Necessary conditions of existence for an elliptic equation with source term and measure data involving p-Laplacian *

Marie-Françoise Bidaut-Véron

Abstract

We study the nonnegative solutions to equation $$
-\Delta_{p} u=u^{q}+\lambda \nu,
$$ in a bounded domain Ω of \mathbb{R}^{N}, where $1<p<N, q>p-1, \nu$ is a nonnegative Radon measure on Ω, and $\lambda>0$ is a parameter. We give necessary conditions on ν for existence, with λ small enough, in terms of capacity. We also give a priori estimates of the solutions.

1 Introduction

Let Ω be a bounded regular domain in \mathbb{R}^{N}. We denote by $\mathcal{M}(\Omega)$ the set of Radon measures on $\Omega, \mathcal{M}^{+}(\Omega)$ the set of nonnegative ones, and by $\mathcal{M}_{b}(\Omega), \mathcal{M}_{b}^{+}(\Omega)$ the subsets of bounded ones. We consider the quasilinear elliptic problem with a source term:

$$
\begin{gather*}
-\Delta_{p} u=-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=|u|^{q-1} u+\mu, \quad \text { in } \Omega, \\
u=0, \quad \text { on } \partial \Omega \tag{1.1}
\end{gather*}
$$

with $1<p<N, q>p-1$, and $\mu \in \mathcal{M}_{b}^{+}(\Omega)$. We look for conditions on the measure μ ensuring that the problem admits a nonnegative solution, and essentially in terms of capacity. In order to take account of the size of the measure, we will study the problem with

$$
\mu=\lambda \nu, \quad \lambda \geq 0
$$

where $\nu \in \mathcal{M}_{b}^{+}(\Omega)$ is fixed and λ is a parameter. Recall a result of [3] in case $p=2, N \geq 3$, which gives a necessary and sufficient condition for existence:

[^0]Theorem 1.1 ([3]) The following problem:

$$
\begin{gather*}
-\Delta u=u^{q}+\lambda \nu, \quad \text { in } \Omega, \\
u=0, \quad \text { on } \partial \Omega, \tag{1.2}
\end{gather*}
$$

where $\nu \in \mathcal{M}_{b}^{+}(\Omega), \nu \neq 0$, has a nonnegative solution (in the integral sense) if and only if

$$
\begin{equation*}
\lambda \int_{\Omega} \varphi d \nu \leq \frac{q-1}{q^{q^{\prime}}} \int_{\Omega} \varphi^{1-q^{\prime}}(-\Delta \varphi)^{q^{\prime}} d x \tag{1.3}
\end{equation*}
$$

for any $\varphi \in W_{0}^{1, \infty}(\Omega) \cap W^{2, \infty}(\Omega)$ such that $-\Delta \varphi \geq 0$, with compact support in Ω.

Thus if q is subcritical, that means $q<N /(N-2)$, problem (1.2) always admits a solution for λ small enough. In case $q \geq N /(N-2)$, in order to obtain existence, the measure $\mu=\lambda \nu$ has to be small enough, and also not to charge some small sets, in particular the point sets (this was first observed in [15]). More precisely, if the measure is compactly supported, from [3], condition (1.3) implies that

$$
\begin{equation*}
\int_{K} d \nu \leq C \operatorname{cap}_{2, q^{\prime}}\left(K, \mathbb{R}^{N}\right), \quad \text { for every compact set } K \subset \Omega \tag{1.4}
\end{equation*}
$$

where for any domain Ω and any $m \in \mathbb{N}^{*}$ and $r>1$, cap ${ }_{m, r}$ is the capacity associated to the Sobolev space $W_{0}^{m, r}(\Omega)$, defined by

$$
\operatorname{cap}_{m, r}(K, \Omega)=\inf \left\{\|\psi\|_{W_{0}^{m, r}(\Omega)}^{r}: \psi \in \mathcal{D}(\Omega), 0 \leq \psi \leq 1, \psi=1 \text { on } K\right\}
$$

In fact it was proved in [2] that (1.4) is also sufficient:
Theorem 1.2 ([2]) Assume that ν has a compact support in Ω. Then problem (1.2) has a solution for any $\lambda \geq 0$ small enough if and only if there exists $C>0$ such that (1.4) holds.

