Asymptotic behaviour of elliptic systems with mixed absorption and source terms

Marie-Francoise Bidaut-Véron * and Philippe Grillot

Laboratoire de Mathématiques et Physique Théorique, CNRS UPRES-A 6083, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France

$$
\begin{aligned}
& \text { Abstract. We study the limit behaviour near the origin of the nonnegative solutions of the semilinear elliptic system } \\
& \qquad\left\{\begin{array}{l}
-\Delta u+|x|^{a} v^{p}=0, \\
\Delta v+|x|^{b} u^{q}=0,
\end{array} \quad \text { in } \mathbb{R}^{N}(N \geqslant 3),\right. \\
& \text { where } p, q, a, b \in \mathbb{R} \text {, with } p, q>0, p q \neq 1 \text {. We give a priori estimates without any restriction on the values of } p \text { and } q \text {. }
\end{aligned}
$$

1. Introduction

Here we study the nonnegative solutions u, v of the semilinear elliptic system in $\mathbb{R}^{N}(N \geqslant 3)$ with mixed absorption and source terms:

$$
\left\{\begin{array}{l}
-\Delta u+|x|^{a} v^{p}=0 \tag{1.1}\\
\Delta v+|x|^{b} u^{q}=0
\end{array}\right.
$$

where $p, q, a, b \in \mathbb{R}$ with $p, q>0$ and $p q \neq 1$. We describe the asymptotic behaviour of the solutions near the origin. We suppose that u, v are defined in $B_{1} \backslash\{0\}$, where $B_{r}=B(0, r)$ and $B(y, r)=\{x \in$ $\left.\mathbb{R}^{N}| | x-y \mid<r\right\}$ for any $r>0$ and $y \in \mathbb{R}^{N}$. A Kelvin transform would give the behaviour near infinity. In particular, we cover the case of the biharmonic equation

$$
\begin{equation*}
\Delta^{2} w+|x|^{\sigma} w^{Q}=0 \tag{1.2}
\end{equation*}
$$

for given reals σ, Q with $Q>0, Q \neq 1$: we give the behaviour of the subharmonic or superharmonic nonnegative solutions of (1.2), by taking $p=1, a=0, b=\sigma$ or $q=1, a=\sigma, b=0$ in (1.1). This article complements the preceeding works relative to the system with absorption terms

$$
\left\{\begin{array}{l}
-\Delta u+|x|^{a} v^{p}=0, \tag{1.3}\\
-\Delta v+|x|^{b} u^{q}=0,
\end{array} \quad \text { see }[5],\right.
$$

and to the system with source terms

$$
\left\{\begin{array}{l}
\Delta u+|x|^{a} v^{p}=0 \tag{1.4}\\
\Delta v+|x|^{b} u^{q}=0
\end{array} \quad\right. \text { see [2]. }
$$

[^0]For a better understanding of system (1.1), let us recall the behaviour of the nonnegative solutions of the two equations

$$
\begin{equation*}
-\Delta w+|x|^{\sigma} w^{Q}=0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta w+|x|^{\sigma} w^{Q}=0 \tag{1.6}
\end{equation*}
$$

for given reals σ, Q with $Q>0, Q \neq 1$.
Usually, (1.5) is called equation "with the good sign", because the maximum principle applies. Notice that the solutions are subharmonic, hence they satisfy the mean value inequality

$$
\begin{equation*}
w(x) \leqslant \frac{1}{|B(x, r)|} \int_{B(x, r)} w(x) \mathrm{d} x \tag{1.7}
\end{equation*}
$$

for any ball $\bar{B}(x, r) \subset B_{1} \backslash\{0\}$. As a consequence, any estimate of the spherical mean value

$$
\bar{w}(r)=\frac{1}{\left|S^{N-1}\right|} \int_{S^{N-1}} w(r, \theta) \mathrm{d} \theta
$$

near $r=0$ implies an analogous estimate of w, see [4,22]. In such a way the obtention of a priori estimates reduces to the study of an ordinary differential inequality. Defining

$$
\begin{equation*}
\Gamma=(\sigma+2) /(Q-1) \tag{1.8}
\end{equation*}
$$

for any $Q \neq 1$, the radial function

$$
\begin{equation*}
w^{*}(x)=C^{*}|x|^{-\Gamma}, \quad C^{*}=(\Gamma(\Gamma-N+2))^{1 /(Q-1)} \tag{1.9}
\end{equation*}
$$

is a solution of (1.5) whenever $\Gamma(\Gamma-N+2)>0$. When $Q>1$, any solution w satisfies the KellerOsserman estimate near the origin

$$
\begin{equation*}
w(x) \leqslant C|x|^{-\Gamma} \tag{1.10}
\end{equation*}
$$

where $C=C(N, Q, \sigma)$. When $Q \geqslant(N+\sigma) /(N-2)$, then w^{*} does not exist, and the singularity is removable, which means that w is bounded near 0 , see [9,19-21]. The behaviour of the solutions is isotropic, that is, asymptotically radial. When $Q<1$, then (1.10) is no longer true and it is replaced by the estimate

$$
w(x)= \begin{cases}\mathrm{O}\left(\max \left(|x|^{-\Gamma},|x|^{2-N}\right)\right) & \text { if } Q \neq(N+\sigma) /(N-2) \tag{1.11}\\ \mathrm{O}\left(\left.|x|^{2-N}|\ln | x\right|^{1 /(1-Q)}\right) & \text { if } Q=(N+\sigma) /(N-2)\end{cases}
$$

Moreover, some anisotropic solutions can occur, see [3,4].

The behaviour of the equation "with the bad sign" (1.6) is not completely known. It cannot be reduced to a radial problem, because now w is superharmonic, hence for any ball $\bar{B}(x, r) \subset B_{1} \backslash 0$,

$$
w(x) \geqslant \frac{1}{|B(x, r)|} \int_{B(x, r)} w(x) \mathrm{d} x
$$

Equation (1.6) still admits a particular radial solution

$$
w_{*}(x)=C_{*}|x|^{-\Gamma}, \quad C_{*}=(\Gamma(N-2-\Gamma))^{1 /(Q-1)}
$$

if $\Gamma(N-2-\Gamma)>0$. When $Q>1$ and (1.6) admits a nontrivial solution, then $\Gamma>0$, which means $\sigma+2>0$. And any solution w satisfies the estimate

$$
\begin{equation*}
w(x)=\mathrm{O}\left(\min \left(|x|^{-\Gamma},|x|^{2-N}\right)\right) \tag{1.12}
\end{equation*}
$$

whenever $Q \leqslant(N+2) /(N-2)$ (with $Q \neq(N+2+2 \sigma) /(N-2)$, if $\sigma \neq 0)$. Consequently, w satisfies the Harnack inequality, and its behaviour is isotropic, see, for example, [1,10,13]. Beyond $(N+2) /(N-2)$, some anisotropic solutions can occur, for example, when $Q=(N+1) /(N-3)$ and $\sigma=0$, see [7], and the a priori estimate is not known, see also [23]. When $Q<1$, the solutions only exist when $Q<(N+\sigma) /(N-2)$, which means $\Gamma<N-2$. Then any solution satisfies

$$
w(x)= \begin{cases}\mathrm{O}\left(\max \left(|x|^{-\Gamma}, 1\right)\right) & \text { if } \Gamma \neq 0 \tag{1.13}\\ \mathrm{O}\left(|\ln | x| |^{1 /(1-Q)}\right) & \text { if } \Gamma=0\end{cases}
$$

and its behaviour is still isotropic, see [14].
Now let us return to system (1.1). It involves both subharmonic and superharmonic functions, and one may expect a mixed type behaviour. In Section 2, we give the main tools of our study: we essentially use fine properties of comparison of functions with their spherical mean value, in addition to classical tools, namely the maximum principle and the Brezis-Lions lemma [8].

In Section 3, we establish a priori estimates for the solutions of system (1.1), for any $p, q>0$, such that $p q \neq 1$. In that case it admits a particular solution

$$
\begin{equation*}
u^{*}(x)=A^{*}|x|^{-\gamma}, \quad v^{*}(x)=B^{*}|x|^{-\xi} \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=((b+2) p+a+2) /(p q-1), \quad \xi=((a+2) q+b+2) /(p q-1) \tag{1.15}
\end{equation*}
$$

and

$$
\begin{align*}
A^{*} & =\left[\gamma(\gamma+2-N)(\xi(N-2-\xi))^{p}\right]^{1 /(p q-1)} \\
B^{*} & =\left[\xi(N-2-\xi)(\gamma(\gamma+2-N))^{q}\right]^{1 /(p q-1)} \tag{1.16}
\end{align*}
$$

whenever $\gamma(\gamma+2-N)>0$ and $\xi(N-2-\xi)>0$. In the superlinear case $p q>1$, we get the following estimates:

Theorem 1.1. Assume $p q>1$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of (1.1), with (u, v) $\neq(0,0)$. Then $\xi \geqslant 0$, and

$$
\begin{equation*}
u(x)=\mathrm{O}\left(|x|^{-\gamma}\right), \quad v(x)=\mathrm{O}\left(\min \left(|x|^{-\xi},|x|^{2-N}\right)\right), \quad \text { near } 0 \tag{1.17}
\end{equation*}
$$

Moreover, if $\gamma \leqslant N-2$, then u is bounded near 0.
This result shows a perfect behaviour of mixed type: the subharmonic function u satisfies an estimate of type (1.10), with an eventual removability, and the superharmonic function an estimate of type (1.12). In the sublinear case $p q<1$, we get the following:

Theorem 1.2. Assume $p q<1$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of (1.1), with (u, v) $\neq(0,0)$. Then $\xi<N-2$, and

$$
\begin{align*}
& v(x)=\mathrm{O}\left(|x|^{2-N}\right), \tag{1.18}\\
& u(x)= \begin{cases}\mathrm{O}\left(\max \left(|x|^{a+2-(N-2) p},|x|^{2-N}\right)\right) & \text { if } p \neq(a+N) /(N-2), \\
\mathrm{O}\left(|x|^{2-N}|\ln | x| |\right) & \text { if } p=(a+N) /(N-2) .\end{cases} \tag{1.19}
\end{align*}
$$

We notice that the estimates for v differ from the estimates of the scalar case (1.13): here v can admit a behaviour in $|x|^{2-N}$, whereas any solution w of (1.6) satisfies $w(x)=\mathrm{o}\left(|x|^{2-N}\right)$ when $Q<1$.

