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Abstract. In this article we study the behavior near 0 of the nonnegative solutions of the equation

−div(a(x)|∇u|p−2∇u) = b(x)|u|δ−1u, x ∈ Ω \ {0},

whereΩ is a domain ofRN containing 0, andδ > p − 1 > 0, a, b are nonnegative weight functions. We give a complete
classification of the solutions in the radial case, and punctual estimates in the nonradial one. We also consider the Dirichlet
problem inΩ.

1. Introduction and main results

LetΩ be a bounded regular domain ofRN (N � 1) containing 0. In this work we are concerned with
the singularity problem of the behavior near 0 of the nonnegative solutions of the problem

−div
(
a(x)|∇u|p−2∇u

)
= b(x)|u|δ−1u in Ω′, (SP)

whereΩ′ = Ω \ {0}. Here δ > p − 1 > 0, anda, b are nonnegative weight functions inΩ, anda
is positive almost everywhere. We can suppose thatΩ � B = B(0, 1). We also take an interest in the
regular Dirichlet problem inΩ,{

−div
(
a(x)|∇u|p−2∇u

)
= b(x)|u|δ−1u in Ω,

u = 0 on∂Ω,
(DP)

which is closely linked to the singularity problem.
Many authors have dealt with the nonweighted case, i.e., with nonnegative solutions to the equation

−∆pu = −div
(
|∇u|p−2∇u

)
= |u|δ−1u, (1.1)

whereδ > p− 1> 0. Two critical values ofδ appear: the first one is

N (p− 1) + p
N − p = P ∗ − 1, (1.2)
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whereP ∗ = Np/(N − p) (P ∗ = +∞ if p � N ), andP ∗ is the critical value of the Sobolev imbedding
W 1,p(Ω) ↪→ Lδ+1(Ω). It is well known that the Dirichlet problem{

−∆pu = |u|δ−1u in Ω,

u = 0 on∂Ω,
(1.3)

admits nontrivial nonnegative solutions wheneverδ + 1 < P ∗, and this condition is necessary whenΩ
is starshaped. The second value is given by

P =
N (p− 1)
N − p , (1.4)

which we will call Serrin’s exponent, involved in the singularity problem

−∆pu = |u|δ−1u in Ω′, (1.5)

as well as in the Harnack properties of problem (1.3). Notice the relation

P =
P ∗

p′
, (1.6)

wherep′ = p/(p− 1).
The first results about problem (1.5) were obtained for the radial case in [7–9] forp = 2, and later in

[22] for generalp. The behavior of radial solutions of (1.5) asδ crossed the valueP was described in
[15]: if 1 < p < N , anyu positive radial solution to (1.1) defined near 0 is bounded, or

u(r) ≈ r(p−N )/(p−1) whenδ < P ,
u(r) ≈ r(p−N )/(p−1)| logr|(N−p)/(p(p−1)) whenδ = P ,
u(r) ≈ r−p/(δ+1−p) whenP < δ < P ∗ − 1.

In [2] one can find a complete classification of local and global radial solutions of any sign, for anyδ.
In the nonradial case, the behavior near 0 whenp = 2 was studied in [18] forδ < N/(N − 2), and at
the same time in [13] for anyδ < 2∗ − 1, where local and global results are established; see also [1] for
the caseδ = N/(N − 2). In the general casep > 1, the behavior near 0 or infinity of nonradial positive
solutions was obtained whenδ < P in [2]. Very recently the results of [13] have been extended to the
caseδ < P ∗ − 1.

We are concerned here with the generalization of some of those results to the weighted problems
(DP) and (SP). Several studies have been done forb = 0, see for example [21,6,19,17,16]. Up to now
the only studies forb 	= 0 are related to the radial Dirichlet problem, see [12], or to the casea = 1,
see in particular [4]. We will study both the radial and nonradial situations. The second one is much
more complex. In the general case the weights (even when they are radial) can present many types
of singularities, and not only at 0. In particular the presence of the weighta increases significantly
the difficulty, since it concerns the derivatives up to the order 2, whereasb only concerns the terms
of order 0. In the sequel we use suitable weighted spacesLs(Ω,a), Ls(Ω, b) (s � 1), and Sobolev
spacesW 1,p(Ω,a), W 1,p

0 (Ω,a), see [16]. By solutions of (SP) (resp. (DP)), we mean functionsu ∈
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W 1,p
loc (Ω′,a) ∩ Lδ

loc(Ω
′, b) ∩ L∞

loc(Ω
′) (resp.u ∈ W 1,p

0 (Ω,a) ∩ Lδ(Ω, b)), satisfying the equation in the
sense of distributions. The notion of supersolution, namely

−div
(
a(x)|∇u|p−2∇u

)
� b(x)|u|δ−1u in Ω′ (resp. inΩ),

is also taken in that sense.
Section 2 is devoted to the radial case. Here the weigths are supposed to be radial:

a(x) = a(r), b(x) = b(r), r = |x|,

and, moreover, we look for radial nonnegative solutions of (SP). We are lead to the problem

−
(
A(r)

∣∣u′∣∣p−2
u′

)′ = B(r)uδ, r ∈ (0, 1], (SPr)

where

A(r) := rN−1a(r), B(r) := rN−1b(r). (1.7)

Concerning the weights, we suppose that

A,B ∈ L1
loc

(
(0, 1]

)
, A1/(1−p) ∈ L1

loc
(
(0, 1]

)
. (H1)

This implies that the equation without second member

−
(
A(r)

∣∣w′∣∣p−2
w′)′ = 0, r ∈ (0, 1], (1.8)

admits (besides the constant solutions) a solutionh, given by

h(r) :=
∫ 1

r
A1/(1−p) dt, (1.9)

which plays a crucial role in the study. We callh a fundamental solutionto the weightedp-Laplacian.
It is easy to prove that ifh is bounded near 0, then any solution of (SPr) is bounded near 0. Thus the
interesting case is when limr→0+ h(r) = +∞, which means

A1/(1−p) /∈ L1(0, 1). (H2)

In Section 2.1 we first give necessary conditions for existence of nontrivial solutions. In particular,
under (H1), (H2), we have

B ∈ L1((0, 1)
)
, and sup

0<r<1
hp−1(r)β(r) < +∞, (1.10)

where

β(r) :=
∫ r

0
B dt. (1.11)
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In Section 2.2 we recall the results of [12] about the existence of nonnegative radial solutions of
problem (SPr), bounded inB. They pointed out a critical valuep∗ for the existence of such solutions,
which is the analogous ofP ∗ for the weighted radial case. It is the critical value of the Hardy–Sobolev
inequality in dimension 1 with weightsA andB. That meansp∗ is the supremum of theq � p such that
for anyϕ absolutely continuous in (0, 1] withϕ(1) = 0 and

∫ 1
0 |ϕ′|pAdt < +∞,

( ∫ 1

0
|ϕ|qB dt

)1/q

� C

( ∫ 1

0

∣∣ϕ′∣∣pAdt
)1/p

for someC = C(N ,p, q) > 0. Now setting

p := sup
{
d � p− 1: sup

0<r<1
hd(r)β(r) < +∞

}
, (1.12)

which is well defined from (1.10), they proved, under an additional assumption, that

p∗ = p′p. (1.13)

We will see thatp plays the role of a radial Serrin’s number associated to the weighted problem (SPr).
To this end we first show thatp can be characterized as

p = sup
{
δ � p− 1:

∫ 1

0
hδB dt < +∞

}
(1.14)

whenp − 1 < p. Then in Section 2.3 we give a complete classification of the nonnegative solutions of
the problem (SPr):

Theorem 1.1. Assume(H1) and(H2). Suppose thatu is any nonnegative solution to(SPr).

(i) Then there existsC > 0 such that the two following estimates hold near0:

u(r) � Ch(r), (1.15)

u(r) � C
(
h(p−1)(r)β(r)

)−1/(δ+1−p)
(1.16)

� Cr−p/(δ+1−p)
(∫ 2r

r Adt∫ 2r
r B dt

)−1/(δ+1−p)

. (1.17)

(ii) If p− 1 � p < δ, then, moreover,limr→0+ u(r)/h(r) = 0.
(iii) If p − 1 < δ < p, or if δ = p and

∫ 1
0 h

pB dt < ∞, then eitheru is bounded near0, or
limr→0+ u(r)/h(r) > 0.

(iv) If δ = p, and
∫ 1

0 h
pB dt = ∞, thenlimr→0+ u(r)/h(r) = 0. If p− 1< p, then

u(r) � Ch(r)
(
�(r)

)−1/(p−p+1)
near0, (1.18)

for someC > 0, where�(r) =
∫ 1
r h

pB dt.
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Among other things, this theorem points out the two aspects of the problem: the estimate (1.15) is
due to the fact that the function is a supersolution of the equation without second member (1.8), and the
estimate (1.16) is due to the effect of the second memberbuδ. They extend the well known estimates of
the nonweighted case, namely

u(r) � Cmin
(
r(p−N )/(p−1), r−p/(δ+1−p)) near 0.

Our result also shows the role of the integrability of the fundamental solutionhδ (with respect to the
weightB) in the behavior of the solutions, see also [11]. We give a few examples in Section 2.4. We
note here, that as a first difference with the nonweighted case, the solutions of (SPr) can behave like the
fundamental solution at the critical numberp. Also p can be equal top− 1. Clearlyp can be infinite, and
not only as in the nonweighted case whenN = p. Finally, in Section 2.5, under some more assumptions
on the weights, we complete our classification results in caseδ > p.

Section 3 concerns the regular Dirichlet problem inΩ. Here we assume that the weightsa, b are
globally admissible in a sense we will precise. It implies thata, b ∈ L1(Ω), and a Sobolev inequality
holds, with weightsa andb, i.e., there existsκ > p such that for anyϕ ∈ D(Ω),

( ∫
Ω
|ϕ|κbdx

)1/κ

� C

( ∫
Ω
|∇ϕ|padx

)1/p

with C = C(N ,p, q,Ω,a, b). This in turn guarantees the continuity of the imbeddingW 1,p
0 (Ω,a) ↪→

Lκ(Ω, b). In Section 3.1, we discuss about global Harnack properties with such weights for the nonneg-
ative solutions of equation

−div
(
a(x)|∇u|p−2∇u

)
= H(x)b(x)|u|p−2u, (1.19)

in Ω, under suitable conditions on the functionH. In Section 3.2 we deduce the existence of bounded
solutions of (DP) under a compactness assumption. We get the following, which mainly extends the
results of [12] to the nonradial case:

Theorem 1.2. Assume that(a, b) is globally κ-admissible inΩ, and the imbeddingW 1,p
0 (Ω,a) ↪→

Lq(Ω, b) is compact for anyp < q < κ. Let p − 1 < δ < κ − 1. Then there exists a nontrivial
nonnegative bounded solutionu of the Dirichlet problem inΩ:{

u ∈W 1,p
0 (Ω,a) ∩ L∞(Ω),

−div
(
a(x)|∇u|p−2∇u

)
= b(x)uδ in Ω.

