 1))/, (4.22)
t—

uniformly on Q.
The next result is an extension of Lemma 4.4.

Lemma 4.11. Assume p>2 and Q is bounded. Then for any m=0 there
exists a unique nonzero function v = vq, € Wol’p (Q) n CY(Q) satisfying

1
v+ m) in Q,

—V - (VP 2Vp) =
. & p—2 (4.23)

v=0 on 0Q.

Proof. Uniqueness comes again from the argument of [24]. For existence
we consider the functional J on Wol’p (Q) defined by

_ 1 1 > m
s = [ (S - s g - ) a
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Clearly,

JW) » oo as Wl = oo,

and since for ¢ > 0,

_ﬁ _L N mt +
J(rxp)—p/ngczx z(p_z)/g(x//)dx p_z/gw dx,

there exists ¢ >0 such that J(f;yy) >0. Therefore, the infimum of
J in Wol’p (Q) is negative and achieved at some v for which there holds

—V - (IVu|F2V0) = " +my)  in Q.

p—2
From the maximum principle #>0 and consequently (4.11) holds. 1

Remark 4.5.  An equivalent formulation states that for any d >0 there
exists a unique ¥ in W'"?(Q) solution of

1 :

—V - (V3P Vi) = P i inQ,

vt=d on 09, (4.24)
v=d in Q.

Actually 7 = vg + m with m = d(p — 2).

Proof of Theorem 4.10. The dichotomy between cases (i) and (ii) is clear
from the proof of the previous theorems, therefore let us assume

lim sup /"2y (x,1) = m.
t—0

For any ¢ > 0 there exists ¢, > 0 such that
U, (6, ) < (m + eyt~ (4.25)

on Qx(0,2,]. Let Q be a relatively compact smooth open domain
containing Q and denote by vy the solution of problem (4.12) relative to
@'. From uniqueness and positivity vy > vo on Q. Consequently, for any
0<d<t,, there holds

u(x, ) < (v (x) + m + e)(t — 8)~ /72

on (J,t,]. We can take Q' to be such that dist(2,0Q')<1/n and let n — 0.
Then the sequence {vy} = {vy,} decreases and converges to vg. Letting
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successively 6 — 0, n —» 00, t » 0 and ¢ — 0 yields to

lim sup ¢/ 2u(x, f) <vo(x) + m. (4.26)

t—0

For the last assertion we just have to notice that for ¢>0, and
0<t<min(p, (g — 1)~@=D) " the function ¢+ min(p — 1, (q — 1)~ _
(¢t + a)*l/(‘ffl) is a subsolution of (1.1) which is smaller than u at z = 0.
Therefore there exists ¢, > 0, independent of ¢ such that

ux,)=>min(p —7,(q — DD — )t + o) D
on Q x (¢;]. Letting ¢ — 0 yields to

tim inf /¢ Vu(x, ) >min(p — 7. (1/(g — 1)"/"" — 1),
=

which implies the claim by letting p — 0. 1

Remark 4.6. If the function u has zero boundary data, then the
conclusion of Theorem 4.10 becomes more precise:

(1) either

lim iOnf tl/(pfz)u(x, t) = vo(x), Vx € Q,
t—

(i) or the initial trace of u is a Radon measure u € ./#"(Q).

This conclusion also holds for Theorems 4.3, 4.6, and 4.7.

5. SOLUTION WITH A GIVEN INITIAL TRACE

In this section, we consider, the problem of the existence of a solution of
(1.1) in Q7 = 2 x (0, T) with a given initial trace

Trow) =ve B (Q) ~ (%, ), (.1)

reg

{ ou—V-(VulP>Vu)+uf =0  in Oy,

for a given couple (<, ) € CM*(Q). Let 2 = R\ &.

DErFINITION 5.1. A nonnegative function u is a solution of (5.1) if u is a
weak solution of (1.1), and
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(i) for any open subset U such that U n & #0,
lim [ u(x,?) dx = o0,
t—0 U

(ii) for any 0<0<T, ue L>((0, 0);L110C(9£)), |Vul e Lf;;l(% x [0, 1)),
and u satisfies (3.4) and (3.9).

There are many possibilities according to p — 1 is smaller or larger than g,
and Q is bounded or equal to R". Even in the case where the initial data is a
Radon measure p, ie. & = §, some difficulties occur. The first one may
come from the concentration of the measure whenever 1 < p< py. A detailed
analysis of this problem will be made in a forthcoming paper. When Q = R
and p> 2, another difficulty comes from the growth of the measure at
infinity as it was pointed out in [7,8] for Eq. (1.12). In view of all the
difficulties mentioned above, we will concentrate essentially on the case
Q = R", and consider the general initial value problem associated to (1.1) in

0w = RY x (0,00)
Qu—V-(Vul’ ’Vu)+u! =0  in O, 52)
Trgn(u) = v e BL,RY) ~ (7, ), '
for a given couple (<, ) € CM(RY). We recall that # = RV\.&.
If g<1, if the problem has a solution, then ¥ = () and the initial trace is
reduced to a Radon measure, from Theorems 3.3 and 4.1, at least if u is
continuous. If 1<g<p—1, then ¥ =R" or ¥ = 0.
Thus the most interesting case occurs when

g >max(l, p—1), (5.3)
where we can solve the problem for any Borel measure v. In that case, we

have a pointwise estimate, which plays an important part: any nonnegative
weak solution u € C(Qx) of (1.1) in O, satisfies

1
g —1)

1/(g=1
u(xe, )W) = ( ) , V(x,t) € Ox. (5.4)

In all the cases we have to solve first the initial value problem with a
Radon measure as initial data. In the sequel, we shall distinguish according
to the cases g <q., with (5.3) called the subcritical case, and q > q. with ¢ > 1
that we call the supercritical case. Notice that if ¢=¢q. and p> py, then
q > max(l, p—1).
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5.1. The Subcritical Case with a Radon Measure

In the case of Eq. (1.12), with no absorption term, it was shown in [8] that
a solution exists with any Radon measure as initial data, when py< p<?2.
But there are restrictions on the behavior of u at infinity when p> 2.
Concerning (1.1), we can construct a solution when ¢ is subcritical and
po<p<2, or g=zp—1. In the case p> p; our proof relies on some
arguments of [3], which were also used in [1, 17] for elliptic problems. We
combine this with the regularity estimates for a power of u. This allows to
reach the range p > py. Contrary to the proof of [§], we do not use the local
boundedness of the solution, and actually, our result is more general, see
Remark 5.1.

THEOREM 5.1.  Let e .4 (RY). Assume that

p>po (or p>1, if peLl (RY)), (5.5)
p—1l<gq, or p<2, (5.6)
q<{c. (5.7

Then there exists a solution u € C((0, oo),Llloc(lRN)) to

(5.8)

ou—V - (VulP 2 Vu)+uf =0 in Ox,
u.,0)=pn  in RV,

Proof. Let u, € Z(R") be nonnegative and converging to u in the weak
sense, for example w, = (uyp, )*p,, where (p,) is a regularizing sequence
with support in B ,; hence supp i, = B,. Then

[ s [ dueo. oo (5.9)
B, Bpii
We consider the approximate problem

{ Oty — V- ((Vun/P*Vu,) +ul =0 in O, 5.10)

u,(0) = u, in RY.

