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Abstract

Here we study the local or global behaviour of the solutions of elliptic in-
equalities involving quasilinear operators, of the type

LAu = �div [A(x; u;ru)] � jxj�uQ;

or �
LAu = �div [A(x; u;ru)] � jxjauSvR;
LBv = �div [B(x; v;rv)] � jxjbuQvT :

We give integral estimates and nonexistence results. They depend on properties
of the supersolutions of the equations LAu = 0; LBv = 0; which suppose weak
coercivity conditions. Under stronger conditions, we give punctual estimates in
case of equalities, using Harnack properties.
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1 Introduction

Here we study the existence and the behaviour of nonnegative solutions of elliptic
problems in an open set 
 of RN (N � 2), involving quasilinear operators in diver-
gential form. We discuss this question for inequalities of the type

�div [A(x; u;ru)] � jxj�uQ; (1.1)

where Q; � 2 R; Q > 0; or for Hamiltonian systems of the form�
�div [A(x; u;ru)] � jxjavR;
�div [B(x; v;rv)] � jxjbuQ; (1.2)

where Q;R; a; b 2 R; with Q;R > 0:More generally we can reach multipower systems
of the form �

�div [A(x; u;ru)] � jxjauSvR;
�div [B(x; v;rv)] � jxjbuQvT ; (1.3)

where S; T � 0:
In the sequel 
 will be either RN or RNn f0g ; or an exterior or interior domain


e =
�
x 2 RN j jxj > 1

	
; 
i =

�
x 2 RN j 0 < jxj < 1

	
;

or the halfspace RN + =
�
x 2 RN j xN > 0

	
; or


+e = 
e \ RN +; 
+i = 
i \ R
N +:

Our aim is not only to give nonexistence results, but also integral estimates for the
solutions in case of existence. The problem of the nonexistence, the so-called Liouville
problem, has been the subject of several works. We can cite in the nonradial case the
results of [20], [17], [33], [24] to [26], [23] in the case of RN ; of [19], [3], [13] in the case
of half-spaces or cones; and [4] for exterior domains. In the radial case the number
of publications is so great that we cannot cite all of them, let us only mention [27],
[28], [31], in the scalar case, and [34], [15], [18] in case of systems. Recall that such
results can be used for �nding a priori estimates in bounded domains via a blow-up
technique; see [19]. Obtaining a priori estimates is most often di�cult, even in the
case of an equation; and many questions are still open. The main results can be
found in [32], [20], [14], and also [2], [4], [7], [10].
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Let us give an example showing the connections between local and global existence
problems, and between equations and inequalities. Assume for simplicity that N � 3
and Q > 1: It is well known that the equation

��u = uQ (1.4)

has no positive C2loc solution in R
N if and only if Q < (N +2)=(N � 2); see [20], [29].

In fact in case N(N � 2) < Q < (N + 2)=(N � 2); it admits solutions in RNn f0g ;
but they are singular at 0. Now the problem

��u � uQ (1.5)

has no positive solution in RN if and only if Q � N(N � 2); see for example [3], [24].
An easy way to get the part "if" is as follows. The mean value of u on the sphere of
center 0 and radius r also satis�es (1.5), by Jensen's inequality. Then we are reduced
to the radial case. When Q > N(N � 2); the function u(x) = c(1 + jxj2)�1=(Q�1) is
a solution of (1.5) if c is small enough, which gives the "only if" part. The problem
(1.5) in 
e has no positive solution in 
e if and only if Q � N(N�2); see for example
[4], [7]. In fact the two problems in RN and in 
e are equivalent, because under a
supersolution one can construct a solution. There is a deep connection between the
problems in 
i and 
e. The inequality

��u � jxj�uQ (1.6)

has no positive solution in 
e if and only if Q � (N+�)=(N�2); see [7]. Equivalently,
by the Kelvin transform, it has no solution in 
i if and only if � � �2; see also [20].
In the sequel we shall compare the problems in RN ;RNn f0g ; 
e or 
i; according to
the assumptions on the operators.

In Section 2, we give general properties of the supersolutions u of the operator
u 7! LAu = �div [A(x; u;ru)] ; that means

�div [A(x; u;ru)] = f � 0: (1.7)

They are the key tool of our study. Here we combine two di�erent approaches of
the problem. First we precise a technique introduced in [24] and developped in [25],
[26]. Under some weak assumptions on A; it gives integral upper estimates of f with
respect to u, in RN ;
i or 
e: Then using the method of [4] extended in [5], we also
obtain estimates on f , independently of u. Under stronger assumptions on A; we can
complete them by integral estimates on u in 
i, 
e: Combining the two techniques,
we get estimates of f in RNn f0g : We also give lower estimates when A does not
depend on x and u:

The Section 3 deals with the inequality (1.1). We get a priori integral estimates
which are new in the case of quasilinear operators. We also improve the nonexistence
results of [26] in several directions: nonexistence in RN for a larger class of operators,
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nonexistence in RNn f0g, or 
i, 
e; for any Q > 0 and any real �: In case of the
equation

�div [A(x; u;ru)] = jxj�uQ; (1.8)

we obtain pointwise a priori estimates in 
i via the Harnack inequality, in the �rst
subcritical case. When A does not depend on x and u; we show that the problems
of existence in RN and in 
e are equivalent, and that the problems in 
i or 
e are
of the same type, even if the Kelvin transform cannot be used.

In Section 4, we consider the problems in RN +; 
+e or 

+
i : The works of [19],

[3], [13] in RN + concern the case of the Laplacian LA = ��. They use either
its symmetry properties, or the �rst eigen function �1 of the Dirichlet problem in

 \ SN�1: Such methods cannot be used for quasilinear operators, and the question
is more complex. We study the model case of the p-Laplace operator and show
that the di�culties are due to the structure of p-harmonic functions in RN + when
p 6= 2. For some operators of order 2, we can overcome the di�culties by reporting a
derivation on the test function, which recalls the use of �1 in [3].

In Section 5 we extend the integral estimates to the multipower system (1.3).
In case of a Hamiltonian system of equations (S = T = 0), this gives pointwise
estimates, which are new for quasilinear operators. Then we get nonexistence results
for the system (1.3) for any Q;R > 0; S 2 [0; p� 1) ; T 2 [0;m� 1). Thus we extend
the results of [7] relative to the case LA = LB= � �. and [25], [26] relative to the
case of system (1.2) with LA = ��p; LB = ��m; and S = T = 0; Q > p � 1 and
R > m� 1; and also many radial results, as [15] or [16].

2 General properties of supersolutions

Here we extend and compare some of the results of the �rst author [4], [5] and
the second jointly with E. Mitidieri, [24] to [26], relative to the supersolutions of
quasilinear equations.

2.1 Notations

For any x 2 RN and r > 0, we set B(x; r) =
�
y 2 RN jjy � xj < r

	
and Br = B(0; r):

For any �2 > �1 > 0; let

C�1;�2 =
�
y 2 RN j �1 < jyj < �2

	
:

Let 
 be any open set of RN : For any function f 2 L1(
); and for any weight function
' 2 L1(
) such that ' � 0; ' 6= 0; we denote byI


;'
f =

1R

 '

Z


f'
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the mean value of f with respect to ' and writeI


f =

I

;1
f:

When 
 � C�1;�2 ; we also de�ne on (�1; �2) the mean value,

f(r) =
1

j@Brj

Z
@Br

f ds;

of f on the sphere @Br of center 0 and radius r:

2.2 Assumptions on the operators

Let A : 
� R+ � RN ! RN be a Caratheodory function, and

LAu = �div [A(x; u;ru)] (2.1)

for any u 2W 1;1
loc (
) such that A(x; u;ru) 2 (L1loc(
))N .

In this Section, we study the properties of the nonnegative supersolutions of equation
LAu = 0; and more precisely the solutions of

LAu = f � 0 (2.2)

where f 2 L1loc(
). We shall say that a nonnegative function u 2 C0(
) \W
1;1
loc (
)

satis�es (2.2) if A(x; u;ru) 2 (L1loc(
))N ; LAu 2 L1loc(
) andZ


A(x; u;ru):r� �

Z


f�; (2.3)

for any nonnegative � 2W 1;1(
) with compact support in 
:

De�nition 1. Let p > 1: The function A is calledW-p-C (weakly-p-coercive) if

A(x; u; �):� � K jA(x; u; �)jp
0

(2.4)

for some K > 0; and for all (x; u; �) 2 
� R+ � RN :

De�nition 2. The function A is called S-p-C (strongly-p-coercive) if

A(x; u; �):� � K1 j�jp � K2 jA(x; u; �)jp
0

(2.5)

for some K1;K2 > 0; and for all (x; u; �) 2 
� R+ � RN :

Remark 2.1 The condition (2.5) is a classical frame for the study of quasilinear
operators, see [32] and [36]. It implies that LA satis�es the weak Harnack inequality,
and hence the strong maximum principle. The condition (2.4) is clearly weaker . Let
us give some examples.
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i) Assume that A : 
� R+ � RN ! RN is given by

Ai(x; u; �) =
NX
j=1

ai;j(x; u; �)�j : (2.6)

Then A isW-p-C if

NX
i;j=1

ai;j(x; u; �)�i�j � K

24 NX
i=1

0@ NX
j=1

ai;j(x; u; �)�j

1A235p
0=2

for all (x; u; �) 2 
� R+ � RN :

ii) In particular, suppose that

Ai(x; u; �) = A(x; u; j�j) �i (2.7)

with A : 
� R+ � R! R . Then A isW-p-C as soon as

0 � A(x; u; t) �M t p�2 (2.8)

for some M > 0. Indeed A(x; u; t)p
0�1 �Mp0�1 t (p�2)(p

0�1) =Mp0�1 t 2�p
0
, hence

jA(x; u; �)jp
0
� C(N; p)

NX
i=1

A(x; u; j�j)p0 j�ijp
0
� C(N; p)Mp0�1A(x; u; j�j) j�j2 :

Moreover A is S-p-C if and only if

M�1 t p�2 � A(x; u; t) �M t p�2 (2.9)

for some M > 1.

iii) The same happens if (2.7) is replaced by

Ai(x; u; �) = Ai(x; u; j�ij) �i (2.10)

where Ai satisfy (2.8).

iv) Suppose that A is given by (2.6), with ai;j = aj;i; and

0 �
NX

i;j=1

ai;j(x; u; �)�i�j �M j�j2

for someM > 0; and any � 2 RN and all (x; u; �) 2 
�R+�RN : Then A isW-2-C.

