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Necessary conditions of existence for an elliptic

equation with source term and measure data

involving p-Laplacian ∗

Marie-Françoise Bidaut-Véron

Abstract

We study the nonnegative solutions to equation

−∆pu = uq + λν,

in a bounded domain Ω of RN , where 1 < p < N , q > p − 1, ν is a
nonnegative Radon measure on Ω, and λ > 0 is a parameter. We give
necessary conditions on ν for existence, with λ small enough, in terms of
capacity. We also give a priori estimates of the solutions.

1 Introduction

Let Ω be a bounded regular domain in RN . We denote byM(Ω) the set of Radon
measures on Ω, M+(Ω) the set of nonnegative ones, and by Mb(Ω),M+

b (Ω) the
subsets of bounded ones. We consider the quasilinear elliptic problem with a
source term:

−∆pu = −div(|∇u|p−2∇u) = |u|q−1u+ µ, in Ω,
u = 0, on ∂Ω,

(1.1)

with 1 < p < N , q > p − 1, and µ ∈ M+
b (Ω). We look for conditions on

the measure µ ensuring that the problem admits a nonnegative solution, and
essentially in terms of capacity. In order to take account of the size of the
measure, we will study the problem with

µ = λν, λ ≥ 0,

where ν ∈ M+
b (Ω) is fixed and λ is a parameter. Recall a result of [3] in case

p = 2 , N ≥ 3, which gives a necessary and sufficient condition for existence:
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24 Existence of solutions to an elliptic equation

Theorem 1.1 ([3]) The following problem:

−∆u = uq + λν, in Ω,
u = 0, on ∂Ω,

(1.2)

where ν ∈ M+
b (Ω), ν 6= 0, has a nonnegative solution (in the integral sense) if

and only if

λ

∫
Ω

ϕdν ≤ q − 1
qq′

∫
Ω

ϕ1−q′(−∆ϕ)q′dx, (1.3)

for any ϕ ∈W 1,∞
0 (Ω) ∩W 2,∞(Ω) such that −∆ϕ ≥ 0, with compact support in

Ω.

Thus if q is subcritical, that means q < N/(N − 2), problem (1.2) always
admits a solution for λ small enough. In case q ≥ N/(N −2), in order to obtain
existence, the measure µ = λν has to be small enough, and also not to charge
some small sets, in particular the point sets (this was first observed in [15]).
More precisely, if the measure is compactly supported, from [3], condition (1.3)
implies that∫

K

dν ≤ C cap 2,q′(K,RN ), for every compact set K ⊂ Ω, (1.4)

where for any domain Ω and any m ∈ N∗ and r > 1, cap m,r is the capacity
associated to the Sobolev space Wm,r

0 (Ω), defined by

cap m,r(K,Ω) = inf
{
‖ψ‖r

W m,r
0 (Ω) : ψ ∈ D(Ω), 0 ≤ ψ ≤ 1, ψ = 1 on K

}
.

In fact it was proved in [2] that (1.4) is also sufficient:

Theorem 1.2 ([2]) Assume that ν has a compact support in Ω. Then problem
(1.2) has a solution for any λ ≥ 0 small enough if and only if there exists C > 0
such that (1.4) holds.

Condition (1.4) implies that µ does not charge the sets with 2, q′- capacity
zero. But it is stronger: if q > N/(N − 2) (resp. q = N/(N − 2)), there exists
a function ν ∈ Ls(Ω) with 1 ≤ s < N/2q′ (resp. s = 1) such that problem (1.2)
admits no solution, for any λ > 0.

Concerning problem (1.1) with p 6= 2, the question is much harder, because
the full duality argument used in [3] cannot be used for the p-Laplacian. The
first thing is to define a notion of solution, as it is the case for the problem
without reaction term. In Section 2 we recall the usual notions of entropy
solutions, which suppose that the measure is bounded; this leads to assume
that uq ∈ L1(Ω). We denote by

P =
N(p− 1)
N − p
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the critical exponent linked to the p-Laplacian, and we set

q∗ = q/(q − p+ 1),

(hence q∗ = q′ if p = 2). In Section 3 we prove our main result:

Theorem 1.3 Let ν ∈M+
b (Ω) and λ ≥ 0. Assume that problem

−∆pu = uq + λν, in Ω,
u = 0, on ∂Ω,

(1.5)

has a nonnegative entropy solution (hence uq ∈ L1(Ω)). Then for any R > pq∗,
there exists C = C(N, p, q, R,Ω) > 0 such that