Observe that, contrary to the case of Eq. (1.6), we have no upper restriction on $p q$ in the superlinear case. Our proofs lead to the following main conclusion: the fact that one of the solutions of the system is subharmonic implies a remarkable regularizing effect on the other one. In particular, the superharmonic function v always satisfies Harnack inequality.

In Section 4, we give the precise convergence results for the solutions and study the possible existence of anisotropic solutions. As in [6] and [4], the behaviour of the system presents many possibilities. The study is uneasy, in particular in the critical cases $\gamma, \xi=0$ or $N-2$, since we have to combine the techniques of the two signs. In [4], we had noticed that the anisotropy is more frequent for system (1.3) than for system (1.4). Here we show that, for system (1.1), the anisotropy is more frequent for u than for v.

2. The key tools

Our main tools consist in precise comparisons between the two functions, either subharmonic or superharmonic, with their spherical mean values. In the sequel, the same letter C denotes some positive constants which may depend on u, v, unless otherwise stated.

2.1. Inequalities for superharmonic functions

Concerning the superharmonic functions, let us begin by a simple result.

Lemma 2.1. Let $w \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative superharmonic function, and $f=-\Delta w$. Then \bar{w} is monotonous for small r, and there is a constant $C(N)>0$ such that, for any $r \in(0,1 / 2)$ and any $\varepsilon \in(0,1 / 2]$,

$$
\begin{equation*}
\bar{w}(r) \geqslant C(N) \varepsilon^{2} r^{2} \min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \bar{f}(s) . \tag{2.1}
\end{equation*}
$$

Proof. Indeed, we have

$$
-\left(r^{N-1} \bar{w}_{r}\right)_{r}=r^{N-1} \bar{f}
$$

which obviously implies the monotonicity near 0 . Integrating from $r /(1+\varepsilon)$ to r, we get

$$
(1+\varepsilon)^{1-N} \bar{w}_{r}(r /(1+\varepsilon))-\bar{w}_{r}(r) \geqslant r^{1-N} \int_{r /(1+\varepsilon)}^{r} s^{N-1} \bar{f}(s) \mathrm{d} s .
$$

Integrating from r to $r(1+\varepsilon)$,

$$
\begin{align*}
\left(1+(1+\varepsilon)^{2-N}\right) \bar{w}(r) \geqslant & \bar{w}(r(1+\varepsilon))+(1+\varepsilon)^{2-N} \bar{w}(r /(1+\varepsilon)) \\
& +\int_{r}^{r(1+\varepsilon)} \tau^{1-N} \int_{\tau /(1+\varepsilon)}^{\tau} s^{N-1} \bar{f}(s) \mathrm{d} s \tag{2.2}
\end{align*}
$$

and, in particular,

$$
\bar{w}(r) \geqslant \frac{1}{2} \int_{r}^{r(1+\varepsilon)} \tau^{1-N} \int_{\tau /(1+\varepsilon)}^{\tau} s^{N-1} \bar{f}(s) \mathrm{d} s,
$$

which implies (2.1).
Remark 2.1. Notice that, from (2.2),

$$
\left(1+(1+\varepsilon)^{2-N}\right) \bar{w}(r) \geqslant \bar{w}(r(1+\varepsilon))+(1+\varepsilon)^{2-N} \bar{w}(r /(1+\varepsilon)),
$$

hence any radial superharmonic positive function in $B_{1} \backslash\{0\}$ satisfies the following form of the Harnack inequality: for any $r \in(0,1 / 2)$ and any $\varepsilon \in(0,1 / 2]$,

$$
\begin{equation*}
2^{1-N} \bar{w}(r) \leqslant \bar{w}(r(1+\varepsilon)) \leqslant 2 \bar{w}(r) . \tag{2.3}
\end{equation*}
$$

Now we deduce a spherical form of the mean value inequality for superharmonic functions. We did not find any reference of it in the literature, so we give here a simple proof.

Lemma 2.2. Let $w \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative superharmonic function. Then there exists a constant $C(N)>0$ such that, for any $x \in B_{1 / 2} \backslash\{0\}$,

$$
\begin{equation*}
w(x) \geqslant C(N) \bar{w}(|x|) . \tag{2.4}
\end{equation*}
$$

Proof. Let $x_{0} \in B_{1 / 2} \backslash\{0\}$. We study the function w in the annulus $\mathcal{C}_{x_{0}}=\left\{y \in \mathbb{R}^{N}| | x_{0}|/ 2 \leqslant|y| \leqslant\right.$ $\left.3\left|x_{0}\right| / 2\right\}$. We set

$$
w(y)=W(z), \quad z=y /\left|x_{0}\right|, \forall y \in \mathcal{C}_{x_{0}}
$$

and $z_{0}=x_{0} /\left|x_{0}\right|$. Then the range of z is the annulus $\mathcal{C}=\left\{z \in \mathbb{R}^{N}|1 / 2 \leqslant|z| \leqslant 3 / 2\}\right.$. Let G be the Green function in \mathcal{C} with Dirichlet conditions on $\partial \mathcal{C}$. Then we have the representation formula

$$
W(z)=\int_{\mathcal{C}} G(z, \eta)(-\Delta W)(\eta) \mathrm{d} \eta+\int_{\partial \mathcal{C}} P(z, \lambda) W(\lambda) \mathrm{d} s(\lambda)
$$

where $P(z, \lambda)=-\partial G(z, \lambda) / \partial \nu$ is the Poisson kernel in $\mathcal{C} \times \partial \mathcal{C}$. From [18] there exists a constant $K=K(\mathcal{C})$, hence $K=K(N)$ such that, for any $(z, \lambda) \in \mathcal{C} \times \partial \mathcal{C}$,

$$
K \varrho(z)|z-\lambda|^{1-N} \leqslant P(z, \lambda) \leqslant 2 K \varrho(z)|z-\lambda|^{1-N}
$$

where $\varrho(z)$ is the distance from z to $\partial \mathcal{C}$. In particular, $P\left(z_{0}, \lambda\right) \geqslant 2^{-N} K$, hence

$$
W\left(z_{0}\right) \geqslant 2^{-N} K \int_{\partial \mathcal{C}} W(\lambda) \mathrm{d} s(\lambda)
$$

since W is superharmonic in \mathcal{C}. Returning to w, we get

$$
w\left(x_{0}\right) \geqslant 2^{-N} K\left|x_{0}\right|^{1-N} \int_{\partial \mathcal{C}_{x_{0}}} w(y) \mathrm{d} s(y)
$$

That means that there exists a constant $C(N)$ such that

$$
w\left(x_{0}\right) \geqslant C(N)\left[\bar{w}\left(\left|x_{0}\right| / 2\right)+\bar{w}\left(3\left|x_{0}\right| / 2\right)\right]
$$

But from the Harnack inequality (2.3), it implies that there is another constant $C(N)$ such that

$$
w\left(x_{0}\right) \geqslant C(N) \bar{w}\left(\left|x_{0}\right|\right)
$$

and the conclusion follows.

Now we give an upper estimate which will play a crucial part in the sequel.
Lemma 2.3. Let $w \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative superharmonic function, and $f=-\Delta w$. Then there exists $C(N)>0$ such that, for any $x \in B_{1 / 2} \backslash\{0\}$,

$$
\begin{equation*}
w(x) \leqslant C(N)\left[|x|^{2} \max _{B(x,|x| / 2)} f+\bar{w}(|x|)\right] \tag{2.5}
\end{equation*}
$$

Proof. We start from the representation formula for any C^{2} function w in a ball of center $\bar{B}(x, R)$ contained in $B_{1} \backslash\{0\}$: for any $\rho \in(0, R]$,

$$
\begin{equation*}
w(x)=c_{N} \int_{B(x, \rho)}\left[|z-x|^{2-N}-\rho^{2-N}\right](-\Delta w)(z) \mathrm{d} z+\frac{1}{|\partial B(x, \rho)|} \int_{\partial B(x, \rho)} w(s) \mathrm{d} s, \tag{2.6}
\end{equation*}
$$

where $c_{N}=1 / N(N-2)\left|B_{1}\right|=1 /(N-2)\left|S^{N-1}\right|$. It implies

$$
\rho^{N-1} w(x) \leqslant c_{N} \rho^{N-1} \int_{B(x, \rho)}|z-x|^{2-N}(-\Delta w)(z) \mathrm{d} z+\frac{1}{\left|S^{N-1}\right|} \int_{\partial B(x, \rho)} w(s) \mathrm{d} s
$$

and, by integration from 0 to R,

$$
w(x) \leqslant c_{N} \int_{B(x, R)}|z-x|^{2-N}(-\Delta w)(z) \mathrm{d} z+\frac{1}{|B(x, R)|} \int_{B(x, R)} w(z) \mathrm{d} z .
$$

Hence, in particular, taking $R=|x| / 2$ and replacing the ball by an annulus,

$$
\begin{aligned}
w(x) & \leqslant \frac{c_{N}\left|S^{N-1}\right|}{8}|x|^{2} \max _{B(x,|x| / 2)}(-\Delta w)+\frac{1}{(|x| / 2)^{N}\left|B_{1}\right|} \int_{|x| / 2 \leqslant|y| \leqslant 3|x| / 2} w(z) \mathrm{d} z \\
& \leqslant \frac{1}{8(N-2)}|x|^{2} \max _{B(x,|x| / 2)}(-\Delta w)+\frac{N}{(|x| / 2)^{N}} \int_{|x| / 2}^{3|x| / 2} r^{N-1} \bar{w}(r) \mathrm{d} r \\
& \leqslant \frac{1}{8(N-2)}|x|^{2} \max _{B(x,|x| / 2)}(-\Delta w)+3^{N} \max _{[|x| / 2,3|x| / 2]} \bar{w},
\end{aligned}
$$

hence (2.5) follows from (2.3).