([0, 00), WL (RY)).

And u, is a strong solution, namely uneC([O,oo),leoc([RN)), ul e

C([0, 00), L}, (RY)), and |Vu,| € C([0, 00), LY (R")) and d,u, € L*(Ox).

loc

It admits a (unique) weak solution, such that u, € L
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Step 1 (A Priori Estimates). Let p, T > 0 be fixed, and
O,r=1(0,T) x B,.

Let { € Z(B,,) with values in [0, 1] such that { =1 on B,, and 7> 0 large
enough. Set 0 > 0. Applying (2.9) to u,, and letting ¢t — 0 infers

0
l/un(x,é))ér(x)alx—|—1//ch_“,dedt
4 Q 2 0JQ
0
<C+/yn(x)cf(x)dx+r//cf*‘|vun|1’—1|vc|dxdt.
Q 0JQ

First, we suppose that ¢ > p — 1. Then it implies estimate (3.11) and we get

1 T 9 T T
g/gu,,(x,G)C (x)dx+/0 /QuZC dxdtsfgun(x)c @de+C, (511

where C = C(p,q,N,T,{,7) is independent on u,. Next we suppose that
g<p-—1<1. By (2.7), (2.8) and Young’s inequality, for any o > 0,

0
o[ [ e v v aca

0.Ja

|OC| 0 a—1 T 0 T
<e— (1 4 u,)*  |Vu,|PC dxdt + ¢ u, (" dx dt + Cs,

2 Jo Jo t Ja

0 0
<2£/(un(x,H))CT(x)dx—i—s//u%fdxdt—&—s//u,,Cdedt—i—Cg.
Q t Ja t Ja

Hence

0
l/un()c,H)CT(x)dx—i—l//MZCdea’t
8Jo 4.Jo Ja

0
<C+H+ / W, ()" (x) dx + 8/ / u, (" dx dt + C,. (5.12)
Q 0Jo
Integrating on (0, 7'), and choosing ¢ = %T, we get

0
/O/QunC dxdt<C+ C/Qu,,(x)C (x) dx, (5.13)

and then again (5.11) holds from (5.12) and (5.13). In both cases,

(ttn),~, is bounded in L((0,T),L'(B,)), (u?),, is bounded in L'(Q,.7).
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Besides this,
(u,’f*l)pp is bounded in L'(Q, 1)

by the Holder inequality, whenever ¢ > p — 1, or because p — 1< 1. Then,
by Proposition 2.2,

(u7),>, is bounded in Ll(Qp,T), Vo € (0, q.), (5.14)

(IVuy|),>, is bounded in Ll(Qp,T), Vr e (0, Ng./(N + 1)). (5.15)
Let o € (max(l — p,—1),0) and

ua(x, 1) = (1 + uu(x, 1)), B=(+p—1)/p. (5.16)
Clearly,

(Ué’*P/Nﬁ) is bounded in L'(Q, 1),

n>p

and it follows from (2.26) that
(IVva|?),>, is bounded in Ll(Qp,T).

Consequently, v, is bounded in L{ ([0, 00), W'?(B,)). Next, we estimate the

loc
t-derivative of v,:

Ay = B+ u)! o, = A+ u)! T (—ul + V- (IVun|? >V,
= B(I{I‘I + V : Kn)s

where

Hy = =1+ u)' ™"l — (= D+ )V |,
Kn = (1 —+ un)ﬁ71|Vu,,|p72vun-

Because f< 1, H, is bounded in L!(B,), by (2.26). And |K,|< |Vu,|?~!. Then
from the estimate of |Vu,|", K, is bounded in L*(Q, 7) for any s € [1,s.),
where

se=1+1/(N+ D)(p—1). (5.17)

In particular V-K, is bounded in L*((0,T), W~ '5(Q)). It implies that
(0/Vn),=, is bounded in L'(B,) + L*((0, T), W ~¥(Q)) for any s e [1,sc).

Step 2 (Convergence). For any p >0, and any 7 > 0, the sequence (v,),-,
is relatively compact in L'(Q, 7). We choosing p, T as integers. There exists a
subsequence, still denoted (v,), such that (v,) converges a.e. in Q. toward
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some locally integrable function v. Then (u,) converges a.e. in Q. to
u=v"F — 1. In particular,

(u,) converges locally in measure to u. (5.18)
Following [3], we deduce that
(Vu,) is locally a Cauchy sequence in measure. (5.19)
Indeed let 4,&> 0 and set
Epmp = UV — um)| > 43 = {05, 0) € Qp 1 2 [Vy — V| > 45

We have to prove that |E, ,, ;|<e for m,n large enough. We write E,,,; <
1 2 3
Epi VE , VE, . where

Ep s =10,0) € Opr: [Vuy| > b}y U {|Vty| > b} U {uy > b} U {uy, > b},

E2, = {(0,0) € Qpr tluy — t] >k},

E3

wmi = 1060 € Opr: [Vuy|<b, |Vuy|<b, u,<b, uy<b,
|un - umlgks |v(un - um)| > )"}5

and k,b >0 are parameters. From the estimates on u, and Vu,, we can
choose b = b, such that |E, , ;|<e/3 for any m,n € N. Next, we have

Aty — ) — V - (V[P 2Vuy, — [Vit| P> Vity) +u? — ul = 0.  (5.20)

Set > 1 and O(s) = [, Tx(0) dO, then |Ox(s)|<k|s|. Multiplying (5.20) by
Ti(u, — u,)C", we get

T
/ Oty — )T dx + / (W — ) Tu(aty — ) dx
Bg,, 0 BZ/)
T
4 / / (V1P 2Vt — [Vt >Vt (Vitty — V)" dic i
0 JBoyr it —unl <3
:/ @k(,un - tum)crdx
By,

T
+ / (IVunl P2 Vity — Vit~V ) T (st — 1)V dx dt.
0 JBy,
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Next from (5.9),

(i, + um)dx> <2kc/ wdx = kC, (5.21)
B

2p+1

B2ﬂ BZP

with C, = 2C fBz,, wdx, and from (5.15),

T
/ (|vun|pizvun - |vum|pizvum)Tk(un - um)CT_lvngdt
0 JBy,

T
<t [ [ Qv+ [l e VG ds <k
0 JBy,
with another C, > 0. Hence
T
/ / ((IVunl P>V ty — \Vw| P Vit) (Vuty — V) dx dt <kC,.
0 JB, O {|un—up| <k}

When p <2, this implies

r Yu, — Vu,|?
// | - l — dvdt<kC,,
0 JB, Ayl <k [Vitn|" 7 + V|7

hence |E3, ,|<2b27PkC, /)’ <¢/3 as soon as k<k, small enough. When
p=2, we have

T
/ / |\Vu, — Vu,|? dxdt<kC,,
0 JB,Nluy—un| <k
hence |E3

o SKCy /AP <e/3 as soon as k<k, small enough. After having
chosen such a &, we deduce that there exists n, € N such that |E§’m, ,1<e/3 for
any m,n>=n,, from (5.18). Hence |E,, |<e for any m,n>n;, and (5.19)
follows. This also implies that
(IVu,|P2Vu,) is locally a Cauchy sequence in measure.  (5.22)
But from (5.15),
(IVuyP~*Vu,),-, is bounded in (L(Q,.r))", Vs e [1, se).