λ

∫
Ω

ϕdν +
∫

Ω

uqϕdx ≤ C
( ∫

Ω

ϕ1−R|∇ϕ|Rdx
)pq∗/R

, (1.6)

for any ϕ ∈ W 1,p
0 (Ω) ∩W 1,s(Ω) (s > N) such that 0 ≤ ϕ ≤ 1 in Ω. And for

any α < 0, there exists C = C(α,N, p, q, R,Ω) > 0 such that∫
Ω

(u+ 1)α−1|∇u|pϕdx ≤ C
(
1 +

∫
Ω

uqϕdx
)( ∫

Ω

ϕ1−R|∇ϕ|Rdx
)p/R

. (1.7)

This Theorem gives a priori estimate not only of the size of the measure,
but also of the integral

∫
Ω
uqϕdx, independently on u. In the case p = 2, this

was first remarked by [12] when µ = 0 ; it was the starting point for proving
L∞ universal estimates. It was also used in [7] and [8] for obtaining a priori
estimates with a general measure µ. As a consequence we deduce the following:

Theorem 1.4 If problem (1.5) has a solution, then, for any R > pq∗, there
exists C = C(N, p, q, R,Ω) > 0 such that

λ

∫
K

dν ≤ C (cap 1,R(K,Ω))pq∗/R, for every compact set K ⊂ Ω. (1.8)

and if ν has a compact support in Ω, there exists C = C(N, p, q, R, µ) > 0 such
that

λ

∫
K

dν ≤ C (cap 1,R(K,RN ))pq∗/R, for every compact set K ⊂ Ω. (1.9)

In particular, if q > P , then ν does not charge the point sets. Moreover for
any 1 ≤ s < N/pq∗, there exists a function ν ∈ Ls(Ω) such that for any λ > 0,
problem (1.5) admits no solution.

In Section 4, we mention some partially or fully open problems linked to this
study. We refer to [5] for more complete results for problem (1.1) with possible
signed measure µ, and for the problem with an absorption term

−∆pu+ |u|q−1u = µ, in Ω,
u = 0, on ∂Ω.

(1.10)
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2 Entropy solutions

First recall some well-known results concerning the problem

−∆pu = µ, in Ω,
u = 0, on ∂Ω,

(2.1)

with µ ∈Mb(Ω). We set

P0 =
2N
N + 1

, P1 = 2− 1
N
,

so that 1 < P0 < P1, and P > P0 ⇐⇒ P > 1. When p > P1, problem (2.1)
admits at least a solution u in the sense of distributions, such that u ∈W 1,r

0 (Ω)
for any 1 ≤ r < P . In the general case, one can define a notion of entropy or
renormalized solutions in four equivalent ways, see [11], which allow to give a
sense to the gradient in any case: they are solutions such that ∇Tk(u) ∈ L1

loc(Ω)
for any k > 0, where

Tk(s) =

{
s, if |s| ≤ k,

k sign(s), if |s| > k,
(2.2)

and the gradient of u, denoted by y = ∇u is defined by

∇(Tk(u)) = y × 1{|u|≤k} a.e. in Ω. (2.3)

For any p > 1 there exists at least an entropy solution of (2.1), and it is unique
if µ ∈ L1(Ω). Moreover any entropy solution satisfies the equation in the sense
of distributions. The role of P0 and P1 is shown by the estimates

up−1 ∈ Ls(Ω), for any 1 ≤ s < N/(N − p),

|∇u|p−1 ∈ Lr(Ω), for any 1 ≤ r < N/(N − 1).

Thus the gradient is well defined in L1(Ω) if and only if p > P1 and u itself is
in L1(Ω) if and only if p > P0.

Recall that any measure µ ∈Mb(Ω) can be decomposed as

µ = µ0 + µ+
s − µs,

where µ0 ∈M0,b(Ω), set of bounded measures such that

µ0(B) = 0 for any Borel set B ⊂ Ω such that cap 1,p(B,Ω) = 0; (2.4)

and µ+
s , µ

−
s are nonnegative and concentrated on a set E with cap 1,p(E,Ω) = 0.

If µ ∈M+
b (Ω), then µ0 is nonnegative, and µ = µ0 + µ+

s .