(1.20)

We give some applications in Section 3.3.
Section 4 is devoted to the problem of the behavior near 0 of the solutions of (SP) inΩ′ in the nonradial

case. In [4] the first results have been given in the casea ≡ 1 andb is a power of|x|:

Theorem 1.3 ([4]). AssumeN > p > 1 , andu ∈ C0(Ω′) is a nonnegative solution of

−∆pu = −div
(
|∇u|p−2∇u

)
= |x|σuδ in Ω′.
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Then ifp− 1< δ < P , thenu satisfies the Harnack inequality, and

u(x) � Cmin
(
|x|(p−N )/(p−1), |x|−(p+σ)/(δ−p+1)) near0.

With general weights we will need new assumptions of admissibility for the weights, following the
guideline of [6,16], in order to obtain punctual estimates.

In Section 4.1 we first provetwo weak estimates: an estimate of the minimum ofu over any sphere of
center 0 contained inB′ = B \ {0}, and an integral estimate ofu over any ballB(x0, 2R) ⊂ B′, based
on the multiplication of the equation by negative powers ofu.We make the assumption

a, b ∈ L1
loc

(
Ω′), a1/(1−p) ∈ L1

loc
(
Ω′), (K1)

which extend (H1). Notice that it does not imply the existence of a fundamental solution.

Theorem 1.4. Assume(K1). Let u be any nonnegative supersolution of(SP) in Ω′. Then there exists
C > 0 such that for anyx0 ∈ B′

,

inf
|x|=|x0|

u � C

( ∫
|x0|�|x|�1

|x|(1−N )p′a1/(1−p) dx+ 1
)

, (1.21)

and for anyR > 0 such thatB(x0, 4R) ⊂ B′,

(∫
B(x0,R) bu

δ dx∫
B(x0,R) bdx

)1/δ

� CR−p/(δ+1−p)
(∫

B(x0,2R) adx∫
B(x0,R) bdx

)1/(δ−p+1)

. (1.22)

In Section 4.2 we discuss aboutlocal Harnack properties for the solutions of Eq. (1.19) in any do-
mainD of RN , under local conditions onH. They suppose thata and the pair (a, b) satisfy local ad-
missibility conditions. In particular we assume that two Sobolev–Hardy inequalities hold in any ball
B(x0,R) ⊂ D, namely that there exists someQ andK > p such that for anyϕ ∈ D(B(x0,R)),

(∫
B(x0,R) |ϕ|Qadx∫

B(x0,R) adx

)1/Q

� CR

(∫
B(x0,R) |∇ϕ|padx∫

B(x0,R) adx

)1/p

(1.23)

and (∫
B(x0,R) |ϕ|Kbdx∫

B(x0,R) bdx

)1/K

� CR

(∫
B(x0,R) |∇ϕ|padx∫

B(x0,R) adx

)1/p

(1.24)

for someC = C(N ,p,Q,K,D) > 0. We will say thata is locallyQ-admissible and (a, b) is locally
K-admissible inD. The first condition, (1.23), ensures that the full Harnack inequality holds for the
equation without second member

−div
(
a(x)|∇u|p−2∇u

)
= 0 inD. (1.25)

The second one, (1.24), takes into account the second member. This extends the classical results of
[24,27,14] in the nonweighted case, and those of [6,5] in the weighted one.
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In Section 4.3 we deduce punctual estimates with general weights, by takingD = Ω′. Our main result
is the following:

Theorem 1.5. Assume thata is locallyQ-admissible and(a, b) is locallyK-admissible inΩ′ for some
Q,K > p. Let

Q =
Q

p′
, K =

K

p′
,

be the Serrin’s numbers associated toQ, K. If δ < min(Q,K), then any solutionu of (SP)satisfies the
following estimate: for anyx0 ∈ B′

,

u(x0) � C

(∣∣x0
∣∣−p

∫
B(x0,|x0|/4) adx∫
B(x0,|x0|/4) bdx

)1/(δ−p+1)

. (1.26)

In particular, whena = b, we find the exact estimate of the nonweighted case

u(x0) � C
∣∣x0

∣∣−p/(δ+1−p)
near 0.

It is remarkable to see that it does not depend on the weighta. More generally, we deduce the following:

Theorem 1.6. Assume thata is locallyQ-admissible inΩ′, and

b(x)∫
B(|x0|,R) bdx

� a(x)∫
B(|x0|,R) adx

, (1.27)

for anyx0 ∈ B′
and anyR � |x0|/2. If δ < Q, then any solutionu of (SP)in Ω′ satisfies the Harnack

inequality inB′
, and

u(x0) � Cmin
(∫

|x0|�|x|�1
|x|(1−N )p′a1/(1−p) dx,

(∣∣x0
∣∣−pa(x0)
b(x0)

)1/(δ−p+1))
. (1.28)

In Section 4.4 we study the special case of radial weights. Thenh is still a solution of problem (SP).
If it is bounded, then, under the assumptions of Theorem 1.6, any solutionu is bounded near 0. Now,
assuming thath is unbounded, we show the following estimates, which extend precisely those of the
radial case:

Theorem 1.7. Assume that the weightsa, b are radial and satisfy(H1) and(H2). Letu be any nontrivial
solution of(SP).

(i) If a is locally Q-admissible inΩ′, and (a, b) is locallyK-admissible inΩ′, andp − 1 < δ <
min(Q,K), then

u(x) � C
(
hp−1(|x|)β(

|x|
))−1/(δ−p+1)

near0. (1.29)

Moreover,lim infx→0u(x) > 0 and(1.10)holds.
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(ii) In particular, if a is locallyQ-admissible inΩ′, and for anyr � 1 and anyr < s < 2r,

B(s)∫ 2r
r B dt

� C
A(s)∫ 2r
r Adt

, (1.30)

for someC > 0, andδ < Q, thenu satisfies the Harnack inequality inB′
, and

u(x) � Cmin
(
h
(
|x|

)
,
(
hp−1(|x|)β(

|x|
))−1/(δ−p+1))

. (1.31)

In Section 4.5, we give some applications of those theorems. They show that the admissibility assump-
tions are not very constraining when the weights are singular only at 0, since they only concernΩ′ and
notΩ. Notice that the condition (1.30) is automatically satisfied in the case of two powers

a(x) = |x|θ, b(x) = |x|σ , (1.32)

whereθ, σ are any reals. Moreover,a(x) is Q-admissible, for anyQ < P ∗, whereP ∗ is defined in
(1.2), independent onγ, σ. Thus the results on the behavior near 0 require only thatδ < P . In particular
we cover the results of Theorem 1.3. On the contrary, for the existence of a bounded solution of the
Dirichlet problem inΩ, we need that the pair (a, b) isκ-admissible, withκ < inf(P ∗,p∗). This shows the
difference between the problem near 0, which only requires Harnack properties inΩ′ and the Dirichlet
problem, which needs them in the wholeΩ.

2. The radial case

We start this section by proving some basic facts concerning positive solutions to (SPr). For the sake
of completness, recall that, for anys � 1, Ls((0, 1),A) is the space ofA-measurable functionsu in (0, 1)
such that

‖u‖Ls((0,1),A) =
( ∫ 1

0
usAdt

)1/s

< +∞.

AndW 1,p((0, 1),A) is the completion of{
ϕ ∈ C∞(

(0, 1)
)
: ‖ϕ‖1,p,A = ‖ϕ‖Ls((0,1),A) + ‖ϕ′‖Ls((0,1),A) < +∞

}
with respect to the norm‖·‖1,p,a. We define in the same wayLs

loc((0, 1),A) andW 1,p
loc ((0, 1),a). Under

the assumption (H1), the spaceW 1,p
loc ((0, 1),A) is contained inW 1,1

loc ((0, 1)), hence inC0((0, 1)), see [16,
Lemma 1.13].

2.1. Existence and upper estimates

First we study the case whereh is bounded:

Proposition 2.1. Assume(H1) holds, withA1/(1−p) ∈ L1(0, 1). Then any nonnegative solutionu of (SPr)
is bounded near0.
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Proof. The functionA|u′|p−2u′ is nonincreasing, thus it has a limitλ ∈ (−∞,+∞] asr → 0. If λ > 0,
thenu′(r) > 0 for smallr, henceu has a finite limit asr → 0. If λ � 0, thenA1/(p−1)|u′| is bounded,
hence from the assumption,u′ is integrable near 0 and the conclusion follows.

Now we suppose thath is unbounded.

Proposition 2.2. Assume(H1), (H2). If there exists a nontrivial nonnegative solutionu to problem(Pr),
then necessarilyu ∈ Lδ((0, 1),B), lim inf r→0u(r) > 0, and(1.10)holds. Moreover, any solution satis-
fies the estimates(1.15), (1.16)and(1.17)near0, andu(r)/h(r) has a finite limitL asr → 0.