After extraction of another subsequence, there exists some y = (y1,..., ¥v),
w = (wy,...,wy) such that

(Vu,) >y ae in On,  (Vuu|?2Vu,) »w= 3”2y ae. in O
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and
(IVu,|P*Vu,) — w strongly in (L(Q,1)", Vs e[l,sc).
Let us denote
ub = Ti(w,) and u* = Ti(u).

Now for any fixed k >0, uf converges a.e. to u*. Moreover, it converges
weakly in the space L?((0,T), W'P(B,)), and the limit function is u*. In
particular,

Vulf, - Vuf weakly in (LP(QP,T))N'

But Vut = Vu, x 1y, <k, hence Vuk converges a.e. to y x ly,<k. Then
Vit = y x 1<k a.e. in Q. Since we have defined the gradient of u by
Vu = y, it follows that

(Vu,|P2Vu,) — [VulP>Vu  strongly in (L5(Q,7r)",  Vse[l,se).
(5.23)

Either p > py, hence 1<gqc, so that (5.14) implies that
(un) - u strongly in L°(Q, 1), Vo €1, qc). (5.24)

Orue LIIOC(RN). Moreover u, converges strongly to win L!(B,) for any p > 0.
Hence for any ¢ > 0, and if m, n>n(e),

1
i / Ot — 1) dr < / I, — ) dr <.
B,

By,
Since |Ox(s)|=k|s|/2 on the set {|s| >k}, we have for any T >0,

1

2 /Bmﬂun« ) DI >H}
1
< / Oulun — )T di.

By,

|u,,(x, T) - le(x, T)| dx
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Hence

1

2 /B,,mnunc )t T) k)

1 T
+ - / / (IVuun|P >Vt — Vit P >V tt)(Vity — Vi) dx dt
kJo JB,otuy—unl <k}

|M,,(X, T) - um(x’ T)l dx

1 T
<+ / (IVuunP "2Vt — Vitg|? 2Vt Tty — 1)V dx dit.
0 JB,,

T
<g+c,,// IV in| P2 Vty — [Vity|P > V| dx dt <2, (5.25)
0 JByy

for m,n>n'(e) large enough, independent on k. Letting k£ — 0, this proves
that

(u,) — u strongly in C([0, T],L'(B,)). (5.26)
In any case, from (5.24) or (5.26),
(un) — u strongly in L'(Q,7). (5.27)

Next, we show that the limit function admits x as an initial trace, since
g <gq.. We have the property

(ul) — u? strongly in L*(Q,.r), vVt e[l,qc/q). (5.28)

For any ¢ € C‘;O(RN) and ¢ > 0, we have
[ wtniwas— [ neocod
R’ R’
= / / (IVun| P> Vu, VE + ulé) dx dt. (5.29)
0JQ

Up to the extraction of a subsequence, we can pass to the limit in each term,
for almost any 7> 0, and get

t
[ uxnzwas— [ coduo = [ [ (vurvive s e ava,
RY RY 0JQ
from (5.23), (5.28). Since the right-hand side tends to 0 as ¢ goes to 0, hence

EE%/RN u(x, 1)E(x) dx = /[R"" E(x) du(x). (5.30)
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For any ¢ € C(R" x [0,00)) and 0 > 0, we have

0
// (—tn @, + |Vuun|P>Vu, Vo + ule) dx dt
0 JRY

_ /R (0.0, x) d /[R (e, 0)p(x, 0) i,

for any n > p, by using also (5.27). Then u satisfies (3.5) in 2 = R".

It remains to prove that u is a weak solution. First suppose that
U eL}OC(RN). Going to the limit in (5.25) when m — oo from the Fatou
Lemma and Lebesgue theorem, we get for any 7 >0

1 T
- / / (IVun|P>Vu, — |[VulP2Vu)(Vu, — Vu)) dx dt
k Jo By O\ {Jun—u| <k}
T
<a+cﬂ// IV unl? 2V, — [VulP > Vu| dx dt < 2e.
0 JBy,
Moreover,
T
Xin = / / (IVub|P2V by — |Vuk P2V ik (Vik — Vilb) dx dt
0 JB,
T
< / / (IVun|P >V, — |[VulP>Vu)(Vu, — Vu)) dx dt.
0 JByn{luy—ul <2k}

Hence for fixed &, X;, — 0. Therefore,

T T
// |Vu§|pdxdt—>// |Vuk| P dx dt
0 JB, 0 JB,

Vuﬁ — Vu* strongly in L?(Q,.r).

which implies

Next, we consider the general case where p is a measure. Then for almost all
>0 and p >0 u,(.,7) converges strongly to u(.,7) in L'(B,). Let 0<t<T;
if we replace the interval [0,7] by [r,7], we deduce as above that
u e C((0,00),L'(B,)), (u,) — u strongly in C([r, T],L'(B,)), and

Vuk — Vit strongly in L?((z, T) x B,). (5.31)

In fact this happens for any 0<t<7. Let ¢ € C*(Q«). Consider 0<t<T
and p>0 such that the support of ¢ is contained in (r,7) x B,. Let
he CY(R) n WI*(R) where H'(r) = h(r), and A(r) constant outside [k, k]
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for some k£ > 0. Multiplying Eq. (5.10) by A(u,)p, we get

00
0= / / (—Hun)og + [VunlP >V (h(un)) + hun il d i
0 JRY

- / / (_H(un)atq) + |Vu£|ph/(un)q) + h(un)lvun|p72v”n : VMQD
0 JRY
+ h(uy)ule) dx dt. (5.32)

Owing to (5.28), (5.27) and (5.31), we can pass to the limit in each term.
Thus the proof is complete.

Remark 5.1.  In the case ¢ > max(1, p — 1), the proof is much shorter,
since (5.4) implies that {u,} is locally bounded, uniformly with respect to »;
therefore the use of the Tj-truncature of u, is useless. Moreover, because

Oty — V - (|vun|p_2v”n) + “z =0

holds in Q. and {ul} is locally bounded uniformly with respect to n, the
sequence {u,} is equicontinuous in the local uniform topology of O, hence,
up to a subsequence, it converges uniformly on any compact subset of Q.
Thus in particular u is continuous on Q.. Actually, for a given open
bounded domain @ in RY, the regularity results of [5,9], assert that, any
ve C(0,T),LX(Q))) N L*(0, T), W"r(Q)) n L>(Qr) solution of

v — V- (IVu|P2Vv) = h (5.33)

in Or = Q x (0,7), with h € L*(Qr), is Holder continuous, and the same is
true with Vu: there exists « € (0, 1) such that for any compact set K < Q,
and any (x;,4;) € K x [T/2,2T/3].

o(x1, 11) — 0002, ) <Y1 — xa| + |11 — 1]/ P)7,
where y = 9(N, p, |1 1~ @x 0,1y V]| 2~ (G 0,1))> disH(K, 0L)).

