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Abstract. In this article we study the behavior near O of the nonnegative solutions of the equation

—div(a(z)|Vul’"*Vu) = b(@)|ul’tu, =z e 2)\{0},

where (2 is a domain ofR™ containing 0, and > p — 1 > 0, a, b are nonnegative weight functions. We give a complete
classification of the solutions in the radial case, and punctual estimates in the nonradial one. We also consider the Dirichlet
problem in{2.

1. Introduction and main results

Let £2 be a bounded regular domain®f’ (V > 1) containing 0. In this work we are concerned with
the singularity problem of the behavior near 0 of the nonnegative solutions of the problem

—div(a(z)|VulP~2Vu) = b(@)|ul’tu in 2, (SP)

where?’ = 2\ {0}. Here 6 > p — 1 > 0, anda, b are nonnegative weight functions in, anda
is positive almost everywhere. We can suppose fha 5B = 5(0,1). We also take an interest in the
regular Dirichlet problem irf2,

{ —div(a(z)|Vu|P~2Vu) = b(z)[u[’tu in £, (DP)

u=0 onos?,

which is closely linked to the singularity problem.
Many authors have dealt with the nonweighted case, i.e., with nonnegative solutions to the equation

—Ayu = —div(|VulP~2Vu) = |ul®u, (1.1)
whered > p — 1 > 0. Two critical values ob appear: the first one is

Np-D+p _

pPr—-1 1.2
N-—-p ' 1.2)
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whereP* = Np/(N — p) (P* = 40 if p < N), andP* is the critical value of the Sobolev imbedding
Wir(Q) — LOtY(). Itis well known that the Dirichlet problem

{ —Dpu = |u’tu in 0, (1.3)

u=0 onos?,

admits nontrivial nonnegative solutions whene¥er 1 < P*, and this condition is necessary whén
is starshaped. The second value is given by

Np-1) (1.4)

P= ,
N-—p

which we will call Serrin’s exponent, involved in the singularity problem
‘6—1u in Q,, (15)

—Ayu=u

as well as in the Harnack properties of problem (1.3). Notice the relation

(1.6)

wherep’ = p/(p — 1).

The first results about problem (1.5) were obtained for the radial case in [7—-9Ho2, and later in
[22] for generalp. The behavior of radial solutions of (1.5) dxrossed the valu® was described in
[15]:if 1 < p < N, anyw positive radial solution to (1.1) defined near 0 is bounded, or

u(r) & r@=MN/e-1) whené < P,
u(r) = r@=N/@e=1)| jogr|N-2)/®P-1)  whens = P,
u(r) & rP/(+1-p) whenP < § < P* — 1.

In [2] one can find a complete classification of local and global radial solutions of any sign, fér any
In the nonradial case, the behavior near O when 2 was studied in [18] fob < N/(N — 2), and at
the same time in [13] for any < 2* — 1, where local and global results are established; see also [1] for
the case) = N/(N — 2). In the general case > 1, the behavior near 0 or infinity of nonradial positive
solutions was obtained when< P in [2]. Very recently the results of [13] have been extended to the
cased < P* — 1.

We are concerned here with the generalization of some of those results to the weighted problems
(DP) and (SP). Several studies have been doné fer0, see for example [21,6,19,17,16]. Up to now
the only studies fob # 0 are related to the radial Dirichlet problem, see [12], or to the aasel,
see in particular [4]. We will study both the radial and nonradial situations. The second one is much
more complex. In the general case the weights (even when they are radial) can present many types
of singularities, and not only at 0. In particular the presence of the weightreases significantly
the difficulty, since it concerns the derivatives up to the order 2, wheready concerns the terms
of order 0. In the sequel we use suitable weighted spéc¢€g, a), L°(£2,b) (s > 1), and Sobolev
spacesW?(12,a), W&P(Q,a), see [16]. By solutions of (SP) (resp. (DP)), we mean functions
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loc
sense of distributions. The notion of supersolution, namely

Wel(82,a) N L (82, 6) N LS (82') (resp.u € WP (£2,a) N LP(£2,b)), satisfying the equation in the

—div(a(z)|VulP~2Vu) > b(x)|ul®~tu in 2 (resp. inf2),

is also taken in that sense.
Section 2 is devoted to the radial case. Here the weigths are supposed to be radial:

a(z) = a(r), b)) =0b(r), r=|zl,
and, moreover, we look for radial nonnegative solutions of (SP). We are lead to the problem

— (AW P2 = Beryd®, r € (0,1], (SR)
where

A(r) == rNLa(r), B(r) = V(). (1.7)
Concerning the weights, we suppose that

A, BeLi(0,1), AYEP el ((0,1)). (Hy)
This implies that the equation without second member

—(A(r)|u/‘p72w')l =0, re(0,1], (1.8)

admits (besides the constant solutions) a solutiogiven by
1
h(r) = / AVO-D) g (1.9)

which plays a crucial role in the study. We calla fundamental solutioio the weightedb-Laplacian.
It is easy to prove that it is bounded near 0, then any solution of {$R bounded near 0. Thus the
interesting case is when lim o+ h(r) = +o0, which means

AYA=P) ¢ 110, 1) (H2)

In Section 2.1 we first give necessary conditions for existence of nontrivial solutions. In particular,
under (H), (H»), we have

BeL*(0,1), and suph’}(r)B(r) < +oo, (1.10)

Oo<r<1

where

B(r) == /(;rBdt. (1.11)
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In Section 2.2 we recall the results of [12] about the existence of nonnegative radial solutions of
problem (SR), bounded inB. They pointed out a critical valug* for the existence of such solutions,
which is the analogous aP* for the weighted radial case. It is the critical value of the Hardy—Sobolev
inequality in dimension 1 with weightd and B. That mean* is the supremum of the > p such that
for any ¢ absolutely continuous in (0, 1] with(1) = 0 andfol |/ |PAdE < +o0,

1 1/q 1 1/p
(/ ]cp]qut) < C(/ ‘Lp"pAdt)
0 0

for someC' = C(V, p, q) > 0. Now setting
D= sup{d >p—1: sup h4r)B@r) < —|—oo}, 1.12)
O<r<1
which is well defined from (1.10), they proved, under an additional assumption, that
p*=7p (1.13)

We will see thatp plays the role of a radial Serrin’'s number associated to the weighted problem (SP
To this end we first show thatcan be characterized as

1
p= sup{5 >p—1: / R Bdt < +oo} (1.14)
0

whenp — 1 < p. Then in Section 2.3 we give a complete classification of the nonnegative solutions of
the problem (SP):

Theorem 1.1. AssumdH;) and(Hy). Suppose that is any nonnegative solution {&F,).

(i) Then there exist§’ > 0 such that the two following estimates hold n&ar

u(r) < Ch(r), (1.15)
u(r) < C(hP D)y P (1.16)
2r —1/(6+1—p)
—p+1-p) (S Adt
<Cr (ff’" = dt) . (1.17)

(i) Ifp—1<p<d,then, moreovelim, _ o+ u(r)/h(r) = 0.

@ii) fp—1<d§d<porifd =pand fol hPBdt < oo, then eitheru is bounded neab, or
lim,_ o+ w(r)/h(r) > 0.

(iv) If 6 = p, and [y WP B dt = oo, thenlim, o+ u(r)/h(r) = 0. If p — 1 < p, then

u(r) < ChE)(er)) PP nearo, (1.18)

for someC > 0, where/(r) = [ hPB dt.
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Among other things, this theorem points out the two aspects of the problem: the estimate (1.15) is
due to the fact that the function is a supersolution of the equation without second member (1.8), and the
estimate (1.16) is due to the effect of the second merhserThey extend the well known estimates of
the nonweighted case, namely

u(r) < Cmin(rP=N/®=1 ;.=p/G+1=pP))  near 0

Our result also shows the role of the integrability of the fundamental solutiofwith respect to the
weight B) in the behavior of the solutions, see also [11]. We give a few examples in Section 2.4. We
note here, that as a first difference with the nonweighted case, the solutions. ptéamehave like the
fundamental solution at the critical numki®rAlsop can be equal tp — 1. Clearlyp can be infinite, and
not only as in the nonweighted case whEn= p. Finally, in Section 2.5, under some more assumptions
on the weights, we complete our classification results in 6asé.

