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Abstract

We study the boundary behaviour of the nonnegative solutions of the semi-
linear elliptic equation in a bounded regular domain 
 of RN (N � 2),�

�u+ uq = 0 in 
;
u = � on @
;

where 1 < q < (N+1)=(N�1) and � is a Radon measure on @
. We give a priori
estimates and existence results. They lie on the study of the superharmonic
functions in some weighted Marcinkiewicz spaces.
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1 Introduction

Let 
 be a bounded domain in RN (N � 2) with a C2 boundary @
. Here we
study the behaviour near the boundary of the nonnegative solutions of the semilinear
elliptic equation

��u = uq in 
; (1.1)

where 1 < q < (N + 1)=(N � 1): By solution of (1.1) we mean any function u such
that uq 2 L1loc(
) and satisfying the equation in D0(
):
We denote by �(x) the distance from any point x 2 
 to @
; and by B(x; r) the

open ball of center x and radius r > 0: Let G be the Green function of the Laplacian in

; de�ned on the set

�
(x; y) 2 
 � 
 j x 6= y

	
: Let P be the Poisson kernel de�ned

on 
 �@
 by P(x; z) = �@G(x; z)=@n. We call M(
) and M(@
) the spaces of
Radon measures on 
 and @
; and M+(
) and M+(@
) the cones of nonnegative
ones.

Observe that any nonnegative and superharmonic function U in 
 satis�es U 2
L1loc(
): From the Herglotz theorem, there exist some unique ' 2 M+(
) and � 2
M+(@
) such that U admits the integral representation

U = G(') + P (�); (1.2)

where, for almost any x 2 
;

G(')(x) =

Z



G(x; y) d'(y); P (�)(x) =

Z
@


P(x; z) d�(z); (1.3)

moreover
R


� d' < +1. Reciprocally, for any ' 2M(
) such that

R


� d j'j < +1

and � 2M(@
) , the function U de�ned by (1.2) lies in L1loc(
), and satis�es

��U = ' in D0(
);

see for example [12]. We shall say that U is the integral solution of problem�
��U = ' in 
;
U = � on @
:

(1.4)

Hence any solution u of (1.1) in 
 satis�es
R


� uq dx < +1; and there exists a

measure � 2M+(@
) such that�
��u = uq in 
;
u = � on @
;

(1.5)

in the integral sense. Our aim is to give a priori estimates for any solution of equation
(1.1) near the boundary, and also to obtain existence results for a given measure �
on @
.
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The problem with the other sign�
�u = uq in 
;
u = � on @
;

(1.6)

has been studied in [20] and [24] in the subcritical case 1 < q < (N+1)=(N�1); and in
the supercritical case in [25]. Another approach coming from the probabilistic point
of view is done in [14], [15], [22], which gives results in agreement with the previous
ones in the case 1 < q � 2: It seems that the probabilistic techniques do not apply
to our case. Our approach has to be compared to the methods of P.L. Lions used in
[23] for the problem of an interior isolated singularity. Our proofs lie essentially on
the study of the superharmonic functions in some weighted Marcinkiewicz spaces.

Let us recall some classical results for the interior problem for a better under-
standing. Let x0 2 
 and consider any nonnegative solution w 2 C2(
n fx0g) of the
equation

��w = wq in 
n fx0g : (1.7)

When 1 < q < N=(N � 2); one can give upper and lower bounds by using Serrin's
methods of [28], see for example [4], Lemma A.4. The precise behaviour of w was
obtained in [23]. First wq 2 L1loc(
) , and there exists some  � 0 such that

��w = wq +  �0; in D0(
); (1.8)

from the Br�ezis-Lions Lemma [9]. Then the following estimates hold near x0 :

 E(x0; x) � w(x) �  E(x0; x) (1 + o(1)) (1.9)

when  > 0; where E is the fundamental solution of the Laplace equation. And the
remaining term can be precised according to the values of N; q; see [23]. The function
w can be extended as a function w 2 C2(
) if  = 0: Concerning the existence of
solutions of (1.8) for a given ; there exists some �nite positive � such that the
equation (1.8) admits a solution w � 0; with w = 0 on @
; if and only if  2 [0; �] :
If q � N=(N � 2), then  = 0, see again [23]. If moreover q � (N + 2)=(N � 2); we
have the estimate near x0

w(x) � C jx� x0j�2=(q�1) (1.10)

with C = C(N; q); see [17] and [11].

Now let us come back to the boundary problem. As in [20] we can de�ne another
concept of solution. Let C1;10 (
) be the space of C

1 functions vanishing on @
 with
Lipschitz continuous gradient. For any ' 2 M(
) such that

R


� d j'j < +1 and

any � 2 M(@
); we shall say that a function U is weak solution of problem (1.4) if
U 2 L1(
) and Z




U(���) dx =
Z



� d'�
Z
@


@�

@n
d� (1.11)
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for any � 2 C1;10 (
): In Section 2, we �rst verify that the integral solution coincides
with the weak one, and hence is in L1(
): Then we give regularity results of the
general weak solution U of (1.4) in some Marcinkiewicz spaces with a weight of the
form �� (� 2 R). They lie on precise estimates of the Green and Poisson kernel.
Up to our knowledge, most of them are new, more especially as the measure ' may
be unbounded, and can present an interest in themselves. They are fundamental to
obtain a priori estimates and existence results for the problem (1.5), above all in the
most delicate case N=(N � 1) � q < (N + 1)=(N � 1).
In Section 3, we give an a priori estimate for the function G(P q(�)); for any

� 2M+(@
) :

Theorem 1.1 Assume that 1 < q < (N +1)=(N � 1): Then P q(�) 2 L1(
; � dx) for
any � 2M+(@
); and there exists a constant K = K(N;
; q) such that,

G(P q(�)) � K �(@
)q�1P (�) in 
: (1.12)

This result is interesting from two points of view. Above all it allows to construct
supersolutions, hence to get existence results. Concerning the a priori estimates for
(1.5), setting u = P (�) + v; the function v satis�es

v = G(uq) � 2q�1 [G(P q(�)) +G(vq)] ; a.e: in 
;

hence any estimate on G(P q(�)) gives informations on v:

In Section 4 we prove our main result, which is an a priori estimate of any
solution of (1.5) in terms of the solution P (�) of the associated linear problem. It
lies on the results of Section 2. It also uses the estimate (1.12), which in fact can
be shown almost as a necessary condition of existence of solutions, by using recent
techniques of ([8]).

Theorem 1.1 Assume that 1 < q < (N+1)=(N�1): Let � 2M+(@
); and u be any
nonnegative solution of (1.5). Then there exists a constant C = C(N; q;
; �(@
));
such that

P (�) � u � C (P (�) + �) in 
 (1.13)

(and u 2 C1(
) \ C1;�(
) for any � 2 (0; 1) if � = 0):

Theorem 1.2 More precisely, if � = � �a for some a 2 @
 and � > 0, then near the
point a;

� P (�a)(x) � u(x) � � P (�a)(x)
h
1 +O(jx� ajN+1�(N�1)q)

i
: (1.14)
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This result applies in particular to any solution u of (1.1), such that u 2 C(
n fag)
and u = 0 on @
n fag ; since its trace is necessarily of the form � = � �a for some
� � 0: Notice also that in case q < (N + 1)=(N � 1); Theorem 1.1 extends some a
priori estimates of [13], [18] to the case of unbounded boundary data.