Proof. Definingλ as above, we cannot haveλ > 0: it implies thatu′(r) � CA(r)−1/(p−1) near 0 for
someC > 0, henceu + Ch is nondecreasing near 0, which is impossible since its limit is+∞. Then
λ � 0, u is nonincreasing near 0, henceu � C > 0 near 0. AndA1/(p−1)|u′| is bounded, hence
u ∈ Lδ((0, 1),B) andB ∈ L1(0, 1) andβ is well defined. Also

A
∣∣u′∣∣p−2

u′ = −
(
u′

h′

)p−1

is decreasing to a finite limit. Henceu/h has a finite limit, from l’Hospital’s rule, and (1.15) holds. Next
we make the change of variables

h = h(r), y(h) = u(r). (2.1)

Sinceu is nonincreasing,y is nondecreasing forh > 0 sufficiently large, and the equation in (SPr)
transforms into

d
dh

((
dy
dh

)p−1)
+A1/(p−1)Byδ =

d
dh

((
dy
dh

)p−1)
− dβ

dh
yδ = 0. (2.2)

By concavity, we have that for largeh

y(h) � Ch
dy
dh

for someC > 0. (2.3)

Integrating betweenh andk > h, we get with a newC > 0

yδ(h)
(
β(h) − β(k)

)
�

∫ k

h

∣∣∣∣dβdh
∣∣∣∣yδ dτ �

(
dy
dh

)p−1

(h) � C

(
y(h)
h

)p−1

.

Lettingk → +∞, sinceβ(k) → 0, and returning tou, we get

uδ(r)hp−1(r)β(r) � Cup−1(r),

and hence (1.16) holds. Now takingh = h(r) andk = h(2r), we get

uδ(r)hp−1(r)
∫ 2r

r
B dt � Cup−1(r),
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and from the Hölder inequality

rp �
( ∫ 2r

r
Adt

)( ∫ 2r

r
A−1/(p−1) dt

)(p−1)

�
( ∫ 2r

r
Adt

)
hp−1(r),

hence (1.17) follows. �

Remark 2.1. In the case thath is bounded, it is possible thatB /∈ L1(0, 1) and there can exist a solution
u > 0 such that limr→0u(r) = 0. Consider for example the equation−u′′ = r−αuδ, whereA = 1,
p = 2,B = r−α, with 1 < α < 2. It admits solutionsu such that limr→0(u(r)/r) > 0, from the fixed
point theorem.

2.2. The Dirichlet radial problem and the Serrin’s radial number

Let us first recall the results of [12] concerning the radial Dirichlet problem in the ballB: assuming
that

sup
0<r<1

hk(r)β(r) <∞ for somek > p− 1, (2.4)

and defining

p∗ := sup
{
q � p: sup

0<r<1
hq/p

′
(r)β(r) < +∞

}
= p′p,

they obtained the following:

Theorem 2.1 ([12]). Assume(H1), (H2), andB ∈ L1((0, 1)). Letp − 1 < δ < p∗ − 1. Then there exist
at least one nontrivial solutionu of the problem{

u ∈W 1,p((0, 1)
)
, u(1) = 0,

−
(
A(r)

∣∣u′∣∣p−2
u′

)′ = B(r)uδ a.e. in(0, 1),

and bounded in[0, 1].

Notice that the condition (2.4) is not necessary to definep andp∗ from Proposition 2.2, it only guar-
antees thatp < p∗, that meansp− 1< p.

Let us give an equivalent definition ofp:

Proposition 2.3. Assume(H1), (H2). If p− 1< p, thenp is also characterized by(1.14).

Proof. Let

W :=
{
d � p− 1:

∫ 1

0
hdB dt < +∞

}
, U :=

{
d � p− 1: sup

t∈(0,1)
hd(t)β(t) < +∞

}
. (2.5)
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The setU is not empty, since it containsp−1, from Proposition 2.2. First observe thatW ⊂ U , since for
any 0< r � 1 andd ∈ W, we haveβ(r)hd(r) �

∫ r
0 h

dB dt, and thus̃p � p. Now for anyd, d1 such
thatp− 1< d < d1 < p and 0< s < r � r0 < 1, we have by integrating by parts∫ r

s
hdB dt=

∫ r

s
hdβ′ dt � hd(r)β(r) − d

∫ r

s
hd−1h′β dt

� hd1(r)β(r)hd−d1(r0) − d
(

sup
r∈(0,1]

hd1(r)β(r)
) ∫ r

s
hd−d1−1h′ dt

� hd−d1(r0)
(

sup
r∈(0,1]

hd1(r)β(r)
) d1

d1 − d
,

henced ∈ W and thus (p − 1,p) ⊂ W andp = supW. �

Remark 2.2. Whenp− 1< p, we havep− 1 ∈ W from the Hölder inequality, hence

either W = U =[p− 1,p), or W = [p − 1,p) � U = [p− 1,p].

The two cases can happen, see Section 2.4. Ifp− 1 = p, thenU = {p− 1} andW = U or ∅.

Remark 2.3. From [12], the valuep∗ can be computed as

p∗ = p′ lim inf
r→0+

| logβ(r)|
log(h(r))

,

hence

p = lim inf
r→0+

| logβ(r)|
log(h(r))

. (2.6)

2.3. Description of the behavior

Here we prove Theorem 1.1 and give some remarks.

Proof of Theorem 1.1. (i) The estimates follow from Proposition 2.2. LetL = limr→0(u(r)/h(r)).
(ii) Assumeδ > p, then sup0<r<1 h

δ(r)β(r) = +∞. Then there exists a sequence (rn) tending to 0,
such that limn→∞ hδ(rn)β(rn) = ∞. From (1.16), we have

u(rn)
h(rn)

� C
(
hδ(rn)β(rn)

)−1/(δ−p+1)
,

hence limn→∞ u(rn)/h(rn) = 0. Then necessarilyL = 0.
(iii) Assumep − 1 < δ < p. Suppose thatL = 0. Then, from concavity, the functiony/h is nonin-

creasing and tends to 0 at infinity. Then for anyε > 0 there existsh1 > 0 such that suph�h1
y(h)/h � ε;

and we have limh→+∞ dy/dh = 0, hence

(
dy
dh

)p−1

(h) =
∫ ∞

h
A1/(p−1)Byδ dτ , (2.7)
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and for anyh > h1,

(
dy
dh

)p−1

(h) �
(
y

h

)δ ∫ ∞

h
A1/(p−1)bhδ dτ =

(
y

h

)δ ∫ r

0
hδB dt

and limr→0
∫ r

0 h
δB dt = 0 from (1.14); hence we can chooseh1 large enough such that

(
dy
dh

)p−1

(h) � ε(p−1−δ)
(
y

h

)δ

.

Thus integrating on (h1,h), we deduce that

y1−δ/(p−1)(h) � y1−δ/(p−1)(h1) − (εh1)1−δ/(p−1) > 0.

Theny = u is bounded. If
∫ 1

0 h
pB dt <∞, the proof given above is still valid forδ = p.

(iv) Supposeδ = p and
∫ 1

0 h
pB dt = +∞. ThenL = 0. Indeed ifL > 0, then by using (2.1) we find

that (
dy
dh

)p−1

(h) � L

2

∫ h

h1

A1/(p−1)Bhδ dτ =
L

2

∫ r1

r
hδB dt

for h > h1 = h(r1) large enough. Hence limh→+∞ dy/dh = +∞, which contradicts (2.3). Hence (2.7)
holds again. From (2.3) we also deduce

− d
dh

((
dy
dh

)p−1)
= A1/(p−1)Byp � CA1/(p−1)Bhp

(
dy
dh

)p

,

that is

− d
dh

((
dy
dh

)p−1)
= −dβ

dh
yp � −C dβ

dh
hp

(
dy
dh

)p

.

Thus settingw = (dy/dh)p−1,

−w−p/(p−1) dw
dh

� −C dβ
dh
hp = C

d�
dh
.

Integrating this relation, we find, since limr→0 �(r) = +∞,

w1−p/(p−1) � C�,

with anotherC > 0, hence

dy
dh

� C�−1/(p−p+1).
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And thus from (2.7),∫ ∞

h
A1/(p−1)Byp dτ � C�−(p−1)/(p−p+1). (2.8)

On the other hand,y/h is nonincreasing, which yields

∫ ∞

h
A1/(p−1)Byp dτ �

(
y(h)
h

)p ∫ ∞

h
A1/(p−1)Bhp dτ =

(
y(h)
h

)p

�(h),

and thus, combining with (2.8) we obtain

(
y(h)
h

)p

� C�−p/(p−p+1),

and (1.18) follows. �

Remark 2.4. Among other things, whenp−1< p, this theorem shows that, under the assumption (1.10),
the condition∫ 1

0
hδB dt < +∞

is a necessary and sufficient condition for any unbounded solutionu to (SPr) to behave like the funda-
mental solutionh. Arguing as in [10], one can prove the existence of such solutions, such that

u(1) = 0, A(1)
∣∣u′(1)

∣∣p−2
u′(1) = −γ,

whereγ > 0 is chosen so that
∫ 1

0 h
δB dt < γ(p−1−δ)/(p−1).

2.4. Some examples

Here we give some applications extending the results of [15,3]. Also we show the links between the
setsU andW defined in (2.5).

Example 1. We consider the problem (SPr) with the weights equal to powers,

a(x) = |x|θ, b(x) = |x|σ , θ,σ ∈ R.

HereA(r) = rN−1+θ, B(r) = rN−1+σ. Then (H1) is obviously satisfied, (H2) means thatθ > p − N ,
(1.10) meansσ > −N , andσ + p � θ. Clearly,β(r) = rN+σ/(N + σ) andh(r) ≈ r(p−N−θ)/(p−1)

near 0. Also, we find

p =
(N + σ)(p − 1)
N + θ − p , p∗ =

(N + σ)p
N + θ − p ,
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and the estimates (1.15), (1.16 ), reduce to

u(r) � Cmin
(
r(p−N−θ)/(p−1), r−(σ+p−θ)/(δ+1−p)) near 0.

Notice that here limr→0h
p(r)β(r) = limr→0

∫ 1
r h

pB dt = c > 0, thusU = W = [p − 1,p]. In the case
δ = p, we find the estimate

u(r) � Cr(p−N−θ)/(p−1)| logr|−(N+θ−p)/(p−1)(p+σ−θ) near 0.

Example 2. Here we assume that

a(x) = 1, b(x) = |x|σ
∣∣∣∣ log

∣∣∣∣x2
∣∣∣∣∣∣∣∣k, σ,k ∈ R,

henceA(r) = rN−1, B(r) = rN−1+σ| log(r/2)|k. The assumption (H2) means thatN > p, and we have
h(r) ≈ r(p−N )/(p−1), andβ(r) ≈ rN−1+σ| log(r/2)|k near 0. Thenhp−1(r)β(r) ≈ rp+σ| logr|k near 0.
Hence (1.10) meansσ > −N , andσ > −p or σ = −p andk � 0. Also

p =
(N + σ)(p − 1)

N − p ,

and the estimates (1.15), (1.16), reduce to

u(r) � Cmin
(
r(p−N )/(p−1),

(
r(σ+p)| logr|k

)−1/(δ+1−p))
near 0.