In some cases we shall need to make more precise assumptions on A; in particular
that A does not depend on x and u:
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De�nition 3. We shall say that A satis�es the property (Hp) if A : RN ! RN is
given by

Ai(�) = A(j�j) �i (2.11)

where A 2 C([0;+1) ;R) \ C1((0;+1) ;R), and if there exists M > 0 such that�
A(t) �M tp�2; for any t > 0;
A(t) �M�1 tp�2 for small t > 0;

(2.12)

t 7! A(t)t non decreasing: (2.13)

Hence any operator satisfying (Hp) isW-p-C.

Remark 2.2 In particular the p-Laplace operator

Lu = ��pu = �div(jrujp�2ru); (2.14)

is S-p-C, and satis�es (Hp). The mean curvature operator

Lu = �div(ru=
q
1 + jruj2); (2.15)

(p = 2) and more generally the operator

Lu = �div(jrujp�2ru=
q
1 + jrujp);

(p > 1) satisfy (Hp).

Remark 2.3 Under the assumption (2.12), LA satis�es the strong maximum princi-
ple. Indeed we can �nd a function eA 2 C((0;+1) ;R); such that such that

M�1 t p�2 � eA(t) �M t p�2 for any t > 0;

and eA(t) = A(t) for small t > 0: Then the associated operator eA is S-p-C, and L eA is
uniformly elliptic. Then it satis�es the strong maximum principle. This implies the
same property for LA: If moreover A satis�es (2.13), then we can �nd eA as above
such that t 7! eA(t)t is non decreasing.
Remark 2.4 For simpli�cation we supposed that the rate of growth of A does not
depend on jxj : Many of our results can be extended to the case where A(x; u; �) has
a power growth in jxj ; that is when (2.4) is replaced by

A(x; u; �):� � K jxj�(1�p
0) jA(x; u; �)jp

0

for some � 2 R; and (2.5) is replaced by

A(x; u; �):� � K1 jxj� j�jp � K2 jA(x; u; �)jp
0
;

see [30].
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2.3 First estimates on f in RN , 
i, 
e.

First we extend and axiomatise some results of [24] to [26]. For any solution u of
equation (2.2), we give integral estimates of f with respect to u: The proof is very
linked to the proof of the weak Harnack inequality for S-p-C operators given in [32]
and [36]. It uses the same test function, a negative power of u: In the proof of [36],
the greater coercivity allows to give estimates on the gradient of u; and in turn on u
from the Sobolev injection and the Moser technique. Here we impose less coercivity,
and we do not use the gradient term.

Proposition 2.1 Let 
 = RN (resp. 
i, resp. 
e): Let p > 1: Let A : 
 � R+ �
RN ! RN be a Caratheodory function, and W-p-C. Let u 2 C0(
) \W 1;1

loc (
) be a
nonnegative solution of equation 2.2.

Let '� = �
�
� with � > 0 large enough, and �� 2 D(
) with values in [0; 1] ; such that

jr��j � C=�; and�
�� = 1 for jxj � � (resp. �=2 � jxj � �),
�� = 0 for jxj � 2� (resp. jxj � 2� and jxj � �=4).

Then for any � > 0 (resp. small � > 0 , resp. large � > 0 ), any � 2 [1� p; 0] and `
> p� 1 + �;

I

;'�

fu� � C ��p

 I
supp r'�

u`'�

!(p�1+�)=`

� C ��p

 I

;'�

u`

!(p�1+�)=`
: (2.16)

In particular for any ` > p� 1;

I

;'�

f � C ��p
 I

supp r'�
u`'�

!(p�1)=`
� C ��p

 I

;'�

u`

!(p�1)=`
: (2.17)

Proof. Let � < 0: We set u" = u + "; for any " > 0: Let � 2 D(
) with values in
[0; 1] : Then we can take

� = u�" �
�

as a test function. HenceZ


fu�" �

� + j�j
Z


u��1" ��A(x; u;ru)ru � �

Z


u�" �

��1A(x; u;ru)r�

From (2.4), it follows thatZ


fu�" �

� + j�jK�1
Z


u��1" �� jA(x; u;ru)jp

0
� �

Z


u�" �

��1A(x; u;ru)r�
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� j�jK�1

2

Z


u��1" �� jA(x; u;ru)jp

0
+ C(�)

Z


u�+p�1" ���p jr�jp :

HenceZ


fu�" �

� +

Z


u��1" �� jA(x; u;ru)jp

0
� C(�)

Z


u�+p�1" ���p jr�jp (2.18)

Then we use H�older's inequality and make " tend to 0. Thus if � > 1� p; for any `
> p� 1 + �; setting � = `=(p� 1 + �) > 1;Z



fu��� � C(�)

�Z
supp r�

u`��
�1=� �Z



���p�

0 jr�jp�
0
�1=�0

(2.19)

with a new constant C(�); from the H�older inequality. In particular, chosing � = ��
with � large enough,Z



fu���� � C(�)�N=�

0�p

 Z
supp r��

u`���

!1=�
If � = 1� p; we get directly from (2.18)Z



fu���� � C

Z


���p� jr��jp � C�N�p:

Hence we obtain (2.16) for � 6= 0. Now we suppose ` > p� 1; and take

� = ��

as a test function. We getZ


f�� � �

Z


���1A(x; u;ru):r�:

Hence for any � 2 (1� p; 0) ;Z


f�� � �

�Z


u��1" �� jA(x; u;ru)jp

0
�1=p0 �Z



u(1��)(p�1)" ���p jr�jp

�1=p
:

Since ` > p� 1; we can �x an � 2 (1� p; 0) such that � = `=(1��)(p� 1) > 1: Then
from (2.19) and H�older's inequality, we get, as "! 0;Z



f�� � C(�)

�Z
supp r�

u`��
�1=�p0+1=�p

��Z


����

0p jr�j�
0p
�1=�0p0 �Z



����

0p jr�j�
0p
�1=� 0p

: (2.20)
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But 1=�p0 + 1=�p = (p� 1)=` = 1� (1=�0p0 + 1=� 0p): Hence with � = �� as aboveZ


f��� � C(�)

 Z
supp r��

u`���

!(p�1)=`
�N(1�((p�1)=`)�p

and (2.17) follows.�
Remark 2.5 For the solutions of LAu � 0 , this shows that any estimate on u in
some Lsloc(
) with s > p� 1 implies an estimate of LAu in L1loc(
): When p = 2 and
L = �� it is a simple consequence of the fact that ��u � f , and we have the result
with s = 1; see for example [9]. In the general case the result is new so far as we
know, all the more since the conditions on LA are quite weak.

Remark 2.6 Under the assumptions of Proposition 2.1, we can also estimate the
term A(x; u;ru)ru : for any � 2 [1� p; 0] and ` > p�1+�; and for any k > 1+1=`; I


;'�

[A(x; u;ru)ru]1=k
!k=p

� C

�

 I
supp r'�

u`

!1=`
� C

�

 I

;'�

u`

!1=`
:

(2.21)
Indeed we haveZ



u��1" ��A(x; u;ru)ru � C(�)

 Z
supp r'�

u`"�
�

!1=� �Z


���p�

0 jr�jp�
0
�1=�0

:

(2.22)
Then from H�older's inequality, for any given k > 1;Z



�� [A(x; u;ru)ru]1=k =

Z


��u(1��)=k" u(��1)=k" [A(x; u;ru)ru]1=k

�
�Z



��u��1" A(x; u;ru)ru

�1=k Z
supp r'�

��u(1��)=(k�1)"

!1=k0
: (2.23)

Fix � as above, such that ! = `(k � 1)=(1� �) > 1: ThenZ


��u(1��)=(k�1)" �

�Z


u`"�

�

�1=! �Z


��
�1=!0

: (2.24)

ConsequentlyZ


�� [A(x; u;ru)ru]1=k � C�N=k

0!0+(N�p�0)=�0k

 Z
supp r'�

u`"�
�

!1=�k+1=!k0

� C�N(1�p=k`)�p=k

 Z
supp r'�

u`"�
�

!p=k`
;

hence (2.21) follows from (2.22), (2.23) and (2.24).
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If A is S-p-C, the estimate (2.21) gives an estimate for the gradient, which leads to
the weak Harnack inequality, see [32], [36]: for any ` > 1and k > 1 + 1=`; I


;'�

jrujp=k
!k=p

� C

�

 I
supp r'�

u`

!1=`
: (2.25)

In particular in the radial case, it reduces to��u0(�)�� � C u(�)=�:
Remark 2.7. We supposed � 2 [1� p; 0] in Proposition 2.1. If � < 1�p; then (2.16)
still holds, for any negative ` < p� 1+�: Indeed we still have � = `=(p� 1+�) > 1:

2.4 Other estimates on f and u

Here we develop another approach, introduced in [4], and in [5] for a S-p-C operator.
We show that it works for aW-p-C operator. For any solution u of equation (2.2),we
give integral estimates of f in 
i; which do not depend on u:

Proposition 2.2 Let 
 = 
i = B1n f0g : Assume N > p > 1; and A isW-p-C. Let
u be a nonnegative solution of (2.2).

Then f 2 L1loc(B1); and for any � 2 D(B1) with values in [0; 1] ; such that � = 1
near 0; Z

B1

f�p �
Z
B1

A(x; u;ru)r(�p): (2.26)

Proof Here we chose a test function of [4]. Let 0 < � < R < 1; and � 2 D(
) and ��
2 C1(
) with values in [0; 1] ; such that

� = 1 on BR; �� = 0 for jxj � �; �� = 1 for jxj � 2�;

jr��j � C=�: Let n 2 N: We take

� = (n+ 1� u)+(���)p

as a test function. We getZ
fu<n+1g

f(n+ 1� u)(���)p +
Z
fu<n+1g

(���)
pA(x; u;ru)ru

� p

Z
fu<n+1g

�p�1� �p(n+ 1� u)A(x; u;ru)r��

+

Z
fu<n+1g

�p�(n+ 1� u)A(x; u;ru)r(�p):

11



Now for any h > 0; we have n+1�u > (n+1)h=(h+1) on the set fu < (n+ 1)=(h+ 1)g.
Hence dividing by n+ 1;

h

h+ 1

Z
fu<(n+1)=(h+1)g

f(���)
p +

1

n+ 1

Z
fu<n+1g

(���)
pA(x; u;ru)ru

� p

Z
fu<n+1g

�p�1� �p(1� u

n+ 1
)A(x; u;ru)r�

+

Z
fu<n+1g

(1� u

n+ 1
)A(x; u;ru)r(�p)

� p"

Z
fu<n+1g

(���)
p jA(x; u;ru)jp

0
+ p"1�p

Z
fu<n+1g

jr��jp

+

Z
fu<n+1g

(1� u

n+ 1
)A(x; u;ru)r(�p);

for any " > 0: Choosing " = K=2p(n+ 1) gives

h

h+ 1

Z
fu<(n+1)=2g

f(���)
p +

1

2(n+ 1)

Z
fu<n+1g

(���)
pA(x; u;ru)ru

� C(n+ 1)p�1�N�p +

Z
fu<n+1g

(1� u

n+ 1
)A(x; u;ru)r(�p);

with C = C(K; p): Now we make successively �! 0 , n! +1; and h! +1: Thus
we get (2.26), which proves that f 2 L1loc(B1).�
Remark 2.8 The two techniques give complementary results. In fact they have a
commun idea: to multiply the inequality (2.2) by a function P (u) '; where ' has
compact support in 
; and P is decreasing in u; in order to obtain some coercivity.
In the �rst case, P (u) = u� with � < 0; and in the second one, P (u) = (n+1� u)+:

In the case of a S-p-C operator, the second method gives optimal estimates for u
and ru in Lr spaces or in Marcinkiewicz spaces. Let us recall the main results of [4]
and [5].