Section 3 concerns the regular Dirichlet problemfin Here we assume that the weights b are
globally admissible in a sense we will precise. It implies that € L1(£2), and a Sobolev inequality
holds, with weights: andb, i.e., there exist& > p such that for anyy € D(?),

1/k 1/p
(/ ]cp]"“bdx) < C(/ \Vgp\padx)
Q Q

with C = C(N,p,q, $2,a,b). This in turn guarantees the continuity of the imbeddWé’p(Q,a) —
L5(£2,0). In Section 3.1, we discuss about global Harnack properties with such weights for the nonneg-
ative solutions of equation

—div(a(z)|VulP~2Vu) = H(z)b(z)|uP~2u, (1.19)

in {2, under suitable conditions on the functidh In Section 3.2 we deduce the existence of bounded
solutions of (DP) under a compactness assumption. We get the following, which mainly extends the
results of [12] to the nonradial case:

Theorem 1.2. Assume tha{a, b) is globally x-admissible inf2, and the imbedding/Vol'p(Q,a) —
Li(£2,b) is compact for anyp < ¢ < k. Letp — 1 < § < k — 1. Then there exists a nontrivial
nonnegative bounded solutianof the Dirichlet problem in2:

{ u € WP (R2,a) N L¥(12), (1.20)

—div(a(z)| Vul|P~?Vu) = b(x)u® in 0.

We give some applications in Section 3.3.

Section 4 is devoted to the problem of the behavior near 0 of the solutions of (8Pinithe nonradial
case. In [4] the first results have been given in the easel andb is a power ofjx|:

Theorem 1.3 ([4]). AssumeV > p > 1, andu € C%(£2’) is a nonnegative solution of

—DNyu = —div(\Vu]p*ZVu) = ]w\”u‘; in .
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Thenifp — 1 < § < P, thenu satisfies the Harnack inequality, and
u(z) < C'min(|z|P=N/e=D) |5 ~@+)/6=P+1))  near.

With general weights we will need new assumptions of admissibility for the weights, following the
guideline of [6,16], in order to obtain punctual estimates.

In Section 4.1 we first provievo weak estimatesn estimate of the minimum af over any sphere of
center O contained i’ = B\ {0}, and an integral estimate af over any ballB(xo, 2R) C B’, based
on the multiplication of the equation by negative powers dfVe make the assumption

a,be Lio(2), oY P e Ll (2, (K1)
which extend (H). Notice that it does not imply the existence of a fundamental solution.

Theorem 1.4. AssumgK,). Let w be any nonnegative supersolution (&P)in (2. Then there exists
C > 0such that for anyzg € B,

inf u < C(/ || (L= /A=) i 1), (1.21)
ESEIS

|z|=zol

and for anyR > 0 such thatB(xq, 4R) C B/,

1 1/6 1(S—pt1

LA o641 ( JBGag2m a0\ VOTTTY

<CR . (1.22)
fB(IO,R) bdx fB(xo,R) bdzx

In Section 4.2 we discuss abdatal Harnack properties for the solutions of Eq. (1.19) in any do-
main D of RY, under local conditions oi. They suppose that and the pair ¢, b) satisfy local ad-
missibility conditions. In particular we assume that two Sobolev—Hardy inequalities hold in any ball
B(xo, R) C D, namely that there exists somgeand K > p such that for any € D(B(xo, R)),

(fB(mo,R) !w!Qadx)”Q _ CR<fB(:vo,R) \W\padx>l/p (1.23)
d = i} adx '
fB(xo,R)a’ L B(xo,R)
and
S Lo bz VE Jom [VelPade Y7
<CR (1.24)
fB(xo,R) bdz fB(mo,R) adz

for someC = C(N,p,Q, K, D) > 0. We will say thata is locally Q-admissible andd, b) is locally
K-admissible inD. The first condition, (1.23), ensures that the full Harnack inequality holds for the
equation without second member

—div(a(z)|VulP2Vu) =0 inD. (1.25)

The second one, (1.24), takes into account the second member. This extends the classical results of
[24,27,14] in the nonweighted case, and those of [6,5] in the weighted one.
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In Section 4.3 we deduce punctual estimates with general weights, by tBkiad?’. Our main result
is the following:

Theorem 1.5. Assume that is locally Q-admissible anda, b) is locally K-admissible inf2’ for some
Q, K > p. Let

O

F:

==

@Z IR )

S

be the Serrin’s numbers associatedo K. If § < min(Q, K), then any solution: of (SP)satisfies the
following estimate: for any; € 55,

‘ ’—P f3($ov|$o|/4) adr

u(rg) < C < o

> 1/(6—p+1)
(1.26)

JB(o.fzol /2 b A
In particular, wheru = b, we find the exact estimate of the nonweighted case

P[P earo

u(zo) < Clxo|
It is remarkable to see that it does not depend on the weigdiibre generally, we deduce the following:
Theorem 1.6. Assume that is locally Q-admissible in?’, and

b(z) a(x)
< , (1.27)
820 ) 09T Ji(ag),r) @ O

foranyzg € B  and anyR < |zo|/2. If § < Q, then any solution: of (SP)in (2’ satisfies the Harnack
inequality in5’, and

1/(6—p+1)
m(lfN)p ot/ =P) g, (\xo]p ZE;US))) ) ) (1.28)

In Section 4.4 we study the special case of radial weights. Therstill a solution of problem (SP).
If it is bounded, then, under the assumptions of Theorem 1.6, any solufi@mounded near 0. Now,
assuming that is unbounded, we show the following estimates, which extend precisely those of the
radial case:

u(zg) < Cmin(/|

zo|<|z|<1

Theorem 1.7. Assume that the weights b are radial and satisff{H,) and (H>). Letu be any nontrivial
solution of(SP)

(i) If a is locally Q-admissible inf2’, and (a, b) is locally K-admissible inf2’, andp — 1 < § <
min(Q, K), then

u(z) < C(hP () B(l2))) MO nearo. (1.29)

Moreoverliminf,_ou(z) > 0and(1.10)holds.
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(i) In particular, if a is locally Q-admissible inf’, and for anyr < 1 and anyr < s < 2r,

B(s) <C A(s)

[Bdt [T Adt (1.30)
for someC > 0, andd < @, thenu satisfies the Harnack inequality 1§, and
u(@) < Cmin(h(|z)), (P2 (|z)) B(jx)) MY, (1.31)

In Section 4.5, we give some applications of those theorems. They show that the admissibility assump-
tions are not very constraining when the weights are singular only at 0, since they only c@eard
not {2. Notice that the condition (1.30) is automatically satisfied in the case of two powers

a(@) =l«l’,  bla) = |27, (1.32)

wheref, o areany reals. Moreoverga(x) is Q-admissible, for any) < P*, where P* is defined in

(1.2), independent of, o. Thus the results on the behavior near 0 require only&hatP. In particular

we cover the results of Theorem 1.3. On the contrary, for the existence of a bounded solution of the
Dirichlet problem inf2, we need that the pait(b) is k-admissible, withx < inf(P*, p*). This shows the
difference between the problem near 0, which only requires Harnack properti#saimd the Dirichlet
problem, which needs them in the whalke

2. Theradial case
We start this section by proving some basic facts concerning positive solutions,jo F8Pthe sake

of completness, recall that, for any> 1, L5((0, 1), A) is the space ofi-measurable functionsin (0, 1)
such that

1 1/s
|l £ (0,2).4) = (/o uSAdt) < +o0.

And W1P((0, 1),A) is the completion of

{o € C((0,2): [l¢llip.a = lells.1).4) + ¢ |5 (0,1).4) < +00}

with respect to the nornjj-||1,,,. We define in the same wak;,.((0, 1), 4) and W,éf((o, 1),a). Under

the assumption (i, the spacercl,f((O, 1),A) is contained irng'Cl((O, 1)), hence irC°((0, 1)), see [16,
Lemma 1.13].

2.1. Existence and upper estimates
First we study the case whekds bounded:

Proposition 2.1. AssuméH,) holds, withAY(1=?) ¢ 1,1(0, 1). Then any nonnegative solutiarof (SR,
is bounded nea®.
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Proof. The functionA|u’|p—2u’ is nonincreasing, thus it has a limite (—oo, +oo]asr — 0. If A > 0,
thenw/(r) > 0O for smallr, henceu has a finite limit ag- — 0. If A < 0, thenAY®=1}y/| is bounded,
hence from the assumption, is integrable near 0 and the conclusion follows.

Now we suppose that is unbounded.