Notice that ifσ = −p, thenp = p− 1. Now

hp(r)β(r) ≈ | logr|k and
∫ 1

r
hpB dt ≈

∫ 1

r
t−1| log t|k dt.

Hencep ∈ U if and only if k � 0, andp ∈ W if and only if k < −1.
Now consider the critical caseδ = p whenσ > −p. If k < −1, Theorem 1.1(iii) applies, so that any

unbounded solution behaves likeh. Moreover there do exist such solutions. Indeed, it suffices to consider
the problem (SPr) with

u(r0) = 0, rN−1
0

∣∣u′(r0)
∣∣p−2

u′(r0) = −1,

andr0 > 0 small to satisfy| logr0|κ+1/|k+1| < ((N −p)/(p−1))p−1. If −1 � k � 0, Theorem 1.1(iv)
applies, and gives the estimate

u(r) � Cr(p−N )/(p−1)| logr|−(k+1)/(δ+1−p) near 0.
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2.5. More precise asymptotics

Here we give more precise information on the behavior of the solutions in the caseδ > p > p − 1, in
terms of the functionh. We will do it under some additional assumptions on the weights. First observe
that if

lim inf
r→0+

hp(r)β(r) > 0,

then from (1.16) we have an estimate ofu in terms ofh, namely

u(r) � Ch(r)(p−p+1)/(δ+1−p) near 0. (2.9)

Let us defineM by the relation

M (p− 1)
M − p = p,

so thatM plays the role of a dimension associated top. Now performing the change of variables

u(r) = w(s), s =
M − p
p− 1

h−(p−1)/(M−p)(r),

we are lead to the equation

− d
ds

(
sM−1

∣∣∣∣dwds
∣∣∣∣p−2dw

ds

)
= Q(r)sM−1wδ ,

where

Q(r) =
hp+1(r)B(r)

|h′(r)| .

If Q were constant, the problem would reduce to a nonweighted one, in the variables and in dimen-
sionM , for which we know the complete classification of the solutions. We can hope to obtain a similar
result whenQ has a positive limit asr tends to 0. In the preceding works of [15,2], the usual changes of
variable reduce the study to an autonomous equation of the second order in a cylinder. Here the equation
is generallynonautonomous, and the problem of the convergence offers a particular interest. We obtain
the following:

Theorem 2.2. Assume(H1), (H2), withA, B continuous in(0, 1). Letδ > p > p − 1, with δ + 1 	= p∗.
Letu be any solution to(SPr).

Assume that the mapping

Q =
hp+1B

|h′| = −hp+1dβ
dh
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has a derivative inL1((0, 1)), and

�Q := lim
r→0

Q(r) > 0.

Then either(u/hp−p+1)/(δ−p+1))(r) has a finite limit� > 0 asr goes to0, or u is bounded.

Proof. The assumption�Q > 0 implies thathp(r)β(r) has also a positive limit from l’Hospital’s rule,
sinceQ = pβ′/(h−p)′, hence (2.9) holds. We make the change of variable

u(r) = hτ (r)v(t), t = log
(
h(r)

)
, τ =

p− p+ 1
δ + 1− p .

This is the same as making the change of variabley(h) = hτv(t), t = logh, in (2.2). Since we have

dy
dh

= hτ−1
(

dv
dt

+ τv
)

� 0, (2.10)

we obtain the equation

d
dt

((
dv
dt

+ τv
)p−1)

− (1− τ )(p − 1)
(

dv
dt

+ τv
)p−1

+Qvδ = 0. (2.11)

It is not autonomous in general because of the coefficientQ. By (2.9),v is bounded, and dv/dt is bounded
from (2.10) and (2.3). As in [2], we can write (2.11) as a system:

dv
dt

= −τv + z1/(p−1),

dz
dt

= (1− τ )(p − 1)z −Qvδ.

Related to this system we consider an energy function given by

V (t) =
zp

′

p′
− τvz +Q

vδ+1

δ + 1
− Λθp−1v

p

p
,

where the constantΛ is linked to the Sobolev exponentp∗ by

Λ = p− 1− pτ =
(p − 1)(δ + 1− p∗)

δ + 1− p 	= 0.

After some computations we get

dV
dt

(t) = ΛX(t) +
dQ
dt
vδ+1

δ + 1
, (2.12)
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where

X =
(

dv
dt

)(
z − τp−1vp−1) =

(
z1/(p−1) − τv

)(
z − τp−1vp−1).

Sincev, z, Q, andV are bounded, and (dQ/dt)(t) = Q′(r)h(r)/h′(r) belongs toL1(1,∞), we deduce
thatX ∈ L1(1,∞) from (2.12). Now for allx, y � 0 it holds that

(x− y)
(
xp−1 − yp−1) �

{
cp(x− y)2(|x| + |y|

)p−2
if p < 2,

|x− y|p if p � 2,

wherecp > 0 depends only onp. Hence, by settingx = z1/(p−1), y = τv, we find that dv/dt ∈
L2((1,+∞)) if p < 2, sincev andz are bounded, and dv/dt ∈ Lp((1,+∞)) if p � 2. Since dv/dt is
uniformly continuous, it follows that limt→∞ dv/dt = 0. SinceX(t) � 0, the function

t �→ E(t) = V (t) −
∫ t

1

dQ
dt
vδ+1

δ + 1
ds

is bounded and monotone, hence it has a finite limit. Then alsoV has a finite limit, sincev is bounded
and dQ/dt ∈ L1((1,+∞)). From the expression ofV , we deduce thatv has a finite limit� � 0 as
t→ +∞, hence limr→0(u/hτ )(r) = �. Then we find

lim
t→∞

z(t) = (τ�)p−1, lim
t→∞

dz
dt

= (1− τ )(p− 1)(τ�)p−1 − �Q�δ,

which yields

� =
(
(1− τ )(p− 1)τp−1�−1

Q

)1/(δ−p+1)
, or � = 0.

Suppose that� = 0. Following the procedure in [15], we write our equation in the form

z(t) = e(1−τ )(p−1)t
∫ ∞

t
e−(1−τ )(p−1)sQvδ ds,

hencez(t) � Cvδ(s), sincev is nonincreasing for larget. Indeed at each point where dv/dt = 0, we
have d2v/dt2 � 0. Then

dv
dt

+ τv � Cvδ/(p−1),

hence

v(t) �
(
Ke(τ (δ−p+1)/(p−1))t +

C

τ

)−(p−1)/(δ−p+1)

,

which implies thatv(t)eτt is bounded, so thatu is bounded. �
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Remark 2.5. The theorem applies in particular ifQ is monotone and bounded near 0. This is the case
in Example 1, and moreover, if we replace the functionh in Theorem 2.2 by the functionr �→ h̃(r) =∫ +∞
r A−1/(p−1) dt, then the functionQ is constant.

Remark 2.6. One can also precise the behavior of the solutions in the critical caseδ = p. We will not
mention here the results, because of their technicality.

3. The nonradial regular Dirichlet problem

We consider here the general problem (DP) in the nonradial case, with eventually nonradial weights.
For anys � 1, we denote byLs(Ω,a) the space ofa-measurable functionsu in Ω such that

‖u‖Ls(Ω,a) =
( ∫

Ω
usadx

)1/s

< +∞.

AndW 1,p(Ω,a) is the completion of{
ϕ ∈ C∞(Ω): ‖ϕ‖1,p,a = ‖ϕ‖Ls(Ω,a) +

∥∥ |∇ϕ|∥∥Ls(Ω,a) < +∞
}

with respect to the norm‖ · ‖1,p,a, andW 1,p
0 (Ω,a) the completion ofD(Ω). We defineLs

loc(Ω,a) and
W 1,p

loc (Ω,a) in the same way, see [16,17].

3.1. Global Harnack properties

We will say that (a, b) is globally admissible inΩ if it satisfies the conditions:

(i) Integrability:

a ∈ L1
loc(Ω), b ∈ L1(Ω), a1/(1−p) ∈ L1

loc(Ω). (G1)

(ii) Sobolev–Hardy inequality: there existsκ > p such that, for anyϕ ∈ D(Ω),

( ∫
Ω
|ϕ|κbdx

)1/κ

� C

( ∫
Ω
|∇ϕ|padx

)1/p

, (G2)

with C = C(N ,p, q,Ω,a, b).
(iii) Poincaré inequality: for anyϕ ∈ D(Ω),∫

Ω
|ϕ|padx � C

∫
Ω
|∇ϕ|padx, (G3)

with C = C(N ,p,Ω,a) > 0.

We will associate toκ two numbers:η > p andκ defined by

ηp

η − p := κ, κ :=
κ

p′
=
η(p − 1)
η − p . (3.1)
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Remark 3.1. The assumption (G1) ensures that anyu ∈W 1,p(Ω,a) is inL1
loc(Ω), so that the gradient is

well defined inD′(Ω), and thatW 1,p(Ω,a) andW 1,p
0 (Ω,a) are Banach spaces, see [16,17].

First we give a global regularity result inΩ, which is an extension of well-known results in the non-
weighted case, in casep = 2, see [14, Theorem 8.15]. We give the proof for a better comprehension of
the results in Section 4.

Theorem 3.1. Assume that(G1) and (G2) hold. Letu ∈ W 1,p
0 (Ω,a) be any nonnegative solution of

equation

−div
(
a(x)|∇u|p−2∇u

)
= H(x)b(x)up−1 in Ω, (3.2)

whereH ∈ Ls(Ω, b) for somes > η/p, with η given by(3.1),H � 0. Then for anyλ � p,

sup
Ω
u � C‖u‖Lλ(Ω,b), (3.3)

whereC = C(N ,a, b,s,Ω,‖H‖Ls(Ω,b)).

Proof. For anyϕ ∈ D(Ω), we have∫
Ω
|∇u|p−2∇u∇ϕadx =

∫
Ω
Hup−1ϕbdx.