Proposition 2.3 Let 
 = 
i: Assume N � p > 1; and A is S-p-C. Let u be a
nonnegative solution of (2.2). Then

i) For any ` 2 (0; N(p� 1)=(N � p)) ; and for � > 0 small enough, I
B�

u` dx

!1=`
�
�
� C ��(N�p)=(p�1); if N > p
� C jln �j ; if N = p:

(2.27)

For any s 2 (0; N(p� 1)=(N � 1)) ; and for � > 0 small enough, I
B�

jrujs dx
!1=s

�
�
� C ��(N�1)=(p�1); if N > p
� C ��1 jln �j ; if N = p:

(2.28)
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ii) Moreover if N > p;

u 2MN=(N�p)
loc (B1); jrujp�1 2MN=(N�1)

loc (B1):

iii) If N > p; or N = p and limx!0 u(x) = +1; then there exists � � 0 such that

�div [A(x; u;ru)] = f + � �0 in D0(B1); (2.29)

where �0 is the Dirac mass at 0:

Remark 2.9 These results can be false in case of a W-p-C operator: consider the
equation involving the mean curvature operator:

�div(ru=
q
1 + jruj2) = uQ

with Q > 0: From [6] it admits a singular radial solution near 0; such that

lim
jxj!0

jxj1=Q u(x) = (N � 1)1=Q:

Hence it does not satisfy (2.27) when N > 2 and Q < 1=(N � 2). Moreover, choosing
Q small enough, we see that for any m > 0 we can �nd a function u such that

�div(ru=
q
1 + jruj2) � 0

in 
i; and u(x) � jxj�m near 0. Observe that limjxj!0 jruj = +1; and A(x; u; �) =

�=
q
1 + j�j2 , hence A(x; u; �):�= j�j2 is not bounded from below for large j�j :

Now we give a corresponding result in 
e:

Proposition 2.4 Let 
 = 
e: Assume N > p > 1; and A is S-p-C. Let u be a
nonnegative solution of (2.2). Then

i) for any ` 2 (0; N(p� 1)=(N � p)) ; and for � > 0 large enough, I
C�=2;�

u` dx

!1=`
� C; (2.30)

ii) for any s 2 (0; N(p� 1)=(N � 1)) ; and for � > 0 large enough, I
C�=2;�

jrujs dx
!1=s

� C ��1: (2.31)
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Proof We just give the scheme of the proof, since it is very similar to the proof of
Proposition 2.3, given in [4] . Let C1 = 2maxjxj=2 u(x) and u1 = u � C1: For any
� > 2; let m1(�) = minjxj=� u1(x): Since we are looking for an upper estimate of
m1(�); we can assume that m1(�) > 0; and de�ne

v(x) =

8<:
0 if jxj > � and u1(x) � 0; or if jxj � 2;
u1(x) if 2 < jxj < � and 0 � u1(x) � m1(�);
m1(�) if 2 < jxj < � and u1(x) > m1(�); or if jxj � �:

Take as test function
� = v �m1(�)�;

where � is radial, with values in [0; 1] ; such that

� = 0 for jxj � 2; and � = 1 near in�nity.

Then using the capacity of the annulus C�;2�; we get the estimate

min
jxj=�

u(x) � C(1 + �(p�N)=(p�1)) � C

for large �: We deduce (2.30) from the weak Harnack inequality, after recovering the
annulus by a �nite number of balls. Then (2.31) follows from (2.25) and (2.30). �

2.5 Estimates on f in RNn f0g
Combining the two techniques, we can extend some estimates in RN to RNn f0g in
the case A is S-p-C.

Proposition 2.5 Let 
 = RNn f0g . Assume that N > p > 1 and A is S-p-C. Let
u be a nonnegative solution of equation (2.2).
Let '� = �

�
� with � > 0 large enough, and �� 2 D(RN ) with values in [0; 1] ; such that

�� = 1 for jxj � �; �� = 0 for jxj � 2�; (2.32)

and jr��j � C=�:

Then (2.16) still holds for any � > 0 , any � 2 [1� p; 0) and ` > p� 1 + �:

Proof Let � < 0: Let 0 < � < �=2: Now we take

� = u�" �
�; where � = ��(1� ��);

as a test function. As in the Proposition 2.1, we getZ


fu�" �

� +

Z


u��1" �� jA(x; u;ru)jp

0
� C(�)

Z


u�+p�1" ���p jr�jp
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if � � 1� p: Then for any for any k; ` > p� 1 + �;Z


fu�" �

� +

Z


u��1" �� jA(x; u;ru)jp

0

� C(�)

�Z
supp r��

uk"�
�

�1=� �Z
supp r��

���p�
0 jr�jp�

0
�1=� 0

+C(�)

 Z
supp r��

u`"�
�

!1=� Z
supp r��

���p�
0 jr�jp�

0

!1=�0
where � = `=(p�1+�) and � = k=(p�1+�): Now we choose k < N(p�1)=(N �p):
As A is S-p-C, we can use the estimate (2.27) in the ball B� for � small enough.
Hence�Z

supp r��
uk"�

�

�1=� �Z
supp r��

���p�
0 jr�jp�

0
�1=� 0

� C �(N�k(N�p)=(p�1))=�+N=�
0�p

� C �(N�p)j�j=(p�1)):

Now we can pass to the limit as � ! 0; since �(N�p)j�j=(p�1)) ! 0, and �� ! 1 a:e:.
Hence we deduce that (2.18) is still available, and we reach the desired conclusion as
in Proposition 2.1.�

2.6 Lower estimates on u

In this paragraph we look for lower estimates for the supersolutions. Consider for
example any superharmonic C2 function u � 0 in a domain 
: From the strong
maximum principle, either u � 0 or u > 0. Moreover if 
 = 
i; then there exists
C > 0 such that

u(x) � C for 0 < jxj � 1=2:
Indeed from the Brezis-Lions Lemma (or its extension (2.29)), the function f =
��u 2 L1(B1=2); and

��u = f + � �0 in D0(B1=2);

for some � � 0: Denoting by � the solution of

��� = �0 in D0(B1=2); � = 0 for jxj = 1=2;

we have u� �� � 0 and

��(u� ��) = f in L1(B1=2);

and the conclusion holds from [37]. By the Kelvin transform, if now 
 = 
e; then
there exists C > 0 such that

u(x) � C jxj2�N for jxj � 2:

Now we give some extensions of these properties. The method is taken from [4],
Theorem 1.3.
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Proposition 2.6 Assume that A satis�es (Hp). Let u be a nonnegative solution of
(2.2), with u 6= 0:

i) Assume 
 = 
i: Then there exists C� > 0 such that

u(x) � C for 0 < jxj � 1=2: (2.33)

ii) Assume that 
 = 
e: Then there exists C > 0 such that�
u(x) � C jxj(p�N)=(p�1) for jxj � 2; if N > p;
u(x) � C for jxj � 2; if N � p: (2.34)

Proof From Remark 2.3, A satis�es the strong maximum principle, hence u > 0 in

: Now we use the function eA associated to A in this remark.

i) Let m = minjxj=1=2 u(x) and s 2 (0;m] : Let n 2 N� be �xed, such that n > 2:
Then by minimisation we can construct a radial solution of8<:

L eAun = 0 for 1=n < jxj < 1=2;
un = s for jxj = 1=2;
un = 0 for jxj = 1=n:

Sinced un is monotone, un � s in C1=n;1=2: If s is small enough, we have

LAun = L eAun = 0 � LAu
in C1=n;1=2: Then un � u in C1=n;1=2 from the comparison principle. For any a 2
(0; 1=2) ; the sequence (un) is bounded in C

1;�(Ca;1=2) for some � 2 (0; 1) from [35],

and un � un+1 on Ca;1=2: Then it converges strongly in C1loc(B1=2) to a nonnegative
radial solution of �

LAw = L eAw = 0 for 0 < jxj < 1=2;
w = s for jxj = 1=2;

such that w � min(u; s): So there exists a real C such that

A(
��w0(r)��)w0(r) = Cr1�N (2.35)

in (0; 1=2) : Then jCj r1�N � M jw0(r)jp�1 ; from (2.12), hence C = 0, and w � s:
Hence u � s > 0 in B1=2:

ii) In the same way, let m = minjxj=2 u(x) and s 2 (0;m] small enough. As above,
replacing C1=n;1=2 by C2;n; we construct a nonnegative radial solution of�

LAw = L eAw = 0 for jxj � 2;
w = s for jxj = 2;

such that w � min(u; s): Then there exists a real C � 0 such that (2.35) holds in
(2;+1) ; and jCj r1�N � M jw0(r)jp�1 : First suppose that C 6= 0: If N 6= p; there
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exists C1 > 0 such that the function r 7! w(r) � C1r(p�N)=(p�1) is nonincreasing
and bounded below, hence it has a limit C2 � 0: Thus N > p and (2.34) follows. If
N = p; the function r 7! w(r) + (C=M) ln r is nonincreasing, which is impossible.
Now suppose C = 0; hence w � C2; and (2.34) follows again. �

Now we need another result in order to cover some critical cases. Notice that the
assumptions on A are di�erent in 
i and 
e; because the minorizing functions which
we construct can be unbounded in the �rst case.