Condition (1.4) implies that μ does not charge the sets with $2, q^{\prime}$ - capacity zero. But it is stronger: if $q>N /(N-2)$ (resp. $q=N /(N-2)$), there exists a function $\nu \in L^{s}(\Omega)$ with $1 \leq s<N / 2 q^{\prime}$ (resp. $s=1$) such that problem (1.2) admits no solution, for any $\lambda>0$.

Concerning problem (1.1) with $p \neq 2$, the question is much harder, because the full duality argument used in [3] cannot be used for the p-Laplacian. The first thing is to define a notion of solution, as it is the case for the problem without reaction term. In Section 2 we recall the usual notions of entropy solutions, which suppose that the measure is bounded; this leads to assume that $u^{q} \in L^{1}(\Omega)$. We denote by

$$
\bar{P}=\frac{N(p-1)}{N-p}
$$

the critical exponent linked to the p-Laplacian, and we set

$$
q^{*}=q /(q-p+1),
$$

(hence $q^{*}=q^{\prime}$ if $p=2$). In Section 3 we prove our main result:
Theorem 1.3 Let $\nu \in \mathcal{M}_{b}^{+}(\Omega)$ and $\lambda \geq 0$. Assume that problem

$$
\begin{align*}
-\Delta_{p} u & =u^{q}+\lambda \nu, \quad \text { in } \Omega, \\
u & =0, \quad \text { on } \partial \Omega, \tag{1.5}
\end{align*}
$$

has a nonnegative entropy solution (hence $u^{q} \in L^{1}(\Omega)$). Then for any $R>p q^{*}$, there exists $C=C(N, p, q, R, \Omega)>0$ such that

$$
\begin{equation*}
\lambda \int_{\Omega} \varphi d \nu+\int_{\Omega} u^{q} \varphi d x \leq C\left(\int_{\Omega} \varphi^{1-R}|\nabla \varphi|^{R} d x\right)^{p q^{*} / R} \tag{1.6}
\end{equation*}
$$

for any $\varphi \in W_{0}^{1, p}(\Omega) \cap W^{1, s}(\Omega)(s>N)$ such that $0 \leq \varphi \leq 1$ in Ω. And for any $\alpha<0$, there exists $C=C(\alpha, N, p, q, R, \Omega)>0$ such that

$$
\begin{equation*}
\int_{\Omega}(u+1)^{\alpha-1}|\nabla u|^{p} \varphi d x \leq C\left(1+\int_{\Omega} u^{q} \varphi d x\right)\left(\int_{\Omega} \varphi^{1-R}|\nabla \varphi|^{R} d x\right)^{p / R} \tag{1.7}
\end{equation*}
$$

This Theorem gives a priori estimate not only of the size of the measure, but also of the integral $\int_{\Omega} u^{q} \varphi d x$, independently on u. In the case $p=2$, this was first remarked by [12] when $\mu=0$; it was the starting point for proving L^{∞} universal estimates. It was also used in [7] and [8] for obtaining a priori estimates with a general measure μ. As a consequence we deduce the following:

Theorem 1.4 If problem (1.5) has a solution, then, for any $R>p q^{*}$, there exists $C=C(N, p, q, R, \Omega)>0$ such that

$$
\begin{equation*}
\lambda \int_{K} d \nu \leq C\left(\operatorname{cap}_{1, R}(K, \Omega)\right)^{p q^{*} / R}, \quad \text { for every compact set } K \subset \Omega . \tag{1.8}
\end{equation*}
$$

and if ν has a compact support in Ω, there exists $C=C(N, p, q, R, \mu)>0$ such that

$$
\begin{equation*}
\lambda \int_{K} d \nu \leq C\left(\operatorname{cap}_{1, R}\left(K, \mathbb{R}^{N}\right)\right)^{p q^{*} / R}, \quad \text { for every compact set } K \subset \Omega . \tag{1.9}
\end{equation*}
$$

In particular, if $q>\bar{P}$, then ν does not charge the point sets. Moreover for any $1 \leq s<N / p q^{*}$, there exists a function $\nu \in L^{s}(\Omega)$ such that for any $\lambda>0$, problem (1.5) admits no solution.