From (G1), (G2) and the assumption onH, it also holds by density for anyϕ ∈ W 1,p
0 (Ω,a). Indeed

ϕ ∈ Lκ(Ω, b) and defining 1< t < κ by the relation 1/t = 1− 1/s − (p− 1)/κ, we have

∫
Ω
Hup−1|ϕ|bdx �

( ∫
Ω
Hsbdx

)1/s( ∫
Ω
uκbdx

)(p−1)/κ( ∫
Ω
ϕtbdx

)1/t

< +∞,

sinceb ∈ L1(Ω). Let β � 1 andγ = β + p− 1. For anyn > ε > 0, we setuε = u+ ε, and consider a
functionF ∈ C1([ε,+∞)) defined by

F (z) = zγ/p − εγ/p on [ε,n], F linear on [n,+∞).

Let us setϕ = G(uε), where

G(y) =
∫ y

ε
|F ′(s)|p ds.

Sinceϕ � Cεu, we haveϕ ∈ Lp(Ω,a) and thusϕ ∈ W 1,p
0 (Ω,a) from the chain rule, see [16, Theo-

rem 1.18 and Lemma 1.25]. Henceϕ is an admissible test function, and we get∫
Ω
|∇u|pG′((uε))adx �

∫
Ω
Hup−1

ε G(uε)bdx �
∫
Ω
HupεG

′(uε)bdx.
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Thus we obtain∫
Ω

∣∣∇(
F (uε)

)∣∣padx �
∫
Ω
Hupε

∣∣F ′(uε)
∣∣pbdx.

And the functionF (uε) ∈W 1,p
0 (D,a), hence from (G2),

( ∫
Ω

(
F (uε)

)κ
bdx

)1/κ

� C
( ∫

Ω

∣∣∇(
F (uε)

)∣∣padx
)1/p

� C

( ∫
Ω
Hupε

∣∣F ′(uε)
∣∣pbdx

)1/p

� γ

p

( ∫
Ω
Huγ/pε bdx

)1/p

.

Makingn→ +∞, we get

( ∫
Ω

(
uγ/pε − εγ/p

)κ
bdx

)1/κ

�
(
γ

p

)p ∫
Ω
Huγ/pε bdx.

Now b ∈ L1(Ω) and thusH ∈ L1(Ω, b). Then we can letε→ 0, and settingv = uγ/p, we get

‖v‖Lκ(Ω,b) �Cγ
( ∫

Ω
Hvpbdx

)1/p

� γ‖H‖1/p
Ls(Ω,b)‖v‖Lps′ (Ω,b)

� γ‖H‖1/p
Ls(Ω,b)

(
ε‖v‖Lκ(Ω,b) + ε−τ‖v‖Lp(D,b)

)
,

whereτ = η/(ps − η) > 0, for anyε > 0, by interpolation. Takingε = (1/2γ)‖H‖1/p
Ls (Ω,b), we deduce

‖v‖Lκ(Ω,b) � C
(
γ‖H‖1/p

Ls(Ω,b)

)1+τ‖v‖Lp(Ω,b).

Then returning tou, it comes

( ∫
Ω
uγκ/pbdx

)p/γκ

� Cγ(1+τ )p/γ
( ∫

Ω
uγbdx

)1/γ

,

with anotherC > 0 depending on‖H‖1/p
Ls(Ω,b). Taking a sequenceγn = λ(Q/p)n, with λ � p, we get

(3.3) by iteration as in [27,14]. �

3.2. Existence of a bounded solution

Here we prove the existence result of Theorem 1.2. First we prove the existence of a weak solution of
the problem:



M.-F. Bidaut-Véron and M. García-Huidobro / Quasilinear equation with weights 135

Proposition 3.1. Assume that(a, b) is globally κ-admissible inΩ, and the imbeddingW 1,p
0 (Ω,a) ↪→

Lκ(Ω, b) is compact for any1 < p < k < κ. Supposeδ < κ − 1. Then there exists a nontrivial
nonnegative solutionu of the Dirichlet problem inΩ:{

u ∈W 1,p
0 (Ω,a),

−div
(
a(x)|∇u|p−2∇u

)
= b(x)uδ in Ω.

(3.4)

Proof. The idea of the proof is classical and still used in the radial case in [12]. We consider the mini-
mization problem

inf
{
J(w): w ∈ S

}
,

where

J(w) =
∫
Ω
|∇w|padx and S =

{
w ∈W 1,p

0 (Ω,a),
∫
Ω
|w|δ+1bdx = 1

}
.

Under the assumption (G1), the spaceW 1,p
0 (Ω,a) is reflexive sincep > 1, see [16]. The setS is

nonempty: it contains some elements ofD(Ω), sincea, b ∈ L1
loc(Ω). From (G2) and the compactness

assumption,S is weakly closed. From (G3), w �→ (J(w)1/p) is an equivalent norm onW 1,p
0 (Ω,a). Then

J achieves its minimum at some pointu1 � 0, sinceJ(w) = J(|w|) for anyw ∈ W 1,p
0 (Ω,a). Hence,

from the Lagrange multiplier rule, there exists a realλ such that∫
Ω
|∇u1|p−2∇u1∇vadx = λ

∫
Ω
uδ1vbdx,

for any v ∈ W 1,p
0 (Ω,a). Takingv = u1, one getsλ > 0. Thenu = λ1/(δ−p+1)u1 is a solution of the

problem (3.4). �

From now on we are in a position to prove Theorem 1.2:

Proof of Theorem 1.2. From Proposition 3.1 we have constructed a nontrivial solution of the problem,
such that∫

Ω
uδ+1bdx < +∞.

We can apply Theorem 3.1 withH := uδ+1−p.We haveH ∈ Ls(Ω, b) for

s =
δ + 1

δ + 1− p >
η

p
,

sinceδ < κ− 1. Then we getu ∈ L∞(Ω) from (3.3) withλ = δ + 1. �

Remark 3.2. Our process of proof is rather different of the one of [12]. They prove the existence of some
weak solutions of problem (SPr) in a suitable Sobolev space, and then they show that such solutions
are bounded near 0 by using monotonicity and descent methods. We consider directly the Dirichlet
problem (DP) instead of (SP) and use Harnack inequality. This supposes that (G1) holds, which was not
supposed in the radial case.
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3.3. Applications

Let us begin with the case of powers of|x|. We have the following.

Theorem 3.2. Letθ, σ be any reals, such thatθ,σ > −N , andθ < N (p− 1). Assume that

δ + 1< inf
(
P ∗,p∗

)
= inf

(
pN

N − p ,
p(N + σ)
N + θ − p

)
(henceσ+p > θ). Then there exists a nontrivial nonnegative bounded solutionu of the Dirichlet problem
in Ω:{

u ∈W 1,p
0 (Ω,a) ∩ L∞(Ω),

−div
(
|x|θ|∇u|p−2∇u

)
= |x|σuδ in Ω.

(3.5)

Proof. We can apply Theorem 1.2. Indeed the conditionsθ,σ > −N , imply that a, b ∈ L1(Ω), and
θ < N (p − 1) ensures thata−1/(p−1) ∈ L1(Ω), hence (G1) holds. And (G2), (G3) and the compactness
property hold from [17], withκ = inf(P ∗,p∗). �

Now for anyx ∈ Ω, let d(x) be the distance fromx to the boundary∂Ω. Here we consider some
weights which are powers ofd and deduce similarly the following:

Theorem 3.3. Letθ, σ be any reals. Assume that−N < θ < p− 1 and−1< σ and

δ + 1< inf
(
P ∗,p∗

)
= inf

(
pN

N − p ,
p(N + σ)

(N + θ − p)

)
. (3.6)

Then there exists a nontrivial nonnegative bounded solutionu of the Dirichlet problem inΩ:{
u ∈W 1,p

0

(
Ω,dθ

)
∩ L∞(Ω),

−div
(
dθ(x)|∇u|p−2∇u

)
= dσ(x)uδ, x ∈ Ω.

(3.7)

Proof. We can again apply Theorem 1.2. Indeed the conditions−N < θ < p−1 and−1< σ imply (G1).
Also (3.6) implies (G2) and (G3), and the compactness property follows from [17, Theorem 19.2].�

The problem of characterizing admissible weights has been studied rather extensively during the last
twenty years and continue to be under active research in the case of two different weightsa, b. Necessary
and sufficient conditions have be given in [19] in terms of capacity, but they are hard to check. Hence
many authors tried to give only sufficient conditions. A well-known class of weights was introduced
by Muckenhoupt [21]: a functiona in a domainD of RN , positive a.e. inD, such thata ∈ L1

loc(D),
lies in the Muckenhoupt-classAr(D) (r � 1) if there exists a constantC > 0, such that, for any ball
B(x,R) ⊂ RN ,

( ∫
B(x,R)∩D

adx
)1/r( ∫

B(x,R)∩D
a−1/(r−1) dx

)1/r′

� CRN , (3.8)
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if r > 1, or

∫
B(x,R)∩D

adx � CRN inf
B(x,R)∩D

a,

if r = 1. Let us recall some properties of this class. We haveA1(D) ⊂ Ar(D) for anyr > 1. Hence any
superharmonic function, positive a.e. inRN , is inA1(RN ). On the other hand, any functiona ∈ Ap(RN )
with p > 1 satisfies a reverse Hölder inequality: there existspa > 1, andC > 0, such that

( ∮
B(x,R)

apa dx
)1/pa

� C

∮
B(x,R)

adx,

for any ballB(x,R) ⊂ RN . As a consequence, there existsqa such that 1< qa < p anda ∈ Aqa(RN ).
Concerning the Dirichlet problem, the main result is that ifa ∈ Ap(RN ), then the pair (a,a) is globally
admissible in anyboundeddomainΩ, and it satisfies (G2) in Ω for anyκ > p such that

κ(Nqa − p) < Npqa,

see [16, Theorem 15.23]. As a consequence, ifa ∈ A1(RN ) and 1< p � N , then (G2) holds inB for
anyp < κ < P ∗. Up to our knowledge, the question of compactness was not solved in the general case
of a pair (a, b). Notice that any powera(x) = |x|θ lies inAp(RN ) if and only if −N < θ < N (p − 1).
Also the weighta(x) = dθ(x) lies inAp(Ω) if and only if−1< θ < p− 1.