Proposition 2.2. AssumdH,), (Hy). If there exists a nontrivial nonnegative solutiario problem(P,.),
then necessarily. € L((0, 1),B), liminf,_ou(r) > 0, and(1.10) holds. Moreover, any solution satis-
fies the estimated.15) (1.16)and(1.17)near0, andu(r)/h(r) has a finite limitL asr — O.

Proof. Defining A as above, we cannot have> 0: it implies thatu/(r) > CA(r)~Y®=1 near 0 for
someC' > 0, henceu + C'h is nondecreasing near 0, which is impossible since its limitds. Then
A < 0, u is nonincreasing near 0, henee> C > 0 near 0. AndAY®=1|y/| is bounded, hence
u € L%((0,1),B) andB € L*(0, 1) andg is well defined. Also

1\ p—1
A’ul‘p*ZU/ _ _(%)

is decreasing to a finite limit. Heneg h has a finite limit, from I'Hospital’s rule, and (1.15) holds. Next
we make the change of variables

h = h(r), y(h) = u(r). (2.1)

Sincew is nonincreasingy is nondecreasing fok > 0 sufficiently large, and the equation in (SP
transforms into

d ((dy\*™ Vo156 _ A ((d\'T _dB 5

By concavity, we have that for large

y(h) > Chg—z for someC > 0. (2.3)

Integrating betweeh andk > h, we get with a new” > 0

5 ~ldg
s m - 50) < [[5; v

Letting k — +o0, sincef(k) — 0, and returning ta, we get
u’(r)hPH(r)B(r) < CuP~H(r),

and hence (1.16) holds. Now takihg= h(r) andk = h(2r), we get

2r
WYY / Bdt < CuPY(r),
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and from the Hélder inequality

2r 2r (p—1) 2r
P < (/ Adt) (/ A~YE-D dt) < (/ Adt)hpl(r),

hence (1.17) follows. O

Remark 2.1. In the case thal is bounded, it is possible th#& ¢ L1(0, 1) and there can exist a solution
u > 0 such that lim_ou(r) = 0. Consider for example the equatien” = r—*u°, whereA = 1,
p=2,B=r"%withl< « < 2. It admits solutions: such that lim_,o(u(r)/r) > 0, from the fixed
point theorem.

2.2. The Dirichlet radial problem and the Serrin’s radial number

Let us first recall the results of [12] concerning the radial Dirichlet problem in thelhaksuming
that

sup h¥(r)B(r) < oo  for somek > p — 1, (2.4)
O<r<1

and defining

p*=sup{q>p: sup W7 (r)B(r) < +oo} = p'F,
O<r<1

they obtained the following:

Theorem 2.1 ([12]). Assumé&H,), (H,), andB € L((0, 1)). Letp — 1 < § < p* — 1. Then there exist
at least one nontrivial solutiom of the problem

ue WP((0,1), wu(l)=0,
—(A@)/ ") = B ae.in(0,1),
and bounded ifi0, 1].
Notice that the condition (2.4) is not necessary to defiadp* from Proposition 2.2, it only guar-
antees thap < p*, that mean® — 1 < p.
Let us give an equivalent definition pf

Proposition 2.3. AssuméH,), (H»). If p — 1 < P, thenp is also characterized bfl.14)

Proof. Let

1
W= {d >p—1: / hiBdt < —{—oo}, U= {d >p—1: sup h4@)B@) < +oo}. (2.5)
0 te(0,1)
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The set/ is not empty, since it contains— 1, from Proposition 2.2. First observe that C U, since for
any 0< r < 1andd € W, we have3(r)hd(r) < [g h¢Bdt, and thugy < p. Now for anyd, d; such
thatp — 1 <d < di <pand 0< s <r < ro < 1, we have by integrating by parts

/ "niBdt = / A8 dt < W) — d / " B

<R )BT (ro) - d( sup]hdl(r)ﬂ(r)) / pi bty gy

re(0,1
dy
di—d’

<h* (o) sup A4 ()B(r)
re(0,1]

henced € W and thusg — 1,p) C W andp = sup/V. O

Remark 2.2. Whenp — 1 < B, we havep — 1 € W from the Holder inequality, hence
either W=U=[p—-1p), or W=[p-1p) SU=[p—17]

The two cases can happen, see Section 24l = p, theni/ = {p — 1} and W = U or (.

Remark 2.3. From [12], the valug* can be computed as

Y XTI | log B(r)|
pr=plimint o)
hence
5 = liminf 12950 (2.6)

r—0t log(h(r))
2.3. Description of the behavior
Here we prove Theorem 1.1 and give some remarks.

Proof of Theorem 1.1. (i) The estimates follow from Proposition 2.2. LBt= lim,_,o(u(r)/h(r)).
(i) Assumeé > p, then sug_, R°(r)B(r) = +oc. Then there exists a sequeneg)(tending to 0,
such that lim,_, o h0(r,)B(r,) = co. From (1.16), we have

u(ry) 5 ~1/(5—p+1)
h(’l“n) < C(h (Tn)ﬁ(""n)) P )

hence lim,_ o u(ry,)/h(r,) = 0. Then necessarilf = 0.

(iii) Assumep — 1 < 6 < p. Suppose that = 0. Then, from concavity, the functiogy/h is nonin-
creasing and tends to O at infinity. Then for any O there exist®; > 0 such that sup.,, y(h)/h < ¢;
and we have lim_. ., dy/dh = 0, hence

dy p—1 00
(%) (h) = / AYVOD R0 g 2.7)
h
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and for anyh > hq,

(%)pl(h)é (%)é/h AY&=Dppd iy ( ) P

and lim._q [y h® B dt = 0 from (1.14); hence we can choasglarge enough such that

(%)pl(h) < c-1-9) <%>5

Thus integrating on/{y, h), we deduce that
g OR) > gD () — (eha) Y > 0.

Theny = u is bounded. Iffol hP B dt < oo, the proof given above is still valid far = p.

(iv) Suppose) = p andfol hPBdt = +o00. ThenL = 0. Indeed ifL > 0, then by using (2.1) we find
that

p—1
(%) () >3 L Al/(P DBRdr = = / K Bdt
dh ha

for h > hq = h(r1) large enough. Hence lim. . ., dy/dh = +o00, which contradicts (2.3). Hence (2.7)
holds again. From (2.3) we also deduce

d (N _ ve-np5 Y1) ()
_E((ﬁ) )_A By > CAY@-Dpy, (@) ,

that is

(@) ) =G> cg(@)

Thus settingy = (dy/dh)P~ 1,

=11 dw dﬂ ¢
_ P/ S D _ 2
v an = Ca = Can

Integrating this relation, we find, since limg ¢(r) = +o0,

wl—P/-1) > CY,

with anotherC > 0, hence

dy G-
< P+1)
an S ce~
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And thus from (2.7),
/}; AYC-DpPdr < Cp~-D/G—p+D), (2.8)

On the other hand,/h is nonincreasing, which yields

/ AYe-DByP dr > (M) / AYe-DBRP dr — <@) on),
h h h h
and thus, combining with (2.8) we obtain

(@)p < C¢p/G—p+1)
h H

and (1.18) follows. O

Remark 2.4. Among other things, whep—1 < B, this theorem shows that, under the assumption (1.10),
the condition

1
/ B dt < +o00
0

is a necessary and sufficient condition for any unbounded solutton(SE.) to behave like the funda-
mental solutiom. Arguing as in [10], one can prove the existence of such solutions, such that

uw(1)=0, AQ)/QD)" 2/ Q)= —,
wherey > 0 is chosen so tha h® Bdt < r@~1-9/(-1),
2.4. Some examples

Here we give some applications extending the results of [15,3]. Also we show the links between the
set/ andWV defined in (2.5).