Remark 5.2. If we replace u? by |u[?"'u in (5.8) the existence result of
changing sign solution with a given signed Radon measure y as initial data
holds under some minor modifications in the proof. Also, since the proof
does not use local boundedness of the solutions, we can treat where there is
a forcing term f in the equation. Consider the problem

{6,u — V- (VU2 Vu)+ [uf'u= £  in RY x(0,7), (534)

u(0)=p  in RY,
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where f and u are given Radon measures in RY x (0,7) and R",
respectively. Under the assumptions of Theorem 5.1 on p and ¢, there
exists a solution of problem (5.34) in the sense of distributions in
RY x (0,7), and such that (5.30) holds for any ¢ e CgC(RN). If moreover
feLl (RY x (0,7)), then u is a weak solution as before, that means for any

¢ € CX(RY x (0, 7)),

T
/ / (—H@)dp + [Vul”*Vu - V(h(w)e) + h(u)(ul*"'u — f)p) dx dt = 0.
0 JRY

In the same way, we can prove the existence of a solution of the Cauchy—
Dirichlet problem

ou—V - (\VulP>Vu) + u' 'u=f  in Q2x(0,7)
u=0  ondQ x (0,7T), (5.35)
u0)=pu in Q,

in any bounded regular domain @, for any bounded Radon measures f and
win Q x (0,7T) and Q, respectively. The Dirichlet condition on 0Q x (0, 00) is
given in the sense Ti(u) € L{ ((0, 00), WOI’I’(Q). In case feLY(Q x(0,T)),

p e L'(Q), one finds again the result of [15].

5.2. Constructive Solutions

Up to now, no uniqueness result is known for a measure, except when it is
a (sum of) Dirac measure(s). That is the reason why we define a notion of
solutions corresponding to the previous construction which will permit some
operations and comparison between them.

DEFINITION 5.2. Let p>1, ¢>0, and u e .#*(R"). Suppose that there
exists a weak nonnegative solution u of (1.1) in O, with initial trace p. Then
u is called a constructive solution if there exists a sequence {u,} of continuous
functions with compact support converging weakly to u, such that the
corresponding sequence {u,} of solutions to (5.8) with initial data pu,
converges a.e. to u. We shall denote by .#**(R") the set of initial traces of
all the constructive solutions.

Remark 5.3. Notice that the solutions of (5.8) constructed in Theorem
5.1 are constructive, hence in that case .#**(RY) = .47 (R"). Now assume
(5.5) and g>¢q. (hence g > p — 1), then all the estimates of Theorem 5.1 are
still valid, and all the convergences up to (5.27), with the noticeable
exception of (5.28). When ¢ > 1, the limit function u is a solution of (1.1), by
(5.4) and Remark 5.1. The function u does admits an initial trace u’, which
satisfies i/ < instead of equality. Actually, u is a weak solution of (1.1) with
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initial trace u if and only if for any ¢ € C.(RY x [0, 00)),

T T
/ / ule dx dt — / / i@ dx dt, (5.36)
o JRY 0 JRY

or equivalently, if and only if
ul — u? strongly in LIIOC(RN x [0, 00)), (5.37)

since u? - u? ae. in Q. Indeed if (5.36) holds, then for any
Qe Cé’o([R{N x [0,00)) we can pass to the limit in (5.29) and get (5.30), and
in (5.32). Then u is a weak solution of (1.1) with initial trace u. Conversely,
if u is such a solution, then (5.29) and (5.30) hold. Therefore (5.36) holds by
difference for any ¢ € Cgo([RN x [0,00)), and then, by density, for any
¢ € C«(RY x [0,00)). As a consequence a function u is constructive if and
only if there exists a sequence {y,} of continuous functions with compact
support converging weakly to u, such that the corresponding sequence {u,}
of solutions to (5.8) with initial data p, converges a.e. to u and (5.36) holds.

Next we give some useful properties of the constructive solutions. They
are settled upon the following measure theory result the proof of which, due
to E. Lesigne, is given in the appendix.

LEMMA 5.2. Let fi,pe #F(RY) with fi<u. Let pn,eCe (RY) be a
sequence of nonnegative functions converging weakly to u. Then there exists
a sequence of nonnegative functions fi, € Co(RY) such that

A, () <, (%), VxeRY and VneN*

converging weakly to fi.

PROPOSITION 5.3. Let fi, € M+ (RY) with i<p.

(1) Assume (5.5)~(5.7). Then there exist constructive solutions i, u with
respective initial traces fi, u, such that i<u a.e. in Qn.

(i) Assume (5.5) and q=q., that is g=q.> 1. If there exists a
constructive solution u with initial trace p, then there exists a constructive
solution it with initial trace [i such that i<u a.e. in Q.. Moreover 4 **(R") is
a positive cone in M (RY).

Proof. (i) Let f,,u, be defined in Lemma 5.2, and #,<u, the
corresponding solutions. Then &, <u, in O from the maximum principle,
hence &i<u a.e. in Q.

(i1) Let u be a constructive solution with initial trace y, and f,,, u,, and
1, <u, be defined as above. Then u, converges to u a.e., in O, and i,
converges to some # a.e. in Q. And u? — u9, strongly in Llloc([RN % [0, 00)),
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hence also @ — @ from a variant of the Lebesgue theorem, see for example
[26], so that # is constructive.

Set e . .#*F(RY), 2>0 and let u be a constructive solution with initial
trace p. If A<1, then Au<<pu, hence from above, there exists a constructive
solution # with initial trace Au such that #<u a.e. in O,. Next, we assume
2> 1and let u, € C.(R") converging weakly to u and u, be the solution with
initial trace p,. We perform the change of scale

S () (x, £) = Auan(x, AP720). (5.38)

Then v, = S, (u,) satisfies
A0 — V- (IV0,|P2V0,) + 07 = (1 — 2P~ ),

in O, hence v, is a supersolution, with initial trace Au. If w, denotes the
solution with initial trace Ay, then w, <v, from the comparison principle,
and w, converges to some w a.e. in Q. Moreover, u¢ — u4, strongly in
L (R x [0,00)), hence also v7 = (S;(u,))? — (S;())?, thus also w? — wA.
This proves that w is a constructive solution with initial trace Au. M

Remark 5.5.  Although we believe that .#**(RY) is stable by addition,
we have not been able to give a proof to this property.