Proposition 2.7 Let N � p > 1: Assume that A satis�es (Hp). Let u be a nonneg-
ative solution of

LAu � C jxj� (2.36)

for some � 2 R; and C > 0; with u 6= 0:
i) Assume 
 = 
i; and A is S-p-C. Then � + N > 0; and there exists C > 0 such
that �

u(x) � C jxj(�+p)=(p�1) for 0 < jxj � 1=2; if � 6= �p;
u(x) � C� jln jxjj for 0 < jxj � 1=2; if � = �p: (2.37)

ii) Assume that 
 = 
e;and � < 0. Then �+ p < 0; and there exists C > 0 such that(
u(x) � C jxj(�+p)=(p�1) for jxj > 2; if � 6= �N;
u(x) � C jxj(p�N)=(p�1) (ln jxj)1=(p�1) for jxj > 2; if � = �N:

(2.38)

Proof i) We know that jxj� 2 L1loc(B1) from Proposition 2.2, hence �+N > 0: Let
n > 2 be �xed: Here A is S-p-C, hence we can construct a radial solution of8<: LAun = C jxj� for 1=n < jxj < 1=2;

un = s for jxj = 1=2;
un = 0 for jxj = 1=n:

Then LAun � LAu in C1=n;1=2: Then un � u in C1=n;1=2, and un converges strongly in
C1loc(B1=2) to a nonnegative radial solution of�

LAw = C jxj� for 0 < jxj < 1=2;
w = s for jxj = 1=2:

Let us compute w: There exists a real D such that

�A(
��w0(r)��)w0(r) = C r�+1=(�+N) +D r1�N : (2.39)

If D 6= 0; then jDj r1�N=2 � M jw0(r)jp�1 for small r, hence w is monotone. If
w0 > 0; then w has a limit, hence w0 is integrable, which is impossible, since N � p:
Now

w(r)� w(2r) = �
Z 2r

r
w0(s)ds;
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so there exists C1 > 0 such that

w(r) � C1r(p�N)=(p�1) if N 6= p; and w(r) � C1 jln rj if N = p:

If D = 0; then w0 < 0 and Cr�+1=2(� + N) � M jw0(r)jp�1 ; hence there exists
C2 > 0 such that

w(r) � C2r(�+p)=(p�1) if � 6= �p; and w(r) � C2 jln rj if � = �p:

In any case (2.37) follows.

i) Let � > 2; and m� = minjxj=� u(x) and s� 2 (0;m] : Here we construct a radial
solution of 8<: L eAun = C jxj� for � < jxj < n;

un = s� for jxj = �;
un = 0 for jxj = n:

If jxj � �; then jxj� � ��; since � < 0: Hence if � is large enough, un remains
su�ciently small, so that L eAun = LAun; hence un � u for � < jxj < n: Then un
converges strongly in C1loc(R

NnB�) to a nonnegative radial solution of�
LAw = C jxj� for jxj > �;
w = s� for jxj = �:

Hence w is given by

�A(
��w0(r)��)w0(r) = � Cr�+1=(�+N) +D r1�N if � 6= �N;

Cr1�N ln r +D r1�N if � = �N:

If � > �N; then w0 < 0 for large r; and Cr�+1 =2(� + N) � M jw0(r)jp�1 : Now w
has a limit m, hence w0 is integrable at in�nity, hence � < �p; (and N > p): And

w(r)�m = �
Z 1

r
w0(s)ds � C1r(�+p)=(p�1) (2.40)

for some C1 > 0: If � < �N; and D = 0; then w0 > 0 and (2.38) follows. If D 6= 0;
then r�+1 � jDj r1�N=2 � M jw0(r)jp�1 for large r; hence either w0 > 0; or (2.40)
holds. If � = �N; then w0 < 0 and r1�N ln r � 2M jw0(r)jp�1 ; and similarly N > p
and

w(r)�m � C2r(p�N)=(p�1)(ln r)1=(p�1)

for some C2 > 0: �
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3 The scalar case in RN ;RNn f0g ;
i; or 
e
3.1 Upper or lower estimates

As a corollary we get general estimates for the inequality (1.1). They extend the
former results of [7], Lemma A.2, relative to the Laplacian A = ��. Let us de�ne,
for any Q 6= p� 1;

� =
p+ �

Q� p+ 1 ; (3.1)

and denote by
Q� = (N + �)(p� 1)=(N � p): (3.2)

Notice that the equation
��pu = jxj�uQ; (3.3)

admits a particular solution u� when Q 6= p� 1; given by

u�(x) = C�jxj��; C� = [�(N � p� �(p� 1))]1=(Q�p+1) ; (3.4)

whenever N > p and 0 < � < (N � p)=(p � 1); which means Q > Q� > p � 1, or
Q < Q� < p� 1.

Theorem 3.1 Assume that N � p > 1; and A is W-p-C. Let u be a nonnegative
solution of

�div [A(x; u;ru)] � jxj�uQ (3.5)

in 
 = 
i (resp. 
e), with � 2 R.
i) If Q > p� 1; then for small � > 0; (resp. large � > 0), I

C�=2;�
uQ

!1=Q
� C ���: (3.6)

ii) If Q < p� 1; and u > 0 in 
; then for any ` > p� 1�Q; I
C�=2;�

u`

!1=`
� C ���: (3.7)

If moreover A is S-p-C, then either u � 0; or

u(x) � C jxj�� near 0 (resp. near in�nity). (3.8)

Proof First suppose Q > p � 1: We apply Proposition 2.1 with f = jxj�uQ and
` = Q; and 
 = 
i ( resp. 
e), and the corresponding function '� :I


;'�

jxj�uQ � C ��p
 I

supp r'�
uQ'�

!(p�1)=Q
� C ��p

 I

;'�

uQ

!(p�1)=Q
;
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from (2.17). But �=4 � jxj � 2� in the support of '�; so

I

;'�

uQ � C ��(p+�)
 I


;'�

uQ

!(p�1)=Q
;

and '� = 1 for �=2 � jxj � �: Since Q > p� 1; (3.6) follows.
Now suppose Q � p� 1. Then from (2.16), for any � 2 [1� p; 0] and ` > p� 1 + �;

I

;'�

jxj�uQ+� � C ��p
 I


;'�

u`

!(p�1+�)=`
:

We can take � = �Q: Thus if u > 0 in 
; then

1 � C ��(p+�)
 I


;'�

u`

!(p�1�Q)=`
: (3.9)

If Q < p�1; this implies (3.7). Now assume that u 6= 0; and A is S-p-C. Then A satis-
�es the weak Harnack inequality. Hence u > 0 , and for any k 2 (0; N(p� 1)=(N � p)) ;
there exists a constant C such that I

C3�=4;5�=4
uk

!1=k
� C min

jxj=�
u; (3.10)

as in [4], Lemma 1.2. Then taking k = ` in (3.7), and changing sligthly the function
'�; we deduce that

min
jxj=�

u � C ��;

proving (3.8):�

3.2 Case of an equation

Using the estimates of Theorem 3.1 with 
 = 
i, we can �nd again the behaviour
near 0 in the case of an equation, given in [4], [5] for � = 0; and extend it to the case
� 6= 0. This result is new.

Theorem 3.2 Assume that N � p > 1; A is S-p-C, and

0 < Q < Q0 = N(p� 1)=(N � p):

Let u be a nonnegative solution of

�div [A(x; u;ru)] = jxj� uQ (3.11)
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in 
i. Then u satis�es Harnack inequality, and consequently there exists C > 0 such
that 8<:

u(x) � C jxj(p�N)=(p�1) ; if N > p,
u(x) � C jln jxjj ; if N = p,

u(x) � C jxj�� ; if Q > p� 1.
(3.12)

If moreover Q < Q� and Q > p� 1; then either the singularity is removable, or there
exists C > 0 such that for small jxj ;�

C�1 jxj(p�N)=(p�1) � u(x) � C jxj(p�N)=(p�1) ; if N > p,
C�1 jln jxjj � u(x) � C jln jxjj ; if N = p.

(3.13)

Proof First suppose Q > p� 1: We write the equation under the form

�div [A(x; u;ru)] = h up�1;

with
h = jxj� uQ�p+1:

If � = 0; we can conclude rapidly: we have uQ 2 L1(B1=2) from Proposition 2.2.
Hence hs 2 L1(B1=2) for

s = Q=(Q� p+ 1) > N=p;

since Q < Q0: Then we can apply Serrin's results of [32], and conclude. In the general
case � 2 R; we use the estimate (3.6):Z

C�=2;�
hs =

Z
C�=2;�

jxj�s uQ � ��s
Z
C�=2;�

uQ � C �N+�s��Q:

That means Z
C�=2;�

hs � C �N�ps: (3.14)

But (3.14) implies the Harnack inequality, see [21], [36]. Then (3.12) follows from
(2.27) and (3.6). Assume moreover Q < Q�: Then

� = (Q� p+ 1)(N � p)=(p� 1) < p+ �;

hence we can choose some t 2 (N=p;N=(� � �)+): Then ht 2 L1(B1=2); sinceZ
B1=2

ht =

Z
B1=2

jxj�t u(Q�p+1)t � C
Z 1=2

0
rN�1+(���)t;

and we can again apply [32].

Now suppose Q � p� 1: We observe that

h(x) = jxj� uQ�p+1(x) � C jxj�p
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near 0; from (3.8) if Q < p � 1, and from (3.9) if Q = p � 1: Then h satis�es (3.14)
for any s > 1; and the Harnack inequality still holds.�
Remark 3.1 Notice that the critical exponent is Q0 and not Q�: In the case of the
semilinear problem

��u = jxj� uQ;

Gidas and Spruck [20] have shown the Harnack property and the poinwise estimate

u(x) � C jxj��

in 
i or 
e; up to the critical value Q
�
2 = (N + 2)=(N � 2) (with Q 6= (N + 2 +

2�)=(N � 2); when � < 2): In the general case of equation 3.11, Q�2 is replaced by
Q�p = (N(p� 1)+ p)=(N � p); and the question is opened for general operators in the
range Q 2 (Q0; Q�).

3.3 Non existence results

We begin by the case Q > p�1. The following theorem extends the results of [24],[26]
and [4], [7].

Theorem 3.3 Assume that N � p > 1; and Q > p� 1:

i) If Q � Q�; and A is W-p-C, then the problem (3.5) in RN has only the solution
u � 0:

ii) If Q < Q�; N > p and A is S-p-C, then the same result holds in RNn f0g :

iii) If Q � Q� and A satis�es (Hp), then the same result holds in 
e:

iv) Assume � � �p: If A satis�es (Hp) and is S-p-C, then the problem (3.5) in 
i
has only the solution u � 0.