In Section 4, we mention some partially or fully open problems linked to this study. We refer to [5] for more complete results for problem (1.1) with possible signed measure μ, and for the problem with an absorption term

$$
\begin{gather*}
-\Delta_{p} u+|u|^{q-1} u=\mu, \quad \text { in } \Omega, \tag{1.10}\\
u=0, \quad \text { on } \partial \Omega .
\end{gather*}
$$

2 Entropy solutions

First recall some well-known results concerning the problem

$$
\begin{gather*}
-\Delta_{p} u=\mu, \quad \text { in } \Omega, \\
u=0, \quad \text { on } \partial \Omega, \tag{2.1}
\end{gather*}
$$

with $\mu \in \mathcal{M}_{b}(\Omega)$. We set

$$
P_{0}=\frac{2 N}{N+1}, \quad P_{1}=2-\frac{1}{N},
$$

so that $1<P_{0}<P_{1}$, and $P>P_{0} \Longleftrightarrow \bar{P}>1$. When $p>P_{1}$, problem (2.1) admits at least a solution u in the sense of distributions, such that $u \in W_{0}^{1, r}(\Omega)$ for any $1 \leq r<\bar{P}$. In the general case, one can define a notion of entropy or renormalized solutions in four equivalent ways, see [11], which allow to give a sense to the gradient in any case: they are solutions such that $\nabla T_{k}(u) \in L_{l o c}^{1}(\Omega)$ for any $k>0$, where

$$
T_{k}(s)= \begin{cases}s, & \text { if }|s| \leq k \tag{2.2}\\ k \operatorname{sign}(s), & \text { if }|s|>k\end{cases}
$$

and the gradient of u, denoted by $y=\nabla u$ is defined by

$$
\begin{equation*}
\nabla\left(T_{k}(u)\right)=y \times 1_{\{|u| \leq k\}} \quad \text { a.e. in } \Omega . \tag{2.3}
\end{equation*}
$$

For any $p>1$ there exists at least an entropy solution of (2.1), and it is unique if $\mu \in L^{1}(\Omega)$. Moreover any entropy solution satisfies the equation in the sense of distributions. The role of P_{0} and P_{1} is shown by the estimates

$$
\begin{gathered}
u^{p-1} \in L^{s}(\Omega), \quad \text { for any } 1 \leq s<N /(N-p) \\
|\nabla u|^{p-1} \in L^{r}(\Omega), \quad \text { for any } 1 \leq r<N /(N-1) .
\end{gathered}
$$

Thus the gradient is well defined in $L^{1}(\Omega)$ if and only if $p>P_{1}$ and u itself is in $L^{1}(\Omega)$ if and only if $p>P_{0}$.

Recall that any measure $\mu \in \mathcal{M}_{b}(\Omega)$ can be decomposed as

$$
\mu=\mu_{0}+\mu_{s}^{+}-\mu_{s}
$$

where $\mu_{0} \in \mathcal{M}_{0, b}(\Omega)$, set of bounded measures such that

$$
\begin{equation*}
\mu_{0}(B)=0 \quad \text { for any Borel set } B \subset \Omega \text { such that } \operatorname{cap}_{1, p}(B, \Omega)=0 \tag{2.4}
\end{equation*}
$$

and μ_{s}^{+}, μ_{s}^{-}are nonnegative and concentrated on a set E with $\operatorname{cap}_{1, p}(E, \Omega)=0$. If $\mu \in \mathcal{M}_{b}^{+}(\Omega)$, then μ_{0} is nonnegative, and $\mu=\mu_{0}+\mu_{s}^{+}$.