Example 1. We consider the problem ($Pwith the weights equal to powers,

a(z) = |z|?, b)) =|z|°, 6,0 €R.
Here A(r) = N9 B(r) = V=12 Then (H) is obviously satisfied, (k) means thaf > p — N,
(1.10) meansr > —N, ando + p > 6. Clearly, 3(r) = ¥Vt /(N + 0) andh(r) ~ r@-N-0/-1)

near 0. Also, we find

N +o)p—-1) «_ N+

P="N+o—p ° P=Nvo—p
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and the estimates (1.15), (1.16 ), reduce to
u(r) < Cmin(r=N=0/@-1) .~(+p=0/C+1-P))  near 0

Notice that here lim_o hP(r)3(r) = lim, o [F ”PBdt = ¢ > 0, thus/ = W = [p — 1,7]. In the case
0 = p, we find the estimate

’LL('I") < CT@_N_Q)/(p_l)| Iog T|—(N+9—P)/(P—1)(’P+U—9) near 0

Example 2. Here we assume that

k

a(z) =1, b(zx)=|z|° , o,keR,

X
log ‘E
henceA(r) = rV 1, B(r) = rN=1+7|log(r/2)|*. The assumption () means thafV > p, and we have

h(r) =~ r®=N/e-1 andg(r) ~ rN-1*+7|log(r/2)|* near 0. Theh?~1(r)8(r) ~ r?*?|logr|* near 0.
Hence (1.10) means > — N, ando > —p oro = —p andk < 0. Also

__(N+op-1)
P="N_,
and the estimates (1.15), (1.16), reduce to

u(r) < C min(r®=N/E=D) (o) jogr|F)"YCOHPY near o

Notice that ifc = —p, thenp = p — 1. Now
_ 1 _ 1
WP(r)B(r) ~ |logr[*  and / WPBdt ~ / 1 log[* dt.

Hencep € U ifand only if k < 0, andp € W ifand only if k < —1.

Now consider the critical case= p wheno > —p. If £ < —1, Theorem 1.1(iii) applies, so that any
unbounded solution behaves likeMoreover there do exist such solutions. Indeed, it suffices to consider
the problem (SP with

ulro) =0,  rd ! (ro)[" 2w (ro) = —1,

andro > 0 small to satisfy logro|**1/|k+1| < (N —p)/(p—L)P~L. If =1 < k < 0, Theorem 1.1(iv)
applies, and gives the estimate

u(r) < Cre=N/@=Djog | ~*+D/0+1=D)  near o
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2.5. More precise asymptotics
Here we give more precise information on the behavior of the solutions in thé cage> p — 1, in
terms of the functiorh. We will do it under some additional assumptions on the weights. First observe

that if

liminf W7(r)5(r) > 0,

then from (1.16) we have an estimatewoi terms ofh, namely
u(r) < Ch(r)®—PHD/0+1=p)  nearQ (2.9)
Let us definelM! by the relation

Me-1)_

M—-p
so thatM plays the role of a dimension associategtdow performing the change of variables

u(r) = w(s), s = Mi_fh*(Pfl)/(M*p)(r),
p —

we are lead to the equation

-2
where
_ WPHY(r)B(r)
O e

If Q were constant, the problem would reduce to a nonweighted one, in the variahin dimen-

sion M, for which we know the complete classification of the solutions. We can hope to obtain a similar
result when( has a positive limit as tends to 0In the preceding works of [15,2], the usual changes of
variable reduce the study to an autonomous equation of the second order in a cylinder. Here the equation
is generallynonautonomoysand the problem of the convergence offers a particular interest. We obtain
the following:

Theorem 2.2. AssumdH1), (Hy), with A, B continuous in0, 1). Letd >p > p — 1, with§ + 1 # p*.
Letwu be any solution t¢SFP,).
Assume that the mapping

_ LPtlp _ _hmld_ﬁ

7] dh
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has a derivative in.1((0, 1)), and
o = lim Q(r) > 0.

Then eithet(u/hP~P+D/0=P+1)(1) has a finite limit¢ > 0 asr goes tdd, or u is bounded.

Proof. The assumptior; > 0 implies thath?(r)3(r) has also a positive limit from I'Hospital’s rule,

since@ = pA’'/(h~P)', hence (2.9) holds. We make the change of variable

u(r) = K@), t=log(h(r)), =221
o+1—p

This is the same as making the change of varigltg¢ = h™v(t), ¢ = logh, in (2.2). Since we have

dy _q(dv
< =pT = >0, 2.1
a h (dt +m) 0 (2.10)
we obtain the equation

G+ m)H) —a-ne- (G m>p_l LQi=o (2.11)

It is not autonomous in general because of the coefficemy (2.9),v is bounded, and/ dt is bounded
from (2.10) and (2.3). As in [2], we can write (2.11) as a system:

dv_ e

dt
% =1-7)(p—1)z— Q.

Related to this system we consider an energy function given by

p’ o+1

z v
V(t):?—Tvz+Q5+l

gr-1”

where the constant is linked to the Sobolev exponent by

(P-10+1-p")

d+1-p 7 0.

A=p—-1—pr=

After some computations we get

dQ v+l

dt 5 +1' (2.12)

dv
5O =AX0O+
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where

X = (%) (z — Tp_lvp_l) = (zl/(p_l) —7v)(z — Tp_lvp_l).

Sincev, z, @, andV are bounded, and @/dt)(t) = Q'(r)h(r)/h' () belongs toL*(1,00), we deduce
that X € L(1,00) from (2.12). Now for allz, y > 0 it holds that

—2 .
(2 — gt — g1y 5 | oo =0 (2l + )" ifp <2
’1’ - y’p if P > 2,

wherec, > 0 depends only op. Hence, by setting: = 2Y/®-1, y = rv, we find that @/dt ¢
L?((1,+00)) if p < 2, sincev and z are bounded, andvddt € LP((1,+00)) if p > 2. Since @/dt is
uniformly continuous, it follows that lim., ., dv/dt = 0. SinceX (¢) > 0, the function

tdQ v0t1

is bounded and monotone, hence it has a finite limit. ThenWdléas a finite limit, sincev is bounded
and dQ/dt € LY((1,+00)). From the expression df, we deduce that has a finite limit/ > 0 as
t — +o0, hence lim_o(u/h7)(r) = ¢. Then we find

Jm 0 =G jim S = - D - of
which yields
(= (@@ - P tH7CT or e=o.
Suppose that = 0. Following the procedure in [15], we write our equation in the form
A(t) = -1y / > e~ (-nE-Ds (), g,
t

hencez(t) < Cv’(s), sincewv is nonincreasing for large Indeed at each point where @it = 0, we
have dv/dt? > 0. Then

d
d_: + 70 < Cv¥/),
hence
O ~-D/(G—p+1)
o(t) < ( Kelr6-p+D -1} _) ,
.

which implies that(t)e™ is bounded, so that is bounded. O
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Remark 2.5. The theorem applies in particular@ is monotone and bounded near 0. This is the case
in Example 1, and moreover, if we replace the functioim Theorem 2.2 by the function — h(r) =
[Fo° A=Y ®=D dt, then the functiorg is constant.

Remark 2.6. One can also precise the behavior of the solutions in the criticalicas®. We will not
mention here the results, because of their technicality.

3. Thenonradial regular Dirichlet problem

We consider here the general problem (DP) in the nonradial case, with eventually nonradial weights.
For anys > 1, we denote by *({2, a) the space ofi-measurable functionsin {2 such that

1/s
ullLs(2,0) = </ usadx) < +00.
2

And WP(2,a) is the completion of

{0 € (D) Igllupa = 9l + 11Vl oo < o0}

with respect to the nornj - ||1,,4, and Wol'p(ﬁ,a) the completion ofD((2). We defineL; (12, a) and
WeP(£2,a) in the same way, see [16,17].

3.1. Global Harnack properties

We will say that ¢, b) is globally admissible irf? if it satisfies the conditions:

() Integrability:
a€ Li(2), beLX), o/ P el (2). (Gy)

(i) Sobolev—Hardy inequalitythere existsc > p such that, for any € D({2),

1/k 1/p
(/ |g0|”bdx) < C’(/ |Vgp|padx> , (Gy)
2 2

with C = C(N,p,q, $2,a,b).
(iii) Poincaré inequalityfor anyy € D({2),

/ lplPadr < C/ |[VolPadz, (G3)
2 2

with C = C(N, p, £2,a) > 0.
We will associate ta: two numbersy > p andw defined by

. =._h_nb-1) 3.1)

=K, K=
n—nr p n—nr
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Remark 3.1. The assumption (§ ensures that any € W1P(12,a) is in L{ (£2), so that the gradient is

loc

well defined inD’(£2), and thaiV/17(12, a) andWol’p(Q, a) are Banach spaces, see [16,17].

First we give a global regularity result i2, which is an extension of well-known results in the non-
weighted case, in cage= 2, see [14, Theorem 8.15]. We give the proof for a better comprehension of
the results in Section 4.