Proof i) We apply Proposition 2.1, and Theorem 3.1. We get

Z
B�

jxj�uQ � C �N�p�N(p�1)=Q
 Z

C�;2�
uQ

!(p�1)=Q
� C ��; (3.15)

from (2.17) and (3.6), with

� = N � p� (p� 1)� = (N � p)(Q�Q�)=(Q� p+ 1) � 0: (3.16)

If � < 0; then as � ! +1; we deduce that
R
RN jxj

�uQ = 0; hence u � 0: If � = 0;
then jxj�uQ 2 L1(RN ); hence

lim

Z
C2n;2n+1

jxj�uQ = 0:

22



And Z
B2n

jxj�uQ � C
 Z

C2n;2n+1
jxj�uQ

!(p�1)=Q
from (3.15), hence again u � 0:
ii) Here we apply Proposition 2.5: we have only (2.16) for � 2 [1� p; 0) : HenceZ

B�

jxj�uQ+� � C �N�p�N(p�1+�)=Q
 Z

C�;2�
uQ

!(p�1+�)=Q
� C �����:

But here � < 0; since Q < Q�: Choosing j�j small enough, we get the conclusion.
iii) Here we use the lower bounds for u given by the Propositions 2.6 and 2.7. If the
problem has a nontrivial solution u in 
e; then from (3.6) and (2.34), we get, for
large �;

C1�
�(N�p)=(p�1) �

 I
C�=2;�

uQ

!1=Q
� C2 ���;

but this contradicts (3.16), unless Q = Q�: In that case we observe that

LAu � jxj� uQ � C jxj��(N�p)Q=(p�1) = C jxj�N ;

hence

C1�
�(N�p)=(p�1) (ln �)1=(p�1) �

 I
C�=2;�

uQ

!1=Q
� C2 ���;

from (2.38), which is a contradiction.

iv) In the same way, if the problem has a nontrivial solution u in 
i; then from (3.6)
and (2.33),

C1 �
 I

C�=2;�
uQ

!1=Q
� C2 ���;

which implies � � �p: If � = �p; then

C1 jln �j �
 I

C�=2;�
uQ

!1=Q
� C2 ���;

from (2.37), which is also contradictory.�
Remark 3.2 More generally, as in ([26]), let b 2 C(RNn f0g); b(x) > 0 in RN ;
b(x) � jxj� for large jxj: If p� 1 < Q � Q�; and A isW-p-C, then the problem

�div [A(x; u;ru)] � b(x)uQ; in RN

has only the solution u � 0: If p� 1 < Q < Q�;and A is S-p-C, then the same result
holds in RNn f0g :

Now we study the case Q � p� 1:
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Theorem 3.4 Assume that N � p > 1; and Q � p� 1:
i) If � > �p; and A is W-p-C, then the problem (3.5) in RN has only the solution
u � 0:
ii) If � > �p, and A is S-p-C, the problem (3.5) in 
e has only the solution u � 0:
If moreoverA satis�es (Hp), this is also true in case � = �p; Q 6= p� 1:
iii) If Q� < Q;and A is S-p-C, the problem (3.5) in 
i has only the solution u � 0:
If moreover A satis�es (Hp), this is also true in case Q = Q� 6= p� 1:

Proof Suppose that the problem has a nontrivial solution u:

i) Here we apply Proposition 2.1 with Remark 2.7, following an idea of [26]. We use
(2.16) with ` < p� 1 + � < 0: Hence for any � < �Q; choosing ` = Q+ �; we haveZ

B�

jxj� uQ+� � C �N(Q�p+1)=(Q+�)�p
 Z

C�;2�
uQ+�

!(p�1+�)=(Q+�)
:

Thus  Z
C�;2�

uQ+�

!(Q�p+1)=(Q+�)
� C �N(Q�p+1)=(Q+�)�p��;

and consequently Z
B�

jxj� uQ+� � C �#;

with
# = N � p+ (p+ �)(�+ p� 1)=(p� 1�Q):

If � > �p; we can choose � < �Q such that # < 0; which yields a contradiction.
ii) If Q < p� 1; then for any ` 2 (0; N(p� 1)=(N � p)) ; and large �;

C1�
�� �

 I
C�=2;�

u` dx

!1=`
� C2;

from (2.30) and (3.8). Then � � �p: If A satis�es (Hp), then

LAu � jxj� uQ � C jxj���Q : (3.17)

If � = �p; then � � �Q = �p, but � � �Q + p < 0, from Proposition 2.7, hence a
contradiction. If Q = p� 1; then again � � �p from (3.9).

ii) In the same way, if Q < p� 1; then for small �;

C1�
�� �

 I
C�=2;�

u` dx

!1=`
� C2 ��(N�p)=(p�1);

from (2.27) and (3.8), hence Q � Q�: If Q = Q�; and A satis�es (Hp), then we have
(3.17) with � � �Q = �N . This again contradicts Proposition 2.7. If Q = p � 1;
then � � �p from (3.9), hence again Q � Q�:�
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4 The scalar case in half spaces

Here we consider the same problems in the case 
 = RN +; or 
+e ;

+
i : Let us show

why some di�culties appear.

4.1 Upper estimates

First we adapt Proposition 2.1 to our new case:

Proposition 4.1 Let 
 = RN + (resp. 
+i , resp. 

+
e ): Assume that N � p > 1; and

A is W-p-C. Let u be a nonnegative solution of equation (2.2). Let

�� = xN��

with �� as in Proposition 2.1.

Then for any � > 0 (resp. for small � > 0 , resp. for large � > 0 ), any � 2 [1� p; 0]
and ` > p� 1 + �; and for � > 0 large enough,Z



fu���� � C �(N+�)(1�((p�1+�)=`))�p

�Z
supp r��

u`���

�(p�1+�)=`
: (4.1)

Proof As in Proposition 2.1, for any function � 2 D(
) with values in [0; 1] and any
� > 0; for any � 2 [1� p; 0) and ` > p � 1 + �; we obtain (2.19) and then (2.20).
Now let us take � = �� = xN�� . Then for any m � �; we have

���m jr�jm � C((xN )��m + (xN )���m) � C���m:

Taking � large enough, we get (4.1); if � 6= 0; and also for � = 0: �
Now we extend the estimates:

Theorem 4.2 Assume that A is W-p-C. Let u be a nonnegative solution of (3.5)
in 
 = 
+i ( resp. 
+e ). Let K be any cone in RN + with vertex 0, axis 0xN and
half-angle < �=2 : Then for small � > 0; (resp. for large � > 0),

i) If Q > p� 1; there exists CK > 0; such that I
K\C�=2;�

uQ

!1=Q
� CK ���: (4.2)

ii) Suppose Q < p� 1 and u > 0: Then for any ` > p� 1�Q; there exists CK;` > 0;
such that  I

K\C�=2;�
uQ

!1=Q
� CK;` ���: (4.3)
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Proof i) Case Q > p� 1: Let us apply (4.1) with � = 0 and ` = Q :Z


jxj�uQ��� � C

�Z


uQ���

�(p�1)=Q
�(N+�)(1�((p�1)=Q)�p;

hence �Z


uQ���

�1�(p�1)=Q
� C�(N+�)(1�((p�1)=Q)�p��; (4.4)

which implies Z
RN +\C�=2;�

uQx�N � C�N+���Q: (4.5)

But there exists a constant cK > 0 such that xN � cK jxj on K; so that 4.2 holds.
ii) Case Q < p � 1: Here we apply (4.1) with � = �Q and ` > p � 1 � Q; and get
(4.3) in the same way.�
Remark 4.1 Now the question is to obtain nonexistence results. We shall restrict
to the case Q > p � 1 for simplicity. Here the results are not complete for general
operators. Indeed suppose that u is a solution of (3.5) in RN +: Then from (4.4), we
deduce Z

RN +\B�
uQx�N � C�N+���Q:

Then there is no solution except 0 if N + �� �Q < 0: But this result is not optimal,
because we had to chose � large enough. In the case of the Laplacian, the optimal
range is N + 1� �Q � 0; from [3], [13]. But � = 1 is not admissible in the proof of
Proposition (4.1). We shall reduce to two di�erent cases.

4.2 Nonexistence for the p-Laplacian

First we consider the model case of the p-Laplacian. Since this operator does not
depend on x; u; we look for lower estimates. In Section 2.6, such estimates have been
obtained by comparison with the radial elementary p-harmonic functions in RN n f0g ;
that means the functions

�1;p(r) � 1; �2;p(r) =

�
r(p�N)=(p�1) if N > p
ln r if N = p:

In RN + the same role is played by the elementary p-harmonic functions which vanish
on the set xN = 0: In the case p = 2; they are given by

	1;2(x) = xN ; 	2;2(x) =
xN

jxjN
=
sin(x= jxj))
jxjN�1

(up to a constant, 	2;2 is the Poisson kernel). In the general case, they are given by

	1;p(x) = xN ; 	2;p(x) =
$(x= jxj)
jxj�p;N

(4.6)
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for some unique �p;N > 0 and some unique positive $ 2 C1(SN�1) with maximum
value 1, from [22], Theorem 4.3. The exact value of �p;N is unknown if p 6= 2, except
in the case N = 2; where �p;2 is given by

�p;2 =
3� p+

p
(p� 1)2 + 2� p
3(p� 1) :

Now we can give lower bounds as in Section 2.6.

Proposition 4.3 Assume that N � p > 1:

i) Let u 2 C1(
+e ); u � 0; u 6= 0; and super-p-harmonic. Then there exists C > 0
such that

u � C 	2;p in 2
+e : (4.7)

ii) Let u 2 C1(
+i n f0g); u � 0; u 6= 0; and super-p-harmonic. Then there exists
C > 0 such that

u � C xN in (1=2)
+i : (4.8)

Proof i) Case of 
+e : We have u > 0 in 
+e from the strong maximum principle,
and minjxj=2(u(x)= xN ) > 0 from the Hopf Lemma. The function 	2;p be de�ned by

(4.6) is also in C1(
+e ); so that we can �nd C > 0 , such that u(x) � C	2;p(x) for
jxj = 2: Now for any � > 0; u + � is also super-p-harmonic. Comparing u + � and
C	2;p on C2;n \ RN + for su�ciently large n; we get u+ � � C	2;p in 2
+e from the
weak maximum principle. Then (4.7) follows as � tends to 0:

ii) Case of 
+i : Similarly we can �nd another C > 0 such that u(x) � C	1;p(x) for
jxj = 1=2: Comparing u+ � and C	1;p on C1=n;1=2 \ RN + for su�ciently large n; we

get in the same way u � C	1;p in (1=2)
+i : �

Theorem 4.4 Assume that N � p > 1; and Q > p� 1:
i) If Q < Q�;p; where Q�;p = p� 1 + (p+ �)=�p;N ; the problem

��pu � jxj�uQ in 
+e ; (4.9)

with unknown u 2 C1(
+e ) has only the solution u � 0:
ii) If Q+ � + 1 < 0; the problem

��pu � jxj�uQ in 
+i ; (4.10)

with u 2 C1(
+i n f0g) has only the solution u � 0:

Proof Consider for example the cone K =
�
x 2 RN + j xN � jxj=2

	
of half-angle

�=3: Then Z
K\C�=2;�

uQ � C�N��Q
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from Theorem 4.2. First suppose that 
 = 
+e . Then with other constants C > 0;Z
K\C�=2;�

uQ � C
Z
K\C�=2;�

	Q2;p(x) � C�N�Q�p;N

from Proposition 4.3. And consequently �p;N � �; which means Q � Q�;p: Now
suppose that 
 = 
+i : ThenZ

K\C�=2;�
uQ � C

Z
K\C�=2;�

	Q1;p(x) � C�N+Q;

so that � � �1; which means Q+ � + 1 � 0: �
Remark 4.2 Obviously, if Q � Q�;p or Q+ � + 1 < 0; the problem has no solution
in RN +: When p = 2; we �nd again the results of [3] or [13], since

�2;N = N � 1; Q�;2 = (N + 1 + �)=(N � 1);

but for the critical case, which requires a �ner study. Notice that the condition Q �
Q�;2 is sharp: if Q > Q�;2; there exists a positive solution u 2 C1(RN +) of the
inequality ��u � uQ in RN +; from [13]. Moreover if Q 2 (Q�;2; (N + 1)=(N � 3)) ;
there exists a positive solution u 2 C1(RN +n f0g) of the equation ��u = jxj�uQ in
RN + : the proof is given in [12] when � = 0; and it works also if � 6= 0.