We will use one of the four equivalent definitions of solution: u is an entropy solution if u is measurable and finite a.e. in Ω, and

$$
\begin{equation*}
T_{k}(u) \in W_{0}^{1, p}(\Omega) \quad \text { for every } k>0, \tag{2.5}
\end{equation*}
$$

and the gradient defined by (2.3) satisfies

$$
\begin{equation*}
|\nabla u|^{p-1} \in L^{r}(\Omega), \quad \text { for any } 1 \leq r<N /(N-1) \tag{2.6}
\end{equation*}
$$

and u satisfies

$$
\begin{aligned}
& \int_{\Omega}|\nabla u|^{p-2} \nabla u . \nabla(h(u) \varphi) d x=\int_{\Omega} h(u) \varphi d \mu_{0} \\
&+h(+\infty) \int_{\Omega} \varphi d \mu_{s}^{+}-h(-\infty) \int_{\Omega} \varphi d \mu_{s}^{-}
\end{aligned}
$$

for any $h \in W^{1, \infty}(\mathbb{R})$ and h^{\prime} has a compact support, and any $\varphi \in W^{1, s}(\Omega)$ for some $s>N$, such that $h(u) \varphi \in W_{0}^{1, p}(\Omega)$.

In the same way, for given $\mu=\mu_{0}+\mu_{s}^{+} \in \mathcal{M}_{b}^{+}(\Omega)$, a nonnegative entropy solution u of problem (1.1) will be a measurable function u such that $u^{q} \in L^{1}(\Omega)$ and u is an entropy solution of problem

$$
\begin{gathered}
-\Delta_{p} u=\mu-u^{q} \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

In particular
$\int_{\Omega}|\nabla u|^{p-2} \nabla u . \nabla(h(u) \varphi) d x+\int_{\Omega} u^{q} h(u) \varphi d x=\int_{\Omega} h(u) \varphi d \mu_{0}+h(+\infty) \int_{\Omega} \varphi d \mu_{s}^{+}$,
for any h and φ as above.

3 Proofs and comments

Proof of Theorem 1.3 Let $\mu=\lambda \nu=\mu_{0}+\mu_{s}^{+}$, where $\mu_{0} \in \mathcal{M}_{0, b}(\Omega)$ and μ_{s}^{+}is singular, and let $\alpha \in(1-p, 0)$ be a parameter. For any $k>0$, we set $u_{k}=T_{k}(u)$, and, for any $\varepsilon \in(0, k)$,

$$
h_{\alpha, k, \varepsilon}(r)=\left(T_{k}\left(r^{+}\right)+\varepsilon\right)^{\alpha}= \begin{cases}\varepsilon^{\alpha}, & \text { if } r \leq 0 \\ (r+\varepsilon)^{\alpha}, & \text { if } 0 \leq r \leq k \\ (k+\varepsilon)^{\alpha}, & \text { if } r \geq k\end{cases}
$$

We choose in (2) the test functions $h=h_{\alpha, k, \varepsilon}$, and $\varphi \in W_{0}^{1, p}(\Omega) \cap W^{1, s}(\Omega)$, with $s>N$ and $\varphi \geq 0$ in Ω, and obtain

$$
\begin{aligned}
& \int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha} \varphi d \mu_{0}+(k+\varepsilon)^{\alpha} \int_{\Omega} \varphi d \mu_{s}^{+}+\int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha} u^{q} \varphi d x \\
& +|\alpha| \int_{\Omega} \int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha-1}\left|\nabla u_{k}\right|^{p} \varphi d x \\
& \quad=\int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x \\
& \quad \leq \int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha}\left|\nabla u_{k}\right|^{p-1}|\nabla \varphi| d x+\int_{\{u \geq k\}}\left(u_{k}+\varepsilon\right)^{\alpha}|\nabla u|^{p-1}|\nabla \varphi| d x \\
& \quad \leq \frac{|\alpha|}{2} \int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha-1}\left|\nabla u_{k}\right|^{p} \varphi d x+C \int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha+p-1} \varphi^{1-p}|\nabla \varphi|^{p} d x \\
& \quad+(k+\varepsilon)^{\alpha} \int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x,
\end{aligned}
$$

where $C=C(\alpha)>0$.
Now from Hölder inequality, setting $\theta=q /(p-1+\alpha)>1$,

$$
\begin{aligned}
\int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha+p-1} \varphi^{1-p} \mid & \left.\nabla \varphi\right|^{p} d x \\
& \leq\left(\int_{\Omega}\left(u_{k}+\varepsilon\right)^{q} \varphi d x\right)^{1 / \theta}\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{1 / \theta^{\prime}}
\end{aligned}
$$