Theorem 3.1. Assume tha{G;) and (Gy) hold. Letu € Wol’p(Q,a) be any nonnegative solution of
equation

—div(a(z)|VuP~2Vu) = H(z)b(z)u?~t in £, (3.2)
whereH € L*({2,b) for somes > n/p, with n given by(3.1), H > 0. Then for any\ > p,

supu < Cllullprp), (3.3)
whereC' = C(N,a,b, s, 12, || H|| 1s(2.p))-

Proof. For anyy € D({2), we have
/ |Vu|p72Vqu0adx:/ HuP~Ypbdz.
Q Q

From (G), (Gy) and the assumption oH, it also holds by density for any € Wol'p(Q,a). Indeed
¢ € L*(£2,b) and defining 1< ¢ < x by the relation 1t =1—1/s — (p — 1)/k, we have

. 1/s »—1)/k 1/t
/ HuP Ypbdz < (/ Hsbd:v> </ u"‘bdaz) (/ gptbdx) < 400,
N 2 2 N

sinceb € LY(f2). Let3 > 1 andy = 3+ p — 1. For anyn > ¢ > 0, we setu, = u + ¢, and consider a
function F € C([e, +o0)) defined by

F(z) = /P /P on [e,n], F linearon p,+00).

Let us setp = G(u.), where
Y
G = [ PP ds.
€

Sincep < C.u, we havep € LP(f2,a) and thusy € Wol’p(Q,a) from the chain rule, see [16, Theo-
rem 1.18 and Lemma 1.25]. Hengds an admissible test function, and we get

/ VulP G ((us))a de < / Hu? \G(u)bde < / HuP G (u)b da.
2 2 2
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Thus we obtain
/Q IV (F(ue))[Pade < /Q Hu?|F'(u.)| b dr.

And the functionF(u.) € Wy?(D, a), hence from (G),

1/p

(/Q (F(ue))"b dx) s < C(/Q IV (F(u.))["a dx) < C(/Q | )b dx) 1/p

~ 1/p
<—(/ Hug/pbdx) .
p 9]

Makingn — +o0, we get

1/k D
(/ (ug/p—sw/p)ﬁbdx) < (1) / Hul/Pbdz.
2 D 2

Now b € LY(£2) and thusH € L1(2,b). Then we can let — 0, and setting) = /7, we get

1/p
1
[ollLr2p < C’Y(/Q vabdx) < ’YHHHL/SIZQ,b)HUHLps’(Q,b)
<SANHNTE o ElvllLrn + & ol o),
(£2,0)

wherer = n/(ps — n) > 0, for anye > 0, by interpolation. Taking = (1/27)||H||i/fzgyb), we deduce

1 1+
Iollrgasy < CONEITE o) o]l ogas)-

Then returning ta., it comes

p/Vk 1/~
(/ u”“/pbd:v> < 07(1+T)p/7</ u”bdx) ,
(0] (p]

with anotherC' > 0 depending orMHHi/fEQ’b). Taking a sequence, = A(Q/p)", with A > p, we get
(3.3) by iteration as in [27,14]. O

3.2. Existence of a bounded solution

Here we prove the existence result of Theorem 1.2. First we prove the existence of a weak solution of
the problem:
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Proposition 3.1. Assume thafa, b) is globally x-admissible inf2, and the imbeddingVol’p(Q,a) —
LR(£2,b) is compact for anyl < p < k < k. Suppose) < « — 1. Then there exists a nontrivial
nonnegative solution of the Dirichlet problem in2:

1,
{u e W, P(£2,a), (3.4)

—div(a(z)|VulP~2Vu) = b(z)u® in 2.

Proof. The idea of the proof is classical and still used in the radial case in [12]. We consider the mini-
mization problem

inf{J(w): w € S},

where

J(w) = / |Vw|Padzr and S = {w € W(}’p(ﬂ,a), / lw|®* b dz = 1}.
2 2

Under the assumption (¢ the spaceWol’p(Q,a) is reflexive sincep > 1, see [16]. The sef is
nonempty: it contains some elementsff?), sincea,b € Li (£2). From (&) and the compactness
assumptionS is weakly closed. From (§, w — (J(w)Y/?) is an equivalent norm oWOLP(Q, a). Then
J achieves its minimum at some poimt > 0, sinceJ(w) = J(|wl|) for anyw € Wol'p(Q,a). Hence,
from the Lagrange multiplier rule, there exists a r@aluch that

/ |Vu1|p72Vu1Vvadx = )\/ u‘ivbdx,
02 02

for anyv € WyP(£2,a). Takingv = uy, one gets\ > 0. Thenu = A\Y@~2+1y, is a solution of the
problem (3.4). O

From now on we are in a position to prove Theorem 1.2:

Proof of Theorem 1.2. From Proposition 3.1 we have constructed a nontrivial solution of the problem,
such that

/ Wb dr < +o0.
0

We can apply Theorem 3.1 witH := «’*1~7. We haveH € L*(12,b) for
0+1 i

§=——
64+1—p p

sinced < k — 1. Then we gett € L°°(§2) from (3.3) withA =0+ 1. O

Remark 3.2. Our process of proof is rather different of the one of [12]. They prove the existence of some
weak solutions of problem (SPin a suitable Sobolev space, and then they show that such solutions
are bounded near 0 by using monotonicity and descent methods. We consider directly the Dirichlet
problem (DP) instead of (SP) and use Harnack inequality. This supposes thab{@s, which was not
supposed in the radial case.



136 M.-F. Bidaut-Véron and M. Garcia-Huidobro / Quasilinear equation with weights
3.3. Applications
Let us begin with the case of powers|af. We have the following.

Theorem 3.2. Letd, o be any reals, such th#, o > — N, andfd < N(p — 1). Assume that

N—-p'N+6-p

(hences+p > 6). Then there exists a nontrivial nonnegative bounded solutiofthe Dirichlet problem
in £2:

{ u € WoP(£2,a) N L=(92), (3.5)

—div(|z|?|VulP~2Vu) = |z|7u® in 0.
Proof. We can apply Theorem 1.2. Indeed the conditiéns > —N, imply thata,b € L(£2), and
6 < N(p — 1) ensures thai~%/®—1 ¢ L1(12), hence (G) holds. And (G), (Gs) and the compactness
property hold from [17], withx = inf(P*,p*). O

Now for anyxz € 2, let d(x) be the distance from to the boundary (2. Here we consider some
weights which are powers a@fand deduce similarly the following:

Theorem 3.3. Letd, o be any reals. Assume thatV < 6 < p —1land—1 < ¢ and

. . pN  p(N + o) )
0 + 1 < inf(P*,p* :mf( , . 3.6
St N—p (N+60-p) (3.6)
Then there exists a nontrivial nonnegative bounded solutiohthe Dirichlet problem inf2:
u e WP (82,d°) N L=(12), 3.7)
—div(d? ()| Vul[P~?Vu) = d’ (2)u’, =€ 0. '

Proof. We can again apply Theorem 1.2. Indeed the conditiofs< 6 < p—1and—1 < o imply (G1).
Also (3.6) implies (G) and (G), and the compactness property follows from [17, Theorem 19.2].

The problem of characterizing admissible weights has been studied rather extensively during the last
twenty years and continue to be under active research in the case of two different weigliMecessary
and sufficient conditions have be given in [19] in terms of capacity, but they are hard to check. Hence
many authors tried to give only sufficient conditions. A well-known class of weights was introduced
by Muckenhoupt [21]: a functiom in a domainD of R¥, positive a.e. inD, such thata € Li (D),
lies inthe Muckenhoupt-clasg,.(D) (r > 1) if there exists a constaiit > 0, such that, for any ball

B(z,R) C RV,

" 1/r 1/r’
(/ ad:v) (/ o Y1) dx) < CRY, (3.8)
B(z,R)ND B(x,R)ND
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if r>1,or

/ adr <CRN inf a,

B(z,R)ND B(z,R)ND

if » = 1. Let us recall some properties of this class. We hay@)) C A,.(D) for anyr > 1. Hence any
superharmonic function, positive a.e ', is in A1 (R"). On the other hand, any functianc A,(R")
with p > 1 satisfies a reverse Holder inequality: there exists- 1, andC' > 0, such that

1/pa
(j{ aPe dx) <C adzx,
Blz.R) B(z,R)

for any ball3(x, R) C RY. As a consequence, there exigissuch that 1< ¢, < p anda € A, (RY).
Concerning the Dirichlet problem, the main result is that & .A,(R"), then the paird, a) is globally
admissible in anypoundeddomain{?2, and it satisfies (g in {2 for any s > p such that

k(Ngq — p) < Npga,

see [16, Theorem 15.23]. As a consequence,df A;(RV) and 1< p < N, then (@) holds inB for

anyp < k < P*. Up to our knowledge, the question of compactness was not solved in the general case
of a pair @, b). Notice that any powed(x) = |x|9 lies in A,(RY) if and only if -N < 6 < N(p — 1).