In Section 5, we use for proving our second main theorem, which gives existence
results.

Theorem 1.2 Assume that 1 < q < (N + 1)=(N � 1): Let � 2 M+(@
) with
�(@
) = 1; and � � 0: Then there exists some �nite positive �� such that the problem

S�
�
��u = uq in 
;
u = � � on @
;

(1.15)

admits a solution if and only if � 2 [0; ��] :

The existence of solutions for small � is a direct consequence of Theorem 1.1. The
existence of an interval [0; ��] is an adaptation of some results of ([8]).

In conclusion, in the subcritical case we have completely extended the results of
an interior punctual singularity to any boundary measure singularity. The next step,
that is the study of the case q � (N + 1)=(N � 1); is still open.
Note added in proof. In the moment this article was in printing, we received a

preprint of H. Amann and P. Quittner [1], where they consider more general problems
with interior and boundary bounded measures, and use duality methods. In case of
problem (1.5), they get a regularity result in W 1�";1(
) for any " 2 (0; 1), and prove
the existence of at least two solutions, under the condition q < N=(N � 1):

2 Regularity of the weak solutions

2.1 About the Green and Poisson kernels

Here we recall and complete some classical estimates for the Green function and the
Poisson kernel. For almost any y 2 
 and z 2 @
; the functions G(:; y) and P(:; z)
are the integral solutions of�

��G(:; y) = �y in 
;
G(:; y) = 0 on @
;

�
��P(:; z) = 0 in 
;
P(:; z) = �z on @
;

where �y; �z are the Dirac masses at points y 2 
; and z 2 @
:

Proposition 2.1 There exists a constant cN = cN(N;
) such that
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i) for any (x; y) 2 
 � 
 with x 6= y;

G(x; y) �
�
cN jx� yj2�N if N � 3;
c2 (1 + jln jx� yjj) if N = 2;

(2.1)

G(x; y) � cN �(x) jx� yj1�N ; (2.2)

G(x; y) � cN �(x) �(y) jx� yj�N ; (2.3)

G(x; y) �
�
cN (�(x)= �(y)) jx� yj2�N if N � 3;
c2 (�(x)= �(y))(1 + jln jx� yjj) if N = 2;

(2.4)

and

jrxG(x; y)j � cN jx� yj1�N ; (2.5)

jrxG(x; y)j � cN �(y) jx� yj�N ; (2.6)

jrxG(x; y)j � cN (�(y)= �(x)) jx� yj1�N : (2.7)

ii) For any (x; z) 2 
 � @
;

c�1N �(x) jx� zj�N � P(x; z) � cN �(x) jx� zj�N � cN jx� zj1�N ; (2.8)

jrxP(x; z)j � cN jx� zj�N : (2.9)

Proof. But for (2.4) and (2.7), all these estimates are well known. They are de-
duced from the explicit expression of G in an half-space, and extended to any C2
bounded open set. For the lower estimate of (2.8), see [21]. Let us prove (2.4): it
is a consequence of (2.1) and (2.2). Indeed that is true in the set f�(y) � 2�(x)g.
Now suppose �(y) > 2�(x): Let x� 2 @
 such that jx� x�j = �(x) . Then jx� yj �
jx� � yj � jx� � xj � �(y)� �(x) � �(y)=2; hence (2.2) implies if N � 3

G(x; y) � cN
�(x)

jx� yj jx� yj
2�N � 2cN

�(x)

�(y)
jx� yj2�N ;

thus (2.4) holds with a new constant cN ; likewise if N = 2 . Similarly (2.5) and (2.6)
imply (2.7).

Remark 2.1 Notice that (2.2) can be deduced from (2.1) and (2.5) when N � 3.
Indeed (2.1) implies (2.2) in the set fjx� yj � 2�(x)g : Now suppose that jx� yj >
2�(x). De�ning x� as above, we have [x; x�) � 
; and from (2.5),

G(x; y) = jG(x; y)� G(x�; y)j � jx� x�j sup
t2[x;x�)

jrxG(t; y)j

� cN �(x) sup
t2[x;x�)

jy � tj1�N � 2N�1cN �(x) jx� yj1�N ;

since jy � tj � jy � xj � jt� xj � jy � xj � �(x) � jx� yj =2: Hence (2.2) holds.
Similarly (2.2) and (2.6) imply (2.3) for any N � 2. And (2.6) also implies the
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upper estimate (2.8), since P(x; z) = �@G(x; y)=@n and G is of class C1 in the set�
(x; y) 2 
 � 
 jx 6= y

	
. The estimates (2.2), (2.5) and (2.6) are proved in [33] in

the more general framework of a Lyapounov open set. And (2.9) is proved in a C1;�

open set in [26].

As a consequence we can compare the integral and weak solutions of (1.4):

Corollary 2.2 For any ' 2M(
) such that
R


� d j'j < +1 and any � 2M(@
);

a function U is weak solution of problem (1.4) if and only if it is given by the repre-
sentation (1.2). Consequently, (1.4) has a unique weak solution U in L1(
); and

kUkL1(
) � C
�Z




� d j'j+
Z
@


d j�j
�
; (2.10)

for some constant C = C(N;
):

Proof. By considering the positive and negative parts of ' and �; we can assume
that the two measures are nonnegative. Let us prove that the integral solution U is
a weak solution. The main point is to prove that U 2 L1(
). From (2.2) and (2.8),Z


�

G(x; y) dx d'(y) � cN

Z



�Z



jx� yj1�N dx

�
�(y) d'(y) � C

Z



� d';

(2.11)
with another constant C = C(N;
); andZ


�@

P(x; z) dx d�(z) � cN

Z



�Z
@


jx� zj1�N dx

�
d�(z) � C

Z
@


d�; (2.12)

hence U 2 L1(
) and Z



U(x) dx � C
�Z




� d'+

Z
@


d�

�
:

Now for any � 2 C1;10 (
); we have

G(x; y) ��(x) 2 L1(
� 
; dx d'(y)); P(x; z) ��(x) 2 L1(
� @
; dx d�(z))

from (2.11) and (2.12). Then U is a weak solution from the Fubini theorem, and
(2.10) follows. Reciprocally, if U is a weak solution of problem (1.4), then ��U = '
in D0(
); and there exists a unique measure ~� 2M+(@
) such that U = G(')+P (~�).
Then U is a weak solution for the problem with data ' and ~�: Hence for any � 2
C1;10 (
); Z

@


@�

@n
d� =

Z
@


@�

@n
d~�;
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which implies ~� = �: Then U is the integral solution of (1.4), and (2.10) follows again.