Remark 4.3 In the case of the equation

��pu = jxj�uQ

in 
+i ; a question is to extend the results of Corollary 3.2. Suppose for simpli�cation
that � = 0 and 1 < Q < Q0;p: Do we get the estimates

u(x) � C 	2;p(x)

near 0 ? The result is true when p = 2; from [12], and moreover either u behaves
like 	2;p; or the singularity is removable. The proofs lie on precise properties of the
Green function of the Laplacian. The question is open for p 6= 2:

4.3 Nonexistence for second order operators

Here we give a nonexistence result in RN + in a case where the operator depends on
x and u:

Theorem 4.5 Assume that N � 2; 
 = RN + and that A is given by

Ai(x; u; �) =
NX
j=1

ai(x; u)�i (4.11)
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where ai : RN +�R+ ! R+ are continuous and bounded, and aN is C1 with bounded
derivatives, and

@aN (x; u)=@xN � 0:

If
1 < Q < Q�;2 = (N + 1 + �)=(N � 1);

then the problem (3.5) in RN +; with u 2W 1;1
loc (R

N +); has only the solution u � 0:

Proof Notice that the assumptions on the coe�cients imply that A isW-p-C. Let
u" = u+ "; and � 2 (�1; 0) : Here we take the test function

� = u�" xN�
�
�

with � > 0 large enough, and �� 2 D(RN ); radial, with values in [0; 1] ; satisfying
(2.32), and jr��j � C=�: ThenZ

RN +

jxj�xNuQu�" ��� + j�j
NX
i=1

Z
RN +

u��1" xN�
�
�ai(x; u)

���� @u@xi
����2

� �

NX
i=1

Z
RN +

u�" xN�
��1
� ai(x; u)

@u

@xi

@�

@xi
+

Z
RN +

u�" �
�
�aN (x; u)

@u

@xN

� j�j
2

NX
i=1

Z
RN +

u��1" xN�
�
�ai(x; u)

���� @u@xi
����2 + C Z

RN +

u�+1" xN�
��2
�

����@��@xi
����2

+

Z
RN +

u�" �
�
�aN (x; u)

@u

@xN
;

since the ai are bounded. ThenZ
RN +

jxj�xNuQu�" ��� +
NX
i=1

Z
RN +

u��1" xN�
�
�ai(x; u)

���� @u@xi
����2

� C(�)

 
NX
i=1

Z
RN +

u�+1" xN�
��2
�

����@��@xi
����2 + Z

RN +

u�" �
�
�aN (x; u)

@u

@xN

!
:

Now Z
RN +

u�" �
�
�aN (x; u)

@u

@xN
= X" + Y";

with

X" =

Z
RN +

u�" �
�
�aN (x; u")

@u"
@xN

; Y" =

Z
RN +

u�" �
�
� (aN (x; u)� aN (x; u"))

@u

@xN
:

Then

Y" � C"
Z
RN +

u�" �
�
�

���� @u"@xNi

���� � C"1+� Z
RN +

���

���� @u@xN
���� � C"1+� Z

RN +\C�;2�

���� @u@xN
����
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since @u=@xN 2 L1loc(RN +): Now let

F (x; t) =

Z t

0
s�aN (x; s)ds; 8(x; t) 2 RN + � R+:

Then

X" =

Z
RN +

���
@(F (x; u"(x))

@xN
�
Z
RN +

���

Z u"(x)

0
s�
@aN
@xN

(x; u"(x))dsdx

�
Z
RN +

���
@(F (x; u"(x))

@xN
;

since @aN (x; u)=@xN � 0: Then integrating by parts on RN + \ C�;2�;

X" � �
Z
RN +

F (x; u")�
��1
�

���� @��@xN

���� � C Z
RN +

u1+�" ���1�

���� @��@xN

���� ;
since �� = 0 for jxj = 2� and �� � 0 for xN = 0; and aN is bounded. Now we haveZ

RN +

jxj�xNuQu�" ��� � C"1+�
Z
RN +\C�;2�

���� @u@xN
����+ C Z

RN +

u1+�" ���1�

���� @��@xN

����
+

NX
i=1

Z
RN +

u�+1" xN�
��2
�

����@��@xi
����2

and we can pass to the limit from the Fatou Lemma as "! 0: It follows thatZ
RN +

jxj�xNuQ+���� � C
Z
RN +

u1+����1�

���� @��@xN

����+ NX
i=1

Z
RN +

u�+1xN�
��2
�

����@��@xi
����2 :

But from the H�older inequality, setting � = (Q+ �)=(1 + �);Z
RN +

u1+����1�

���� @��@xN

���� � C" Z
RN +

jxj�xNuQ+����+
C

"

Z
RN +\suppjr��j

jxj�=(��1)xN��2�
0
���

since j@��=@xN j = xN
���0�(�)�� =� � CxN=�2: And

NX
i=1

Z
RN +

u�+1xN�
��2
�

����@��@xi
����2 � C"

Z
RN +

jxj�xNuQ+����

+
C

"

Z
RN +\suppjr��j

jxj�=(��1)xN���2�
0

� jr��j2�
0

Hence choosing " small enough,Z
RN +

jxj�xNuQ+���� � C
Z
RN +\suppjr��j

jxj�(1��0)xN��2�
0
���+jxj�(1��

0)xN�
��2�0
� jr��j2�

0
;
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and thus Z
RN +

jxj�xNuQ+���� � C��;

where
�(Q� 1) = (N � 1)Q� (N + 1 + �)� (� + 2)�:

If Q < Q�;2; then we can chose � such that � < 0; hence we get u � 0 by making �
tend to 0.�
Remark 4.4 As in Remark 2.3, this result can be extended to the case where ai(x; u)
has a power growth in jxj ; after changing the value of Q�;2:

5 The case of systems

5.1 A priori estimates

Now we consider the case of a fully coupled Hamiltonian system and more generally
of a multipower system. First consider the system�

��pu = jxja uS vR;
��mv = jxjbuQ vT ;

(5.1)

where p;m > 1; Q;R > 0; S; T � 0; and a; b 2 R: If QR 6= (p� 1� S)(m� 1� T ); it
admits a particular solution (u�; v�); given by

u�(x) = A�jxj� ; v�(x) = B�jxj��; (5.2)

where

 =
(a+ p)(m� 1� T ) + (b+m)R
QR� (p� 1� S)(m� 1� T ) ; � =

(b+m)(p� 1) + (a+ p)Q
QR� (p� 1� S)(m� 1� T ) : (5.3)

for some constants A�; B� depending onN; p;m; a; b; whenever 0 <  < (N�p)=(p�1)
and 0 < � < (N �m)=(m� 1): The condition

QR > (p� 1� S)(m� 1� T ) (resp <)

corresponds for the system to the condition

Q > p� 1 (resp <)

for the scalar case of equation (3.3).

Theorem 5.1 Let N � p;m > 1. Let A and B : 
 � R+ � RN ! RN be respec-
tively W-p-C and W-m-C. Let u; v 2 C0(
) with u 2 W 1;p

loc (
) ; v 2 W
1;m
loc (
) ; be

nonnegative solutions of �
�div [A(x; u;ru)] � jxjauSvR;
�div [B(x; v;rv)] � jxjbuQvT ; (5.4)
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in 
 = 
i (resp. 
e); with a; b 2 R ; Q;R > 0; S; T � 0: Assume that

p� 1� S > 0; m� 1� T > 0: (5.5)

i) Case QR > (p � 1 � S)(m � 1 � T ): Suppose for example Q > p � 1 � S: Then
for small � > 0 (resp. for large � > 0), I

C�=2;�
vR

!1=R
� C ���; (5.6)

and if R > m� 1� T; or if B is S-m-C, I
C�=2;�

uQ

!1=Q
� C �� ; (5.7)

if R � m� 1� T; without this assumption on B; I
C�=2;�

u`

!1=`
� C �� ; 8` 2 (0; QR=(m� 1� T )) : (5.8)

ii) Case QR < (p� 1� S)(m� 1� T ): Suppose thatA is S-p-C and B is S-m-C.
Then either u; v � 0; or

u(x) � C jxj� , v(x) � C jxj�� : (5.9)

Proof i) Case QR > (p� 1� S)(m� 1� T ):
First case: R > m� 1� T; Q > p� 1� S: Let us apply Proposition 2.1 to the �rst
line of system (5.4): for any � 2 (1� p; 0] and any " > 0;I


;'�

jxjauS+�" vR � C ��p
 I


;'�

u`

!(p�1+�)=`
;

for any ` > p� 1 + �: We choose � = �S: ThenI

;'�

vR � C ��(a+p)
 I


;'�

u`

!(p�1�S)=`
: (5.10)

By hypothesis, Q > p� 1� S; hence we can choose ` = Q; so thatI

;'�

vR � C ��(a+p)
 I


;'�

uQ

!(p�1�S)=Q
: (5.11)

Similarly, since R > m� 1� T; we obtainI

;'�

uQ � C ��(b+m)
 I


;'�

vR

!(m�1�T )=R
; (5.12)
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This in turn impliesI

;'�

vR � C ��[a+p+(b+m)(p�1�S)=Q]
 I


;'�

vR

!(p�1�S)(m�1�T )=QR
;

and (5.6), (5.7) follow from (5.11) and (5.12).