Remark 5.6. Under the assumptions of Theorem 5.1, suppose that
e Ll (Q). Let u be a constructive solution. Then u € C([0, T], L}, .(2)), and u
is in the class of existence and uniqueness introduced in [15]. Indeed for any
open sets U cc U* cc @, and any k>0, taking ¢e CF(Q2), with
values in the interval [0,1], 1 in U, and 0 outside of U*, and
h(u,) = Tia1(uy) — Ti(uy) in (2.4), we get for any 0<t<0<T,

0 0
// IVun|”dxdt+// uf dx dt
t JUN{k<u<k+1} t JUNu, =k+1}
0
<c// |Vu|‘”ldxdt+/ H(u(x, 1)) dx
t JU* ~{uzk} U*
0
<c// |Vu|”’ldxdt+/ (u(x, 1) — k)" dx.
0 JU* n{uz=k} U*

Letting ¢ go to 0,

0 0
// [V, |P dx dt < c// |V P~ dx dt
0 JUN{k<u<k+1} 0 JU* n{u, =k}

+ [ (w-htax
U*
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Letting n go to oo,

0
// |Vul? dx dt
0 JUAk<u<k+1}

0
<C//‘ |ww”ﬁm+/‘mfm+@
0 JU* A {uzk U+

Finally, letting & go to oo,

0
lim/ / |Vul? dx dt = 0.
k=)o JUuntk<u<k+1}

5.3. The Subcritical Case with a Generalized Borel Measure
The main result of this section is the following.
THEOREM 5.4. Let Q = RY and
max(1l, p — 1)<g<gq.. (5.39)

Then for any v e ,%'jeg(lRN), there exists at least one solution to (5.2), and
u e C(Ox).

Under (5.39) we recall that there exist singular solutions w; of (1.16) with
initial data ko, for any £ > 0. When k& — oo, {W;} increases and converges to
Weo, Which is a singular solution of (1.1) invariant under the similarity
transformations N, defined in (4.7). Therefore, it takes the form

Woolx, 0) = ¢ V@D f(77y), (5.40)

where y=(¢+ p—1)/(p(g—1))>0, and f is radial and the unique
nontrivial nonnegative solution of the problem

PN forf + 5 = f4=0 in (0,00),

f(0)=0, (5.41)
lim rp/(q+lfp)f(,ﬂ) =0,

see [24, 38] for the case p > 2, where f has a compact support, and [22] for
the case p<2. The following result points out the pointwise blow-up over a
singular point in the subcritical case.

LEMMA 5.5. Assume (5.39) and let ue C(RY x (0,T)) be a non-
negative weak solution of (1.1) in RN x(0,T) with initial trace
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trpv() = (S, ) € CMHRY). If ye &, then
u(x, 1) = Wwoo(x — v, 1), Y(x,7) e RY x (0, 7). (5.42)

Proof. The proof is a variant of the one of Theorem 4.1 and is based on
a construction due to Marcus and Véron [33,34]. Assuming that ye ¥
infers that for any open neighborhood U of y,

limHo/ u(x, t) dx = oo.
U

Therefore, for any £ > 0 there exist two sequences {¢,} and {r,} decreasing
to 0 such that

/B u(x, t,) dx = k.

n(y)

Then uz Wy, where Wy ,(x,f) = Wi(x — y,¢) is the fundamental solution of
(1.1) with initial data kd,(.). Letting k¥ — co implies the claim. |

Remark 5.7. 1If RY is replaced by a general open subset Q, the lower
estimate on u takes the following form:

u(x7 t) 2 WQO,R(X - ) t))
where Wo, g is the increasing limit as & — oo of the solution of W = Wy

oW — V- (VWP 2VW)+w! =0  in Bg x (0, 00),
w=0 in 0Bg X (0, 00), (5.43)
w(.,0) =kdo()  in Bg,

and R >0 is chosen in such a way that Bz(y) = Q.

Proof of Theorem 5.4. Suppose v=(%,u), and let {ay},n- be a
countable dense subset of .. If n e N*, we define y, € .4 (R") by

k
My = [ +kZ,:1 da;-

By Proposition 5.3, there exists a sequence {u;} of constructive continuous
solutions of problem (5.8) with initial data , such that

nga/’kgukguk+1<W, Vk>0 andjzl,...,k,

where W, x is the solution of (5.8) with initial data kd,,. If k — o0, {u}
converges to some function u which satisfies

O<wa,,oo<u<W
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in O, hence u is locally bounded in Q.. The techniques developed in
Theorem 5.1 on (0, ') apply here on (z, T) for any 0 <7< 7, and infer that u
is a weak solution of (1.1) in Q.. Moreover, as in Remark 5.1, the sequence
{ur} 1s equicontinuous in the local uniform topology of O . Up to a
subsequence it converges uniformly on any compact subset of O . Thus u is
continuous on Q_. An easy calculation shows that for any p >0 and j>1,

limt_,() / Wa/,rx: dx = OO.
B,(a

Because {a;} is dense in &, the singular set of the initial trace of u
contains &. But on the other hand, for any open subsets V
ccV:r cc =R\, if we take a test function { with support in V' *
in the proof of Theorem 5.1, we obtain estimates (5.14) and (2.22) of Lemma
2.2 in V for u;. They also hold for u, since y, and u have the same restriction
to #. Therefore the regular set of the initial trace of u contains ¥. Finally,
for any 0 > 0, letting £ — oo in the equality

0
/ / (—urdrp + VP2V, - Vugp) + ul @) dx dt
0oJr=
- / (6, 0) dty — / i, O)p(x, 0) di,
Vo V=

where ¢ € C°(V* x [0,00)), implies (3.5) in V'*, since g <g.. This proves
that the regular part of the initial trace of u is u and consequently
Trp(u) =v = (¥, ). 1

Remark 5.8. If we endow the set %’fg(RN) of the following order
relation:

~ yl c yZ . . N
V<, < if v % (%5, u;) with 2, = RV,
M, St

the solutions u; of (5.2) with respective initial trace v; satisfy u; <u, in Q.
5.4. The Super-Critical Case

In this section we assume
g=qc> 1. (5.44)

In that case it is important to notice that neither every measure in an open
subset of RY, nor every closed subset of RY are eligible for being,
respectively, the regular part and the singular part of the initial trace of a
positive solution of (1.1) in Q4. The examples of the Dirac measure or the
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pointwise singular set show this fact. The conditions for a measure to be
eligible should probably be expressed in terms of capacities, but the theory is
not known up to now.

Given an open subset Z of RY and &> 0, we denote
S =R\, 9 ={xeRV:idistx,")<e}, A =R"\7"
If ue .4 (%) we define a measure y, € .4 (R") by
w(E) = wWE N #°), VE = R", E Borel set.

DEFINITION 5.3. Let p>1, g>q. and % be an open subset of RY. A
Radon measure p € .47 () is called a ( p, q)-trace if for any & > 0 there exists
a nonnegative constructive solution u, of (1.1) in O, with initial trace p,.
We denote by .#7%(R) the set of all (p, g)-traces on Z.

Remark 5.8. 1t follows from Proposition 5.3 that if ue .#”9(%) and
et (R) are such that i<y, then f e 4P9(R). Moreover, .4 P4(R) is a
positive cone in . ().