Remark 2.2 Thus for any ' 2 M(
) such that
R


� d j'j < +1 and any � 2

M(@
); the problem (1.4) is well posed in L1(
): We �nd again in a very short way
the result of [7] where ' is a measurable function with � ' 2 L1(
) and � 2 L1(@
) .
The lower estimate of the Poisson kernel (2.8) also shows that the value q =

(N + 1)=(N � 1) is a natural barrier for the problem (1.5):

Corollary 2.3 Assume that q � (N+1)=(N�1): Then problem (1.5) has no solution
for a positive measure concentrated at some point a 2 @
:

Proof. For any � 2 M+(@
); if (1.5) has a solution u; then u � P (�); but uq 2
L1(
; � dx); hence also P q(�) . Suppose that � > 0 with supp � = fag ; that means
� = ��a for some � > 0: From (2.8), we haveZ




P q(�a) � dx � c�qN

Z



jx� aj�Nq �q+1 dx

� 2�(q+1)c�qN

Z
fx2
j �(x)�jx�aj=2g

jx� ajq+1�Nq dx

But the set fx 2 
 j �(x) � jx� aj =2g contains the intersection of a cone of vertex
a and angle �=3 with a small ball of center a: Hence the integral is divergent, since
q � (N + 1)=(N � 1): Then we arrive to a contradiction.

2.2 Regularity of G(') and P (�)

Now we are going to complete the estimate (2.10) by much more precise estimates of
the functions G(') and P (�) in Marcinkiewicz weighted spaces, with a power of the
distance � as a weight function. Let us recall their de�nition: For any k 2 R with
k � 1; and any positive weight function � 2 C(
); we denote by Lk(
; � dx) the
space of measurable functions v on 
 such that

kvkLk(
; � dx) =
�Z




jvjk � dx
�1=k

< +1;

and the Marcinkiewicz space Mk(
; � dx) is the space of measurable functions v on

 such that

sup
�>0

�

�Z
fx2
jjv(x)j��g

� dx

�1=k
< +1:

And for any k > 1; Mk(
; � dx) is also the normed space of the v such that

kvkMk(
; � dx) = sup

"�Z
!

jvj � dx
�
=

�Z
!

� dx

�1�1=k#
< +1;
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where the supremum is taken over the measurable subsets ! of 
 such that
R
!
� dx is

�nite. We have Lk(
; � dx) � Mk(
; � dx). If � 2 L1(
) (in particular � = �� with
� > �1), then

Mk(
; � dx) � Lm(
; � dx) for any m 2 [1; k) :

If � � 1; Lk(
; � dx) = Lk(
), and Mk(
; � dx) =Mk(
):

Recall that the solution w of the interior problem (1.7) lies in M
N=(N�2)
loc (
) if

N � 3; and in Lploc(
) for any p � 1 if N = 2; see [9]. On the other part, from
[20] and Corollary 2.2, for any nonnegative � 2 L1(@
); the function P (�) lies in
MN=(N�1)(
) \M (N+1)=N�1)(
; � dx): The following Lemma extends the techniques
used in [2] and [20]:

Lemma 2.4 Let � be a nonnegative bounded Radon measure on D = 
 or @
; and
� 2 C(
) be a positive weight function. Let H be a continuous nonnegative function
on f(x; t) 2 
�D j x 6= tg : For any � > 0; we set

A�(t) = fx 2 
n ftg j H(x; t) > �g ; (2.13)

m�(t) =

Z
A�(t)

� dx: (2.14)

Suppose that for some C � 0 and k > 1

m�(t) � C ��k; 8� > 0: (2.15)

Then the function

x 2 
 7! H(x) =

Z
D

H(x; t) d�(t) (2.16)

is in Mk(
; � dx) and

kHkMk(
; � dx) � (1 +
k

k � 1C) �(D): (2.17)

Proof. Let ! be any measurable subset of 
 such that
R
!
� dx is �nite. Then for

any � > 0; and any t 2 D;Z
!

H(x; t) �(x) dx �
Z
A�(t)

H(x; t) �(x) dx+ �
Z
!

�(x) dx;

with Z
A�(t)

H(x; t) �(x) dx = �
Z +1

�

� dm�(t) = � m�(t) +

Z +1

�

m�(t) d�

� k

k � 1C �
1�k:
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Choosing � =
�R
!
� dx

��1=k
; we getZ

!

H(x; t) �(x) dx � (1 + k

k � 1C)
�Z

!

� dx

�1�1=k
;

and by integration over D with respect to the measure �;Z
!

H(x) �(x) dx =

Z
!

Z
D

H(x; t) �(x) dx d�(t)

� (1 +
k

k � 1C) �(D)
�Z

!

� dx

�1�1=k
;

hence the conclusion.

Let us �rst complete the estimates of [20] for the function P (�) :

Theorem 2.5 For any � 2M(@
); let 	 = P (�) be the solution of the problem�
��	 = 0 in 
;
	 = � on @
:

(2.18)

Then
	 2M (N+�)=(N�1)(
; �� dx) (2.19)

for any � > �1; and
jr	j 2M (N+)=N(
; � dx); (2.20)

for any  > 0: Moreover there exists constants C = C(
; N; �) > 0 and C 0 =
C 0(
; N; ) > 0 such that

k	kM(N+�)=(N�1)(
; �� dx) � C j�j (@
); (2.21)

k jr	j kM(N+)=N (
; � dx) � C 0 j�j (@
): (2.22)

Proof. First step: estimate of the function. We can suppose that � is nonneg-
ative. Let � be a real parameter. We shall apply Lemma 2.4 with

D = @
; � = ��; � = �; and H(x; t) = P(x; t): (2.23)

From (2.8), for any t 2 @
; and any � > 0; and any x 2 A�(t);

� � cN �(x) jx� tj�N � cN jx� tj1�N :

Hence if � � 0;

m�(t) �
Z
B(t;(cN=�)1=(N�1))

�� dx �
Z
B(t;(cN=�)1=(N�1))

jx� tj� dx � C ��(N+�)=(N�1):
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If � < 0; then

m�(t) �
Z
B(t;(cN=�)1=(N�1))

�� dx �
Z
B(t;(cN=�)1=(N�1))

(� jx� tjN =cN)� dx

� C ��
Z (cN=�)

1=(N�1))

0

rN�1+N� dr � C ��(N+�)=(N�1);

under the condition � > �1: Then Lemma 2.4 gives (2.19) and (2.21).
Second step: estimate of the gradient. Let i 2 f1; ::; Ng : Here we use Lemma
2.4 with

D = @
; � = �; � = �; and H(x; t) = @P(x; t)=@xi: (2.24)

From (2.9), for any t 2 @
; and any � > 0; and any x 2 A�(t);

� � cN jx� tj�N :

Then if  � 0;

m�(t) �
Z
B(t;(cN=�)1=N )

� dx �
Z
B(t;(cN=�)1=N )

jx� tj dx � C ��(N+)=N :

Hence if  > 0; the function

Qi(x) =

Z
@


@P(x; t)
@xi

d�(t)

lies inM (N+)=N(
; � dx): But Qi = @P (�)=@xi from the derivation theorem, so that
(2.20) and (2.22) hold.