In particular for any $k>1$,

$$
\begin{align*}
& \frac{|\alpha|}{2} \int_{\Omega} \int_{\Omega}\left(u_{k}+\varepsilon\right)^{\alpha-1}\left|\nabla u_{k}\right|^{p} \varphi d x \\
\leq & C\left(\int_{\Omega}\left(u_{k}+\varepsilon\right)^{q} \varphi d x\right)^{1 / \theta}\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{1 / \theta^{\prime}}+\int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x \tag{3.1}
\end{align*}
$$

Letting ε tend to 0 , we get

$$
\begin{align*}
\frac{|\alpha|}{2} \int_{\Omega} u_{k}^{\alpha-1}\left|\nabla u_{k}\right|^{p} \varphi d x \leq & C\left(\int_{\Omega} u_{k}^{q} \varphi d x\right)^{1 / \theta}\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{1 / \theta^{\prime}} \\
& +\int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x \tag{3.2}
\end{align*}
$$

Choosing now $h(u)=1$ in (2), with the same φ, we find

$$
\begin{align*}
\int_{\Omega} \varphi d \mu_{0} & +\int_{\Omega} \varphi d \mu_{s}^{+}+\int_{\Omega} u^{q} \varphi d x=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x \\
\leq & \int_{\Omega} u_{k}^{(\alpha-1) / p^{\prime}}|\nabla u|^{p-1} u_{k}^{(1-\alpha) / p^{\prime}}|\nabla \varphi| d x+\int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x \\
\leq & \left(\int_{\Omega} u_{k}^{\alpha-1}\left|\nabla u_{k}\right|^{p} \varphi d x\right)^{1 / p^{\prime}}\left(\int_{\Omega} u_{k}^{(1-\alpha)(p-1)} \varphi^{1-p}|\nabla \varphi|^{p} d x\right)^{1 / p} \\
& +\int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x . \tag{3.3}
\end{align*}
$$

Since $q>p-1$, we can fix $\alpha \in(1-p, 0)$ such that $\tau=q /(1-\alpha)(p-1)>1$. From (3.2) and (3.3), we derive

$$
\begin{aligned}
& \int_{\Omega} \varphi d \mu+\int_{\Omega} u^{q} \varphi d x \\
& \leq\left(\int_{\Omega} u_{k}^{\alpha-1}\left|\nabla u_{k}\right|^{p} \varphi d x\right)^{1 / p^{\prime}}\left(\int_{\Omega} u_{k}^{q} \varphi d x\right)^{1 / \tau p}\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{1 / \tau^{\prime} p} \\
&+\int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x \\
& \leq\left(C\left(\int_{\Omega} u_{k}^{q} \varphi d x\right)^{1 / \theta}\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{1 / \theta^{\prime}}+\int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x\right)^{1 / p^{\prime}} \\
& \quad \times\left(\int_{\Omega} u_{k}^{q} \varphi d x\right)^{1 / \tau p}\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{1 / \tau^{\prime} p}+\int_{\{u \geq k\}}|\nabla u|^{p-1}|\nabla \varphi| d x
\end{aligned}
$$

Now we can let k tend to ∞, since $u^{q}+|\nabla u|^{p-1} \in L^{1}(\Omega)$. It follows that

$$
\begin{align*}
\int_{\Omega} \varphi d \mu+\int_{\Omega} u^{q} \varphi d x & \leq C\left(\int_{\Omega} u^{q} \varphi d x\right)^{1 / p^{\prime} \theta+1 / \tau p} \tag{3.4}\\
& \times\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{1 / p^{\prime} \theta^{\prime}}\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{1 / \tau^{\prime} p}
\end{align*}
$$

with a new $C=C(\alpha, N, p, q)$. Since $1 / \theta^{\prime} p^{\prime}+1 / \tau^{\prime} p=1 / q^{*}=1-\left(1 / \theta p^{\prime}+1 / \tau p\right)$, we find in particular

$$
\begin{aligned}
& \left(\int_{\Omega} u^{q} \varphi d x\right)^{1-(p-1) / q} \\
& \quad=\left(\int_{\Omega} u^{q} \varphi d x\right)^{\left(1 / p^{\prime} \theta^{\prime}+1 / \tau^{\prime} p\right)} \\
& \quad \leq C\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{1 / p^{\prime} \theta^{\prime}}\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{1 / \tau^{\prime} p} .
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& \int_{\Omega} u^{q} \varphi d x \\
& \leq C\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{\tau^{\prime} p /\left(\tau^{\prime} p+p^{\prime} \theta^{\prime}\right)}\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{p^{\prime} \theta^{\prime} /\left(\tau^{\prime} p+p^{\prime} \theta^{\prime}\right)}
\end{aligned}
$$