Remark 3.3. These classes have been extended to two different weights, see [16]: a pair (a, b) of non-
negative functions inL1

loc(D), such thata is positive a.e. inD, lies in the class̃Ar(D) (r > 1), whenever
there exists a constantC > 0, such that, for any ballB(x,R) ⊂ RN ,

( ∫
B(x,R)∩Ω

bdx
)1/r( ∫

B(x,R)∩Ω
a−1/(r−1) dx

)1/r′

� CRN .

It can be shown that for anyr such that 1< r < p < Nr, the Sobolev inequality (G2) holds with
κ = Npr/(Nr− p). This class appears to be quite restrictive, since it limits the growth ofb with respect
to a: in the case of the problem with the weights given by (1.32), the pair (a, b) = (|x|θ, |x|σ) lies in
Ãr(B) if and only if θ,σ > −N , andσ � θ, and this last condition is not required at Theorem 3.2. In
the same way in the case of problem (3.7), the pair (a, b) = (dθ(x),dσ(x)) lies in Ãr(B) if and only if
θ,σ > −N , andθ < r− 1,σ > −1 andσ � θ, which is more than what is required in Theorem 3.3, see
[17, Remark 15.19].

4. The nonradial singularity problem

We consider here the general problem (SP) in the nonradial case, with eventually nonradial weights.
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4.1. Weak estimates with general weights

Here we give the first estimates on any solution of (SP) in the nonradial case and prove Theorem 1.4.
For any domainD ⊂ RN , and anyf ∈ L1(D,a), we set∮

D,a
f =

∫
D fadx∫
D adx

.

The first estimate, (1.21), extends to the supersolutions of (1.18):

Theorem 4.1. Assume(K1). Let u ∈ L∞
loc(Ω

′) ∩ W 1,p
loc (Ω′,a) be any nonnegative function inΩ′ such

that the distribution inΩ′

g := −div
(
a(x)|∇u|p−2∇u

)
(4.1)

lies inL1
loc(Ω

′), andg � 0. Then there existsC > 0 such that for anyx0 ∈ B′
,

inf
|x|=|x0|

u � C

( ∫
|x0|�|x|�1

|x|(1−N )p′a1/(1−p) dx+ 1
)
. (4.2)

Proof. We follow the method of [2] relative to the nonweighted case. We use a test function introduced
by Serrin in [24]. LetC1 = 2 sup|x|=1u(x) andu1 = u− C1. For anyr < 1, letm1(r) = inf|x|=r u1(x).
We define

vr(x) =


0 if |x| > r andu1(x) � 0, or if |x| � 1,

u1(x) if r < |x| < 1 and 0� u1(x) � m1(r),

m1(r) if r < |x| < 1 andu1(x) > m1(r), or if |x| � r.

For anyϕ ∈ D(Ω′), we have∫
Ω′

|∇u|p−2∇u∇ϕadx =
∫
Ω′
gϕdx, (4.3)

and by density, (4.3) also holds for anyϕ ∈W 1,p(Ω,a) ∩ L∞(Ω) with compact support inΩ′. We take

ϕ = vr(x) −m1(r)η,

whereη is radial, with values in [0, 1], such thatη = 0 for |x| � 1, andη = 1 near 0. Then∫
Ω′

|∇u|p−2∇u∇vradx+
∫
Ω′
g
(
m1(r) − vr

)
dx = m1(r)C2,

whereC2 does not depend onr:

C2 =
∫
Ω′

|∇u|p−2∇u∇ηadx+
∫
Ω′
g(1− η) dx.
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Then

m1(r)C2 �
∫
B′

|∇u|p−2∇u∇vradx =
∫
B′
|∇vr|padx.

Defining the capacity of any compact setX ⊂ B with the weighta by

cp,a(X,B) = inf
{∫

B
|∇ϕ|padx: ϕ ∈ D(B), ϕ � 1 onX

}
,

we get, sincevr(x) � m1(r) on the ballBr = B(0,r),

m1(r)C2 � mp
1(r)cp,a(Br,B).

From [16] this capacity can be estimated by

cp,a(Br,B) � C

( ∫
r�|x|�1

|x|(1−N )p′a1/(1−p) dx
)1−p

,

for someC = C(N ,p) > 0, hence with a newC > 0,

inf
|x|=r

u(x) � m1(r) + C1 � C

∫
r�|x|�1

|x|(1−N )p′a1/(1−p) dx+ C1,

and (4.2) follows. �

Now we prove the second estimate, (1.22), which will end the proof of Theorem 1.4. It relies on the
ideas of [4,20].

Theorem 4.2. Assume(K1). Let u be any nonnegative supersolution of(SP) in Ω′. Then there exists
C > 0 such that for anyx0 ∈ B′

, and any ballB(x0, 2R) ⊂ Ω′,

( ∮
B(x0,R),b

uδ
)1/δ

� CR−p/(δ+1−p)
(∫

B(|x0|,2R) adx∫
B(|x0|,R) bdx

)1/(δ−p+1)

. (4.4)

Proof. For anyϕ ∈ D(Ω′), we have∫
Ω′

|∇u|p−2∇u∇ϕadx =
∫
Ω′
uδϕbdx,

and by density, it also holds for anyϕ ∈ W 1,p(Ω′,a) ∩ L∞(Ω′) with compact support inΩ. Let ε > 0,
anduε = u+ ε > 0. Letζ ∈ D(Ω′), ζ � 0. Sinceu ∈ L∞(Ω′), we can take

ϕ = ζλuαε ,
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with 1− p < α < 0, andλ > 0 large enough. We obtain∫
Ω′
uαε u

δζλbdx+ |α|
∫
Ω′
uα−1
ε |∇u|pζλadx � λ

∫
Ω′
uαε ζ

λ−1|∇u|p−1|∇ζ|adx

� |α|
2

∫
Ω′
ζλuα−1

ε |∇u|padx+ C
∫
Ω′
uα+p−1
ε ζλ−p|∇ζ|padx,

whereC > 0 depends onα. Hence∫
Ω′
uαε u

δζλbdx+
∫
Ω′
uα−1
ε |∇u|pζλadx � C

∫
Ω′
uα+p−1
ε ζλ−p|∇ζ|padx.

Then from the Hölder inequality, settingθ = δ/(p − 1 + α) > 1, and lettingε tend to 0, we get∫
Ω′
uδ+αζλbdx+

∫
Ω′
uα−1|∇u|pζλadx

� C

( ∫
Ω′
uδζλbdx

)1/θ( ∫
Ω′
ζλ−pθ′ |∇ζ|pθ′aθ′b1−θ′ dx

)1/θ′

,

with a new constantC > 0. Now we choose

ϕ = ζλ

as a test function. We get∫
Ω′
uδζλbdx � λ

∫
Ω′
ζλ−1|∇u|p−1|∇ζ|adx,

hence for anyα ∈ (1− p, 0),

∫
Ω′
uδζλbdx � λ

( ∫
Ω′
uα−1ζλ|∇u|padx

)1/p′( ∫
Ω′
u(1−α)(p−1)ζλ−p|∇ζ|padx

)1/p

.

Sinceδ > p− 1, we can fix anα ∈ (1− p, 0) such thatτ = δ/(1− α)(p − 1)> 1. Then we get

∫
Ω′
uδζλbdx� C

( ∫
Ω′
uδζλbdx

)1/θp′+1/τp( ∫
Ω′
ζλ−θ′p|∇ζ|θ′paθ′b1−θ′ dx

)1/θ′p′

×
( ∫

Ω′
ζλ−τ ′p|∇ζ|τ ′paτ ′b1−τ ′ dx

)1/τ ′p

. (4.5)

Since 1/θp′ + 1/τp = (p− 1)/δ = 1− (1/θ′p′ + 1/τ ′p), we find

( ∫
Ω′
uδζλbdx

)(δ−p+1)/δ

� C

( ∫
Ω′

(
a

b

)θ′

ζ−pθ′|∇ζ|pθ′ζλbdx
)1/θ′p′( ∫

Ω′

(
a

b

)τ ′

ζ−pτ ′|∇ζ|pτ ′ζλbdx
)1/pτ ′

.
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Then from the Hölder inequality with coefficients 1/θ′ and 1/τ ′,

( ∫
Ω′
uδζλbdx

)(δ−p+1)/δ

� C
( ∫

Ω′
ζλ−p|∇ζ|padx

)1/p′( ∫
Ω′
ζλbdx

)(1−θ′)/θ′p′

×
( ∫

Ω′
ζλ−p|∇ζ|padx

)1/p( ∫
Ω′
ζλbdx

)(1−τ ′)/pτ ′

,

hence

( ∫
Ω′
uδζλbdx

)(δ−p+1)/δ

� C

( ∫
Ω′
ζλ−p|∇ζ|padx

)( ∫
Ω′
ζλbdx

)−(p−1)/δ

,

that is

( ∫
Ω′
uδζλbdx

)(δ−p+1)/δ( ∫
Ω′
ζλbdx

)(p−1)/δ

� C

∫
Ω′
ζλ−p|∇ζ|padx. (4.6)

Consider any ballB(x0, 2R) ⊂ Ω′. We takeζ(x) = ξ(x− x0) whereξ has its support inB(0, 2R), with
values in [0, 1], such thatξ ≡ 1 inB(0,R) and|∇ξ| � C/R, and deduce

( ∫
B(x0,R)

uδbdx
)(δ−p+1)/δ( ∫

B(x0,R)
bdx

)(p−1)/δ

� CR−p
∫
B(x0,2R)

adx,

and (4.4) follows. �

4.2. Local Harnack properties

Here we extend some local Harnack properties in any domainD of RN , which are known in the
nonweighted case, to the weighted one, in order to apply it to our problem withD = Ω′. We deal with
the equation

−div
(
a(x)|∇u|p−2∇u

)
= H(x)b(x)up−1 inD, (4.7)

where nowH satisfies local estimates in a suitableLs space, withH � 0. Much work has been done
for the equation without second member (1.25) but we did not find the precise result we needed for the
equation with coefficients (4.7), even if a part of the result is mentioned in [5] forp = 2. Thus we give
here a complete proof , which is an extension of the results of [24,27] using the Moser technique.