Let us now give precise estimates of G('): They are one of the keys of Theorem
1.1.

Theorem 2.6 For any ' 2 M(
) such that
R


�� d j'j < +1; with � 2 [0; 1] ; let

� = G(') be the solution of problem�
��� = ' in 
;
� = 0 on @
:

(2.25)

i) Then if N � 3;
� 2M (N+�)=(N�2+�)(
; �� dx) (2.26)

for any � 2 (�N=(N + �� 1); �N=(N � 2)) if � 6= 0; for any � 2 (�N=(N � 1); 0]
if � = 0: In any case, there exists some C = C(
; N; �; �) > 0 such that

k�kM(N+�)=(N�2+�)(
; �� dx) � C
Z



�� d j'j ; (2.27)
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If N = 2; and � 2 (0; 1] ;

� 2M (2+��")=�(
; �� dx) (2.28)

for any � 2 (�2=(1 + �);+1) and " > 0 small enough; if � = 0; then

� 2Mp(
; �� dx) (2.29)

for any � 2 (�2; 0] and p 2 (max(1;��);+1) ; with similar continuity properties in
those spaces.

ii) For any N � 2;

jr�j 2M (N+)=(N�1+�)(
; � dx); �=� 2M (N+)=(N�1+�)(
; � dx); (2.30)

for any  2 [0; �N=(N � 1)) if � 2 (0; 1) ; any  2 (0; N=(N � 1)) if � = 1; and
 = 0 if � = 0; and there exists some C 0 = C(
; N; �; ) > 0 such that

k jr�j + �=� kM(N+)=(N�1+�)(
; � dx) � C 0
Z



�� d j'j : (2.31)

Proof. First step: estimate of the function. Here also we can assume that ' is
nonnegative. Let � 2 [0; 1] be �xed, and � be a real parameter. We have

G(')(x) =

Z



G(x; y)
��(y)

��(y) d'(y);

We shall apply Lemma 2.4 with

D = 
; � = ��; � = �� '; and H(x; t) = G(x; t)=��(t): (2.32)

i) First assume N � 3: From (2.1) and (2.2), for any x; t 2 
 with x 6= t;

G(x; t) � cN jx� tj(2�N)(1��) (�(t) jx� tj1�N)� � cN ��(t) jx� tj2�N�� ; (2.33)

Moreover, from (2.1) and (2.4),

G(x; t) � cN jx� tj(2�N)(1��) ( �(t)
�(x)

jx� tj2�N)� � cN
��(t)

��(x)
jx� tj2�N ; (2.34)

and from (2.2) and (2.3),

G(x; t) � cN (�(x) jx� tj1�N)(1��)(�(x)�(t) jx� tj�N)� � cN �(x)��(t) jx� tj1�N�� :
(2.35)

Then for any � > 0; and any x 2 A�(t); from (2.33)

� � cN jx� tj2�N�� ; (2.36)
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and from (2.34) and (2.35),

��(x) � (cN=�) jx� tj2�N ; and �(x) � (�=cN) jx� tjN�1+� : (2.37)

First suppose that � > 0 and � > 0: Then

m�(t) �
Z
B(t;(cN=�)1=(N�2+�))

�� dx �
Z
B(t;(cN=�)1=(N�2+�))

((cN=�) jx� tj2�N)�=� dx

� C ���=�
Z (cN=�)

1=(N�2+�)

0

rN�1�(N�2)�=� dr � C ��(N+�)=(N�2+�);

under the condition � < �N=(N � 2): Now suppose that � � 0: Then

m�(t) �
Z
B(t;(cN=�)1=(N�2+�))

�� dx �
Z
B(t;(cN=�)1=(N�2+�))

((�=cN) jx� tjN�1+�)� dx

� C ��
Z (cN=�)

1=(N�2+�)

0

rN�1+(N�1+�)� dr � C ��(N+�)=(N�2+�);

under the condition � > �N=(N � 1 + �): Hence Lemma 2.4 applies and gives the
estimates (2.26) and (2.27) for �:

ii) Now assume N = 2: Then (2.33) and (2.34) are replaced by

G(x; t) � c2 (1 + jln jx� tjj)(1��)(�(t) jx� tj�1)� (2.38)

G(x; t) � c2
��(t)

��(x)
(1 + jln jx� tjj); (2.39)

and (2.35) is still valid. Then (2.36) and (2.37) become

� � c2 jx� tj�� (1 + jln jx� tjj)(1��) (2.40)

��(x) � (c2=�)(1 + jln jx� tjj); and �(x) � (�=c2) jx� tj1+� : (2.41)

First suppose � 2 (0; 1] : Notice that (2.40) and (2.41) imply for any " > 0;

� � C" jx� tj���" ; ��(x) � (C" =�) jx� tj�" ;

with C" = C" (N;
; "); since 
 is bounded. If � > 0; then

m�(t) �
Z
B(t;(C"=�)1=(�+"))

�� dx �
Z
B(t;(C"=�)1=(�+"))

((C"=�) jx� tj�")�=� dx

so that for any small " > 0;

m�(t) � C 0" ��(2+��")=�
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with C 0" = C
0
"(
; �; �; "); hence � 2M (2+��")=�(
; �� dx): In case � � 0; we �nd

m�(t) �
Z
B(t;(C"=�)1=(�+"))

�� dx � C" ��
Z (C"=�)1=(�+")

0

r1+(1+�)� dr

� C"" �
��(2+(1+�)�)=(�+");

with C"" = C"" (
; �; �; "); under the condition � > �2=(1 + �); hence the same
conclusion. Now suppose � = 0 and �2 < � � 0. Observe that the condition (2.40)
implies jx� tj � C
 e

��=c2 ; with for example C
 = e (1 + (diam 
)2): Then from
(2.41),

m�(t) �
Z
B(t;C
e

��=c2 )

�� dx � C ��
Z C
e

��=c2

0

r1+� dr � C �� e�(�+2)�=c2 � Cp �
�p

for any p > ��; hence � 2Mp(
; �� dx) for any p 2 (max(1;��);+1).
Second step: estimate of the gradient and of �=�. In the same way, we take

D = 
; � = �; � = �� '; and

H(x; t) =
@G(x; t)
@xi

=��(t) or H(x; t) = G(x; t)=�(x)��(t) (2.42)

As above, for any N � 2; from (2.5) and (2.6), for any x; t 2 
 with x 6= t;����@G(x; t)@xi

���� � cN ��(t) jx� tj1�N�� ; (2.43)

and similarly from (2.2) and (2.3),

G(x; t)=�(x) � cN ��(t) jx� tj1�N�� : (2.44)

And from (2.5) and (2.7) ����@G(x; t)@xi

���� � cN ��(t)

��(x)
jx� tj1�N ; (2.45)

and similarly from (2.2), which is symmetrical in x and y;

G(x; t)=�(x) � ��(t)

��(x)
jx� tj1�N : (2.46)

Then for any � > 0; and any x 2 A�(t); from (2.43) and (2.45), or from (2.44) and
(2.46),