We will use one of the four equivalent definitions of solution: u is an entropy
solution if u is measurable and finite a.e. in Ω, and

Tk(u) ∈W 1,p
0 (Ω) for every k > 0, (2.5)
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and the gradient defined by (2.3) satisfies

|∇u|p−1 ∈ Lr(Ω), for any 1 ≤ r < N/(N − 1), (2.6)

and u satisfies

∫
Ω

|∇u|p−2∇u.∇(h(u)ϕ)dx =
∫

Ω

h(u)ϕdµ0

+ h(+∞)
∫

Ω

ϕdµ+
s − h(−∞)

∫
Ω

ϕdµ−s ,

for any h ∈ W 1,∞(R) and h′ has a compact support, and any ϕ ∈ W 1,s(Ω) for
some s > N , such that h(u)ϕ ∈W 1,p

0 (Ω).

In the same way, for given µ = µ0 + µ+
s ∈ M+

b (Ω), a nonnegative entropy
solution u of problem (1.1) will be a measurable function u such that uq ∈ L1(Ω)
and u is an entropy solution of problem

−∆pu = µ− uq in Ω,
u = 0 on ∂Ω.

In particular

∫
Ω

|∇u|p−2∇u.∇(h(u)ϕ)dx+
∫

Ω

uqh(u)ϕdx =
∫

Ω

h(u)ϕdµ0 + h(+∞)
∫

Ω

ϕdµ+
s ,

for any h and ϕ as above.

3 Proofs and comments

Proof of Theorem 1.3 Let µ = λν = µ0 + µ+
s , where µ0 ∈ M0,b(Ω) and

µ+
s is singular, and let α ∈ (1− p, 0) be a parameter. For any k > 0, we set
uk = Tk(u), and, for any ε ∈ (0, k),

hα,k,ε(r) = (Tk(r+) + ε)α =


εα, if r ≤ 0,
(r + ε)α, if 0 ≤ r ≤ k,

(k + ε)α, if r ≥ k.
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We choose in (2) the test functions h = hα,k,ε, and ϕ ∈ W 1,p
0 (Ω) ∩W 1,s(Ω),

with s > N and ϕ ≥ 0 in Ω, and obtain

∫
Ω

(uk + ε)αϕdµ0 + (k + ε)α

∫
Ω

ϕdµ+
s +

∫
Ω

(uk + ε)αuqϕdx

+|α|
∫

Ω

∫
Ω

(uk + ε)α−1|∇uk|pϕdx

=
∫

Ω

(uk + ε)α|∇u|p−2∇u.∇ϕdx

≤
∫

Ω

(uk + ε)α|∇uk|p−1|∇ϕ|dx+
∫
{u≥k}

(uk + ε)α|∇u|p−1|∇ϕ|dx

≤|α|
2

∫
Ω

(uk + ε)α−1|∇uk|p ϕdx+ C

∫
Ω

(uk + ε)α+p−1ϕ1−p|∇ϕ|p dx

+ (k + ε)α

∫
{u≥k}

|∇u|p−1|∇ϕ|dx,

where C = C(α) > 0.

Now from Hölder inequality, setting θ = q/(p− 1 + α) > 1,

∫
Ω

(uk + ε)α+p−1ϕ1−p|∇ϕ|p dx

≤
( ∫

Ω

(uk + ε)qϕdx
)1/θ( ∫

Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)1/θ′

.

In particular for any k > 1,

|α|
2

∫
Ω

∫
Ω

(uk + ε)α−1|∇uk|pϕdx

≤ C
( ∫

Ω

(uk+ε)qϕdx
)1/θ( ∫

Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)1/θ′

+
∫
{u≥k}

|∇u|p−1|∇ϕ|dx.

(3.1)

Letting ε tend to 0, we get

|α|
2

∫
Ω

uα−1
k |∇uk|pϕdx ≤C

( ∫
Ω

uq
kϕdx

)1/θ( ∫
Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)1/θ′

+
∫
{u≥k}

|∇u|p−1|∇ϕ|dx. (3.2)
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Choosing now h(u) = 1 in (2), with the same ϕ, we find∫
Ω

ϕdµ0 +
∫

Ω

ϕdµ+
s +

∫
Ω

uqϕdx =
∫

Ω

|∇u|p−2∇u.∇ϕdx

≤
∫

Ω

u
(α−1)/p′

k |∇u|p−1u
(1−α)/p′

k |∇ϕ|dx+
∫
{u≥k}

|∇u|p−1|∇ϕ|dx

≤
( ∫

Ω

uα−1
k |∇uk|p ϕdx

)1/p′( ∫
Ω

u
(1−α)(p−1)
k ϕ1−p|∇ϕ|pdx

)1/p

+
∫
{u≥k}

|∇u|p−1|∇ϕ|dx. (3.3)