Notice that $\tau<q /(p-1)<\theta$, then from Hölder inequality,

$$
\begin{aligned}
\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x & \leq\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{\theta^{\prime} / \tau^{\prime}}\left(\int_{\Omega} \varphi d x\right)^{1-\theta^{\prime} / \tau^{\prime}} \\
& \leq C\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{\theta^{\prime} / \tau^{\prime}}
\end{aligned}
$$

with a new constant $C=C(N, p, q, \alpha, \Omega)$, since $0 \leq \varphi \leq 1$. Therefore

$$
\begin{equation*}
\int_{\Omega} u^{q} \varphi d x \leq C\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{q^{*} / \tau^{\prime}} \tag{3.5}
\end{equation*}
$$

with a new constant $C>0$. Moreover, from (3.4) and (3.5),

$$
\int_{\Omega} \varphi d \mu \leq C\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{\left(q^{*}-1+1 / p^{\prime}+1 / p\right) / \tau^{\prime}}
$$

then

$$
\int_{\Omega} \varphi d \mu+\int_{\Omega} u^{q} \varphi d x \leq C\left(\int_{\Omega} \varphi^{1-\tau^{\prime} p}|\nabla \varphi|^{\tau^{\prime} p} d x\right)^{q^{*} / \tau^{\prime}}
$$

We can choose $|\alpha|$ sufficiently small, such that

$$
p q^{*}<p \tau^{\prime}=q /(q-p+1-|\alpha|(p-1)) \leq R ;
$$

thus we deduce (1.6) from Hölder inequality. Also, for any $\alpha<0$, with $|\alpha|$ small enough, from (3.1), taking $\varepsilon=1$ and letting k tend to ∞, we obtain

$$
\begin{aligned}
& \frac{|\alpha|}{2} \int_{\Omega} \int_{\Omega}(u+1)^{\alpha-1}|\nabla u|^{p} \varphi d x \\
& \leq C\left(\int_{\Omega}(u+1)^{q} \varphi, d x\right)^{1 / \theta}\left(\int_{\Omega} \varphi^{1-p \theta^{\prime}}|\nabla \varphi|^{p \theta^{\prime}} d x\right)^{1 / \theta^{\prime}} \\
& \quad \leq C\left(1+\int_{\Omega} u^{q} \varphi d x\right)\left(\int_{\Omega} \varphi^{1-R}|\nabla \varphi|^{R} d x\right)^{p / R}
\end{aligned}
$$

Then (1.7) follows for any $\alpha<0$.
When $p=2$, Theorem 1.1 naturally gives a stronger result, since any set with $1, R$ - capacity zero for some $R>2 q^{\prime}$ has also a $2, q^{\prime}$ - capacity zero, see [1]. The capacity involved in Theorem 1.3 is of order 1 instead of 2 , because we cannot use the full duality argument of the linear case. However, observe that a point set has a $1,2 q^{\prime}$ - capacity zero if and only if $q>N /(N-2)$, that means if and only if it has a $2, q^{\prime}$ - capacity zero.

Proof of Theorem 1.4 Let $\psi_{n} \in \mathcal{D}(\Omega)$ such that $0 \leq \psi_{n} \leq 1$ and $\psi_{n} \geq \chi_{K}$ and $\left\|\psi_{n}\right\|_{W^{1, R}(\Omega)}^{R}$ tends to $\operatorname{cap}_{1, R}(K, \Omega)$ as n tends to ∞. Choosing $\varphi=\psi_{n}^{R}$ in (1.6), we deduce that

$$
\lambda \int_{K} d \nu \leq C\left(\int_{\Omega}\left|\nabla \psi_{n}\right|^{R} d x\right)^{p q^{*} / R} \leq C\left\|\psi_{n}\right\|_{W^{1, R}(\Omega)}^{R}
$$