2.2. Inequalities for subharmonic functions

Concerning the subharmonic functions, our main argument is a comparison between the value of the function at some point $x \in B_{1 / 2} \backslash\{0\}$ and the value of its mean value at some shifted radius $|x|(1 \pm \varepsilon)$, proved in [4].
Lemma 2.4. Let $w \in C^{2}\left(x \in B_{1} \backslash\{0\}\right)$ be any nonnegative subharmonic function. Then \bar{w} is monotonous for small r, either decreasing with $\lim _{r \rightarrow 0} r^{N-2} \bar{w}(r)>0$, or nondecreasing and bounded. And there exists a constant $C(N)$ such that, for any $\varepsilon \in(0,1 / 2]$,

$$
\begin{equation*}
w(x) \leqslant C(N) \varepsilon^{1-N} \bar{w}(|x|(1 \pm \varepsilon)) \quad \text { near } 0, \tag{2.7}
\end{equation*}
$$

with the sign + if \bar{w} is nondecreasing, and the sign - if \bar{w} is decreasing. Consequently, for small r and any $Q>1$,

$$
\begin{equation*}
\bar{w}^{Q}(r) \leqslant \overline{w^{Q}}(r) \leqslant\left(C(N) \varepsilon^{1-N}\right)^{Q} \bar{w}(r(1 \pm \varepsilon))^{Q} . \tag{2.8}
\end{equation*}
$$

And for small r and any $Q \in(0,1)$, if $w \neq 0$ near 0 ,

$$
\begin{equation*}
\bar{w}^{Q}(r) \geqslant \overline{w^{Q}}(r) \geqslant\left(C(N) \varepsilon^{1-N}\right)^{Q-1} \bar{w}(r(1 \pm \varepsilon))^{Q-1} \bar{w}(r) . \tag{2.9}
\end{equation*}
$$

As a consequence, any estimate of \bar{w} of the form

$$
\begin{equation*}
\bar{w}(r)=\mathbf{O}\left(|\ln r|^{b} r^{a}\right) \quad \text { as } r \rightarrow 0 \tag{2.10}
\end{equation*}
$$

for given reals a, b implies the corresponding estimate

$$
\begin{equation*}
w(x)=\mathbf{O}\left(|\ln | x| |^{b}|x|^{a}\right) \quad \text { as } x \rightarrow 0 \tag{2.11}
\end{equation*}
$$

see also [3,22].
Property (2.1) of the superharmonic functions has to be compared with the following property, often used in [4].

Lemma 2.5. Let $w \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative subharmonic function, and $g=\Delta w$. Then there is a constant $C(N)>0$ such that, for any $\varepsilon \in(0,1 / 2]$ and r small enough,

$$
\begin{equation*}
\bar{w}(r) \geqslant C(N) \varepsilon^{2} r^{2} \min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \bar{g}(s) . \tag{2.12}
\end{equation*}
$$

Proof. Indeed, we have $\left(r^{N-1} \bar{w}_{r}\right)_{r}=r^{N-1} \bar{g}$. First, integrate over $\left[r, r(1+\varepsilon)^{1 / 2}\right]$ for r small enough. Either \bar{w} is decreasing, then

$$
\begin{equation*}
-r^{N-1} \bar{w}_{r}(r) \geqslant \int_{r}^{r(1+\varepsilon)^{1 / 2}} s^{N-1} \bar{g}(s) \mathrm{d} s, \tag{2.13}
\end{equation*}
$$

and a new integration gives

$$
\bar{w}(r) \geqslant \int_{r}^{r(1+\varepsilon)^{1 / 2}} \tau^{1-N} \int_{\tau}^{\tau(1+\varepsilon)^{1 / 2}} s^{N-1} \bar{g}(s) \mathrm{d} s \mathrm{~d} \tau
$$

hence

$$
\begin{equation*}
\bar{w}(r) \geqslant C \varepsilon^{2} r^{2} \min _{s \in[r, r(1+\varepsilon)]} \bar{g}(s) . \tag{2.14}
\end{equation*}
$$

Or \bar{w} is nondecreasing, and we find

$$
\left(r(1+\varepsilon)^{1 / 2}\right)^{N-1} \bar{w}_{r}\left(r(1+\varepsilon)^{1 / 2}\right) \geqslant \int_{r}^{r(1+\varepsilon)^{1 / 2}} s^{N-1} \bar{g}(s) \mathrm{d} s,
$$

hence

$$
\bar{w}(r(1+\varepsilon)) \geqslant C \int_{r}^{r(1+\varepsilon)^{1 / 2}} \tau^{1-N} \int_{\tau}^{\tau(1+\varepsilon)^{1 / 2}} s^{N-1} \bar{g}(s) \mathrm{d} s \mathrm{~d} \tau
$$

which now implies

$$
\begin{equation*}
\bar{w}(r) \geqslant C \varepsilon^{2} r^{2} \min _{s \in[r(1-\varepsilon), r]} \bar{g}(s) . \tag{2.15}
\end{equation*}
$$

In any case, (2.12) follows.

At last we recall some elementary properties given in [4].
Lemma 2.6. Let $\sigma \in \mathbb{R}$, and let $y \in C^{2}((0,1))$ be nonnegative.
(i) Assume that

$$
\Delta y(r):=y_{r r}(r)+\frac{N-1}{r} y_{r}(r) \leqslant C r^{\sigma}
$$

on $(0,1)$, for some $C>0$. If $\sigma+N<0$, then $y(r)=\mathrm{O}\left(r^{\sigma+2}\right)$. If $\sigma+N=0$, then $y(r)=\mathrm{O}\left(r^{2-N}|\ln r|\right)$. If $\sigma+N>0$, then $y(r)=\mathrm{O}\left(r^{2-N}\right)$. If $\sigma+2>0$ and $\lim _{r \rightarrow 0} y(r)=$ $\lim _{r \rightarrow 0} r^{N-1} y_{r}(r)=0$, then $y(r)=\mathrm{O}\left(r^{\sigma+2}\right)$.
(ii) Assume that

$$
\Delta y(r) \geqslant C r^{\sigma}
$$

on $(0,1)$, for some $C>0$. If $\sigma+N<0$, then $y(r) \geqslant C r^{\sigma+2}$ for another $C>0$. If $\sigma+N=0$, then $y(r) \geqslant C r^{2-N}|\ln r|$. If $-N<\sigma \leqslant-2$, then $y(r) \geqslant C r^{2-N}$. If y is bounded, then $\sigma+2>0$. If $\sigma+2>0$ and $\lim _{r \rightarrow 0} y(r)=\lim _{r \rightarrow 0} r^{N-1} y_{r}(r)=0$, then $y(r) \geqslant C r^{\sigma+2}$.

2.3. Bootstrap result

Our third tool is a bootstrap result proved in [4], allowing to convert a shifted inequality into an ordinary one. Let us recall it for a better understanding.

Lemma 2.7. Let $d, h, l \in \mathbb{R}$ with $d \in(0,1)$ and y, Φ be two continuous positive functions on some interval $(0, R]$. Assume that there exist some $C, M>0$ and $\varepsilon_{0} \in(0,1 / 2]$ such that, for any $\varepsilon \in\left(0, \varepsilon_{0}\right]$,

$$
\begin{equation*}
y(r) \leqslant C \varepsilon^{-h} \Phi(r) y^{d}(r(1-\varepsilon)) \quad \text { and } \quad \max _{\tau \in[r / 2, r]} \Phi(\tau) \leqslant M \Phi(r) \tag{2.16}
\end{equation*}
$$

or else,

$$
\begin{equation*}
y(r) \leqslant C \varepsilon^{-h} \Phi(r) y^{d}(r(1+\varepsilon)) \quad \text { and } \quad \max _{\tau \in[r, 3 r / 2]} \Phi(\tau) \leqslant M \Phi(r) \tag{2.17}
\end{equation*}
$$

for any $r \in(0, R / 2]$. Then there exists another $C>0$ such that

$$
\begin{equation*}
y(r) \leqslant C \Phi(r)^{1 /(1-d)} \tag{2.18}
\end{equation*}
$$

on $(0, R / 2]$.

3. A priori estimates

Let us return to system (1.1). First, notice that, if $v=0$ in $B_{1} \backslash\{0\}$, then $u=0$. Excluding this case, there exists some $C>0$ such that

$$
\begin{equation*}
v(x) \geqslant C \tag{3.1}
\end{equation*}
$$

in $B_{1 / 2} \backslash\{0\}$, from the maximum principle. The function \bar{v} always satisfies $\bar{v}(r)=\mathrm{O}\left(r^{2-N}\right)$, since $r^{N-2} \bar{v}$ is concave near the origin. Moreover, from the Brezis-Lions lemma [8], $|x|^{b} u^{q} \in L_{\text {loc }}^{1}\left(B_{1}\right)$, and there exists some $C_{2} \geqslant 0$ such that

$$
\begin{equation*}
-\Delta v=|x|^{b} u^{q}+C_{2} \delta_{0} \quad \text { in } \mathcal{D}^{\prime}\left(B_{1}\right) \tag{3.2}
\end{equation*}
$$

where δ_{0} is the Dirac mass at the origin. And this implies that

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{N-2} \bar{v}(r)=C_{2} \tag{3.3}
\end{equation*}
$$

Notice that u is positive in $B_{1 / 2} \backslash\{0\}$, since $u \in C^{2}\left(B_{1} \backslash\{0\}\right)$ and $\Delta u(x) \geqslant C|x|^{a}$ from (3.1). But u can eventually tend to 0 at the origin.

3.1. Main estimates

In the next theorem, we give a first inequality for the mean value, which is essential for upper or lower estimates.