Since q > p − 1, we can fix α ∈ (1 − p, 0) such that τ = q/(1 − α)(p − 1) > 1.
From (3.2) and (3.3), we derive∫

Ω

ϕdµ+
∫

Ω

uqϕdx

≤
( ∫

Ω

uα−1
k |∇uk|p ϕdx

)1/p′( ∫
Ω

uq
kϕdx

)1/τp( ∫
Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)1/τ ′p

+
∫
{u≥k}

|∇u|p−1|∇ϕ|dx

≤
(
C

( ∫
Ω

uq
kϕdx

)1/θ( ∫
Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)1/θ′

+
∫
{u≥k}

|∇u|p−1|∇ϕ|dx
)1/p′

×
( ∫

Ω

uq
kϕdx

)1/τp
(∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)1/τ ′p

+
∫
{u≥k}

|∇u|p−1|∇ϕ|dx.

Now we can let k tend to ∞, since uq + |∇u|p−1 ∈ L1(Ω). It follows that∫
Ω

ϕdµ+
∫

Ω

uqϕdx ≤ C
( ∫

Ω

uqϕdx
)1/p′θ+1/τp

(3.4)

×
( ∫

Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)1/p′θ′( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)1/τ ′p

,

with a new C = C(α,N, p, q). Since 1/θ′p′+1/τ ′p = 1/q∗ = 1− (1/θp′+1/τp),
we find in particular

( ∫
Ω

uqϕdx
)1−(p−1)/q

=
( ∫

Ω

uqϕdx
)(1/p′θ′+1/τ ′p)

≤C
( ∫

Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)1/p′θ′( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)1/τ ′p

.
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Consequently∫
Ω

uqϕdx

≤C
( ∫

Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)τ ′p/(τ ′p+p′θ′)( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)p′θ′/(τ ′p+p′θ′)

.

Notice that τ < q/(p− 1) < θ, then from Hölder inequality,∫
Ω

ϕ1−pθ′ |∇ϕ|pθ′dx ≤
( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)θ′/τ ′( ∫
Ω

ϕdx
)1−θ′/τ ′

≤ C
( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)θ′/τ ′

,

with a new constant C = C(N, p, q, α,Ω), since 0 ≤ ϕ ≤ 1. Therefore∫
Ω

uqϕdx ≤ C
( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)q∗/τ ′

, (3.5)

with a new constant C > 0. Moreover, from (3.4) and (3.5),∫
Ω

ϕdµ ≤ C
( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)(q∗−1+1/p′+1/p)/τ ′

,

then ∫
Ω

ϕdµ+
∫

Ω

uqϕdx ≤ C
( ∫

Ω

ϕ1−τ ′p|∇ϕ|τ
′pdx

)q∗/τ ′

.

We can choose |α| sufficiently small, such that

pq∗ < pτ ′ = q/(q − p+ 1− |α|(p− 1)) ≤ R;

thus we deduce (1.6) from Hölder inequality. Also, for any α < 0, with |α| small
enough, from (3.1), taking ε = 1 and letting k tend to ∞, we obtain

|α|
2

∫
Ω

∫
Ω

(u+ 1)α−1|∇u|pϕdx

≤C
( ∫

Ω

(u+ 1)qϕ, dx
)1/θ( ∫

Ω

ϕ1−pθ′ |∇ϕ|pθ′dx
)1/θ′

≤C
(
1 +

∫
Ω

uqϕdx
)( ∫

Ω

ϕ1−R|∇ϕ|Rdx
)p/R

.

Then (1.7) follows for any α < 0. �
When p = 2, Theorem 1.1 naturally gives a stronger result, since any set

with 1, R - capacity zero for some R > 2q′ has also a 2, q′- capacity zero, see
[1]. The capacity involved in Theorem 1.3 is of order 1 instead of 2, because we
cannot use the full duality argument of the linear case. However, observe that
a point set has a 1, 2q′- capacity zero if and only if q > N/(N − 2), that means
if and only if it has a 2, q′- capacity zero.
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Proof of Theorem 1.4 Let ψn ∈ D(Ω) such that 0 ≤ ψn ≤ 1 and ψn ≥ χK

and ‖ψn‖R
W 1,R(Ω) tends to cap 1,R(K,Ω) as n tends to ∞. Choosing ϕ = ψR

n in
(1.6), we deduce that

λ

∫
K

dν ≤ C
( ∫

Ω

|∇ψn|Rdx
)pq∗/R

≤ C ‖ψn‖R
W 1,R(Ω) ,

with new constants C = C(N, p, q, R,Ω), and (1.8) follows. If ν has a compact
support X in Ω, then (1.9) holds after localization on a neighborhood of X.
Assume moreover that q > P , then we can choose R such that pq∗ < R < N .
Thus any point set {a} of Ω has a 1, R - capacity zero, hence ν({a}) = 0.
Moreover taking K = B(x0, r) with r > 0 small enough, we derive