LEMMA 5.6. Assume q=>q.> 1 and let R be an open subset of R" and
we MPUR). For 0<& <e there exist constructive solutions of (1.1)
corresponding to u, and p, satisfying

Uy, ity (5.45)

Moreover, u, = lim,_,o u,_is a solution of (1.1) in Q, with initial data yp on R.

Proof. Since ¢ <e, we have %° c Z°, hence u,<p, hence by
Proposition 5.3, there exist nonnegative constructive corresponding
solutions such that

Uy, Sy, SW.

As in Theorem 5.4, they converge a.e. to u, = supu,, and u, is a weak
solution of (1.1) in Q., and it converges uniformly on any compact
subset of O_, hence u, is continuous on Q_. The fact that u, has initial
data u on Z is proved in the following way. Let ¢ € C*(Z x [0, 00)) be
nonnegative. For ¢ small enough, the support of {(.,?) lies in a compact
subset of #° independently of z. Since u, admits g, as initial trace, we have
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for almost all >0

0 0
/ / quqo dx dt = / / (14,000 — |Vuﬂly|p72Vuua -Vo)dxdt
0oJa ™ 0Ja

+ / 0 (x,0) dyi, — / 0 (x, O, (x. 0) .

But [, ¢(x,0)du, = [, ¢(x,0)du, and we can pass to the limit in the
right-hand side. Then by the Beppo—Levi theorem,

0 0
//uZCdxdt—»//uZCdxdt<oo.
oJa °° 0Jz

uf - uf strongly in L}, (% x [0, 00)).

Then

Hence as in Remark 5.3,

0 0
| oaca= [ | wow - 9up>9u, - vo) v
0 Jz 0 Jz

+ [ owordi— [ o000
7 7
Moreover, for almost all >0, and any ¢ € C*(£),
[ mnewds— [ aoduco
RY RY
t
= // (V[P Vuy, - VE+ ulé) dx d
0Ja
by passing to the limit in the corresponding equality for u, which implies
im0 v =
e

By definition, this means that the solution u, admits u as initial trace
in 2. 1

LEMMA 5.7. Assume g=q. > 1 and let # be an open subset of RY and
S =R\ %. For e, k>0, let u4+ be the solution of (1.1) in QO with initial

data kyg: g, . Then k v uy g+ is increasing and

uge = My o0 ug g



INITIAL TRACE OF SOLUTIONS 197

is a solution of (1.1) in Qs with initial trace vy: =~ (9°,0) € BLERY).
Moreover,

1

1/(g—1)
ﬁ> , Vx interior to ¥°,  (5.46)

lim, o /0 Duge(x, 1) = (

and this limit holds uniformly on any compact subset interior to °. Moreover,
for 0< & <e¢ there holds

Uy Suge. (5.47)

Proof. The existence and uniqueness of u o+ follows from the classical
theory for the Cauchy problem for Eq.(1.1), and from the maximum
principle, k — uy o+ 1s increasing. Since there always holds

U, o (x, )y < W (2) (5.48)
in Qu, then uys = limy_, uy o+ exists. As above, it is a weak solution of
(1.1) in Q.. Moreover, inequality (5.47) holds clearly for 0<¢' <¢ as a
consequence of the approximation process.

In order to prove (5.46), we consider a ball B,. For ¢ > 0 small enough the
functional H, defined on W,"”(B,) n LY+ (B,) by

o 1 1
H,(p) = —|Vo|? + ——|pt! — = 2>dx
(@) /B (pl ®l qulI</>| 7@

achieves a negative minimal value. Let @, , be a positive minimizer, solution
of the problem

(5.49)
P,,=0 on 0B,.

{ —aV (VD |P 2V P,0) + 9L, = ,,  in B,
From the maximum principle
0<,,<1 in B,.

Put w(x,t) = W()®,,. Then

ow — V- (IVw|P2Vw) 4+ w?
=-wr'v. (|v¢r,a|p_2v¢r,a) + Uq(¢g,,; - ¢r,o‘)

1
= (W‘f - WP1> (P4, — 0.
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Set t, = (g — 1)o@~ D/@+1=P) For 0<t<t,, we have
1
W) —— W)~ =0.
g

Since @7 — @, ,<0, the function w is a subsolution. Now consider b € &,
such that the ball B,(b) be compactly imbedded in %,. Replacing ¢ by ¢+ ¢
in the definition of w, and B, by a ball B,(b), and letting é go to 0, yields to
the lower estimate

g (e, )= WO, o(x — by in By(b) x (0, 1,]. (5.50)

Using the scaling invariance of the equation, the transformed function
N¢(uge) defined by (4.7) satisfies (1.1), and

W(0)@yo (£ (x — b)) < Ni(uge)(x, 1) < W (1), (5.51)

in B,,—5(h) x (0,1,£7']. By the previous estimates and the local regularity
theory, see Remark 5.3, there exists a sequence {¢,} converging to 0 such
that Ny, (uyr) converges to a function U solution of (1.1) in Q. Since @, ,
=>0>0 on B,), for some 0> 0, the function U satisfies

oW () <U(x, )< W (1), (5.52)

in Q. Because W(t+ 1) <U(x,t)<W(t) for any >0 and 4> 0 it follows
classically U = W by letting 4 go to 0. This equality implies also

limg o Ne(ug:) = W.

Taking ¢t = 1 and x = b yields to

1\ YD
limtﬁO tl/(qil)uy'ﬂ'(b, t) = <—) 5
qg—1

and this holds for any b interior to .%°. Since the equation is invariant
by x-translations, the uniformity on any compact interior to .%° follows
easily by contradiction. 1

LeEMMA 5.8.  Under the assumptions of Lemmas 5.6 and 5.7, let 0, be the
singular set of the initial trace of u,, and

Uy = lim,;ﬁ() Uge.

Then ug is a solution of (1.1) in Q. If we denote by & ,,, the singular set of its
initial trace, there always holds

L gL = .
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Proof.  Since the initial trace u, in % is equal to u, we have 0,4 < &.
Since ¢ — uge is increasing, ugy = lim,_,¢ ug+ exists and is a solution of (1.1)
in O. Since #° is the regular set of the initial trace of uy:, we deduce that
for any ¢ > 0,

0
/ (—ugd,p + Vg |’ >Vuy - Vug )+ ul, ) dx dt
o Jar
. / g (x, 0)(x, 0) di,
.

for any 0>0 and ¢ e C°(#° x [0,00)), by passing to the limit in the
corresponding relation for uy-. Similarly we get, for almost all £ > 0 and any
Ce G,

[ urozwa— [ cwaue
RY RY
://(|Vuf/|p_2vu,¢V§—|—u?f§)dxdt,
0JQ

which implies

lim,_,¢ / ug(x, t)E(x) dx = 0.
‘%I?

Then uy admits 0 as an initial trace in %°. Hence #° < RY\.7},, for any
¢>0, hence # =« R\, . ie. ¥pqo = 7. |

The main result in this section is the following.