Also the weighta(z) = d?() lies in Ay (2)ifandonly if -1 <6 <p—1.

Remark 3.3. These classes have been extended to two different weights, see [16]: @ ppof(non-
negative functions i} (D), such that is positive a.e. inD, lies in the classd,.(D) (r > 1), whenever
there exists a constadt > 0, such that, for any bats(z, R) ¢ RV,

1/’

1/r /
(/ bdx) (/ q V=1 dx) < CRN.
B(z,R)N2 B(x,R)NS2

It can be shown that for any such that 1< » < p < Nr, the Sobolev inequality (& holds with
k= Npr/(Nr — p). This class appears to be quite restrictive, since it limits the growsiwdth respect

to a: in the case of the problem with the weights given by (1.32), the jai) (= (jz|?,|z|) lies in
:47(6) if and only if 6,0 > —N, ando > 6, and this last condition is not required at Theorem 3.2. In
the same way in the case of problem (3.7), the paib)(= (d’(z), d’(z)) lies in XT(B) if and only if

f,0 > —N,andd < r—1,0 > —1ando > 6, which is more than what is required in Theorem 3.3, see
[17, Remark 15.19].

4. Thenonradial singularity problem

We consider here the general problem (SP) in the nonradial case, with eventually nonradial weights.



138 M.-F. Bidaut-Véron and M. Garcia-Huidobro / Quasilinear equation with weights
4.1. Weak estimates with general weights

Here we give the first estimates on any solution of (SP) in the nonradial case and prove Theorem 1.4.
For any domainD c R”, and anyf € LY(D, a), we set

f= Jp fadz

D Jpadz

The first estimate, (1.21), extends to the supersolutions of (1.18):

Theorem 4.1. AssumgK}). Letu € L(£2') N Wéf(ﬁ/,a) be any nonnegative function i’ such
that the distribution in?/

g = —div(a(z)|VulP~2Vu) (4.1)

lies in Lﬁ)C(Q’), andg > 0. Then there exist§’ > 0 such that for anyzg € B,

inf u < c( / || (L= /A=) i 1). (4.2)
ESEIS

|| =lol
Proof. We follow the method of [2] relative to the nonweighted case. We use a test function introduced

by Serrin in [24]. LetCy = 2sup,|_; u(z) anduy = u — C1. Foranyr < 1, letmy(r) = inf ;- ua(z).
We define

0 if |z| > r andus(z) <O, orif |z| > 1,
vp(z) =< wi(x) if r < |z| < 1and 0< ug(z) < ma(r),
ma(r) if r <|z| < 1andui(z) > ma(r),orif |z| < r.

For anyyp € D(£2'), we have
/ \VulP~2VuVpa dz :/ g dr, (4.3)
ol ol
and by density, (4.3) also holds for apye W1P(£2,a) N L>°(£2) with compact support ifi?’. We take
¢ = vp(z) — ma(r)n,

wheren is radial, with values in [0, 1], such that= 0 for |z| > 1, andnp = 1 near 0. Then

/ |Vu|P~2VuVu,.adz + / g(ma(r) — v,) dz = ma(r)Cy,
1o 1o
whereC’, does not depend an

CHr = / ]Vu\p*ZVana dz + / g(1—n)dx.
o fo%
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Then
ma(r)Cz > / |Vul|P~2VuVu,ads = / Vo [Padz.
B B’

Defining the capacity of any compact s€tc 5 with the weighta by

cpa(X,B) = inf{/ [VolPadz: ¢ € D(B), ¢ > 1 OnX},
B

we get, since,.(x) > ma(r) on the ballB,. = B(0,r),
ml(T)CZ = mpi(r)cp,a(Br’ B)

From [16] this capacity can be estimated by

1-p
¢palBri B) = c< / [P /1) d:::> |

<zl

for someC' = C(V, p) > 0, hence with a new' > 0,

inf u(z) < ma(r) + C1 < C/ ]w\(lfN)p/al/(lfp) dxz + Cq,
r<|z|<1

|x|=r
and (4.2) follows. O

Now we prove the second estimate, (1.22), which will end the proof of Theorem 1.4. It relies on the
ideas of [4,20].

Theorem 4.2. AssumgK;). Let . be any nonnegative supersolution (&P)in (2. Then there exists
C > 0such that for anyzo € B', and any ballB(xzo, 2R) C (2,

1/6 1/(6—p+1
(% u‘s) : < CRp/(5+1p)<f5(|107'23)adx> e ). (4.4)
B(zo,R),b fB(\xol,R) bdl’

Proof. For anyy € D(2'), we have

/ |Vu|p_2Vqu0adx:/ u’pbdz,
Q/

/

and by density, it also holds for agy € WP(£2’, a) N L>°(£2") with compact support if2. Lete > 0,
andu. = u+¢ > 0. Let¢ € D(£2'), ¢ > 0. Sinceu € L*>°(£2'), we can take
R W'

P Ue
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with 1 — p < a < 0, andX > 0 large enough. We obtain
/ ulu’ ¢ da + ]a\/ ud Y VulPrade < )\/ ul Y VuPY Ve de
o] 0% o]
< M/ Cu Y VulPadz + C/ ud PP V¢ Pa d,
2 Jo o
whereC > 0 depends oa. Hence
/ ulul ¢ b dr +/ ul Y VulP¢Pradr < C/ ud PPV Pa da.
o] o o]
Then from the Hoélder inequality, settirtg= 6/(p — 1 + «) > 1, and letting:s tend to 0, we get

/u5+°‘C’\bdm+/ u* | VulP¢Pa da
/ Q/

1/6 , L , 1/6'
< C</ u5(>‘bdx> (/ PV v P o b0 d:r:> ,
/ Q/

with a new constant’ > 0. Now we choose
o=
as a test function. We get
/ u’ b dr < )\/ Y VulPY V¢ a de,
/ Ql

hence for anyv € (1 — p, 0),

1/p

1/
/ Wb dz < A(/ uO‘_lg)‘|Vu|padx) (/ u(l—a)(f’—l)@—p|vg|padx>
/ Q/ Q/

Sinced > p — 1, we can fix amx € (1 — p, 0) such that = §/(1 — a)(p — 1) > 1. Then we get

1/6p'+1/1p , , , , 1/¢'p’
/ Wb dr < C</ uég)‘bdx) (/ 0P v Paf b0 d:r:>
/ Q/ Q/

/ / / ! 1/T/p
X (/ TPV P BT dx) . (4.5)
Q/

Since Y0p' + 1/mp=(p—1)/6 =1— (1/6'p' + 1/7'p), we find

(6—p+1)/6
(/ u‘S()‘bdx>
a 0’ ) ) 1/6'p’ a T’ ) ) 1/pr’
<c( [ (5) cmvereva) ([ (5) crver Qo)
2 \b o' \ b
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Then from the Holder inequality with coefficientgf and /7,

(G—p+1)/s 1/pf (1-0)/0'p'
(/ u5C’\bdm) gc(/ C’\p]VC]padx) (/ C’\bdm)
/ Q/ Q/

1/p a-7")/pr’
X ( / C’\p]VC]padm) ( / C’\bdm) ,
2 2

hence

([ weva) " <o [ eorvapaas) ([ dvas)

that is

(0—p+1)/6 (r—-1)/6
( / uédbdx) ( C’\bdm) <C / OP|V¢Pade, (4.6)
!/ Q/ Q/

Consider any balB(xq, 2R) C 2'. We take((x) = &£(x — x0) where has its support i8(0, 2R), with
values in [0, 1], such that = 1 in B(0, R) and|V¢| < C/R, and deduce

(6—p+1)/6 (p—1)/8
(/ u‘;bdx) (/ bdm) < CR*p/ adz,
B(xo,R) B(xo,R) B(xo,2R)

and (4.4) follows. O
4.2. Local Harnack properties

Here we extend some local Harnack properties in any domaiof RY, which are known in the
nonweighted case, to the weighted one, in order to apply it to our problem/with(?’. We deal with
the equation