Theorem 3.1. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1) with $p, q>0$. Then there exists some $C>0$ such that, for any $r \in(0,1 / 2)$,

$$
\begin{align*}
& \bar{u}(r) \geqslant C r^{a+2} \min \left(\bar{v}^{p}(r), \overline{v^{p}}(r)\right) \tag{3.4}\\
& \bar{v}(r) \geqslant C r^{b+2} \bar{u}^{q}(r) \tag{3.5}
\end{align*}
$$

Proof. We only need to prove the estimates for $r>0$ small enough, from the continuity and the positivity of \bar{u}, \bar{v}. Hence we can assume that \bar{u}, \bar{v} are monotonous. We first apply Lemma 2.5 to function \bar{u} and get

$$
\begin{equation*}
\bar{u}(r) \geqslant C \varepsilon^{2} r^{a+2} \min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \overline{v^{p}}(s) . \tag{3.6}
\end{equation*}
$$

Then either $p \geqslant 1$, hence $\overline{v^{p}} \geqslant \bar{v}^{p}$, and (3.4) follows from (2.3). Or $p<1$, hence v^{p} is still superharmonic, and (3.4) follows by applying (2.3) to v^{p}. Now we apply Lemma 2.1 to function \bar{v}. For any $\varepsilon \in(0,1 / 2]$,

$$
\begin{equation*}
\bar{v}(r) \geqslant C \varepsilon^{2} r^{b+2} \min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \overline{u^{q}}(s) \tag{3.7}
\end{equation*}
$$

First, assume that $q \geqslant 1$. Then $\overline{u^{q}} \geqslant \bar{u}^{q}$, hence

$$
\bar{v}(r) \geqslant C \varepsilon^{2} r^{b+2} \min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \bar{u}^{q}(s) .
$$

In particular, from the monotonicity of \bar{u},

$$
\max (\bar{v}(4 r / 5), \bar{v}(4 r / 3)) \geqslant C r^{b+2} \bar{u}^{q}(r)
$$

and (3.5) follows from (2.3).

Now assume that $q<1$. Then

$$
\begin{equation*}
\overline{u^{q}}(r) \geqslant C\left(\min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \bar{u}^{q-1}(s)\right) \bar{u}(r), \tag{3.8}
\end{equation*}
$$

from Lemma 2.4. Reporting (3.8) into (3.7), we deduce that

$$
\bar{v}(r) \geqslant C \varepsilon^{2} r^{b+2} \min _{s \in\left[r(1-\varepsilon)^{2}, r(1+\varepsilon)^{2}\right]} \bar{u}^{(q-1)}(s) \min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \bar{u}(s) .
$$

Hence

$$
\bar{v}(r) \max _{s \in\left[r(1-\varepsilon)^{2}, r(1+\varepsilon)^{2}\right]} \bar{u}^{(1-q)}(s) \geqslant C \varepsilon^{2} r^{b+2} \min _{s \in[r(1-\varepsilon), r(1+\varepsilon)]} \bar{u}(s) .
$$

It implies

$$
\bar{v}(r /(1+\varepsilon)) \bar{u}^{(1-q)}\left(r(1-\varepsilon)^{2} /(1+\varepsilon)\right) \geqslant C \varepsilon^{2} r^{b+2} \bar{u}(r)
$$

if \bar{u} is nonincreasing, and

$$
\bar{v}(r /(1-\varepsilon)) \bar{u}^{(1-q)}\left(r(1+\varepsilon)^{2} /(1-\varepsilon)\right) \geqslant C \varepsilon^{2} r^{b+2} \bar{u}(r)
$$

if \bar{u} is nondecreasing. In any case, we deduce from (2.3) the estimate

$$
\bar{u}(r) \leqslant C \varepsilon^{-2} r^{-(b+2)} \bar{v}(r) \bar{u}^{(1-q)}(r(1 \pm \varepsilon))
$$

after an homothethy on ε. Now we can use our bootstrap technique and apply Lemma 2.7 with function $\Phi(r)=r^{-(b+2)} \bar{v}(r)$, because \bar{v} satisfies (2.3). Hence we find

$$
\bar{u}(r) \leqslant C r^{-(b+2) / q} \bar{v}^{1 / q}(r)
$$

and we get again (3.5).
Now we can prove an essential comparison property for the superharmonic component v, which shows the regularizing effect due to the subharmonic component u. In turn, it gives a remarkable punctual relation between u and v, which is valid for any $p, q>0$.

Theorem 3.2. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1) with $p, q>0$. Then there exists a constant $C>0$ such that, for any $x \in B_{1 / 2} \backslash\{0\}$,

$$
\begin{equation*}
C^{-1} \bar{v}(|x|) \leqslant v(x) \leqslant C \bar{v}(|x|) \tag{3.9}
\end{equation*}
$$

and, consequently, v satisfies the Harnack inequality in $B_{1 / 2} \backslash\{0\}$. In particular, v always satisfies the estimate

$$
\begin{equation*}
v(x)=\mathrm{O}\left(|x|^{2-N}\right) \tag{3.10}
\end{equation*}
$$

near 0 , and

$$
u(x)= \begin{cases}\mathrm{O}\left(|x|^{a+2-(N-2) p}\right) & \text { if } p>(a+N) /(N-2), \tag{3.11}\\ \mathrm{O}\left(|x|^{2-N}|\ln | x| |\right) & \text { if } p=(a+N) /(N-2), \\ \mathrm{O}\left(|x|^{2-N}\right) & \text { if } p<(a+N) /(N-2)\end{cases}
$$

Moreover, there exists some $C>0$ such that

$$
\begin{equation*}
u(x) \leqslant C \bar{u}(|x|) \tag{3.12}
\end{equation*}
$$

in $B_{1 / 2} \backslash\{0\}$, and, consequently,

$$
\begin{equation*}
v(x) \geqslant C|x|^{b+2} u^{q}(x) . \tag{3.13}
\end{equation*}
$$

Proof. The minorization of v has been proved in Lemma 2.2. Here also we can suppose that $|x|>0$ is small enough. Applying Lemma 2.3 to function v, we get

$$
v(x) \leqslant C(N)\left[|x|^{b+2}\left(\max _{B(x,|x| / 2)} u^{q}\right)+\bar{v}(|x|)\right] .
$$

But u is subharmonic. From Lemma 2.4 there exists another constant $C(N)$ such that

$$
\begin{equation*}
u(x) \leqslant C(N) \max _{[|x| / 2,3|x| / 2]} \bar{u} . \tag{3.14}
\end{equation*}
$$

Then, from estimate (3.5),

$$
v(x) \leqslant C\left[|x|^{b+2} \max _{[|x| / 4,9|x| / 4]} \bar{u}^{q}+\bar{v}(|x|)\right] \leqslant C\left[\max _{[|x| / 4,9|x| / 4]} \bar{v}+\bar{v}(|x|)\right] .
$$

Using (2.3), we finally deduce (3.9). It implies that v satisfies the Harnack inequality in $B_{1 / 2} \backslash\{0\}$. Clearly, (3.10) follows from (3.3), and (3.11) from (3.10), (3.14) and Lemma 2.6. From the Harnack inequality, there exist some constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
C_{1} \bar{v}^{p}(r) \leqslant \overline{v^{p}}(r) \leqslant C_{2} \bar{v}^{p}(r) \tag{3.15}
\end{equation*}
$$

for $r \in(0,1 / 2)$. As a consequence, \bar{u} also satisfies the Harnack inequality. Indeed, we can write the equation for \bar{u} under the form

$$
\Delta \bar{u}=h \bar{u} \quad \text { with } h=r^{a} \overline{v^{p}} / \bar{u} .
$$

Now, from (3.15) and (3.4),

$$
h(r) \leqslant C r^{a} \bar{w}^{p}(r) / \bar{u}(r) \leqslant C r^{-2},
$$

which, in turn, implies the Harnack inequality. Then, for any $r \in(0,1 / 2)$ and any $\varepsilon \in(0,1]$,

$$
\begin{equation*}
C^{-1} \bar{u}(r) \leqslant \bar{u}(r(1+\varepsilon)) \leqslant 2 C \bar{u}(r), \tag{3.16}
\end{equation*}
$$

and (3.12) follows from (3.14) and (3.16). Finally, we obtain (3.13) from (3.5), (3.9) and (3.12).

Remark 3.1. From (3.5), (3.4) and (3.15), we always have two symmetric relations in ($0,1 / 2$):

$$
\begin{equation*}
\bar{v}(r) \geqslant C r^{b+2} \bar{u}^{q}(r), \quad \bar{u}(r) \geqslant C r^{a+2} \bar{v}^{p}(r) \tag{3.17}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\bar{u}(r) \geqslant C r^{a+2+(b+2) p} \bar{u}^{p q}(r), \quad \bar{v}(r) \geqslant C r^{b+2+(a+2) q} \bar{v}^{p q}(r) \tag{3.18}
\end{equation*}
$$

Notice also the inequalities for any $q>0$,

$$
\begin{equation*}
C_{1} \bar{u}^{q}(r) \leqslant \overline{u^{q}}(r) \leqslant C_{2} \bar{u}^{q}(r) \tag{3.19}
\end{equation*}
$$

for some other constants $C_{1}, C_{2}>0$. Indeed, this comes from (2.8) and (2.9), where we fix an ε and use (3.16).

Remark 3.2. On the one hand, inequality (3.13) implies that

$$
\begin{equation*}
\Delta u(x) \geqslant C|x|^{a+(b+2) p} u^{p q}(x) \tag{3.20}
\end{equation*}
$$

in $B_{1 / 2} \backslash\{0\}$. That means that u is a subsolution of an equation of type (1.5), with still $Q=p q$, and now $\sigma=a+(b+2) p$. On the other hand, (3.19) and (3.17) imply that

$$
\begin{equation*}
-\Delta \bar{v}(r)=r^{b} \overline{u^{q}}(r) \geqslant C r^{b} \bar{u}^{q}(r) \geqslant C r^{b+(a+2) q} \bar{v}^{p q}(r) \tag{3.21}
\end{equation*}
$$

in $(0,1 / 2)$. That means that \bar{v} is a supersolution of an equation of type (1.5), with $Q=p q$ and $\sigma=$ $b+(a+2) q$.