� � cN jx� tj1�N�� ; and ��(x) � (cN=�) jx� tj1�N ;
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First assume that � > 0 and  � 0: Then

m�(t) �
Z
B(t;(cN=�)1=(N�1+�))

� dx �
Z
B(t;(cN=�)1=(N�1+�))

((cN=�) jx� tj1�N)=� dx

� C ��=�
Z (cN=�)

1=(N�1+�)

0

rN�1�(N�1)=� dr � C ��(N+)=(N�1+�);

under the condition  < �N=(N � 1): Then Lemma 2.4 applies if  > � � 1; that is
 > 0 in case � = 1: Now assume � =  = 0: Then we get directly

m�(t) �
Z
B(t;(cN=�)1=(N�1))

dx � C ��N=(N�1):

Hence the functions �=� and

Ri(x) =

Z
@


@G(x; y)
@xi

d'(y)

lie in M (N+)=(N�1+�)(
; � dx); and satisfy

k�=� + jR1j+ ::+ jRN jkM(N+)=(N�1+�)(
; � dx) � C 0
Z



�� d j'j :

In order to obtain (2.30) and (2.31), it remains to prove that @G(')=@xi = Ri in
D0(
): The result is true when ' 2 L1(
): in that case, following the proof of [19],
Lemma 4.1, we have G(') 2 C1(
) and @G(')=@xi = Ri in 
: In the general case
where ' 2 M+(
) with

R


�� d' < +1; we consider a sequence of nonnegative

functions fn 2 L1(
); bounded in L1(
; �� dx); converging weakly to ': Then the
sequence (G(fn)) converges in L

1(
) to G(') from 2.10. And (@G(fn)=@xi) converges
in L1(
; � dx) to Ri . Hence @G(')=@xi = Ri in D0(
); and in fact in L1loc(
):
Remark 2.3. As a consequence, we get estimates of 	 and � in weighted Sobolev
spaces. Recall that for any k > 1, and any real ;

W 1;k(
; � dx) =
�
v 2 Lk(
; � dx)

��jrvj 2 Lk(
; � dx)	
endowed with the norm

kvkW 1;k(
; � dx) = kvkLk(
; � dx) + kjrvjkLk(
; � dx) ;

and W 1;k
0 (
; � dx) is the closure of D(
) in W 1;k(
; � dx): From [16] and [6], it is

also given by

W 1;k
0 (
; � dx) =

�
u 2 Lk(
; ��k dx)

��jruj 2 Lk(
; � dx)	
15



if k 6=  + 1; and

W 1;k
0 (
; � dx) =

�
u 2 Lk(
; ��k(ln(R=�))�k dx)

��jruj 2 Lk(
; � dx)	
if k =  + 1; where R > max(e2; diam 
): And

W 1;k
0 (
; � dx) =W 1;k(
; � dx) if  + 1 � 0 or  + 1 > k:

Then one veri�es that, for any � 2M(@
);

	 = P (�) 2 W 1;s(
; � dx) (2.47)

for any  > 0 and s 2 [1; (N + )=N) : And for any � 2 [0; 1] and any ' 2 M(
)
such that

R


�� d j'j < +1;

� = G(') 2 W 1;s
0 (
; �

 dx) (2.48)

for any  2 [0; N�=(N � 1)) if � 2 (0; 1) ; any  2 (0; N=(N � 1)) if � = 1, and
 = 0 if � = 0; and for any s 2 [1; (N + )=(N � 1 + �)) : And P and G map
bounded subsets into bounded sets in those spaces. For any measure ' 2M(
); one
�nds again the well-known result � = G(') 2 W 1;s

0 (
) for any s 2 [1; N=(N � 1)) :
If � 2 (0; 1) ; we can improve the estimates (2.26) and (2.30) by using interpolation

in weighted spaces. These results will not be used in the sequel, but they deserve to
be mentionned.

Theorem 2.7 Assume that � 2 (0; 1) : Then for any ' 2M(
) such that
R


�� d j'j <

+1 , and any N � 3;

G(') 2 L(N+�)=(N�2+�)(
; �� dx) (2.49)

for any � 2 (�N=(N � 1 + �); �N=(N � 2)) ; and

kG(')kL(N+�)=(N�2+�)(
; �� dx) � C
Z



�� d j'j ; (2.50)

And for any N � 2;

jrG(')j+G(')=� 2 L(N+)=(N�1+�)(
; � dx) (2.51)

for any  2 [0; �N=(N � 1)), and

kjrG(')j+G(')=�kL(N+)=(N�1+�)(
; � dx) � C 0
Z



�� d j'j ; (2.52)

hence
G(') 2 W 1;(N+)=(N�1+�)

0 (
; � dx); (2.53)

for any  2 [0; �N=(N � 1)) ; and

kG(')k
W

1;(N+)=(N�1+�)
0 (
; � dx)

� C
Z



�� d j'j : (2.54)
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Proof. For a given k > 0; and any �1; �2 2 [0; 1] and �i;k > k+�i�N , i > �i� 1;
for i = 1; 2; and any � 2 (0; 1) we can verify that the spaces of interpolation are given
by �

L1(
; ��1 dx); L1(
; ��2 dx)
�
�
= L1(
; �� dx);�

M (N+�1)=(k+�1)(
; ��1 dx); M (N+�2)=(k+�2)(
; ��2 dx)
�
�
= M (N+�)=(k+�)(
; �� dx);

where �; � are given by the relations

� = (1� �)�1 + ��2;
1

p
=
1� �
p1

+
�

p2
; (2.55)

pi = (N + �i)=(k + �i) and p = (N + �)=(k + �); (2.56)

From the Marcinkiewicz theorem, if a transformation maps continuously L1(
; ��i dx)
intoM (N+�i)=(k+�i)(
; ��i dx) for i = 1; 2; it also maps continuously L1(
; �� dx) into
L(N+�)=(k+�)(
; �� dx); see [29]. Let us show that the estimates (2.49) and (2.51) can
be obtained by interpolation of the estimates (2.26), (2.27) and (2.30), (2.31) for
�1 = 0 and �2 = 1; with the exception of the case � = 0 for (2.51). First take
k = N � 2; and observe that

�i 2 (�N=(N � 1 + �i); �iN=(N � 2)), 1=pi 2 ((N � 2)=N; (N � 1 + �i)=N) ;
(2.57)

so that from (2.55) and (2.56), if �i 2 (�N=(N � 1 + �i); �iN=(N � 2)) ; then

� 2 (�N=(N � 1 + �); �N=(N � 2)) : (2.58)

Reciprocally, for any � 2 (0; 1) and � satisfying (2.58), taking �1 = 0 and �2 = 1
and de�ning p by (2.56) with k = N � 2, we set

p1 = p2 = p if 1=p � (N � 2 + �)=N;

1=p1 = 1=p� �=N; 1=p2 = 1=p+ (1� �)=N; if 1=p > (N � 2 + �)=N:
Then p1 and p2 satisfy (2.57), and we can interpolate between these values, with �1; �2
given by (2.56). ThusGmaps continuously L1(
; �� dx) into L(N+�)=(N�2+�)(
; �� dx)
and (2.50) follows on L1(
; �� dx). Now take k = N � 1; replace �1; �2; � by 1; 2; 
in (2.56): now

pi = (N + i)=(N � 1 + �i) and p = (N + )=(N � 1 + �): (2.59)