—div(a(z)|VulP~2Vu) = H(z)b(z)u?~t in D, (4.7)

where nowH satisfies local estimates in a suitalilé space, withH > 0. Much work has been done

for the equation without second member (1.25) but we did not find the precise result we needed for the

equation with coefficients (4.7), even if a part of the result is mentioned in [5] fer2. Thus we give

here a complete proof , which is an extension of the results of [24,27] using the Moser technique.
According to [16], we will say that is locally admissible inD if it satisfies the following conditions,

for someC, = C,(N,p,D,a) > 0:

() Integrability:

a€ Li(D), oY P e Lt (D); (C1)
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(i) Doubling condition for any ballB(xq, 4R) C D,

/ adr < C, adz. (Co)
B(xo.2R) B(xo,R)

(i) Sobolev inequalitythere exists somé& > p such that for any balB(zg,2R) € D and any
¢ € D(B(zo, R)),

1/Q 1/p
( ]{ |¢IQ) < CaR< ]{ IWIP) : (Ca)
B(zo,R),a B(zo,R),a

(iv) Poincaré inequalityfor any ball B(zo, 2R) € D and any boundeg € C°°(B(xo, R)),
/ lo — B, [Pady < CaRp/ |VelPadz, (Ca)
B(zo,R) B(zo,R)

Wherep, = $5.0.r).a ¢-
We will associate t@) the numbersy > p andQ defined by
Q _vip—1)

— =Q, Q=== —. (4.8)
p p v—p

Also, we will say thathe pair(a, b) is locally admissible irD if the following conditions are satisfied:

(V) Integrability.
a,b € Liss(D); (Cs)

(vi) Hardy—Sobolev inequalitythere exists’ > p such that for any balB(xo, 2R) C D and any
¢ € D(B(wo, R)),

1/Q 1/p
(f16?) “<cur(f ver) (©o)
B(xo,R),b B(zo,R),a

whereC,, = Cy (N, p, D,a,b) > 0.

We define similarly two numbers > p and K by

- K -1
W = K_1=D (4.9)
n—>pr p n—»r
Theorem 4.3. Assume that is locally Q-admissible anda, b) is locally K-admissible inD, for some
Q, K > p. Letn be defined by4.8), (4.9) LetH € L; (D, b) for somes > n/p, with H > 0. Letu be

loc
a nonnegative solution @#.7). Then
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(i) for any ball B(zo,4R) C D and anym > p — 1,

1/m 1/m
sup u < C<<% um) + (7{ um> ), (4.10)
B(wo,R) B(zo,2R),a B(x0,2R),b

whereC = C(N,p, a, b, s, m,Cg), and

1/s bd
Cp = RP(% HS> M; (4.11)
B(z0,2R),b JB(wo.r) @ 0T

(iiy forany ball B(xo,4R) C D and any0 < m < Q,

1/m
( 74 um) <C inf_u, (4.12)
B(x0,2R),a B(zo,R)
with C" = C'(N,p,m,a) > 0. As a consequence for afy< m < Q,
1/m
sup u < C<7{ um) , (4.13)
B(zo,R) B(x0,2R),b

with C = C(N, p, a, b, s,m, CR).

Proof. (i) We have supposed from the begining that Liy.(D). By replacingu by v + ¢ and making
e — 0, we can suppose that> 0 in D andu~! € L%(D). For anyp € D(D), we have

/|Vu|p_2Vqupadx:/ HuP~Ypbdz.
D D

From (G), (Cs) and the assumption aH, this also holds for any € WP(D, a) with compact support
in D. Let{ € D(D), ¢ > 0, with compact support in a balt(zg, 8Rg) C D. We take

gozuﬁg“p, 6 >0,

and get

B/Duﬁ_l\Vu]pCpadx <p/DuﬁCp_HVu\p_ZVuVCadx+/DHuﬁ+p_lebdm.
Hence from the Holder inequality,

g/Du61|Vu|pCpadx < Cﬁlfp/Duﬁer*HVQpadx + /DHuﬁer*l(pbdx.
Letv = /P, withy = 8+ p — 1. Then

P
/ IVu|PCPade < Cl(ﬁl—p / W|V¢Padz + / Hupgpbdx).
D B D D
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Let us consider an® < 2R and take supp C B(zo, R) C D. We have from (@) and (&)

o) ((f,000)+ (f,000) )
< CR< /D \V(vg)\padx>l/p < CR(( /D vp|V(|padx) L ( /D |Vv|p(padx) 1/p)
<on(((1+3) [ wwepass) s ([ mvenar) )

Now from Hélder inequality, and setting || = (/, H*bdz)Y/* andr = n/(ps — ) > 0,

1/p
HoP¢Phdr ) < | HYP ([ s gy < IHIYP (el piepgy + € T II0C | rp )
5 (D) S

for anye > 0, by interpolation. Hence

() "+ ()" sen((3) o)
—i—aWHHHI/p( D’b(yg)K)l/K(/B(xO’R)adx)—l/p(/B(moyR)bdx)l/K

y Y 1/p —1/p g 1/p
g ﬁl/p H H D’b(UC) B(xo,R) adr B($0,R) o

Let us take

1/p
€=61/”(2CR'V)‘1HHH‘1/T’( /B ( R)adm) ( /B ( R)bdm)
0, xo,

After some computations, and with a new constant 0, we get

(£0) (07
confen3)(f,ome)" e CHE) ()"

1/K

~1/K

1/K

where

1/s bd
Lp= Rp(j{ H) f‘“%imdx. (4.14)
B(zo.R)b IB@o.r) @97
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Then as soon a8 > [y > 0, with anotheilC' > 0 depending orfy, we have

(f09) "+ (007)

<o (a(f, s e (£ )",

Let us define sequencés, = Ro(1+2™) and(,, with support in3,, = B(zo, R,,), with values in [0, 1],
such that,, = 1 onB,,;1, and|V¢,| < C2"/Ro. Then we find

1/Q 1/p 1 1/p
(j{ UQ) + (7{ UK) < C'y“‘T (2”(7{ vp) + L$%+T)/p(7{ vp) )
Bpi1,a Bri1.b Ba,a " Ban.b

It can be verified thal p, < 2PCg,. Hence with a new constant depending orCr,,

1/Q 1/p 1/p
(o) ) <2 () () )
Bn+1,a Bn+1,b Bn,a n,b

Let us sefp = min(Q, K). Then in particular

1/p 1/p
(j{ vP —i—j{ vp) < C'yl‘”Z”(?{ P + vp) .
Bn+1,a Bn+1,b Bn,a Bn,b

Recoveringu, we find

p/vp 1/
( j{ WP 4 j{ u“/P/P) < Cl/%y(lJrT)p/“/an/v( j{ u + u'y) ,
Bni1.a Bi1b Bn.a Bu.b

whereC' > 0 is a new constant. Taking amy > p — 1, and a sequencg, = m(Q/p)", we get by
summation as in [27,14],

1/n 1/m
(j{ um™ 4 u%) < C(j{ u™ + um)
Bn.a Bn,b Bo,a Bo,b

hence

1/n 1/m
sup u:lim(y{ u%) <C(j{ um—i—j{ um) .
B(x0,Ro) Bn,a B(x0,2Rp),a B(x0,2Rp),b

(ii) The functionw is a supersolution of the equation without second member, hence (4.12) follows
from the assumptions @ and (G), for any 0 < m < @, see [16, Theorem 3.59]. Recall thatyJC
allows to prove a John Niremberg lemma adapted to the weightso (4.13) follows from (4.10) and
(4.12). O

1/K

1/K

1/K

Remark 4.1. In fact the estimate (4.10) remains true without sign conditiod{omand for any subsolu-
tion of (4.7).
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4.3. Punctual estimates with general weights

Here we prove our main result concerning the singularity problem (SP), namely the punctual esti-
mate (1.26).

Proof of Theorem 1.5. (i) Let u be any solution of (SP). Then it satisfies Eq. (4.7) with
H =u’PH,
Now we apply Theorem 4.3 with

d n

§=——">-,
d—p+1 p

since § < K. From Theorem 4.2, there exist§ >0 such that, for anyzo € B, and any ball
B(xo,8R) C (2,

. 1/s
(fé ug) * < opvlseoan 490
B(x0,2R),b fB(!L’o,ZR) bdﬂc
Hence the functior'r defined in (4.11) satisfies

1/s
Cp = RP<7{ 5> / fB(Io,ZR)bdx < CIB($0,4R)adx
R u ~ il
B(x0,2R),b J B(zo.R) ¢ dz fB(mo,R) a dr

so thatC'r is bounded independently &f andzq from the doubling condition (&. Then Theorem 4.3
applies, and we can take = § < Q in (4.13), sinced < @Q ,andR = |zo|/8. It gives, with the
condition (G),

—p/(—p+1) JBto leol/2 @ 92

u(zg) <  sup u< 0(7{ u‘s) < Czo
B(zo,|wol/4) fB(xO,\xow) bdx

B(zo,|z0|/8)

< Clag| P/6-+D JBteo)wol/2) @ 9% ,
JB(wo,o) /2y 0 A
which ends the proof of (1.26).0
Now we can deduce Theorem 1.6.