According to [16], we will say thata is locally admissible inD if it satisfies the following conditions,
for someCa = Ca(N ,p,D,a) > 0:

(i) Integrability:

a ∈ L1
loc(D), a1/(1−p) ∈ L1

loc(D); (C1)
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(ii) Doubling condition: for any ballB(x0, 4R) ⊂ D,∫
B(x0,2R)

adx � Ca

∫
B(x0,R)

adx. (C2)

(iii) Sobolev inequality: there exists someQ > p such that for any ballB(x0, 2R) ⊂ D and any
ϕ ∈ D(B(x0,R)),

( ∮
B(x0,R),a

|ϕ|Q
)1/Q

� CaR

( ∮
B(x0,R),a

|∇ϕ|p
)1/p

. (C3)

(iv) Poincaré inequality: for any ballB(x0, 2R) ⊂ D and any boundedϕ ∈ C∞(B(x0,R)),∫
B(x0,R)

∣∣ϕ− ϕa
∣∣padx � CaR

p
∫
B(x0,R)

|∇ϕ|padx, (C4)

whereϕa =
∮
B(x0,R),a ϕ.

We will associate toQ the numbers:ν > p andQ defined by

νp

ν − p := Q, Q :=
Q

p′
=
ν(p− 1)
ν − p . (4.8)

Also, we will say thatthe pair(a, b) is locally admissible inD if the following conditions are satisfied:

(v) Integrability:

a, b ∈ L1
loc(D); (C5)

(vi) Hardy–Sobolev inequality: there existsK > p such that for any ballB(x0, 2R) ⊂ D and any
ϕ ∈ D(B(x0,R)),

( ∮
B(x0,R),b

|ϕ|Q
)1/Q

� Ca,bR

( ∮
B(x0,R),a

|∇ϕ|p
)1/p

, (C6)

whereCa,b = Ca,b(N ,p,D,a, b) > 0.

We define similarly two numbersη > p andK by

ηp

η − p := K, K :=
K

p′
=
η(p− 1)
η − p . (4.9)

Theorem 4.3. Assume thata is locallyQ-admissible and(a, b) is locallyK-admissible inD, for some
Q,K > p. Letη be defined by(4.8), (4.9). LetH ∈ Ls

loc(D, b) for somes > η/p, withH � 0. Letu be
a nonnegative solution of(4.7). Then
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(i) for any ballB(x0, 4R) ⊂ D and anym > p− 1,

sup
B(x0,R)

u � C

(( ∮
B(x0,2R),a

um
)1/m

+
( ∮

B(x0,2R),b
um

)1/m)
, (4.10)

whereC = C(N ,p,a, b,s,m,CR), and

CR = Rp
( ∮

B(x0,2R),b
Hs

)1/s ∫
B(x0,2R) bdx∫
B(x0,R) adx

; (4.11)

(ii) for any ballB(x0, 4R) ⊂ D and any0< m < Q,

( ∮
B(x0,2R),a

um
)1/m

� C ′ inf
B(x0,R)

u, (4.12)

withC ′ = C ′(N ,p,m,a) > 0. As a consequence for any0< m < Q,

sup
B(x0,R)

u � C

( ∮
B(x0,2R),b

um
)1/m

, (4.13)

withC = C(N ,p,a, b,s,m,CR).

Proof. (i) We have supposed from the begining thatu ∈ L∞
loc(D). By replacingu by u + ε and making

ε→ 0, we can suppose thatu > 0 inD andu−1 ∈ L∞
loc(D). For anyϕ ∈ D(D), we have∫

D
|∇u|p−2∇u∇ϕadx =

∫
D
Hup−1ϕbdx.

From (C5), (C6) and the assumption onH, this also holds for anyϕ ∈W 1,p(D,a) with compact support
inD. Let ζ ∈ D(D), ζ � 0, with compact support in a ballB(x0, 8R0) ⊂ D. We take

ϕ = uβζp, β > 0,

and get

β

∫
D
uβ−1|∇u|pζpadx � p

∫
D
uβζp−1|∇u|p−2∇u∇ζadx+

∫
D
Huβ+p−1ζpbdx.

Hence from the Hölder inequality,

β

2

∫
D
uβ−1|∇u|pζpadx � Cβ1−p

∫
D
uβ+p−1|∇ζ|padx+

∫
D
Huβ+p−1ζpbdx.

Let v = uγ/p, with γ = β + p− 1. Then∫
D
|∇v|pζpadx � C

γp

β

(
β1−p

∫
D
vp|∇ζ|padx+

∫
D
Hvpζpbdx

)
.
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Let us consider anyR < 2R0 and take suppζ ⊂ B(x0,R) ⊂ D. We have from (C3) and (C6)

( ∫
B(x0,R)

adx
)1/p(( ∮

D,a
(vζ)Q

)1/Q

+
( ∮

D,b
(vζ)K

)1/K)

� CR

( ∫
D

∣∣∇(vζ)
∣∣padx

)1/p

� CR

(( ∫
D
vp|∇ζ|padx

)1/p

+
( ∫

D
|∇v|pζpadx

)1/p)

� CR

(((
1 +

γ

β

) ∫
D
vp|∇ζ|padx

)1/p

+
γ

β1/p

( ∫
D
Hvpζpbdx

)1/p)
.

Now from Hölder inequality, and setting‖H‖ = (
∫
DH

sbdx)1/s andτ = η/(ps− η) > 0,

( ∫
D
Hvpζpbdx

)1/p

� ‖H‖1/p‖vζ‖Lps′ (D,b) � ‖H‖1/p(ε‖vζ‖LK (D,b) + ε−τ‖vζ‖Lp(D,b)
)
,

for anyε > 0, by interpolation. Hence

( ∮
D,a

(vζ)Q
)1/Q

+
( ∮

D,b
(vζ)K

)1/K

� CR

((
1 +

γ

β

)( ∮
D,a
vp|∇ζ|p

)1/p

+ ε
γ

β1/p
‖H‖1/p

( ∮
D,b

(vζ)K
)1/K( ∫

B(x0,R)
adx

)−1/p( ∫
B(x0,R)

bdx
)1/K

+ ε−τ γ

β1/p
‖H‖1/p

( ∮
D,b

(vζ)p
)1/p( ∫

B(x0,R)
adx

)−1/p( ∫
B(x0,R)

bdx
)1/p)

.

Let us take

ε = β1/p(2CRγ)−1‖H‖−1/p
( ∫

B(x0,R)
adx

)1/p( ∫
B(x0,R)

bdx
)−1/K

.

After some computations, and with a new constantC > 0, we get

( ∮
D,a

(vζ)Q
)1/Q

+
( ∮

D,b
(vζ)K

)1/K

� CR

(
1 +

γ

β

)( ∮
D,a
vp|∇ζ|p

)1/p

+ C
(
γL

1/p
R

β1/p

)1+τ( ∮
D,b

(vζ)p
)1/p

,

where

LR = Rp
( ∮

B(x0,R),b
Hs

)1/s ∫
B(x0,R) bdx∫
B(x0,R) adx

. (4.14)
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Then as soon asβ � β0 > 0, with anotherC > 0 depending onβ0, we have( ∮
D,a

(vζ)Q
)1/Q

+
( ∮

D,b
(vζ)K

)1/K

� Cγ1+τ
(
R

( ∮
D,a
vp|∇ζ|p

)1/p

+ L(1+τ )/p
R

( ∮
D,b

(vζ)p
)1/p)

.

Let us define sequencesRn = R0(1+2−n) andζn with support inBn = B(x0,Rn), with values in [0, 1],
such thatζn = 1 onBn+1, and|∇ζn| � C2n/R0. Then we find

( ∮
Bn+1,a

vQ
)1/Q

+
( ∮

Bn+1,b
vK

)1/K

� Cγ1+τ
(

2n
( ∮

Bn,a
vp

)1/p

+ L(1+τ )/p
Rn

( ∮
Bn,b

vp
)1/p)

.

It can be verified thatLRn � 2pCR0. Hence with a new constantC depending onCR0,( ∮
Bn+1,a

vQ
)1/Q

+
( ∮

Bn+1,b
vK

)1/K

� Cγ1+τ2n
(( ∮

Bn,a
vp

)1/p

+
( ∮

Bn,b
vp

)1/p)
.

Let us setρ = min(Q,K). Then in particular( ∮
Bn+1,a

vρ +
∮
Bn+1,b

vρ
)1/ρ

� Cγ1+τ2n
( ∮

Bn,a
vp +

∮
Bn,b

vp
)1/p

.

Recoveringu, we find( ∮
Bn+1,a

uγρ/p +
∮
Bn+1,b

uγρ/p
)p/γρ

� C1/γγ(1+τ )p/γ2np/γ
( ∮

Bn,a
uγ +

∮
Bn,b

uγ
)1/γ

,

whereC > 0 is a new constant. Taking anym > p − 1, and a sequenceγn = m(Q/p)n, we get by
summation as in [27,14],( ∮

Bn,a
uγn +

∮
Bn,b

uγn

)1/γn

� C

( ∮
B0,a

um +
∮
B0,b

um
)1/m

hence

sup
B(x0,R0)

u = lim
(∮

Bn,a
uγn

)1/γn

� C

( ∮
B(x0,2R0),a

um +
∮
B(x0,2R0),b

um
)1/m

.

(ii) The functionu is a supersolution of the equation without second member, hence (4.12) follows
from the assumptions (C3) and (C4), for any 0< m < Q, see [16, Theorem 3.59]. Recall that (C4)
allows to prove a John Niremberg lemma adapted to the weighta. Also (4.13) follows from (4.10) and
(4.12). �

Remark 4.1. In fact the estimate (4.10) remains true without sign condition onH, and for any subsolu-
tion of (4.7).
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4.3. Punctual estimates with general weights

Here we prove our main result concerning the singularity problem (SP), namely the punctual esti-
mate (1.26).

Proof of Theorem 1.5. (i) Let u be any solution of (SP). Then it satisfies Eq. (4.7) with

H = uδ−p+1.

Now we apply Theorem 4.3 with

s =
δ

δ − p+ 1
>
η

p
,

since δ < K. From Theorem 4.2, there existsC > 0 such that, for anyx0 ∈ B′
, and any ball

B(x0, 8R) ⊂ Ω′,

( ∮
B(x0,2R),b

uδ
)1/s

� CR−p

∫
B(x0,4R) adx∫
B(x0,2R) bdx

.