Remark 3.3. If $q \geqslant 1$, we can prove the Harnack property for v in a shorter way. We apply (2.6) to the superharmonic function v and get

$$
\begin{aligned}
v(x) & \geqslant c_{N} \int_{B(x,|x| / 2)}\left[|z-x|^{2-N}-(|x| / 2)^{2-N}\right](-\Delta v)(z) \mathrm{d} z \\
& \geqslant 2^{N-2}\left(2^{N-2}-1\right) c_{N}|x|^{2-N} \int_{B(x,|x| / 4)}|z|^{b} u^{q}(z) \mathrm{d} z \\
& \geqslant C|x|^{b+2-N} \int_{B(x,|x| / 4)} u^{q}(z) \mathrm{d} z
\end{aligned}
$$

in $B_{1 / 2} \backslash\{0\}$. But the function u^{q} is also subharmonic, since $q \geqslant 1$. Then also

$$
u^{q}(x) \leqslant \frac{2^{-2 N}|x|^{-N}}{|B|} \int_{B(x,|x| / 4)} u^{q}(z) \mathrm{d} z \leqslant C|x|^{-(b+2)} v(x)
$$

hence we find again (3.13). Then we write the equation satisfied by v under the form

$$
-\Delta v=H v \quad \text { with } H=|x|^{b} u^{q} / v
$$

and observe that $H(x) \leqslant C|x|^{-2}$. This implies the Harnack inequality in $B_{1 / 2} \backslash\{0\}$.

3.2. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. From (3.21), \bar{v} is a supersolution of an equation of type (1.6), with $Q=p q>1$ and $\sigma=b+(a+2) q$. Then $\sigma+2>0$, from [2, Lemma A2], that is, $\xi>0$. Here $p q>1$, hence, from (3.18),

$$
\bar{u}(r) \leqslant C r^{-\gamma}, \quad \bar{v}(r) \leqslant C r^{-\xi} .
$$

Then from (3.12) and (3.9), we get

$$
\begin{equation*}
u(x) \leqslant C|x|^{-\gamma}, \quad v(x) \leqslant C|x|^{-\xi}, \tag{3.22}
\end{equation*}
$$

and (1.17) follows from (3.10) and (3.22). Moreover, if $\gamma \leqslant N-2$, then $\bar{u}=\mathrm{o}\left(r^{2-N}\right)$, hence \bar{u} is bounded, since it is subharmonic. And u is bounded from Lemma 2.4.

Proof of Theorem 1.2. From (3.21), \bar{v} is a supersolution of an equation of type (1.6), with $Q=p q<1$ and $\sigma=b+(a+2) q$. Then $Q<(N+\sigma) /(N-2)$, from [2, Lemma A2], that is, $\xi<N-2$. And (1.18) and (1.19) follows directly from Theorem 3.2.

Remark 3.4. In the sublinear case $p q<1$, relations (3.18) imply the estimates from below:

$$
\begin{equation*}
\bar{u}(r) \geqslant C r^{-\gamma}, \quad \bar{v}(r) \geqslant C r^{-\xi}, \tag{3.23}
\end{equation*}
$$

for $r \in(0,1 / 2]$. From (3.9), we also deduce that

$$
\begin{equation*}
v(x) \geqslant C|x|^{-\xi} \tag{3.24}
\end{equation*}
$$

in $B_{1 / 2} \backslash\{0\}$.

3.3. Further results in the superlinear case

Estimate (3.13) can be written under the equivalent form

$$
\begin{equation*}
|x|^{\gamma} u(x) \leqslant C\left(|x|^{\xi} v(x)\right)^{1 / q} . \tag{3.25}
\end{equation*}
$$

Let us give another way to obtain relations of the same type. As in [2], we look for a direct comparison between the two functions u and v. In [2], one uses a product of the solutions in order to get some nonexistence results. Here the same method applies with a quotient of the solutions and gives again the estimate (3.22):

Proposition 3.3. Let $u, v \in C^{2}\left(B^{\prime}\right)$ be any nonnegative solutions of system (1.1) with $p q>1$. Then for any $d \in(0,1)$ with $d \leqslant 1 / q$, there exists a constant $C_{d}>0$, such that

$$
\begin{equation*}
|x|^{\gamma} u(x) \leqslant C_{d}\left(|x|^{\xi} v(x)\right)^{d} \tag{3.26}
\end{equation*}
$$

in $B_{1 / 2} \backslash\{0\}$. As a consequence, we find again the estimate

$$
u(x) \leqslant C|x|^{-\gamma} .
$$

Proof. Let us consider the function $f=u^{m} v^{1-m}$, for some $m>1$, and compute its Laplacian in $B_{1 / 2} \backslash\{0\}$:

$$
\Delta f=m(m-1) u^{m-2} v^{-1-m}|v \nabla u-u \nabla v|^{2}+m|x|^{a} u^{m-1} v^{1-m+p}+(m-1)|x|^{b} u^{m+q} v^{-m} .
$$

Then for any $k>1$,

$$
\begin{aligned}
\Delta f & \geqslant u^{m-1} v^{-m}\left(m|x|^{a} v^{p+1}+(m-1)|x|^{b} u^{q+1}\right) \\
& \geqslant(m-1)|x|^{(a(k-1)+b) / k} u^{m-1+(q+1) / k} v^{-m+(p+1)(k-1) / k}
\end{aligned}
$$

from the Hölder inequality. Let $d=(m-1) / m \in(0,1)$. If $d<1 / q<p$, we can choose

$$
k=1+\frac{1-d q}{p-d}=\frac{p+1-d(q+1)}{p-d}
$$

which gives

$$
\begin{equation*}
\Delta f \geqslant \frac{d}{1-d}|x|^{a+(b-a) / k} f^{\eta}, \tag{3.27}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta=1+(p q-1)(1-d) /(p+1-d(q+1)) . \tag{3.28}
\end{equation*}
$$

Then $\eta>1$, and from the Osserman-Keller estimate,

$$
f(x)=u^{1 /(1-d)}(x) v^{-d /(1-d)}(x) \leqslant C|x|^{-(a+2+(b-a) / k) /(\eta-1)}=C|x|^{(d \xi-\gamma) /(1-d)}
$$

in $B_{1 / 2} \backslash\{0\}$, where $C=C(N, p, q, a, b, d)$. And (3.26) holds for any $d<1 / q$ and, by continuity, also for $d=1 / q$. It implies that

$$
\Delta u(x) \geqslant C|x|^{a-p \xi+p \gamma / d} u^{p / d} .
$$

As $p / d \geqslant p q>1$, we again deduce that

$$
u(x) \leqslant C|x|^{-[a+2-p \xi+p \gamma / d] /(p / d-1)}=C|x|^{-\gamma}
$$

in $B_{1 / 2} \backslash\{0\}$, from the Osserman-Keller estimate.

4. The convergences

4.1. Possible behaviours

Here we try to give the precise behaviour of the solutions according to the different values of the parameters. Let us define, as in [4],

$$
\begin{equation*}
l_{1}=(N-2) p-(a+N), \quad l_{2}=(N-2) q-(b+N) . \tag{4.1}
\end{equation*}
$$

Notice the relations

$$
\begin{equation*}
l_{1}+p l_{2}=(p q-1)(N-2-\gamma), \quad l_{2}+q l_{1}=(p q-1)(N-2-\xi) . \tag{4.2}
\end{equation*}
$$

The study will show that the behaviour of the couple (u, v) can present various types which can be divided in five categories when $\gamma, \xi \neq 0, N-2$:
(I) $\left(|x|^{-\gamma},|x|^{-\xi}\right)$;
(II) $\left(|x|^{a+2-(N-2) p},|x|^{2-N}\right),\left(|x|^{a+2}, 1\right)$;
(III) $\left(|x|^{2-N},|x|^{b+2-(N-2) q}\right),\left(1,|x|^{b+2}\right)$;
(IV) ($\left.|x|^{2-N},|x|^{2-N}\right),\left(1,|x|^{2-N}\right),\left(|x|^{2-N}, 1\right)$;
(V) $\left(|x|^{2-N}|\ln | x| |,|x|^{2-N}\right),\left(|x|^{2-N}|\ln | x| |, 1\right)$.

As in [4], the system can admit anisotropic solutions, which makes difficult the question of convergences.
More precisely, the solutions u, v of type (I) can be both anisotropic. In that case, the problem of the convergences is still open. Consider any solution (u, v) satisfying an upper estimate $u(x)=$ $\mathrm{O}\left(|x|^{-\gamma}\right), v(x)=\mathrm{O}\left(|x|^{-\xi}\right)$. Let $(r, \theta) \in(0,+\infty) \times S^{N-1}$ be the spherical coordinates in $\mathbb{R}^{N} \backslash\{0\}$. The change of variables

$$
\begin{equation*}
u(x)=|x|^{-\gamma} U(t, \theta), \quad v(x)=|x|^{-\xi} V(t, \theta), \quad r=|x|, t=-\ln r, \tag{4.3}
\end{equation*}
$$

leads to the autonous system in the cylinder $(0,+\infty) \times S^{N-1}$:

$$
\left\{\begin{array}{l}
U_{t t}-(N-2-2 \gamma) U_{t}+\Delta_{S^{N-1}} U+\gamma(\gamma-N+2) U-V^{p}=0, \tag{4.4}\\
V_{t t}-(N-2-2 \xi) V_{t}+\Delta_{S^{N-1}} V-\xi(N-2-\xi) V+U^{q}=0 .
\end{array}\right.
$$

We look at its behaviour when t tends to $+\infty$. As in [4], the stationary system associated to (4.4),

$$
\left\{\begin{array}{l}
\Delta_{S^{N-1}} \mathbf{U}+\alpha \mathbf{U}-\mathbf{V}^{p}=0, \tag{4.5}\\
\Delta_{S^{N-1}} \mathbf{V}-\beta \mathbf{V}+\mathbf{U}^{q}=0,
\end{array}\right.
$$

with $\alpha=\gamma(\gamma-N+2)$ and $\beta=\xi(N-2-\xi)$, can admit nonconstant solutions for suitable positive values of α and β. We conjecture that the limit set G at infinity of the trajectories of (U, V) in $C^{2}\left(S^{N-1}\right)$ is contained in the set of stationary solutions; and that, if $0 \in G$, then $G=\{0\}$, hence $u(x)=\mathrm{o}\left(|x|^{-\gamma}\right), v(x)=\mathrm{o}\left(|x|^{-\xi}\right)$.

Concerning the solutions of type (II) and (III), the situation is not symmetric by respect to u and v. The following lemma shows that the behaviour of u is often more anisotropic than the behaviour of v.