Observe that
1 = 0, 1=p1 = (N � 1)=N; (2.60)

2 2 [0; N=(N � 1)), 1=p2 2 ((N � 1)=N; 1] ; (2.61)
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so that from (2.55) and (2.56), if 2 2 (0; N=(N � 1)) ;

 2 (0; �N=(N � 1)) : (2.62)

Reciprocally, for any � 2 (0; 1) and  satisfying (2.62), taking �1 = 0 and �2 = 1 and
de�ning p by (2.59), we set

1=p1 = (N � 1)=N; 1=p2 = (1=p� (1� �)=p1)=�:

Then p1 and p2 satisfy (2.60), (2.61), and we can interpolate between these values,
with 1; 2 given by (2.59). Hence (2.51) and (2.52) follow on L1(
; �� dx) when
 6= 0: In case  = 0; we interpolate between �1 = � � " and �2 = � + " for " > 0
small enough, with 1 = 2 = 0; and get again (2.51) and (2.52).
Now consider any ' 2 M(
) such that

R


�� d j'j < +1: Then there exists

a bounded sequence of functions fn 2 L1(
; �� dx) converging weakly to ': The
sequence (G(fn)) is bounded in W

1;s
0 (
) for any s 2 [1; N=(N � 1 + �)); from (2.48).

After an extraction it converges to some function � strongly in Ls(
) and a.e. in 
:
Then � is a weak solution of problem (2.25), hence � = G('): Moreover (G(fn)) is
bounded in L(N+�)=(N�2+�)(
; �� dx) for any � 2 (�N=(N � 1 + �); �N=(N � 2)) :
And (jrG(fn)j) is bounded in L(N+)=(N�1+�)(
; � dx) for any  2 [0; �N=(N � 1)).
Since those spaces are reexive, we get (2.49) and (2.50), (2.51) and (2.52) by going
to the weak limit after a new extraction. Then (2.53) and (2.54) follow.�
Remark 2.4 Let us mention that the result � 2 W 1;s

0 (
) with s = N=(N � 1 + �)
can be proved by duality, see [12]. Notice that the value of s given in [12] is not
correct, due to a small error in the parameters of the Sobolev injection.

Remark 2.5 Assume N � 2: From (2.48), we deduce that

G is compact from L1(
; �� dx) into Lp(
; �� dx)

for any � 2 (0; 1] , � 2 (�N=(N + �� 1); N �=(N � 2)) or � = � = 0; and p 2
[1; (N + �)=(N + �� 2)) and p > ��: It comes from the compactness of the Sobolev
injection

W 1;s
0 (
; �

 dx) � Lp(
; �� dx)
when 1 � s � p < +1 and N=p�N=s+1 > 0 and (N + �)=p� (N + )=s+1 > 0 ,
with  + 1 6= s; see [27]. In the case � = 1 and � = 0; we �nd again a result cited in
[10].

2.3 Application to the problems 1.1 and 1.4

Combining Theorems 2.5 and 2.6, we deduce regularity results for the problem (1.4).
In particular, taking � = 1; we get the following:
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Corollary 2.8 For any ' 2M(
) such that
R


� d j'j < +1 and any � 2M(@
);

the solution U of problem (1.4) satis�es�
U 2M (N+�)=(N�1)(
; �� dx) for any � 2 (�1; N=(N � 2)) ; if N � 3;
U 2 Lk(
; �� dx) for any � 2 (�1;+1) and k 2 [1; 2 + �) ; if N = 2;

(2.63)
jrU j 2M (N+)=N(
; � dx); for any  2 (0; N=(N � 1)) ; if N � 2; (2.64)

(hence U 2 W 1;s
0 (
; �

 dx) for any  2 (0; N=(N � 1))and s 2 [1; (N + )=N)): And
in any case,

kUkM(N+�)=(N�1)(
; �� dx) � C
�Z




� d j'j+ j�j (@
)
�
; if N � 3; (2.65)

k jrU j kM(N+)=N (
; � dx) � C
�Z




� d j'j+ j�j (@
)
�
; if N � 2: (2.66)

This gives an interior regularity result for problem (1.5):

Corollary 2.9 If 1 < q < (N+1)=(N�1); then any solution u of (1.1) is a classical
solution in 
:

Proof. Applying Corollary 2.8 to u we get in particular u 2 M (N+1)=(N�1)(
; � dx)
if N � 3 (and u 2M3�"(
; � dx) if N = 2). Then uq 2 Lk0loc(
) for some k0 > 1; since
q < (N + 1)=(N � 1): If N = 2; then from Schauder estimates, u 2 C1(
): In case
N � 3 and k0 < N=2; we can make a usual bootstrapp: from the Lp regularity theory,
u 2 W 2;k0

loc (
); hence from the Sobolev injection uq 2 Lk1loc(
) for k1 = N k0 =q (N �
2k0) > k0; since q < N=(N � 2): By induction uq 2 Lknloc(
) for

kn = N kn�1 =q (N � 2 kn�1) > kn�1; (2.67)

till kn < N=2: But if kn < N=2 for any n 2 N; then kn ! ` = N(q� 1)=2q < 1; which
is impossible. Then changing slightly k0 if necessary, we �nd some n0 2 N such that
kn0 > N=2; hence u 2 C1(
):

3 Estimate of G(P q(�))

Now we assume that 1 < q < (N + 1)=(N � 1); and we prove Theorem 1.1. First
observe that for any � 2 M+(@
); we have P (�) 2 M (N+1)=(N�1)(
; � dx) from
Theorem 2.5: In particular,

P q(�) 2 L1(
; � dx)
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since q < (N + 1)=(N � 1); hence G(P q(�)) is well de�ned and lies in L1(
) from
Corollary 2.2. And P (�) 2 C0(
); since P is continuous, hence also G(P q(�)) 2
C0(
):

We �rst consider the case where � = �a is a Dirac mass at a point a of @
; hence
P (�)(:) = P (�a)(:) = P(:; a): Here we can give a more precise estimate near the point
a :

Theorem 3.1 Assume that 1 < q < (N + 1)=(N � 1): Let a 2 @
; and let W =
G(P q(�a)) be the solution of�

��W = Pq(:; a) in 
;
W = 0 on @
:

(3.1)

Then there exists a constant C = C(N;
; q) such that

W (x) � C P(x; a) jx� ajN+1�(N�1)q in 
: (3.2)

Proof. From (2.8), we can majorize Pq(:; a) by

Pq(x; a) � cqN �q(x) jx� aj
�Nq � cqN �(x) jx� aj

�1�(N�1)q :

Then for any x 2 
; from (1.3),

W (x) =

Z



G(x; y) Pq(y; a) dy � cqN
Z



G(x; y) �(y) jy � aj�1�(N�1)q dy:

Now from (2.2) and (2.3),

W (x) � cq+1N �(x)