with new constants $C=C(N, p, q, R, \Omega)$, and (1.8) follows. If ν has a compact support X in Ω, then (1.9) holds after localization on a neighborhood of X. Assume moreover that $q>\bar{P}$, then we can choose R such that $p q^{*}<R<N$. Thus any point set $\{a\}$ of Ω has a $1, R$ - capacity zero, hence $\nu(\{a\})=0$. Moreover taking $K=\overline{B\left(x_{0}, r\right)}$ with $r>0$ small enough, we derive

$$
\begin{equation*}
\lambda \int_{B\left(x_{0}, r\right)} d \nu \leq C r^{N-R} \tag{3.6}
\end{equation*}
$$

with $C=C\left(N, p, q, R, x_{0}, \Omega\right)$. For any $1 \leq s<N / p q^{*}$, we can construct a function $\nu \in L^{s}(\Omega)$ with a singularity in $\left|x-x_{0}\right|^{-k}$ with $p q^{*}<k<N / s$, and with compact support in Ω, such that for any $\lambda>0, \lambda \nu$ does not satisfy (3.6) for $p q^{*}<R<k$. Then there exists no solution of problem (1.5).

4 Open problems

Problem 1: Can we obtain sufficient conditions of existence?
In the subcritical case $q<\bar{P}$, at least when $p>P_{0}$, the existence of solutions of problem (1.1), with possibly signed measure μ, is shown in [13]. In the supercritical case, the problem is entirely open, even for L^{s} functions. In particular it would be interesting to extend to the case $p \neq 2$ a consequence of Theorem 1.1:

Theorem 4.1 ([3]) Assume that $N \geq 3$, and $\nu \in L^{s}(\Omega)$, for some $s \geq 1$. If $q>N /(N-2)$ and $s \geq N / 2 q^{\prime}$, or $q=N /(N-2)$ and $s>N / 2 q^{\prime}$, then problem (1.2) has a solution for λ small enough.

Problem 2: Can we solve problems (2.1) and (1.5) if μ is not bounded?
Let us begin by the case without reaction term. For any $x \in \Omega$, denote by $\rho(x)$ the distance from x to $\partial \Omega$. When $p=2$, problem (2.1) is well posed in fact for any measure μ, possibly unbounded, such that $\int_{\Omega} \rho d|\mu|<\infty$: it admits a unique integral solution

$$
\begin{equation*}
u(x)=G(\mu)=\int_{\Omega} \mathcal{G}(x, y) d \mu(y) \tag{4.1}
\end{equation*}
$$

where \mathcal{G} is the Green kernel. And u is also the weak solution of the problem in the sense that $u \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\int_{\Omega} u(-\Delta \xi) d x=\int_{\Omega} \xi d \mu \tag{4.2}
\end{equation*}
$$

for any $\xi \in C^{1}(\bar{\Omega})$ vanishing on $\partial \Omega$ with $\nabla \xi$ is Lipschitz continuous, see [7]. The case where μ is a function f, such that $\int_{\Omega} \rho f d x<\infty$, was first considered by Brézis, see [17]. The problem is open when $p \neq 2$: up to now we have no existence results concerning equation (2.1) when μ may be unbounded, even in the case $p>P_{1}$, where the definition of the gradient does not cause any problem.

Now let us consider the problem with source term. When $p=2$, it was studied in [14] and specified in [9]:

Theorem $4.2([14])$ Let $\nu \in \mathcal{M}^{+}(\Omega), \nu \neq 0$ such that $\int_{\Omega} \rho d \nu<\infty$. Then problem (1.2) has a solution such that $G\left(u^{q}\right)<\infty$, a.e. in Ω, for any $\lambda \geq 0$ small enough, if and only if there exists $C>0$ such that

$$
\begin{equation*}
G\left(G^{q}(\nu)\right) \leq C G(\nu), \quad \text { a.e. in } \Omega \tag{4.3}
\end{equation*}
$$