Lemma 4.1. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1), with $p q \neq 1$.
(i) Assume that $u(x)=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right), v(x)=\mathrm{O}\left(|x|^{2-N}\right)$, and $(\xi-N+2)(p q-1)>0$ and $\rho=[(N-2) p-(a+2)][(N-2) p-(a+N)] \geqslant 0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} v(x)=C_{2} \geqslant 0, \tag{4.6}
\end{equation*}
$$

and, if $\rho>0$, then

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[|x|^{(N-2) p-(a+2)} u(|x|, .)-\rho^{-1} C_{2}^{p}\right] \tag{4.7}
\end{equation*}
$$

exists (in the uniform convergence topology on $\left.S^{N-1}\right)$, and it belongs to $\operatorname{ker}\left(\Delta_{S^{N-1}}+\rho I\right)$.
(ii) Assume that $u(x)=\mathrm{O}\left(|x|^{2-N}\right), v(x)=\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)$, and $(\gamma-N+2)(p q-1)>0$ and $\eta=-((N-2) q-(b+2))((N-2) q-(b+N)) \geqslant 0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} u(x)=C_{1} \geqslant 0 \tag{4.8}
\end{equation*}
$$

and, if $\eta>0$, then

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{(N-2) q-(b+2)} v(x)=\eta^{-1} C_{1}^{q} \tag{4.9}
\end{equation*}
$$

(iii) Assume that $u(x)=\mathrm{O}\left(|x|^{a+2}\right), v(x)=\mathrm{O}(1)$, and $\nu=(a+2)(a+N) \geqslant 0$ and $\xi(p q-1)>0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0} v(x)=C_{2}^{\prime}>0 \tag{4.10}
\end{equation*}
$$

and, if $\nu>0$, then

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[|x|^{-(a+2)} u(|x|, .)-\nu^{-1} C_{2}^{\prime}\right] \tag{4.11}
\end{equation*}
$$

exists (in the uniform convergence topology on $\left.S^{N-1}\right)$, and it belongs to $\operatorname{ker}\left(\Delta_{S^{N-1}}+\nu I\right)$. And $v(x)-C_{2}^{\prime}=\mathrm{O}\left(|x|^{\xi(p q-1)}\right)$
(iv) Assume that $u(x)=\mathrm{O}(1), v(x)=\mathrm{O}\left(|x|^{b+2}\right)$, and $\mu=-(b+2)(b+N) \geqslant 0$ and $\gamma(p q-1)>0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x)=C_{1}^{\prime} \geqslant 0 \tag{4.12}
\end{equation*}
$$

and, if $\mu>0$, then

$$
\begin{align*}
& \lim _{x \rightarrow 0}|x|^{-(b+2)} v(x)=\mu^{-1} C_{1}^{q}, \tag{4.13}\\
& \text { and } u(x)-C_{1}^{\prime}=\mathrm{O}\left(|x|^{\gamma(p q-1)}\right) \text {. }
\end{align*}
$$

Proof. In case (i), the proof of [4, Lemma 6.4] adapts: we define

$$
\begin{equation*}
u(x)=|x|^{a+2-(N-2) p} U^{\prime}(t, \theta), \quad v(x)=|x|^{2-N} V^{\prime}(t, \theta) \tag{4.14}
\end{equation*}
$$

and get

$$
\left\{\begin{array}{l}
U_{t t}^{\prime}-[N-2-2((N-2) p-(a+2))] U_{t}^{\prime}+\Delta_{S^{N-1}} U^{\prime}+\rho U^{\prime}-V^{\prime p}=0 \tag{4.15}\\
V_{t t}^{\prime}+(N-2) V_{t}^{\prime}+\Delta_{S^{N-1}} V^{\prime}+\mathrm{e}^{-(\xi-N+2)(p q-1) t} U^{\prime q}=0
\end{array}\right.
$$

and the exponential is negative. From [6], there is a constant $C_{2} \geqslant 0$ such that $\left\|V^{\prime}(t, .)-C_{2}\right\|_{C\left(S^{N-1}\right)}=$ $\mathrm{O}\left(\mathrm{e}^{-\alpha t}\right)$ for some $\alpha>0$. Then the function $W^{\prime}(t, \theta)=U^{\prime}(t, \theta)-\rho^{-1} C_{2}^{p}$ satisfies an equation of the form

$$
W_{t t}^{\prime}-[N-2-2((N-2) p-(a+2))] W_{t}^{\prime}+\Delta_{S^{N-1}} W^{\prime}+\rho W^{\prime}=\psi
$$

where $\|\psi(t, .)\|_{C\left(S^{N-1}\right)}=\mathrm{O}\left(\mathrm{e}^{-\beta t}\right)$ for some $\beta>0$. Then we can apply the Simon theorem as in $[6$, Theorem 4.1], see also [7,17]. It implies that the function $W^{\prime}(t,$.$) precisely converges to a solution of the$ stationary equation

$$
\Delta_{S^{N-1}} \varpi+\rho \varpi=0,
$$

that means an element of $\operatorname{ker}\left(\Delta_{S^{N-1}}+\rho I\right)$.
In case of (ii), we define

$$
u(x)=|x|^{2-N} U^{\prime \prime}(t, \theta), \quad v(x)=|x|^{b+2-(N-2) q} V^{\prime \prime}(t, \theta),
$$

and now get

$$
\left\{\begin{array}{l}
U_{t}^{\prime \prime}+(N-2) U_{t}^{\prime \prime}+\Delta_{S^{N-1}} U^{\prime \prime}-\mathrm{e}^{-(\gamma-N+2)(p q-1) t} V^{\prime \prime p}=0, \\
V_{t t}^{\prime \prime}-[N-2-2((N-2) q-(b+2))] V_{t}^{\prime \prime}+\Delta_{S^{N-1}} V^{\prime \prime}-\rho V^{\prime \prime}+U^{\prime \prime q}=0 .
\end{array}\right.
$$

Then there is a constant $C_{1} \geqslant 0$ such that $\left\|U^{\prime \prime}(t, .)-C_{1}\right\|_{C\left(S^{N-1}\right)}=\mathrm{O}\left(\mathrm{e}^{-\alpha t}\right)$ for some $\alpha>0$. But now the function $W^{\prime \prime}(t, \theta)=V^{\prime \prime}(t, \theta)-\rho^{-1} C_{1}^{q}$ converges to a solution of the stationary equation

$$
\Delta_{S^{N-1}} \varpi-\rho \varpi=0,
$$

that is 0 . We get (iii) and (iv) in a similar way.
In case of types (III), (IV) or (V), the two solutions are isotropic. In those cases, we shall use the results of [4], which adapt with no difficulty.

Lemma 4.2. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1), with $p q \neq 1$.
(i) Assume that $u(x)+v(x)=\mathrm{O}\left(|x|^{2-N}\right)$ near 0 , and $p<(N+a) /(N-2)$ or $q<(b+N) /(N-2)$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} u(x)=C_{1} \geqslant 0 \tag{4.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} v(x)=C_{2} \geqslant 0 \tag{4.17}
\end{equation*}
$$

(ii) Assume that $u(x)=\mathrm{O}\left(|x|^{2-N}\right), v(x)=\mathrm{O}(1)$, and $a+N>0$ and $(N-2) q-(b+2)<0$. Then

$$
\begin{align*}
& \quad \lim _{x \rightarrow 0}|x|^{N-2} u(x)=C_{1} \geqslant 0, \quad \lim _{x \rightarrow 0} v(x)=C_{2}^{\prime}>0, \tag{4.18}\\
& \text { and } v(x)-C_{2}^{\prime}=\mathrm{O}\left(|x|^{b+2-(N-2) q}\right) \text {. }
\end{align*}
$$

(iii) Assume that $u(x)=\mathrm{O}(1), v(x)=\mathrm{O}\left(|x|^{2-N}\right)$, and $b+N>0$ and $(N-2) p-(a+2)<0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x)=C_{1}^{\prime} \geqslant 0, \quad \lim _{x \rightarrow 0}|x|^{N-2} v(x)=C_{2} \geqslant 0 \tag{4.19}
\end{equation*}
$$

and $u(x)-C_{1}^{\prime}=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$.
(iv) Assume that $u(x)+v(x)=\mathrm{O}(1)$, and $a+2>0$, or $b+2>0$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0} u(x)=C_{1}^{\prime} \geqslant 0 \tag{4.20}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{x \rightarrow 0} v(x)=C_{2}^{\prime}>0 \tag{4.21}
\end{equation*}
$$

and $u(x)-C_{1}^{\prime}=\mathrm{O}\left(|x|^{a+2}\right)\left(\operatorname{or} v(x)-C_{2}^{\prime}=\mathrm{O}\left(|x|^{b+2}\right)\right)$.
(v) Assume $u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |\right), v(x)=\mathrm{O}\left(|x|^{2-N}\right)$, and $p=(a+N) /(N-2)$ and $q<$ $(b+N) /(N-2)$, then

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} v(x)=C_{2} \geqslant 0,\left.\quad \lim _{x \rightarrow 0}|x|^{N-2}|\ln | x\right|^{-1} u(x)=C_{2}^{p} /(N-2) \tag{4.22}
\end{equation*}
$$

and $u(x)-C_{2}^{p} /(N-2)|x|^{2-N}|\ln | x| |=\mathrm{O}\left(|x|^{2-N}\right)$.
(vi) Assume $u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |\right), v(x)=\mathrm{O}(1)$, and $a+N=0$ and $q<(b+2) /(N-2)$, then

$$
\begin{equation*}
\lim _{x \rightarrow 0} v(x)=C_{2}^{\prime}>0, \quad \lim _{x \rightarrow 0}|x|^{N-2}|\ln | x| |^{-1} u(x)=C_{2}^{\prime p} /(N-2) \tag{4.23}
\end{equation*}
$$

(vii) Assume $u(x)=\mathrm{O}\left(|x|^{2-N}\right), v(x)=\mathrm{O}(|\ln | x| |)$, and $a+N>0$ and $q=(b+2) /(N-2)$, then

$$
\begin{equation*}
\lim _{x \rightarrow 0}|x|^{N-2} u(x)=C_{1} \geqslant 0, \quad \lim _{x \rightarrow 0}|\ln | x| |^{-1} v(x)=C_{1}^{q} /(N-2) \tag{4.24}
\end{equation*}
$$