Proof of Theorem 1.6. If a is locally Q-admissible inf2’, and (1.27) holds, then clearly,() is also
locally Q-admissible in?’, and for anym > 0,

jé u" < C u™
B(zo,|®o0|/2).b B(zo.|zo|/2).a

hence the Harnack inequality follows from (4.10) and (4.12). Then we deduce the estimate (1.28) from
Theorem 4.2, (1.26) and (1.27).
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4.4. Estimates with radial weights

Here we study the case of radial weights. First we can precise the weak estimate (4.2) of Theorem 4.1
and consequently the estimate (1.21) of Theorem 1.4.

Corollary 4.1. Assume that is radial and satisfiegH;). Letu be any function satisfying the assump-
tions of Theorem.1, in particular any supersolution SP)in (2. Then there exist§’ > 0, such that
for anyzo € B8,

inf u < C(h(|xo]) + 1). (4.15)

|z|=]zol

Proof. This follows from (4.2) by a staightforward computation,

1
/ | N (/D) gy — / PN HA=N/A=pEN =1 AYQD) - = y(|]).
[wol<[a]<1 |

xo|

Now we consider the case whelteis unbounded. Then we also improve the estimate (4.4) of The-
orem 4.2. Moreover, we show that the conditions (1.10) are still necessary conditions of existence of a
possibly nonradial solution, extending the results of [2]]

Theorem 4.4. Assume that and b are radial, with(H1) and (H,). Letu be any supersolution ¢SP)
Thenb € LL (£2), u € LY (£2,b), and there exist§’ > 0, such that for any- < 1,

loc loc
/ whdr < C(hS(r)(r)) @O, (4.16)
B(O,r)

and

, 1/6
( jﬁ u5> < C(he= @) (ry) YO (4.17)
B(,r),b

Proof. Let us return to (4.6): there exists > 0 such that, for any € D(£2),

: G—p+1)/s , . (p—1)/6 :
(/ u6(>‘bdx> < (Abdx> < C/ PV Pad.
/ Q/ Q/

Letro € (0, 1) be fixed, andig = h(ro). Letn > 1 be a fixed integer. From @ the functionk maps
(0, 1) onto (0;+00). Thus we can chose the test function under the form

C(@) = &(h(|z))),

whereh — £(h) € D((0,+00)) with values in [0, 1], such thal(r) = 1 for hg < 7 < nhg, &(7) = 0 for
T < ho/2 0rT = (n+ 1/2)hg, and|d¢ /dh| < C/hg, with C independent ohg. We find

. e C r(h/2) , »
/ aC p|vg|pdx<—p</ AW ()| dr+/
Q' ho r(h) r

r(nho)
A(r)|h'(r)‘p dr)
((n+1/2)ho)
C </7‘(ho/2) , r(nho) , C 1—
=—— h'(r)dr + h(r)dr)z—ho:Ch P,
ho \ Jr(no) r((n+1/2)ho) hg °
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Then

. (0—p+1)/6 . »—1)/6 1
( / uébdx> ( / bd:c> < ChE?)
Cr(nhg).r(hg) Cr(nhg).r(hg)

Making n — o0, we find thath € Li.(£2), so that3 is well defined, and moreover € L,‘SOC(Q, b), and
since

r(ho)
/ bdr = / B(r)dr = §(r(ho)) — B(r(nho)),
Crinhg)r(hg) T

(nho)

we get

(6—p+1)/d
) < Chg?

B(p_l)/‘s(ro) ( / wbdr
B(0,ro)

which proves (4.16) and (4.17).0
Let us apply it to the case of admissible weights:

Proof of Theorem 1.7. (i) The estimate (1.29) follows from (4.17) in Theorem 4.4 and (4.13) in Theo-
rem 4.3 as for Theorem 1.5. Sineds locally admissible, and is a supersolution of (1.8); is lower
semicontinuous 2’ andu > 0 in £’ from the strict maximum principle, see [16, Theorem 7.12]. Fol-
lowing the ideas of [2], we show that satisfies a stronger form of the maximum principle. Let us set
m = inf,_;u(x) > 0. For any integem > 2, the functionz — wy,(z) = m(1 — h(|z[)/h(1/n)) is

a solution of Eq. (1.8) for In < |z| < 1. From the comparison principle [16, Theorem 7.6], we have
wyp(z) < u(x) for 1/n < |z| < 1. Going to the limit as1 — +oco, we deduce that(z) > m, a.e. in5’,
hence liminf_ou(x) > 0. Then in particular (1.10) holds from (4.17).

(i) This follows from (1.29) and Theorem 1.6.0

4.5. Applications

Notice that the assumptions of Theorem 1.6 are relatively weak, compared to those of Theorem 1.2.
Consider for example the case of two powersof

Theorem 4.5. Letd, o be any reals such that +p > 6 > —N, 0 > —N. Letu be any nonnegative
solution of

—div(|z|°|VuP~2Vu) = |z[7u’ in 2. (4.18)

Then ifp — 1 < § < P, thenu satisfies the Harnack inequality. Moreover, eitlfier N < p andu is
bounded nea#, or§ + N > p and

u(z) < C'min(|z|@=N=0/@=D |z|~@C+o=0)/0=p+1)  near0. (4.19)
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Proof. We can apply Theorem 1.7. First= |x|? is locally admissible inf2’: obviouslya € L (2

and verifies (), sincea is positive and continuous if?’. Moreovera satisfies the doubling condition:
for any ballB(xzo, 4R) C {2, one hask < |zo|/4, hence

. 3 0 1 7]
/ 12/ dz < 2V|B(ao, R)| ]mo\emax((—) (_) )
B(z0,2R) 2 2

3\’ 5\’
/ ol do > ]B(xo,R)Hmo\emin<(—> (-) )
B(zo,R) 4 4

And ¢ satisfies (@) with anyQ < P* < +oo: for any ball B(xzo, 2R) C 2’ and anyy € D(B(xo, R)),
one has similarly? < |zo|/2, hence from the usual Sobolev imbedding, with new constartspending
on @ andd,

1/Q 1/Q 1/p
(f 1) “<e(f ee) <or(f ver)
B(xo,R),a B(zo,R),1 B(zo,R),1

1/p
<cr(f wepr)
B(xo,R),a

anda satisfies (@). Indeed for any constamt> 0, one has

/ lo — @, [Padr < ZPRP/ | — c|Padz,
B(xo,R) B(xo,R)

whereg, = fB(xO’ Ry P and the result follows as above from the Poincaré-inequality without weight,
after takinge = fB(xO’R)’l ©. Also (Gs) holds, and (@) follows as (G), or using (1.30). O

Theorem 4.5 covers in particular Theorem 1.3. It extends immediately to the case
¢ k
a(x) = |z|’ . b)) =27 ;

log | = log | =
og‘c og’c
whereC > diam((2), with the same assumptions én o, for any real numbers, ¢. Foranyp — 1 <
§ < P, we get Harnack inequality. Thenis bounded near 0 wheéh+ N < p and satisfies (1.31) when
f + N > p. This covers in particular the examples given at Section 2.4.

More generally, let us definelacal Muckenhoupt clas®r any domainD ¢ RY. We will say that a
function a, positive a.e. inD, lies in A, joe(D) if a € L} (D), anda=¥~Y ¢ LL (D) if » > 1, and

there exists a constaat > 0, such that, for any bals(z, 2R) C D,

1/r
(/ adx) (/ q V=1 dx)
B(z,R) B(z,R)

if r>1,or

< CRN

/ adr < CRYN inf a
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if r = 1. One verifies that € A, 1oo(D) if and only if a € A,.(D’) for any domainD’ € D. It is known
that any weighta € A,(R”) is locally admissible inD. In fact it remains true for any € A, joc(D).

HenceTheoreml.6applies to any weight € A, joc(£2’), and in particular to any € A jo(£2’). Observe
that the local Muckenhoupt class, joc(£2’) is very large, compared to the global adg((2).
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