Notice that condition $G\left(u^{q}\right)<\infty$ a.e. in Ω, is satisfied as soon as $\int_{\Omega} \rho f u^{q} d x<$ ∞, and the solutions are taken in the integral sense. More recently new existence results and a priori estimates were given in [8], covering the case of measures μ such that $\int_{\Omega} \rho^{\gamma} d \mu<\infty$ for some $0 \leq \gamma \leq 1$. Condition (4.3) allows to obtain a supersolution, and then a solution by using an iterative scheme. It is available for much more general linear operators, see [14] and [16]. It seems to be difficult to extend to nonlinear ones, since it is based on a representation formula. However Kalton and Verbitski [14] also gave necessary and sufficient in terms of capacity with weights, extending the result of [2] to general measures:

Theorem $4.3([14])$ Let $\nu \neq 0$ be a nonnegative Radon measure on Ω. Then problem (1.2) has a solution for any $\lambda \geq 0$ small enough if and only if there exists $C>0$ such that

$$
\int_{K} d \nu \leq C \operatorname{cap}_{2, q^{\prime}, \rho}(K), \quad \text { for every compact set } K \subset \Omega
$$

where

$$
\operatorname{cap}_{2, q^{\prime}, \rho}(K)=\inf \left\{\int_{\Omega} w^{q^{\prime}} \rho^{1-q^{\prime}} d x: w \geq 0, \quad G w \geq \rho \chi_{K} \quad \text { a.e. in } \Omega\right\} .
$$

One can ask if results of this type can be obtained for the p-Laplacian, using capacities of order 1 with suitable weights.

References

[1] D. R. Adams and L. I. Hedberg, Functions spaces and potential theory, Grundlehren der Mathematischen wissenchaften, Springer Verlag, Berlin, 314 (1996).
[2] D. Adams et M. Pierre, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier, 41 (1991), 117-135.
[3] P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré, Anal. non Lin. 2 (1985), 185-212.
[4] M-F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden-Fowler type, Arc. Rat. Mech. Anal. 107 (1989), 293324.
[5] M-F. Bidaut-Véron, Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. in Nonlinear Studies (to appear).
[6] M-F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal. Math., 84 (2001), 1-49.
[7] M-F. Bidaut-Véron and L. Vivier, An elliptic semilinear equation with source term involving boundary measures: the subcritical case, Revista Matematica Iberoamericana, 16 (2000), 477-513.
[8] M-F. Bidaut-Véron and C. Yarur, Semilinear elliptic equations and systems with measure data: existence and a priori estimates, Advances in Diff. Equ., 7 (2002), 257-296.
[9] H. Brézis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione Mat. Ital. 8 (1998), 223-262.
[10] H. Brézis and P.L. Lions, A note on isolated singularities for linear elliptic equation, Math. Anal. Appl. Adv. Math. Suppl. Stud. 7A (1981), 263-266.
[11] Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Sup. Pisa, 28 (1999), 741-808.
[12] De Figuereido, P.L. Lions and R.D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl., 61 (1982), 41-63.
[13] N. Grenon, Existence results for some semilinear elliptic equations with measure data, Ann. Inst. H. Poincaré, 19 (2002), 1-11.
[14] N. Kalton and I. Verbitsky, Nonlinear equations and weighted norm inequalities, Trans. Amer. Math. Soc., 351, 9 (1999), 3441-3497.
[15] P. L. Lions, Isolated singularities in semilinear problems, J. Diff. Eq., 38 (1980), 441-450.
[16] I. Verbitski, Superlinear equations, potential theory and weighted norm inequalities, Nonlinear Analysis, Funct. Spaces Appl., Vol. 6. (1999), 223-269.
[17] L. Véron, Singularities of solutions of second order quasilinear equations, Pitman Research Notes in Math., Longman Sci. \& Tech. 353 (1996).

Marie-Françoise Bidaut-VÉron
Laboratoire de Mathématiques et Physique Théorique,
CNRS UMR 6083, Faculté des Sciences,
Parc de Grandmont, 37200 Tours, France
e-mail: veronmf@univ-tours.fr

[^0]: * Mathematics Subject Classifications: 35J70, 35B45, 35D05.

 Key words: Degenerate quasilinear equations, measure data, capacities, a priori estimates. © 2002 Southwest Texas State University.
 Published October 21, 2002.