(viii) Assume $u(x)=\mathrm{O}(1), v(x)=\mathrm{O}(|\ln | x| |)$, and $a+2>0$ and $b+2=0$, then

$$
\begin{align*}
& \qquad \lim _{x \rightarrow 0} u(x)=C_{1} \geqslant 0, \quad \lim _{x \rightarrow 0}|\ln | x| |^{-1} v(x)=C_{1}^{q} /(N-2), \tag{4.25}\\
& \text { and } v(x)-\left(C_{1}^{q} /(N-2)\right)|\ln | x| |=\mathrm{O}(1)
\end{align*}
$$

4.2. The superlinear case

First, we give some general properties of convergence:
Proposition 4.3. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1), with $p q>1$. Assume that $q<(b+N) /(N-2)$ and $\gamma>N-2$.
(i) Suppose $q>(b+2) /(N-2)$ and

$$
v(x)=\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)
$$

Hence $a+N>0$, and either (4.8) and (4.9) hold with $C_{1}>0$, or $u(x)=\mathrm{O}(1)$.
(ii) Suppose $q=(b+2) /(N-2)$ and

$$
v(x)=\mathrm{O}(|\ln | x| |) .
$$

Hence again $a+N>0$. Then (4.25) holds with $C_{1}>0$, or $u(x)=\mathrm{O}(1)$.
(iii) Now suppose $q<(b+2) /(N-2)$ and

$$
v(x)=\mathrm{O}(1)
$$

If $a+N<0$, then (4.10) and (4.11) hold. If $a+N=0$, then (4.23) holds. If $a+N>0$, then (4.18) holds; if $C_{1}=0$, then $a+2>0$, and (4.20) and (4.21) hold with $C_{1}^{\prime}>0$, or (4.10) and (4.11) hold.

Proof. (i) $q>(b+2) /(N-2)$. Then $a+N>0$; indeed, $\xi>0$, hence $(a+2) q>-(b+2) \geqslant-(N-2) q$. Now

$$
\Delta \bar{u}(r) \leqslant C r^{a+(b+2) p-(N-2) p q}
$$

in $(0,1 / 2)$, and $a+(b+2) p-(N-2) p q+N=(p q-1)(\gamma-N+2)>0$. Then $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$ from Lemma 2.6 and (3.12). Now Lemma 4.1(ii) applies since $\gamma>N-2$ and (4.8) follows. If $C_{1}>0$, then Lemma 4.1(ii) gives (4.9). If $C_{1}=0$, then \bar{u} is bounded, hence also u from (3.12).
(ii) $q=(b+2) /(N-2)$. Here again we get $a+N>0$. Then

$$
\Delta \bar{u}(r) \leqslant C r^{a}|\ln r|^{p} \leqslant C_{\varepsilon} r^{a-\varepsilon}
$$

in $(0,1 / 2)$, for any $\varepsilon>0$, hence again $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$ from Lemma 2.6 and from (3.12). Then (4.25) follows from Lemma 4.2(vii). If $C_{1}=0$, then u is bounded as above.
(iii) $q<(b+2) /(N-2)$. Here

$$
\Delta \bar{u}(r) \leqslant C r^{a}
$$

in $(0,1 / 2)$. From Lemma 2.6, we distinguish three cases:

- Either $a+N<0$; then $u(x)=\mathrm{O}\left(|x|^{a+2}\right)$. Then (4.10) and (4.11) follow from Lemma 4.1(iii).
- Or $a+N=0$; then $u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |\right)$, and we get (4.23) from Lemma 4.2(vi).
- Or $a+N>0$; then $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$. Then (4.18) holds from Lemma 4.2(ii). If $C_{1}=0$, then $u(x)=\mathrm{O}(1)$. It implies $a+2>0$ from Lemma 2.6. And we get (4.20) and (4.21) from Lemma 4.2(iv), with $u(x)=C_{1}^{\prime}+\mathrm{O}\left(|x|^{a+2}\right)$. If $C_{1}^{\prime}=0$, then (4.10) and (4.11) hold from Lemma 4.1(iii).

Proposition 4.4. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1). Assume

$$
u(x)=\mathrm{O}(1), \quad v(x)=\mathrm{o}\left(|x|^{2-N}\right)
$$

and $b+N>0$ and $\gamma>0$. Then, either
(i) $b+2<0$ and (4.12) and (4.13) hold; or
(ii) $b+2=0$ and (4.25) holds; or
(iii) $b+2>0$ and (4.20) and (4.21) hold, and if $C_{1}^{\prime}=0$, then (4.10) and (4.11) hold.

Proof. (i) $b+2<0$. Hence $a+2>0$, since $\gamma>0$. Then $\mu=-(b+2)(b+N) \geqslant 0$, and Lemma 4.1(iv) applies and (4.12) follows. We deduce (4.13). If $C_{1}^{\prime}=0$, then $u(x)=\mathrm{O}\left(|x|^{\varepsilon_{0}}\right)$, with $\varepsilon_{0}=\gamma(p q-1)>0$. But any estimate $u(x)=\mathrm{O}\left(|x|^{\varepsilon}\right)$ implies the estimate

$$
-\Delta v(x) \leqslant C|x|^{b+q \varepsilon}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, because $|x|^{b+q \varepsilon} \in L^{1}\left(B_{1 / 2}\right)$, since $b+N>0$. Then $v(x)=\mathrm{O}\left(|x|^{b+2+q \varepsilon}\right)$ if $b+2+\varepsilon q<0$, and $v(x)=\mathrm{O}(|\ln | x| |)$ if $b+2+\varepsilon q=0$, and $v(x)=\mathrm{O}(1)$ if $b+2+\varepsilon q>0$, from the maximum principle. Till $b+2+\varepsilon q<0$, it gives

$$
\Delta \bar{u}(r) \leqslant C r^{a+(b+2) p+p q \varepsilon}
$$

in $(0,1 / 2)$, hence $u(x)=\mathrm{O}\left(|x|^{a+2+(b+2) p+p q \varepsilon}\right)=\mathrm{O}\left(|x|^{\varepsilon_{0}+p q \varepsilon}\right)$, from Lemma 2.6, since $\varepsilon_{0}+p q \varepsilon>0$. Now observe that the sequence defined by $\varepsilon_{n}=\varepsilon_{0}+p q \varepsilon_{n-1}$, satisfies $\lim _{n \rightarrow+\infty} \varepsilon_{n}=+\infty$. Then by modifying slightly ε_{0} if necessary, we deduce that $v(x)=\mathrm{O}(1)$ after a finite number of steps. Then

$$
\Delta \bar{u}(r) \leqslant C r^{a}
$$

in ($0,1 / 2$), hence $u(x)=\mathrm{O}\left(|x|^{a+2}\right)$ from Lemma 2.6. At last, (4.10) and (4.11) hold from Lemma 4.1(iii).
(ii) $b+2=0$. Hence again $a+2>0$. Then Lemma 4.2(viii) gives (4.25). Moreover, if $C_{1}=0$, then $v(x)=\mathrm{O}(1)$, and $u(x)=\mathrm{O}\left(|x|^{a+2}\right)$ from Lemma 2.6. Then (4.10) and (4.11) hold as above.
(iii) $b+2>0$. Then $u(x)+v(x)=\mathrm{O}(1)$. It implies $a+2>0$ from Lemma 2.6. And we get (4.20), (4.21) from Lemma 4.2(iv), with $u(x)=C_{1}^{\prime}+\mathrm{O}\left(|x|^{a+2}\right)$. If $C_{1}^{\prime}=0$, then (4.10) and (4.11) hold from Lemma 4.1(iii).

Now we can give the different types of behaviour according to the values of γ and ξ. First, we look at the solutions which have a power upper estimate strictly smaller than the one of the particular solution given in (1.14).

Proposition 4.5. Assume $p q>1$ and $0<\xi<N-2$, and $\gamma>N-2$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1), such that

$$
\begin{equation*}
u(x)=\mathrm{O}\left(|x|^{-\gamma+\varepsilon}\right), \quad \text { or } \quad v(x)=\mathrm{O}\left(|x|^{-\xi+\varepsilon}\right), \quad \text { for some } \varepsilon>0 \tag{4.26}
\end{equation*}
$$

Then $q<(b+N) /(N-2)$ and $p>(a+N) /(N-2)$, and Proposition 4.3 applies. Moreover, if $q \geqslant(b+2) /(N-2)$ and u is bounded, then Proposition 4.4 applies.

Proof. From (4.2), we have $l_{1}+p l_{2}<0<l_{2}+q l_{1}$, hence $l_{2}<0<l_{1}$, that is, $q<(b+N) /(N-2)$ and $p>(a+N) /(N-2)$. From (1.17) we have $v(x)=\mathrm{O}\left(|x|^{-\xi}\right)$, hence $v(x)=\mathrm{o}\left(|x|^{2-N}\right)$. Then the constant C_{2} defined in (3.2) is zero. Now notice that the assumption $u(x)=\mathrm{O}\left(|x|^{-\gamma+\varepsilon}\right)$ implies

$$
-\Delta v(x) \leqslant C|x|^{b-\gamma q+q \varepsilon}=C|x|^{-2-\xi+q \varepsilon}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, because $|x|^{-2-\xi+q \varepsilon} \in L^{1}\left(B_{1 / 2}\right)$, since $N-2-\xi>0$. Hence

$$
v(x)= \begin{cases}\mathrm{O}\left(|x|^{-\xi+q \varepsilon}\right) & \text { if } \xi>q \varepsilon \\ \mathrm{O}(|\ln | x| |) & \text { if } \xi=q \varepsilon \\ \mathrm{O}(1) & \text { if } \xi<q \varepsilon\end{cases}
$$

from the maximum principle. And any estimate $v(x)=\mathrm{O}\left(|x|^{-\xi+\varepsilon^{\prime}}\right)$ implies

$$
\Delta \bar{u}(r) \leqslant C r^{a-\xi p+p \varepsilon^{\prime}}=C r^{-2-\gamma+p \varepsilon^{\prime}}
$$