λ

∫
B(x0,r)

dν ≤ CrN−R, (3.6)

with C = C(N, p, q, R, x0,Ω). For any 1 ≤ s < N/pq∗, we can construct a
function ν ∈ Ls(Ω) with a singularity in |x − x0|−k with pq∗ < k < N/s, and
with compact support in Ω, such that for any λ > 0, λν does not satisfy (3.6)
for pq∗ < R < k. Then there exists no solution of problem (1.5). �

4 Open problems

Problem 1: Can we obtain sufficient conditions of existence?
In the subcritical case q < P , at least when p > P0, the existence of solutions of
problem (1.1), with possibly signed measure µ, is shown in [13]. In the super-
critical case, the problem is entirely open, even for Ls functions. In particular
it would be interesting to extend to the case p 6= 2 a consequence of Theorem
1.1:

Theorem 4.1 ([3]) Assume that N ≥ 3, and ν ∈ Ls(Ω), for some s ≥ 1. If
q > N/(N − 2) and s ≥ N/2q′, or q = N/(N − 2) and s > N/2q′, then problem
(1.2) has a solution for λ small enough.

Problem 2: Can we solve problems (2.1) and (1.5) if µ is not bounded?
Let us begin by the case without reaction term. For any x ∈ Ω, denote by ρ(x)
the distance from x to ∂Ω. When p = 2, problem (2.1) is well posed in fact
for any measure µ, possibly unbounded, such that

∫
Ω
ρd|µ| < ∞ : it admits a

unique integral solution

u(x) = G(µ) =
∫

Ω

G(x, y)dµ(y), (4.1)

where G is the Green kernel. And u is also the weak solution of the problem in
the sense that u ∈ L1(Ω) and∫

Ω

u(−∆ξ)dx =
∫

Ω

ξdµ, (4.2)
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for any ξ ∈ C1(Ω) vanishing on ∂Ω with ∇ξ is Lipschitz continuous, see [7].
The case where µ is a function f , such that

∫
Ω
ρfdx <∞, was first considered

by Brézis, see [17]. The problem is open when p 6= 2 : up to now we have no
existence results concerning equation (2.1) when µ may be unbounded, even
in the case p > P1, where the definition of the gradient does not cause any
problem.

Now let us consider the problem with source term. When p = 2, it was
studied in [14] and specified in [9]:

Theorem 4.2 ([14]) Let ν ∈ M+(Ω), ν 6= 0 such that
∫
Ω
ρdν < ∞. Then

problem (1.2) has a solution such that G(uq) < ∞, a.e. in Ω, for any λ ≥ 0
small enough, if and only if there exists C > 0 such that

G(Gq(ν)) ≤ CG(ν), a.e. in Ω. (4.3)

Notice that conditionG(uq) <∞ a.e. in Ω, is satisfied as soon as
∫
Ω
ρfuqdx <

∞, and the solutions are taken in the integral sense. More recently new existence
results and a priori estimates were given in [8], covering the case of measures µ
such that

∫
Ω
ργdµ <∞ for some 0 ≤ γ ≤ 1. Condition (4.3) allows to obtain a

supersolution, and then a solution by using an iterative scheme. It is available
for much more general linear operators, see [14] and [16]. It seems to be diffi-
cult to extend to nonlinear ones, since it is based on a representation formula.
However Kalton and Verbitski [14] also gave necessary and sufficient in terms
of capacity with weights, extending the result of [2] to general measures:

Theorem 4.3 ([14]) Let ν 6= 0 be a nonnegative Radon measure on Ω. Then
problem (1.2) has a solution for any λ ≥ 0 small enough if and only if there
exists C > 0 such that∫

K

dν ≤ C cap 2,q′,ρ(K), for every compact set K ⊂ Ω,

where

cap 2,q′,ρ(K) = inf
{∫

Ω

wq′ρ1−q′dx : w ≥ 0, Gw ≥ ρχK a.e. in Ω
}
.

One can ask if results of this type can be obtained for the p-Laplacian, using
capacities of order 1 with suitable weights.
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