THEOREM 5.9. Assume g=q. > 1 and let v =~ (¥, 1) = BTERY). Then a
sufficient condition for the existence of a nonnegative solution u of (1.1) in QO
with initial trace v, is the following:

(1) wue dPUR).
(1) There holds

S g OO = (5.53)

Proof. (1) We first assume that p>2. For ¢>57>0 and £>0 we
consider the functions u, and u; ¢» introduced in Lemmas 5.6 and 5.7. The
support of u,(.,0) and uy o(.,0) are disjoint. Since p>2 the speed of
propagation of the support of u, and u; o is finite and depends locally on
the amount of mass concentrated near the free boundary [32]. Consequently,
there exists #;,x > 0 such that, for 0<¢<t,,; the support of u,(.,¢) and
ug (. ,t) are disjoint. It implies that u, + u; o is a solution of (5.8) on
Ot = RY x (0,t,,4) with initial data W + kygnnp,. Therefore, we can
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define a solution u,_t ¢ by

u, (x,1) + upgn(x, t in RY x (0,4,,4),
wro (s t){ (0, 0) F g () Otins) 55

Uk,a,n(xst - ts,;],k) in RN X (tx,n,ka Oo)a

where wv;,, is a solution of (5.8) in (O, with initial data
uy (-5 teqk) +ukon (o, teyr). By Theorem 5.1 it exists since the initial data is
locally integrable. Moreover, since u, and u; ¢ are constructive, we can
construct v, such that

: N
Vkep = sup(u# > Uk, (/)rl) in RY x (ts,n,k, oo),
hence
Uy, k7 2= SUP(Uy, , Uk, 7) in Ox.

Letting k& — oo infers that u, 4 4» increases and converges to a solution
u, o of (1.1). Therefore,

Uy, 9" = sup(um, Ugn) in Ox.

Because of Lemmas 5.6 and 5.7 the function u,,_x ¢ is monotone decreasing
with respect to ¢ and increasing with respect to k£ and # (such are the initial
data). Therefore wu, ¢ is monotone decreasing with respect to & and
increasing with respect to n. We let successively # and ¢ go to 0. Then there
exists

Uyy = limg_,() limn_,() Uy, 9.
As in the previous limit process, u, ¢ is solution of (1.1) in O, and
sup(uy, ug) <u,g <W.

If we call & the singular part of the initial trace of u, o, then by definition of
a singular set,

Fpguoyd =9 < &

But, for any b € 2, if 0 <&y <dist(b, #)/3, then for any T >0, [, NORIR
(x, 0) dx remains bounded for 0 € (0, '] independently of 0<n<a<ao Let
(e Cg‘(IRN) with support in £% such that { =1 in B, (b), and 7> 0 large
enough. By estimate (5.11), we derive

1 0
g/uun,yq(x,@)f(x)dx—i-//uzwwlfddeS/,u(x)CT(x)dx—l—C,
Q 0oJa Q
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with C=C=C(p,q,N,T,(,7). Consequently, the same holds for
/, By () Y #(x,0) dx, and this implies B, (b) < % = RV\.#. By complement ¥
'Y and finally

S =

For the regular part of the initial trace of u, », we prove that it coincides
with pin %, as in Lemma 5.6. It follows that the initial trace of u, & is the
couple (£, u).

(i) Now assume that 1 < p<2. Then the speed of propagation of the
support of the solutions to (1.1) is infinite. However, for any k< p — 1 and
y >0, the following equation:

v — V- (IVo|P2V0) + v +p0° =0 (5.55)

has the finite speed of propagation property, [25]. Moreover the positive
classical solutions depends monotonically of y. Therefore, we follow the
construction of the case p > 2 in constructing first the functions «/, and u;
solutions of (5.55) with respective initial data p, and ky gnp, . Those solutlons
exist and are dominated by uy, and uy, 4, respectively. We define u T by
additivity in a similar way as in (5.54). Now u, o is well defined by the

expressmn

Uy = lim,_¢ lil’l’ln_,() limy oo limy_,() u;h’k’w.
The remaining of the proof is as in the first case. 1

Remark 5.6. In the case p=2, it is proved in [33] that the two
assertions (i) and (ii) in Theorem 5.9 are necessary and sufficient
conditions for the existence of a solution with initial trace v ~ (<, p).
Moreover, the solution which is constructed is a maximal solution. Finally,
conditions (i) and (ii) are expressed in terms of N-dimensional Bessel
capacities Cy/g 4

e MR < wE) =0, V Borel set £ with Cy/,,(E) = 0.

And the set & ,, =, is the “nonremovable part” of %, and more
precisely,

={xeR": Ca/qq(S 0 U) >0, YU open neighborhood of x},
and 0, is the set of blow-up points of y, that is

={xed  wWUnF)= o0, YU open neighborhood of x}.
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We prove below Lemma 5.2. We assume that {u,} < C.(RY) are
nonnegative and converges to u in the sense of measures. Since i<y, the
Radon—Nikodym theorem applies and there exists a function g ELL(RN )
such that

dii = g dp.

Moreover,

0<g<l, p-a.e. in RY.

Now there exists a sequence {gn} = C.(R") of nonnegative functions, such
that g, > g in L! (RN ). By truncation it can also be assumed that
0<g,<1, VneN. From the assumption, for any ¢ € C.(R") and any & €
N* there exists n; € N* such that Vn>n,

1
‘/ @gkundx—/,wgkdu‘<—
RV RV k

We define a new sequence {g/,} by setting

g, = Yk if mp<n<npy.

‘/ <pgﬁ,undx—/,<pdﬂ‘
[RN R.N
S‘/ @gzundx—/ <pgi,du'+‘/ <pgﬁ,du—/ pgdul,
RN RN RN RN

and, for n>ny,

11
‘/ cpgi.ﬂndx—/,fpdu’<k+‘/ wg;du—/ wgdu’.
RN RN RN RN

Since, by Lebesgue’s theorem,

Then

lim, / @g, du — / pgdu =0,
RN RN

we conclude that for any continuous function ¢ with compact support, there
exists a subsequence {g/} of {g,} such that

iim,- [ ogudv— [ odi=o
RN RN
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Since the set C.(R") admits a countable dense subset {®;}en for the
topology of uniform convergence on compact subsets of R" (which is
defined by the countable set of semi-norms ||#]|,, = maXyj<m [H(x)|, for m e
N, and # € C(R")), there exists a diagonal sequence {i,} extracted from
{g,1,} such that

limnﬁoo/ (pjﬂndx:/ ¢, di, VjeN.
[RN RN

The conclusion follows by density.

ACKNOWLEDGMENT

The authors are grateful to Emmanuel Lesigne for providing them with the proof of
Lemma 5.2.

REFERENCES

1. F. Andreu, J. M. Mazon, S. Segura de Leon, and J. Toledo, Existence and uniqueness for a
degenerate parabolic equation with L' data, Trans. Amer. Math. Soc. 351 (1999), 285-306.