Second case: R < m� 1� T; Q > p� 1� S: For any � 2 (1�m; 0) ; from (2.16),I

;'�

v�+T" uQ � C ��(b+m)
 I


;'�

v�

!(m�1+�)=�
;

for any � > m� 1 + �: Let us set � = �+ T: Then if

� 2 (1�m+ T;R�m+ 1� T ) (5.13)

we can take � = R; and get again (5.6). Now for any ` 2 (p� 1� S;Q) ;I

;'�

u` =

I

;'�

v�`=Q" u` v��`=Q"

�
 I


;'�

v�" u
Q

!`=Q I

;'�

v��`=(Q�`)"

!1�`=Q
:

Since QR > (p� 1� S)(m� 1� T ); we can choose ` such that

max(p� 1� S; QR

R+m� 1� T ) < ` <
QR

m� 1� T (5.14)

Then we determine � by �`=(Q� `) = �R: By construction it satis�es (5.13). ThusI

;'�

u` � C ��(b+m)`=Q
 I


;'�

vR

!(m�1+�+T )`=QR+1�`=Q
;

which means after computationI

;'�

u` � C ��(b+m)`=Q
 I


;'�

vR

!(m�1�T )`=QR
: (5.15)

Reporting (5.15) into (5.10), we deduceI

;'�

vR � C ��[a+p+(b+m)(p�1�S)=Q]
 I


;'�

vR

!(p�1�S)(m�1�T )=QR
;

as " ! 0; and (5.6) follows. We deduce (5.8) from (5.15), for any ` verifying (5.14).
At last consider any

` � max(p� 1; QR=(R+m� 1));

33



and choose � > 1 such that �` satis�es (5.14). Then I

;'�

u`

!1=`
�
 I


;'�

u�`

!1=�`
� C �� ;

from the Jensen inequality, and (5.8) follows.

Now assume that B is S-m-C. We have (5.6), and want to obtain the corresponding
estimate for u: We start fromI


;'�

jxjbuQ � C ��m
 I


;'�

v�

!(m�1�T )=�
for any � > m�1�T: If v � 0; then also u � 0, since A(x; 0; 0) = 0; and reciprocally.
Now assume that u 6= 0; v 6= 0 . Then v > 0; from the strong maximum principle.
Moreover from the weak Harnack inequality, choosing

� 2 (m� 1; N(m� 1)=(N �m)) ; (5.16)

and changing slightly the function '�; we getZ
C3�=4;5�=4

uQ � C �N�(m+b) (min
jxj=�

v)m�1�T : (5.17)

Now we consider " > 0 small enough, we take the power R=(m�1�T ) and integrate
between �(1� ") and �(1 + ") : denoting k = (N �m� b)R=(m� 1� T );Z �(1+")

�(1�")

 Z
C3r=4;5r=4

uQ

!R=(m�1�T )
� C

Z �(1+")

�(1�")
rk (min

jxj=r
v)R

� C" �
k�N+1

Z
C�(1�");�(1+")

vR; (5.18)

Hence in particular Z
C3�(1+")=4;5�(1�")=4

uQ

!R=(m�1�T )
� C" �k�N

Z
C�(1�");�(1+")

vR;

that meansI
C3�(1+")=4;5�(1�")=4

uQ � C" ��(b+m)
 I

C�(1�");�(1+")
vR

!(m�1�T )=R
:

But from (5.10), after another change of '�; we �ndI
C�(1�");�(1+")

vR � C" ��(a+p)
 I

C�(1�");�(1+")
uQ

!(p�1�S)=Q
:
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Taking " = 1=10; we have C�(1�");�(1+") � C3�(1+")=4;5�(1�")=4; henceI
C33�=40;45�=40

uQ � C��[b+m+(a+p)(m�1�T )=R]
 I

C33�=40;45�=40
uQ

!(p�1�S)(m�1�T )=QR
;

(5.19)
hence (5.8) follows by a simple covering.

ii) Case QR < (p � 1 � S)(m � 1 � T ): Here A and B are strongly coercive. Then
u; v > 0; and in the same way, for any "0 > 0 small enough, Z

C3�(1+"0)=4;5�(1�"0)=4
vR

!Q=(p�1�S)
� C"0 �(N�p�a)Q=(p�1�S)�N

Z
C�(1�"0);�(1+"0)

uQ:

Then taking for example " = "0 = 1=10; we have C�(1�");�(1+") � C3�(1+"0)=4;5�(1�"0)=4;
and C�(1�"0);�(1+"0) � C3�(1+")=4;5�(1�")=4; hence we get again (5.19). It implies I

C33�=40;45�=40
vR

!1=R
� C ���;

 I
C33�=40;45�=40

uQ

!1=Q
� C �� :

We can assume that R < m� 1� T: Then

C ��� �
 I

C3�=4;5�=4
vR

!1=R
�
 I

C3�=4;5�=4
v�

!1=�
for any � � R: Choosing � 2 (m� 1; N(m� 1)=(N �m)) ; we deduce that

v(x) � C jxj��

from the Harnack inequality. Then

u(x) � C jxj�

from (5.17).�
Remark 5.1 In the case of the system with two degenerated Laplacian operators�

��pu � jxja uS vR;
��mv � jxjb uQ vT ;

(5.20)

the proof of Theorem 5.1 can be shortened by a reduction to the case S = T = 0;
which means to the case of a Hamiltonian system. Indeed, from the strict maximum
principle, we can assume that u; v are positive. Let �; � 2 (0; 1) : We set

w = u�; z = v� :
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Then w is super-p-harmonic, z is super-m-harmonic, and�
��pw � C jxja w[S�(1��)(p�1)]=� zR=� ;
��mz � C jxjb wQ=� z[T�(1��)(m�1)]=� ;

for some C > 0: As S < p � 1; T < m � 1; we can choose � = 1 � S=(p � 1);
� = 1� T=(m� 1); and we �nd�

��pw � C jxja zR0 ;
��mz � C jxjb wQ0 ;

(5.21)

with R0 = R=� and Q0 = Q=�: And the condition Q0 > p � 1 (resp R0 > m � 1) is
equivalent to Q > p� 1� S (resp.R > m� 1� T ):

Remark 5.2 In the case of the system�
��u � jxja uS vR;
��v � jxjbuQ vT ;

theorem 5.1 can be obtained in another way: we observe that the mean values of u
and v satisfy (

��u � ra uS vR;
��v � rbuQ vT :

Now u; v are superharmonic, hence there exists a constant C = C(N) such that

u(x) � C u(jxj); v(x) � C v(jxj);

from [9], Lemma 2.2. Then �
��u � ra uSvR;
��v � rbuQvT ;

so that the study reduces to the radial case.

5.2 Case of a system of equations

Here we give an extension of Corollary 3.2 to the case of an Hamiltonian system of
equations. Here we suppose that m = p:

Theorem 5.2 Assume that N > p = m > 1; and

p� 1 < Q < Q0; p� 1 < R < Q0;

and A;B are S-p-C. Let u; v 2 C0(
i) \W 1;p
loc (
i) , be nonnegative solutions of�

�div [A(x; u;ru)] = jxja vR;
�div [B(x; v;rv)] = jxjb uQ; (5.22)
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in 
i. Then there exists C > 0 such that near 0;

u(x) � C jxj� ; v(x) � C jxj�� : (5.23)

If moreover R < Qa and Q < Qb; then

u(x) + v(x) � C jxj(p�N)=(p�1) (5.24)

Proof Since u is a solution of an equation, it is also a subsolution. By using Moser's
iterative methods as in [32], or [36], for any ball B(x; 4r) � 
i; and any ` > 1; and
s > N=p;

sup
B(x;r)

u � C

 I
B(x0;2r)

u`

!1=`
+C

�
rp�N=s

jxja vR
Ls(B(x0;4r))

�1=(p�1)
;

where C = C(N; p;K); see also [?]. In the same way, for any " 2 (0; 1=2) and any
ball B(x; 2r) � 
i;

sup
B(x;r)

u � C "�N=p

 I
B(x;r(1+"))

u`

!1=`
+C "�N=p

�
rp�N=s

jxja vR
Ls(B(x;r(1+4")))

�1=(p�1)
:

In particular for any x 2 (1=2)
i;

sup
B(x;jxj=2)

u � C "�N=p

 I
B(x;(1+")

jxj
2
)
u`

!1=`
+C "�N=p

�
jxja+p�N=s

vR
Ls(B(x;(1+4")

jxj
2
))

�1=(p�1)
:

Now R < N(p� 1)=(N � p); hence we can �nd � 2 (0; 1) such that

s = R=(R� (p� 1)�) > N=p:

And vR = v(p�1)�vR=s: Then

vR1=(p�1)
Ls(B(x;(1+4")

jxj
2
))
� ( sup

B(x;(1+4")
jxj
2
)

v)� �
 Z

B(x;(1+4")
jxj
2
)
vR

!1=(p�1)s
:

Now from the upper estimate (5.6) and (5.8), taking ` = Q > p� 1;

sup
B(x;

jxj
2
)

u � C "�N=p

0@jxj� + �jxja+p��R=s�1=(p�1) ( sup
B(x;(1+4")

jxj
2
)

v)�

1A
� C "�N=p

0@jxj� + jxj(a+p��R=s)=(p�1) ( sup
B(x;(1+4")

jxj
2
)

v)�

1A :
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And �R = a+ p+ (p� 1); hence (a+ p� �R=s)=(p� 1) = �� � ; so that

sup
B(x;

jxj
2
)

jxj u � C "�N=p
 
1 + ( sup

B(x;(1+4")jxj=2)
jxj� v)�

!
:

This implies with a new constant C

1 + sup
B(x;

jxj
2
)

jxj u � C "�N=p
0@1 + sup

B(x;(1+4")
jxj
2
)

jxj� v

1A� :
In the same way, if " < 1=8; choosing such that Q=(R� (p� 1)�0) > N=p;

1 + sup
B(x;(1+4")

jxj
2
)

jxj� v � C "�N=p
0@1 + sup

B(x;(1+16")
jxj
2
)

jxj u

1A�0 ;
since p� 1 < Q < N(p� 1)=(N � p): Then

1 + sup
B(x;jxj=2)

jxj u � C "�N(1+�)=p
 
1 + sup

B(x;(1+16")jxj=2)
jxj u

!��0
:

Using the bootstrap technique of [8], Lemma 2.2, we deduce that

1 + sup
B(x;

jxj
2
)

jxj u � C

0@1 + sup
B(x;

jxj
2
)

jxj u

1A��0

for another constant C; since ��0 < 1: It follows that u; and similarly v satisfy the
punctual estimate (5.23). Moreover, from the weak Harnack inequality,

sup
B(x;

jxj
2
)

u � C "�N=p inf
B(x;(1+")

jxj
2
)

u

+C "�N=p jxj(a+p)=(p�1) ( sup
B(x;(1+4")

jxj
2
)

v)� � ( inf
B(x;(1+4")

jxj
2
)

v)R=(p�1)��

But from the estimate (2.27) of Proposition 2.3, if N > p;

sup
B(x;

jxj
2
)

u � C "�N=p jxj�(N�p)=(p�1)

+C "�N=p jxj(a+p)=(p�1)�((N�p)=(p�1))(R=(p�1)��) ( sup
B(x;(1+4")

jxj
2
)

v)� ;

sup
B(x;

jxj
2
)

jxj(N�p)=(p�1) u � C "�N=p

+C "�N=p � jxjm ( sup
B(x;(1+4")

jxj
2
)

jxj(N�p)=(p�1) v)�;
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whith
m = [(N + a)(p� 1)� ((N � p)R] =(p� 1):

If R < Qa; then m > 0; hence

sup
B(x;jxj=2)

jxj(N�p)=(p�1) u � C "�N=p
 
1 + sup

B(x;(1+4")jxj=2)
jxj(N�p)=(p�1) v

!�
:

If Q < Qb; we get in the same way

sup
B(x;(1+4")

jxj
2
)

jxj(N�p)=(p�1) v � C "�N=p
0@1 + sup

B(x;(1+16")
jxj
2
)

jxj(N�p)=(p�1) u

1A�0

and we deduce (5.24) by applying the bootstrap technique.�
Remark 5.3 This result is new for quasilinear operators A;B, even if it is not
optimal. Suppose for simplicity that a = b = 0: We get estimates of the type 5.24 in
the square p� 1 < Q;R < Q0: We presume that it remains true in the region

max(; �) > N(p� 1)=(N � p);

(even for a multipower system), when A = B satisfy (Hp). Indeed this has been
proved in [7] in case p = 2; A = B = ��: The proof lies on a comparison property
of the solutions, which cannot exist in the general case, where A = B depend on
u; v: In the general case the result could be obtained by precising the weak Harnack
inequality as in [1].