Z



f(x; y) dy;

where
f(x; y) = jy � aj�(N�1)q jx� yj�N min (jx� yj ; jy � aj) ;

since �(y) � jy � aj : Now we divide 
 in three parts:


1 = 
 \B(x; jx� aj =2); 
2 = 
 \B(a; jx� aj =2); 
3 = 
n(
1 [ 
2);

and integrate separately on each part. In the sequel C denotes constants which only
depend on N; q and 
: In 
1 we have jx� aj � 2 jy � aj ; andZ


1

f(x; y) dy �
Z

1

jy � aj�(N�1)q jx� yj1�N dy

� 2(N�1)q jx� aj�(N�1)q
Z
B(x;jx�aj=2)

jx� yj1�N dy

� C jx� aj1�(N�1)q :
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In 
2 we have jx� aj � 2 jx� yj ; andZ

2

f(x; y) dy �
Z

2

jy � aj1�(N�1)q jx� yj�N dy

� 2N jx� aj�N
Z
B(a;jx�aj=2)

jy � aj1�(N�1)q dy

� C jx� aj�N
Z jx�aj=2

0

rN�(N�1)q dr � C jx� aj1�(N�1)q ;

since q < (N + 1)=(N � 1).
In 
3; we have jx� aj � 2 min(jy � aj ; jy � xj); hence jy � aj � 3 jy � xj : Then we
get Z


3

f(x; y) dy �
Z

3

jy � aj1�(N�1)q jx� yj�N dy

� 3�N
Z

3

jy � aj1�N�(N�1)q dy

� C

Z +1

jx�aj=2
r�(N�1)q dr

� C jx� aj1�(N�1)q :

Then
W (x) � C �(x) jx� aj1�(N�1)q ;

and from the lower estimate of the Poisson kernel (2.8) we deduce (3.2).

Now we get to the general case.

Proof of Theorem 1.1 Let � 2M+(@
). We can reduce to the case �(@
) = 1 by
linearity of P and G: From (1.2), we have

P (�)(x) =

Z
@


P(x; z) d�(z) =
Z
@


P (�z)(x) d�(z) in 
:

Then from the Jensen inequality,

P q(�)(x) �
Z
@


P q(�z)(x) d�(z) in 
:

And from the maximum principle,

G(P q(�))(x) � G(
Z
@


P q(�z)(x) d�(z)) =

Z
@


G(P q(�z))(x) d�(z):
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Hence from (3.2),

G(P q(�))(x) � C

Z
@


P(x; z) jx� zjN+1�(N�1)q d�(z)

� C P (�)(x) in 
;

since N + 1� (N � 1)q > 0 and 
 is bounded.

4 A priori estimates

Here we study the behaviour of the solutions of (1.5) for a given measure � 2
M+(@
): First notice as in [13] that for any q > 1; for any solution u of (1.5),
kuqkL1(
;� dx) is majorized independently of u : we have the estimate

kuqkL1(
;� dx) � C (1 + �(@
)); (4.1)

with C = C(N; q;
): Indeed consider a positive eigenvector �1 for the �rst eigenvalue
�1 of (��) with Dirichlet conditions on @
: Since u is a weak solution of (1.5), we
have Z




u (���1) dx = �1
Z



u �1 dx =

Z



uq �1 dx+

Z
@


@�1
@n

d�;

hence from Young inequalityZ



uq �1 dx �
1

2

Z



uq �1 dx+ (2�
q
1)
1=(q�1)

Z



�1 dx +

Z
@


����@�1@n
���� d�;

which implies (4.1), since C�1� � �1 �C�1� in 
; for some C = C(N;
) > 0:
Now we prove Theorem 1.1. We follow the technique of the interior problem,

given in [23]. Once we have obtained the estimate (1.12), the proof goes quickly in
case q < N=(N�1). The main di�culty comes when q � N=(N�1) : in that case we
really need the precise estimates of G(') and P (�) in Marcinkiewicz weighted spaces,
proved in Section 2.2. We begin by the easiest case.

Proof of Theorem 1.1 .

i) The simple case : q < N=(N � 1):
Let � 2M+(@
); and let u be any nonnegative solution of (1.5). Let us set

u = P (�) + v1 (4.2)

where v1 = G(u
q): Now

u 2MN=(N�1)(
) if N � 3; u 2M2�"(
) if N = 2; (4.3)
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from Corollary (2.8). Since q < N=(N � 1); uq 2 Lk0(
) for some k0 > 1: Now
uq � 2q�1(P q(�) + vq1); hence from the maximum principle and from the estimate
(1.12),

v1 � 2q�1(G(P q(�)) + v2) � C1(P (�) + v2)
where v2 = G(v

q
1); hence

u � C 01( P (�) + v2):
By induction for any n � 2; we can de�ne the solution vn = G(vqn�1) of problem�

��vn = vqn�1 in 

vn = 0 on @
;

such that
vn � Cn(P (�) + vn+1); u � C 0n( P (�) + vn+1);

where Cn; C
0
n only depend on N; q;
 and �(@
): And vn 2 Lkn(
) with kn given by

(2.67), hence there exists some n0 = n0(N; q) such that vn0 2 C0(
): Then

u � C 0n0( P (�) + vn0+1) in 
: (4.4)

with vn0+1 = 0 on @
; hence there exists a constant C0 > 0 such that

vn0+1(x) � C0 �(x) in 
; (4.5)

and C0 depends on N; q;
; �(@
) and kuqkL1(
;� dx) ; from the continuity properties
given in Corollary 2.8, hence C0 = C0(N; q;
; �(@
)) from (4.1). Then (1.13) follows
from (4.4) and (4.5). If � = 0; then u 2 C1(
) from Schauder estimates.

In case � = � �a for some a 2 @
 and � > 0; we get more precisely from Theorem
3.1

v1 � 2q�1 (�q G(P q(�a)) + v2)

� C1

h
P (�a) jx� ajN+1�(N�1)q + v2

i
:

By induction we �nd

vn � Cn (G(P
q(�a)) + vn+1)

� C 0n

h
P (�a) jx� ajN+1�(N�1)q + vn+1

i
and

u � P (�a) + C"n
h
P (�a) jx� ajN+1�(N�1)q + vn+1

i
:

Then we deduce (1.14).

ii) The case: N=(N � 1) � q < (N + 1)=(N � 1):

23



Let p � 2 be some �xed integer such that

1=p < N + 1� (N � 1)q:

Now for any n 2 [0; p] ; let �n = 1� n=p 2 [0; 1] : Now we start from the fact that

u 2M (N+1)=(N�1)(
; � dx) if N � 3; u 2M3�"(
; � dx) if N = 2; (4.6)

from Corollary 2.8 Let v0 = u; hence

vq0 2 Lr0(
; ��0 dx); with 1 < r0 < (N + �0)=(N � 1)q:

Here again we de�ne v1 by (4.2), and v1 � u: So that we can de�ne v2 = G(vq1) in
L1(
). From Theorem 2.6, we have, for any N � 2 and " > 0 small enough,

v1 2 L(N+�)=(N�2+�0)�"(
; �� dx)

for any � 2 (�1; N=(N � 2)) : Taking � = �1 = 1� 1=p 2 (0; 1) ; we get

vq1 2 Lr1(
; ��1 dx); with 1 < r1 < (N + �1)=(N � 2 + �0)q; (4.7)

since N + �1� (N � 2+ �0)q = N +1� (N � 1)q� 1=p > 0 . For any n � p; assume
by induction that vn�1 = G(v

q
n�2) in L

1(
); and that

vqn�1 2 Lrn�1(
; ��n�1 dx); with 1 < rn�1 < (N + �n�1)=(N � 2 + �n�2)q;

then we can de�ne vn = G(v
q
n�1) in L

1(
); and we get

vn 2 L(N+�)=(N�2+�n�1)�"(
; �� dx)

for any � 2 (�1; �n�1N=(N � 2)) : Taking � = �n � 0; we have (N + �n)� (N � 2 +
�n�1)q > (n� 1)(q � 1)=p > 0; hence

vqn 2 Lrn(
; ��n dx); with 1 < rn < (N + �n)=(N � 2 + �n�1)q: (4.8)

Now in case n = p; we have �p = 0: This proves that v
q
p 2 Lrp(
);with rp > 1 and

we are reduced to the �rst case: there exists an integer n0 = n0(N; q) such that
vn0+p 2 C0(
): We deduce (1.13) and (1.14) as above.

In this proof we have used the estimate (1.12). In fact it is not really needed
for getting a priori estimates, since we require that the problem admits a solution:
the existence assumption in turn implies a condition of type (??). Adapting the
arguments of [8] for the interior nonhomogeneous problem�

��u = uq + f in 
;
u = 0 on @
;

with f > 0, we get the following:
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Lemma 4.1 Let q > 1 and � 2 M+(@
): If the problem (1.5) admits a solution,
then

G(P q(�)) � 1

q � 1P (�) in 
: (4.9)

Proof. We can assume � 6= 0: For any v; w 2 C2(
) with v positive and harmonic,
and any concave function F of class C2 on the closure of the range of w=v; we have

�� [v F (w=v)] � F 0(w=v) (��w) in 
: (4.10)

Suppose that problem (1.5) admits a solution u: Then we apply (4.10) with v = P (�)
and w = u � v; and

F (s) =
�
1� s1�q

�
=(q � 1) on [1;+1) :

It comes
P q(�) = [u=P (�)]�q uq � �� [P (�) F [u=P (�)]]

and

G(P q(�)) � P (�) F [u=P (�)] � 1

q � 1P (�);

from the maximum principle.

Remark 4.1 In the supercritical case q � (N + 1)=(N � 1); any solution u of (1.1),
such that u 2 C(
n fag) and u = 0 on @
n fag ; satis�es necessarily u = 0 on @
;
from Corollary 2.3 Considering the known behaviours for the problems (1.7) and
(1.6), one can ask if an estimate of the type

u(x) � C �(x) jx� aj�(q+1)=(q�1)

is true near the point a; at least if q < (N+1)=(N�3): The question is entirely open.

5 Existence results

Here we study the existence of solutions of problem (1.15). It is is based on the
estimate of G(P q(�)); which gives supersolutions:

Proof of Theorem 1.2

First step: existence of solutions for small �. Let � 2M+(@
) with �(@
) = 1
and � > 0: The function � P (�) is a subsolution of (1.15). We search a supersolution
of (1.15) of the form

y = � P (�) + aG [P q(� �)]

with a > 0; and
aP q(� �) � yq:
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Since q < (N+1)=(N�1); from Theorem 1.1, there exists a constant K = K(N;
; q)
such that

y � �(1 + a � q�1K) P (�) in 
; (5.1)

and y is a supersolution as soon as a1=q � 1+ a � q�1K: As a consequence, taking the
best value a = (q=(q � 1))q , if

� � (qK)�1=(q�1)(q � 1)=q; (5.2)

then S� has a solution.
Second step: interval of existence. Let

� = f� > 0 j S� has a solutiong and �� = sup�:

Then from (4.9),

(�� )q�1G(P q(�)) � 1

q � 1P (�) in 
; (5.3)

hence �� is �nite. For any � 2 �; S� has a solution u� . For any � 2 [0; �) ; u� is a
supersolution of (1.1) such that u� � � P (�); hence S� has a solution u� � u�. Then
� is an interval. At last, let us show that S�� has a solution: let (�n) be an increasing
sequence with limit ��: Now u�n is a weak solution of S�n ; we use as a test function
the unique solution � > 0 of problem � = G(�1=q); introduced in [8], and getZ




u�n (���) dx =
Z



u�n �
1=q dx =

Z



uq�n � dx� �n
Z
@


@�

@n
d�: (5.4)

And @�=@n < 0; henceZ



uq�n � dx �
1

q

Z



uq�n � dx+
q � 1
q

j
j ;

so that (uq�n) is bounded in L
1(
; � dx): And u�n � ��P (�) on @
: Now (u�n) is

bounded in MN=(N�1)(
)\ M (N+1)=(N�1)(
; � dx); from Corollary 2.8. Then we can
go to the limit in the weak formulation of S�n , and construct a weak solution of S�� :

Remark 5.1 Taking K = kG(P q(�))= P (�)kL1(
) ; we can estimate �� from (5.2)
and (5.3):

�� 2
�
(qK)�1=(q�1)(q � 1)=q; ((q � 1)K)�1=(q�1)

�
:

Remark 5.2 Now assume q � (N + 1)=(N � 1): We shall say that a measure
� 2M+(@
) with �(@
) = 1 is admissible if

P q(�) 2 L1(
) and � satis�es the condition (??) for some K > 0:

26



Then in the same way Theorem 1.2 applies to any admissible measure. Moreover, for
such an admissible measure, following the techniques of [8], for any � 2 [0; ��) ; we
can construct a solution u� of S� satisfying the a priori estimate

� P (�) � u� � C P (�) in 
; (5.5)

for some constant C = C(�): Indeed let � 2 (�; ��) such that S� admits a solution
u� : Let us apply the inequality (4.10) with v = � P (�) and w = u� � v; and

F (s) = s
�
1 + " sq�1

��1=(q�1)
and " = (�=�)q�1 � 1; on [1;+1) ;

so that F (1) = �=� and F 0(s) = F q(s)=sq :

�� [v F (u�=v)] � F 0(u�=v) (��u� ) = [v F (u�=v)]q in 
:

Hence z = v F (u�=v) is a supersolution of (1.1). Then

z � � P (�) in 
; and z = � � on @


and S� has a solution u� � z � "�1=(q�1)� P (�); so that u� satis�es (5.5). Now for
any � 2 (�; ��) ; S� admits a solution u� : Choosing � = (�+��)=2, we deduce that u�
satis�es (5.5) with C(�) = �� [(� + ��)=2�)q�1 � 1]�1=(q�1). At last considering as
above an increasing sequence (�n) with limit �

�; we prove that S�� admits a solution
u�� .
An open question is to describe precisely those admissible measures.
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