2. D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium
equation, Trans. Amer. Math. Soc. 280 (1983), 351-366.

3. A. Dall’Aglio and L. Orsina, Existence results for some nonlinear parabolic equations with
nonregular data, Differential Integral Equations 5 (1992), 1335-1354.

4. A. Dall’Aglio, L. Boccardo, T. Gallouét, and L. Orsina, Nonlinear parabolic equations
with measure data, J. Funct. Anal. 147 (1997), 237-258.

5. E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equations
with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 13 (1996), 487-535.

6. E. Di Benedetto, “Degenerate Parabolic Equations,” Springer-Verlag, Berlin, 1993.

7. E. Di Benedetto and M. A. Herrero, On the Cauchy problem and initial trace for a
degenerate parabolic equation, Trans. Amer. Math. Soc. 314 (1989), 187-223.

8. E. Di Benedetto and M. A. Herrero, Nonnegative solutions of the evolution p-Laplacian
equation. Initial trace and Cauchy problem when 1 < p<2, Arch. Rational Mech. Anal. 111
(1990), 225-290.

9. E. Di Benedetto and Y. Z. Chen, On the local behaviour of solutions of singular parabolic
equation, Arch. Rational Mech. Anal. 107 (1989), 293-324.

10. P. Bénilan, P. Crandall, and M. Pierre, Solutions of the porous medium equation in R”
under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), 51-87.

11. P. Bénilan, L. Boccardo, T. Gallouét, R. Gariepy, M. Pierre, and J. L. Vazquez, An L!
theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola
Norm. Sup. Pisa CI. Sci. 22 (1995), 240-273.

12. M. F. Bidaut-Véron, Local and global behaviour of solutions of quasilinear elliptic
equations of Emden—Fowler type, Arch. Rational Mech. Anal. 107 (1989), 293-324.



204 BIDAUT-VERON, CHASSEIGNE, AND VERON

13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

M. F. Bidaut-Véron and S. Pohozaev, Non existence results and estimates for some
nonlinear elliptic problems, J. Anal. Math. 84 (2001), 1-49.

D. Blanchard, Truncations and monotonicity methods for parabolic equations, Nonlinear
Anal. TMA 21 (1993), 725-743.

D. Blanchard and F. Murat, Renormalized solutions of nonlinear parabolic equation with
L' data: Existence and uniqueness, Proc. Roy. Soc. Edinburgh 127A (1997), 1153-1179.

. L. Boccardo and T. Gallouét, Nonlinear elliptic and parabolic equations involving measure

data, J. Funct. Anal. 87 (1989), 149-169.

. L. Boccardo and T. Gallouét, Nonlinear elliptic equations with right hand side measures,

Comm. Partial Differential Equations 17 (1992), 641-655.

H. Brezis, “Opérateurs Maximaux Monotones et Semi-Groupes de contractions dans les
Espaces de Hilbert,” North-Holland, Amsterdam, 1973.

H. Brezis, Asymptotic behaviour of some evolution systems, in “Nonlinear Evolution
Equations,” pp. 141-154, Academic Press, New York, London, 1978.

E. Chasseigne, Initial trace for a porous medium equation; I. The strong absorption case,
Ann. Math. Pura Appl., to appear.

E. Chasseigne, Initial trace for a porous medium equation; II. The critical absorption case,
Asymptotic Anal. 24 (2000), 37-72.

X. Chen, Y. Qi, and M. Wang, Self-similar singular solutions of a p-Laplacian evolution
with absorption, preprint.

X. Chen, Y. Qi, and M. Wang, Singular solutions of parabolic p-Laplacian with
absorption, preprint.

J. 1. Diaz and J. E. Saa, Existence ét unicité de solutions positives pour certaines equations
elliptiques quasilinéaires, C.R. Acad. Sci. A Paris 305 (1987), 521-524.

J. I. Diaz and L. Véron, Local vanishing properties of solutions of elliptic and parabolic
quasilinear equations, Trans. Amer. Math. Soc. 290 (1985), 787-814.

L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions,”
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

A. Gmira, On quasilinear parabolic equations involving measure data, Asymptotic Anal. 3
(1990), 43-56.

M. Guedda and L. Véron, Local and global behaviour of solutions of quasilinear elliptic
equations, J. Differential Equations 76 (1988), 159-189.

S. Kamin and L. A. Peletier, Singular solution of the heat equation with absorption, Proc.
Amer. Math. Soc. 95 (1985), 205-210.

S. Kamin and L. A. Peletier, Source-type solutions of degenerate diffusion equations with
absorption, Israel J. Math. 50 (1985), 219-230.

S. Kamin, L. A. Peletier, and J.L. Vazquez, Classification of singular solutions of a
nonlinear heat equation, Duke Math. J. 58 (1989), 601-615.

S. Kamin and J. L. Vazquez, Singular solutions of some nonlinear parabolic equations, J.
Anal. Math. 59 (1992), 51-74.

M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic
equations, Comm. Partial Differential Equations 24 (1999), 1445-1499.

M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptlic
equations: The subcritical case, Arch. Rational Mech. Anal. 144 (1998), 201-231.

M. Marcus and L. Véron, The boundary trace of positive solutions of semilinear elliptic
equations: The supercritical case, J. Math. Pures Appl. 77 (1998), 481-524.



36

37.

38.

39.

40.

41.

42.

43.

44.

INITIAL TRACE OF SOLUTIONS 205

. M. Marcus and L. Véron, Removable singularities and boundary traces, J. Math. Pures
Appl. 80 (2001), 879-900.

E. Mitidieri and S. Pohozaev, Nonexistence of positive solutions for quasilinear elliptic
problems in RY, Proc. Steklov Inst. 227 (2000), 186-216.

L. A. Peletier and J. Wang, A very singular solution of a quasilinear degenerate diffusion
equation with absorption, Trans. Amer. Math. Soc. 307 (1998), 813-826.

A. Prignet, Existence and uniqueness of entropy solutions of parabolic problems with L'
data, Nonlinear Anal. TMA 28 (1997), 1943-1958.

J. M. Rakotosson, Some quasilinear parabolic equations, Nonlinear Anal. TMA 17 (1991),
1163-1175.

P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical
boundary points, Comm. Partial Differential Equations 8 (1983), 773-816.

L. Véron, Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les
espaces de Banach, Publ. Math. Univ. Besancon (1975/76), 1-75.

L. Véron, Effets régularisants de semi-groupes non linéaires dans des espaces de Banach,
Ann. Fac. Sci. Toulouse 1 (1979), 171-200.

X. Xu, On the initial boundary-value-problem for u, — div(|Vul?~2|Vul) = 0, Arch. Rational
Mech. Anal. 127 (1994), 319-335.



	1. INTRODUTION
	2. PRELIMINARIES
	3. EXISTENCE OF THE INITIAL TRACE
	4. COMPLEMENTARY PROPERTIES FOR P > 2
	5. SOLUTION WITH A GIVEN INITIAL TRACE
	APPENDIX
	ACKNOWLEDGMENT
	REFERENCES