5.3 Nonexistence results

Now let us give nonexistence results for system (5.4) in RN ; RNn f0g ; 
e; 
i:

Theorem 5.3 Let us make the assumptions of Theorem 5.1, with N � p;m > 1;
and QR > (p� 1� S)(m� 1� T ):

i) Assume that

max ((p� 1) � (N � p); (m� 1)� � (N �m)) � 0; (5.25)

and Q > p� 1�S and (R > m� 1� T or B is S-m-C). If (u; v) is a solution of 5.4
in RN , then u � 0 or v � 0:

ii) Assume that the inequality is strict in (5.25), N > p;m and A is S-p-C, and B
is S-m-C, then the same result holds in RNn f0g :

iii) Assume that A;B satisfy (Hp); (Hm). If (5.25) holds and (u; v) is a solution of
(5.4) in 
e , then u � 0 or v � 0: If

max(; �) > 0 (5.26)
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or
max(; �) � 0 and A is S-p-C, and B is S-m-C,

and (u; v) is a solution of (5.4) in 
i , then u � 0 or v � 0:

Proof i) We can assume that Q > p�1�S: Then from (2.16) with � = 0; and (5.8),

Z
B�

jxjavR � C �N�p�N(p�1�S)=Q
 Z

C�;2�
uQ

!(p�1�S)=Q
� C ��1 ;

with
�1 = N � p� (p� 1):

First assume R > m� 1� T: Then, from (5.6),

Z
B�

jxjbuQ � C �N�m�N(m�1�T )=R
 Z

C�;2�
vR

!(m�1�T )=R
� C ��2 ; (5.27)

with
�2 = N �m� (m� 1)�:

And (5.25) means that �1 � 0 or �2 � 0: If �2 < 0; then as � ! +1 we getR
RN jxj

buQ = 0; hence u � 0: In the same way, if �1 < 0; then v � 0: If �2 = 0 � �1;
then jxj�uQ 2 L1(RN ); hence

lim

Z
C2n;2n+1

jxjbuQ = 0:

Now we also haveZ
B�

jxjavR � C �N�p�N(p�1�S)=Q
 Z

C�;2�
uQ

!(p�1�S)=Q
from (5.10), since Q > p� 1� S: Then we �nd

Z
B�

jxjbuQ � C
 Z

C�;2�
jxjbuQ

!(p�1�S)(m�1�T )=QR
;

hence again u � 0:

Now assume that R � m� 1� T and B is S-m-C, and choose � as in 5.16). We get

Z
B�

jxjbuQ � C �N�m�N(m�1�T )=�
 Z

C�;2�
v�

!(m�1�T )=�
� C �N�m (min

jxj=�
v)m�1�T :
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Hence  Z
B�

jxjbuQ
!R=(m�1�T )

� C��1
Z 2�

�

�Z
Br

jxjbuQ
�R=(m�1�T )

� C��1
Z 2�

�
r(N�m)R=(m�1�T ) (min

jxj=r
v)R:

That means Z
B�

jxjbuQ � C �N�m�N(m�1�T )=R
 Z

C�;2�
vR

!(m�1�T )=R
so that (5.27) is still valid, from (5.6). We get the conclusions as above.

ii) The conclusion follows as in Theorem 3.3.

iii) Here we observe that from (5.6), (5.7), (5.8) and the lower estimate (2.34)

C1�
(m�N)=(m�1) �

 I
C�=2;�

vR

!1=R
� C ���; (5.28)

C2�
(p�N)=(p�1) �

 I
C�=2;�

u`

!1=`
� C �� ; (5.29)

with

` = Q if R > m� 1� T; ` 2 (0; QR=(m� 1� T )) if R � m� 1� T:

This is impossible if the inequality is strict in (5.25). Now suppose for example that

�2 = N �m� (m� 1)� = 0 � �1 = N � p� (p� 1):

Then we observe that

LAu � jxja uSvR � C jxja�R� uS

If S = 0; then, from (2.37),

u � C jxj(a�R�+p)=(p�1) = C jxj� :

If S 6= 0; then, from Theorem 3.1,

u � C jxj�(a�R�+p)=(S�p+1) = C jxj� :

In turn we get
LAv � jxjb uQvT � C jxjb�Q vT :
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If T = 0; then b� Q = �N; hence

v � C jxj�� (ln jxj)1=(m�1) : (5.30)

from (2.38), which contradicts (5.28). If T 6= 0; then b� Q = �N + T�;

LAv � C jxj�N+T� vT � C jxj�N ;

hence again (5.30) holds, which is impossible. The proof is similar if �1 = 0:

In 
i we obtain in the same way

C1 �
 I

C�=2;�
vR

!1=R
� C ���; (5.31)

C2 �
 I

C�=2;�
u`

!1=`
� C �� ; (5.32)

from (2.33). This is impossible if max(; �) > 0: Now suppose for example � = 0 � ;
and A is S-p-C, and B is S-m-C. Then

LAu � jxja uS ;

hence if S = 0;
u � C jxj(a+p)=(p�1) ;

from (2.37). If S 6= 0; then from Theorem 3.1,

u � C jxj(a+p)=(p�1�S) ;

hence in any case

LAv � jxjb uQvT � C jxjb+(a+p)Q=(p�1�S) vT :

If T = 0; then b+ (a+ p)Q=(p� 1) = �m since � = 0; hence

LAv � jxj�m ;

from (2.37), hence
v � C jln jxjj ;

which contradicts (5.31). If T 6= 0; then b + (a + p)Q=(p � 1 � S) = �m; hence the
same result holds. �

Theorem 5.4 We make the assumptions of Theorem 5.1, with N > p;m; and sup-
pose thatA is S-p-C, and B is S-m-C, and QR < (p� 1� S)(m� 1� T ):
i) If (u; v) is a solution of (5.4) in 
e and

min(; �) < 0 (5.33)
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then u � 0 or v � 0:

ii) If (u; v) is a solution of (5.4) in 
i and

max ((p� 1) � (N � p); (m� 1)� � (N � p)) > 0; (5.34)

then u � 0 or v � 0.

iii) If moreover A;B satisfy (Hp);(Hm); the same results hold in case of equality.

Proof i) Suppose that the problem has a nontrivial solution, then u > 0: And for
any ` 2 (0; N(p� 1)=(N � p)) ; � 2 (0; N(m� 1)=(N �m)) and large �;

C1�
� �

 I
C�=2;�

u` dx

!1=`
� C2;

C1�
�� �

 I
C�=2;�

v� dx

!1=�
� C2;

from (2.30) and (3.8). This is impossible if (5.33) holds. Now suppose for example
� = 0 �  and A;B satisfy (Hp);(Hm). Then

LAv � jxjb uQ � C jxjb�Q

and b�Q = �m : This contradicts the Proposition 2.7.

ii) In the same way, for small �;

C1�
� �

 I
C�=2;�

u` dx

!1=`
� C2 ��(N�p)=(p�1);

C1�
�� �

 I
C�=2;�

v� dx

!1=�
� C2 ��(N�m)=(m�1);

from (2.27) and (3.8), which is impossible if (5.34) holds. If A;B satisfy (Hp); (Hm),
and for example N �m� (m� 1)� = 0; then

LAv � C jxjb�Q vT � C jxjb�Q�T�

but b�Q � T� = �N , hence again a contradiction. �
Remark 5.4 In the case of the system (5.20) we can also reduce a part of the results
to the radial case: as in Propositions 2.6 and 2.7, for any positive solution (u; v) in

e (resp. 
i), we can construct a radial positive solution of the system in 2
e (resp.
(1=2)
i) �

��pU = ra USV R;
��mV = rb UQV T ;
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such that u � U and u � V: A radial analysis of this system allows to �nd again the
results of Theorem 5.3, see for example [16]. But it does not give the upper estimates
of Theorem 5.1.

Remark 5.5 The conditions given in Theorems 5.3, 5.4 are not the unique conditions
of nonexistence. Suppose for simplicity that A;B satisfy (Hp); (Hm) and are S-p-C,
S-m-C.

i) Let (u; v) be a solution of (5.4) in 
e. If

R � (p+ a)(m� 1)=(N � p); or Q � (m+ b)(p� 1)=(N �m);

then u � 0 or v � 0: Indeed

�div [A(ru)] � jxja�R(N�m)=(m�1) us;

from Proposition 2.6 and the conclusion comes from Theorem 3.4 if s 2 (0; 1) ; or
from Proposition 2.7 if s = 0:

ii) Let (u; v) be a solution of (5.4) in 
i. If

s � (a+N)(p� 1)=(N � p) or t � (b+N)(m� 1)=(N �m)

then u � 0 or v � 0: Indeed

�div [A(ru)] � jxja us;

and we conclude as above. This was noticed in the radial case in [16].The same
phenomenon appears for systems with the other sign, or for systems of mixed type,
see [9].

In the case of half spaces, we can extend the results of Sections (4.1), (4.2). We
get for example the following. The proof is left to the reader.

Theorem 5.5 Assume that N � p;m > 1; and Q > p� 1:

i) If  > �p;N ; or � > �m;N ;and (u; v) 2 (C1(
+e ))2 is a solution of 5.1 in 
+e , then
u � 0 or v � 0:

ii) If min(; �) < �1; and (u; v) 2 (C1(
+i ))2 is a solution of 5.1 in 

+
i , then u � 0

or v � 0:
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