Hence the functionCR defined in (4.11) satisfies

CR = Rp
( ∮

B(x0,2R),b
uδ

)1/s ∫
B(x0,2R) bdx∫
B(x0,R) adx

� C

∫
B(x0,4R) adx∫
B(x0,R) adx

,

so thatCR is bounded independently ofR andx0 from the doubling condition (C2). Then Theorem 4.3
applies, and we can takem = δ < Q in (4.13), sinceδ < Q ,andR = |x0|/8. It gives, with the
condition (C2),

u(x0) � sup
B(x0,|x0|/8)

u � C

( ∮
B(x0,|x0|/4)

uδ
)1/δ

� C|x0|−p/(δ−p+1)

∫
B(x0,|x0|/2) adx∫
B(x0,|x0|/4) bdx

� C|x0|−p/(δ−p+1)

∫
B(x0,|x0|/4) adx∫
B(x0,|x0|/4) bdx

,

which ends the proof of (1.26).�

Now we can deduce Theorem 1.6.

Proof of Theorem 1.6. If a is locally Q-admissible inΩ′, and (1.27) holds, then clearly (a, b) is also
locallyQ-admissible inΩ′, and for anym > 0,∮

B(x0,|x0|/2),b
um � C

∮
B(x0,|x0|/2),a

um

hence the Harnack inequality follows from (4.10) and (4.12). Then we deduce the estimate (1.28) from
Theorem 4.2, (1.26) and (1.27).
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4.4. Estimates with radial weights

Here we study the case of radial weights. First we can precise the weak estimate (4.2) of Theorem 4.1
and consequently the estimate (1.21) of Theorem 1.4.

Corollary 4.1. Assume thata is radial and satisfies(H1). Letu be any function satisfying the assump-
tions of Theorem4.1, in particular any supersolution of(SP)in Ω′. Then there existsC > 0, such that
for anyx0 ∈ B′

,

inf
|x|=|x0|

u � C
(
h
(
|x0|

)
+ 1

)
. (4.15)

Proof. This follows from (4.2) by a staightforward computation,∫
|x0|�|x|�1

|x|(1−N )p′a1/(1−p) dx =
∫ 1

|x0|
r(1−N )p′+(1−N )/(1−p)+N−1A1/(1−p) dr = h

(
|x0|

)
.

Now we consider the case whereh is unbounded. Then we also improve the estimate (4.4) of The-
orem 4.2. Moreover, we show that the conditions (1.10) are still necessary conditions of existence of a
possibly nonradial solution, extending the results of [2].�

Theorem 4.4. Assume thata and b are radial, with(H1) and (H2). Letu be any supersolution of(SP).
Thenb ∈ L1

loc(Ω), u ∈ Lδ
loc(Ω, b), and there existsC > 0, such that for anyr < 1,∫

B(0,r)
uδbdx � C

(
hδ(r)β(r)

)−(p−1)/(δ−p+1)
, (4.16)

and ( ∮
B(0,r),b

uδ
)1/δ

� C
(
h(p−1)(r)β(r)

)−1/(δ+1−p)
. (4.17)

Proof. Let us return to (4.6): there existsC > 0 such that, for anyζ ∈ D(Ω′),( ∫
Ω′
uδζλbdx

)(δ−p+1)/δ( ∫
Ω′
ζλbdx

)(p−1)/δ

� C

∫
Ω′
ζλ−p|∇ζ|padx.

Let r0 ∈ (0, 1) be fixed, andh0 = h(r0). Let n � 1 be a fixed integer. From (H2), the functionh maps
(0, 1) onto (0,+∞). Thus we can chose the test function under the form

ζ(x) = ξ
(
h
(
|x|

))
,

whereh �→ ξ(h) ∈ D((0,+∞)) with values in [0, 1], such thatξ(τ ) = 1 for h0 � τ � nh0, ξ(τ ) = 0 for
τ � h0/2 or τ � (n+ 1/2)h0, and|dξ/dh| � C/h0, with C independent onh0. We find∫

Ω′
aζλ−p|∇ζ|p dx� C

hp0

( ∫ r(h/2)

r(h)
A(r)

∣∣h′(r)∣∣p dr +
∫ r(nh0)

r((n+1/2)h0)
A(r)

∣∣h′(r)∣∣p dr
)

= − C
hp0

( ∫ r(h0/2)

r(h0)
h′(r) dr +

∫ r(nh0)

r((n+1/2)h0)
h′(r) dr

)
=
C

hp0
h0 = Ch1−p

0 .
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Then

( ∫
Cr(nh0),r(h0)

uδbdx
)(δ−p+1)/δ( ∫

Cr(nh0),r(h0)

bdx
)(p−1)/δ

� Ch1−p
0 .

Makingn→ +∞, we find thatb ∈ L1
loc(Ω), so thatβ is well defined, and moreoveru ∈ Lδ

loc(Ω, b), and
since∫

Cr(nh0),r(h0)

bdx =
∫ r(h0)

r(nh0)
B(r) dr = β

(
r(h0)

)
− β

(
r(nh0)

)
,

we get

β(p−1)/δ(r0)
( ∫

B(0,r0)
uδbdx

)(δ−p+1)/δ

� Ch1−p
0

which proves (4.16) and (4.17).�

Let us apply it to the case of admissible weights:

Proof of Theorem 1.7. (i) The estimate (1.29) follows from (4.17) in Theorem 4.4 and (4.13) in Theo-
rem 4.3 as for Theorem 1.5. Sincea is locally admissible, andu is a supersolution of (1.8),u is lower
semicontinuous inΩ′ andu > 0 inΩ′ from the strict maximum principle, see [16, Theorem 7.12]. Fol-
lowing the ideas of [2], we show thatu satisfies a stronger form of the maximum principle. Let us set
m = inf|x|=1u(x) > 0. For any integern � 2, the functionx �→ wn(x) = m(1 − h(|x|)/h(1/n)) is
a solution of Eq. (1.8) for 1/n � |x| � 1. From the comparison principle [16, Theorem 7.6], we have
wn(x) � u(x) for 1/n � |x| � 1. Going to the limit asn → +∞, we deduce thatu(x) � m, a.e. inB′,
hence lim infx→0u(x) > 0. Then in particular (1.10) holds from (4.17).

(ii) This follows from (1.29) and Theorem 1.6.�

4.5. Applications

Notice that the assumptions of Theorem 1.6 are relatively weak, compared to those of Theorem 1.2.
Consider for example the case of two powers of|x|.

Theorem 4.5. Let θ, σ be any reals such thatσ + p � θ > −N , σ > −N . Letu be any nonnegative
solution of

−div
(
|x|θ|∇u|p−2∇u

)
= |x|σuδ in Ω′. (4.18)

Then ifp − 1 < δ < P , thenu satisfies the Harnack inequality. Moreover, eitherθ + N � p andu is
bounded near0, or θ +N > p and

u(x) � Cmin
(
|x|(p−N−θ)/(p−1), |x|−(p+σ−θ)/(δ−p+1)) near0. (4.19)
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Proof. We can apply Theorem 1.7. Firsta = |x|θ is locally admissible inΩ′: obviouslya ∈ L1
loc(Ω

′)
and verifies (C1), sincea is positive and continuous inΩ′. Moreovera satisfies the doubling condition:
for any ballB(x0, 4R) ⊂ Ω′, one hasR < |x0|/4, hence

∫
B(x0,2R)

|x|θ dx � 2N |B(x0,R)| |x0|θ max
((

3
2

)θ

,
(

1
2

)θ)
,

∫
B(x0,R)

|x|θ dx � |B(x0,R)| |x0|θ min
((

3
4

)θ

,
(

5
4

)θ)
.

And a satisfies (C3) with anyQ < P ∗ � +∞: for any ballB(x0, 2R) ⊂ Ω′ and anyϕ ∈ D(B(x0,R)),
one has similarlyR < |x0|/2, hence from the usual Sobolev imbedding, with new constantsC depending
onQ andθ,

( ∮
B(x0,R),a

|ϕ|Q
)1/Q

� C
( ∮

B(x0,R),1
|ϕ|Q

)1/Q

� CR

( ∮
B(x0,R),1

|∇ϕ|p
)1/p

� CR
( ∮

B(x0,R),a
|∇ϕ|p

)1/p

,

anda satisfies (C4). Indeed for any constantc > 0, one has∫
B(x0,R)

|ϕ− ϕa|padx � 2pRp
∫
B(x0,R)

|ϕ− c|padx,

whereϕa =
∮
B(x0,R),a ϕ, and the result follows as above from the Poincaré-inequality without weight,

after takingc =
∮
B(x0,R),1ϕ. Also (C5) holds, and (C6) follows as (C3), or using (1.30). �

Theorem 4.5 covers in particular Theorem 1.3. It extends immediately to the case

a(x) = |x|θ
∣∣∣∣ log

∣∣∣∣ xC
∣∣∣∣ ∣∣∣∣&, b(x) = |x|σ

∣∣∣∣ log
∣∣∣∣ xC

∣∣∣∣ ∣∣∣∣k,

whereC > diam(Ω), with the same assumptions onθ, σ, for any real numbersk, �. For anyp − 1 <
δ < P , we get Harnack inequality. Thenu is bounded near 0 whenθ +N < p and satisfies (1.31) when
θ +N � p. This covers in particular the examples given at Section 2.4.

More generally, let us define alocal Muckenhoupt classfor any domainD ⊂ RN . We will say that a
functiona, positive a.e. inD, lies inAr,loc(D) if a ∈ L1

loc(D), anda−1/(r−1) ∈ L1
loc(D) if r > 1, and

there exists a constantC > 0, such that, for any ballB(x, 2R) ⊂ D,

( ∫
B(x,R)

adx
)1/r( ∫

B(x,R)
a−1/(r−1) dx

)1/r′

� CRN

if r > 1, or∫
B(x,R)

adx � CRN inf
B(x,R)

a
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if r = 1. One verifies thata ∈ Ar,loc(D) if and only if a ∈ Ar(D′) for any domainD′ � D. It is known
that any weighta ∈ Ap(RN ) is locally admissible inD. In fact it remains true for anya ∈ Ap,loc(D).
HenceTheorem1.6applies to any weighta ∈ Ap,loc(Ω′), and in particular to anya ∈ A1,loc(Ω′). Observe
that the local Muckenhoupt classAp,loc(Ω′) is very large, compared to the global oneAp(Ω).
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