in $(0,1 / 2)$. Consequently,

$$
u(x)= \begin{cases}\mathrm{O}\left(|x|^{-\gamma+p \varepsilon^{\prime}}\right) & \text { if } p \varepsilon^{\prime}<\gamma-N+2 \\ \mathrm{O}\left(|x|^{2-N}|\ln | x| |\right) & \text { if } p \varepsilon^{\prime}=\gamma-N+2 \\ \mathrm{O}\left(|x|^{2-N}\right) & \text { if } p \varepsilon^{\prime}>\gamma-N+2\end{cases}
$$

from Lemma 2.6 and (3.12). We can start from the assumption $u(x)=\mathrm{O}\left(|x|^{-\gamma+\varepsilon}\right)$, with ε small enough. Consider $\varepsilon_{0}=\varepsilon$ and $\varepsilon_{0}^{\prime}=q \varepsilon$, and define $\varepsilon_{n}=p \varepsilon_{n-1}^{\prime}$ and $\varepsilon_{n}^{\prime}=q \varepsilon_{n}$. Then, by induction, $u(x)=$ $\mathrm{O}\left(|x|^{-\gamma+\varepsilon_{n}}\right)$ and $v(x)=\mathrm{O}\left(|x|^{-\xi+\varepsilon_{n}^{\prime}}\right)$, till $p \varepsilon_{n}^{\prime}<\gamma-N+2$, and $\xi>q \varepsilon_{n}$. But $\varepsilon_{n}=p q \varepsilon_{n-1}$, hence $\lim _{n \rightarrow+\infty} \varepsilon_{n}=+\infty$. Then by modifying sligthly ε_{0} if necessary, we find after a finite number of steps that either $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$, or $v(x)=\mathrm{O}(1)$. Now if $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$, then

$$
-\Delta v(x) \leqslant C|x|^{b-(N-2) q}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, because $|x|^{b-(N-2) q} \in L^{1}\left(B_{1 / 2}\right)$, since $q<(b+N) /(N-2)$. Hence in any case we have the estimate

$$
\begin{equation*}
v(x)=\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)+\mathrm{O}(|\ln | x| |) \tag{4.27}
\end{equation*}
$$

and Proposition 4.3 applies. When $q \geqslant(b+2) /(N-2)$ and u is bounded, then Proposition 4.4 applies, since $b+N>0$ and $\gamma>N-2>0$.

Proposition 4.6. Assume $p q>1$ and $0<\xi<N-2$, and $\gamma<0$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1). Assume that

$$
\begin{equation*}
u(x)=\mathrm{O}\left(|x|^{-\gamma+\varepsilon}\right), \quad \text { or } \quad v(x)=\mathrm{O}\left(|x|^{-\xi+\varepsilon}\right), \quad \text { for some small } \varepsilon>0 \tag{4.28}
\end{equation*}
$$

Then $b+2<0, a+2>0$, and (4.10) and (4.11) hold.

Proof. We have $\gamma<0<\xi$, hence $b+2<0$ and $a+2>0$. As above, the assumption $u(x)=$ $\mathrm{O}\left(|x|^{-\gamma+\varepsilon}\right)$ implies $v(x)=\mathrm{O}\left(|x|^{-\xi+q \varepsilon}\right)$, till $q \varepsilon<\xi$. Now $u(x)$ tends to 0 . From Lemma 2.6, the estimate $v(x)=\mathrm{O}\left(|x|^{-\xi+\varepsilon^{\prime}}\right)$ still implies that $u(x)=\mathrm{O}\left(|x|^{-\gamma+p \varepsilon^{\prime}}\right)$, since $-\gamma+p \varepsilon^{\prime}>0$. Consider $\varepsilon_{0}=\varepsilon$ and $\varepsilon_{0}^{\prime}=q \varepsilon$, and $\varepsilon_{n}=p \varepsilon_{n-1}^{\prime}, \varepsilon_{n}^{\prime}=q \varepsilon_{n}$. Then $u(x)=\mathrm{O}\left(|x|^{-\gamma+\varepsilon_{n}}\right)$ and $v(x)=\mathrm{O}\left(|x|^{-\xi+\varepsilon_{n}^{\prime}}\right)$, till $q \varepsilon_{n}<\xi$. But $\lim \varepsilon_{n}=+\infty$, hence we deduce that $v(x)=\mathrm{O}(1)$ after a finite number of steps. Then again $u(x)=\mathrm{O}\left(|x|^{a+2}\right)$ from Lemma 2.6, since $a+2>0$. As above, we find (4.10) and (4.11) from Lemma 4.1(iii).

Now we consider the cases where the particular solution (1.14) does not exist.
Proposition 4.7. Assume $p q>1$ and $\xi>N-2$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1).
(i) Assume $p>(a+N) /(N-2)$. Then $q<(b+N) /(N-2)$ and $\gamma>N-2$. And either (4.6) and (4.7) hold with $C_{2}>0$, or Proposition 4.3 applies. And if $q \geqslant(b+2) /(N-2)$ and u is bounded, then Proposition 4.4 applies.
(ii) Assume $p<(a+N) /(N-2)$ and $q<(b+N) /(N-2)$. Then (4.16) and (4.17) hold. If $C_{2}>0$ and $C_{1}=0$, then $p<(a+2) /(N-2)$, and (4.19) holds; and if $C_{1}^{\prime}=0$, then (4.6) and (4.7) hold. If $C_{2}=0$, then Proposition 4.3 applies (with $a+N>0$). And if $q \geqslant(b+2) /(N-2)$ and u is bounded, then Proposition 4.4 applies.
(iii) Assume $p<(a+N) /(N-2)$ and $q \geqslant(b+N) /(N-2)$. Then either (4.19) holds for some $C_{2}>0$, and if $C_{1}^{\prime}=0$, in particular, if $b+N \leqslant 0$, then (4.6) and (4.7) hold. Or $C_{2}=0$. Then either $b+N>0$, and Proposition 4.4 applies. Or $b+N \leqslant 0$, and (4.10) and (4.11) hold.
(iv) Assume $p=(a+N) /(N-2)$. Then $q<(b+N) /(N-2)$, and (4.22) holds. If $C_{2}=0$, then Proposition 4.3 applies (with $a+N>0$). And if $q \geqslant(b+2) /(N-2)$ and u is bounded, then Proposition 4.4 applies.

Proof. We have estimates (3.10) and (3.11) from Theorem 3.2.
(i) $p>(a+N) /(N-2)$. Here $l_{1}>0$; and $l_{2}+q l_{1}<0$, hence $l_{2}<0$, that is, $q<(b+N) /(N-2)$, and $l_{1}+p l_{2}<l_{1}(1-p q)<0$, that is, $\gamma>N-2$. As $v(x)=\mathrm{O}\left(|x|^{2-N}\right)$, we have $u(x)=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$. Then we find (4.6) and (4.7) from Lemma 4.1(i). If $C_{2}=0$, then

$$
-\Delta v(x) \leqslant C|x|^{b+(a+2) q-(N-2) p q}=C|x|^{(\xi-N+2)(p q-1)-N}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, because $|x|^{(\xi-N+2)(p q-1)-N} \in L^{1}\left(B_{1 / 2}\right)$. Applying the maximum principle, it follows that $v(x)=\mathrm{O}\left(|x|^{2-N+\varepsilon_{0}}\right)+\mathrm{O}(1)$, with $\varepsilon_{0}=(\xi-N+2)(p q-1)$ if $\varepsilon_{0} \neq N-2$; and $v(x)=\mathrm{O}(|\ln | x| |)$ if $\varepsilon_{0}=N-2$. But from Lemma 2.6, any estimate $v(x)=\mathrm{O}\left(|x|^{2-N+\varepsilon}\right)$ implies

$$
u(x)= \begin{cases}\mathrm{O}\left(|x|^{a+2+p \varepsilon-(N-2) p}\right) & \text { if } p>(a+N+p \varepsilon) /(N-2) \\ \mathrm{O}\left(|x|^{2-N}\right) & \text { if } p<(a+N+p \varepsilon) /(N-2) \\ \mathrm{O}\left(|x|^{2-N}|\ln | x| |\right) & \text { if } p=(a+N+p \varepsilon) /(N-2)\end{cases}
$$

In the first case,

$$
\begin{equation*}
-\Delta v(x) \leqslant C|x|^{b+(a+2) q-(N-2) p q+p q \varepsilon}=C|x|^{\varepsilon_{0}-N+p q \varepsilon} \tag{4.29}
\end{equation*}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, hence $v(x)=\mathrm{O}\left(|x|^{2-N+\varepsilon_{0}+p q \varepsilon}\right)+\mathrm{O}(1)$ if $\varepsilon_{0}+p q \varepsilon \neq N-2$. But the sequence defined from ε_{0} by $\varepsilon_{n}=\varepsilon_{0}+p q \varepsilon_{n-1}$ tends to $+\infty$. Hence, changing slightly ε_{0} if necessary, after a finite number of steps we find that either $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$, or $v(x)=\mathrm{O}(1)$. In any case we have estimate (4.27). And we get the conclusions of Proposition 4.3, and of Proposition 4.4 in case $q \geqslant(b+2) /(N-2)$ and u is bounded.
(ii) $p<(a+N) /(N-2)$ and $q<(b+N) /(N-2)$. Then we have $u(x)+v(x)=\mathrm{O}\left(|x|^{2-N}\right)$ from (3.10) and (3.11). First, notice that $l_{1}, l_{2}<0$, hence also $l_{1}+p l_{2}<0$, so that $\gamma>N-2$. Then we deduce (4.16) and (4.17) from Lemma 4.2(i). If $C_{1}=0$, then $u(x)=\mathrm{O}(1)$, since u is subharmonic. If $C_{2}>0$ and $C_{1}=0$, then

$$
\Delta \bar{u}(r) \geqslant C r^{a-(N-2) p}
$$

in ($0,1 / 2$), hence $a+2-(N-2) p>0$ from Lemma 2.6; and (4.19) holds from Lemma 4.2(ii), since $b+N>0$. Moreover, if $C_{1}^{\prime}=0$, then $u(x)=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$ and (4.6) and (4.7) hold. If $C_{2}=0$, then

$$
v(x)= \begin{cases}\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)+\mathrm{O}(1) & \text { if } q \neq(b+2) /(N-2) \\ v(x)=\mathrm{O}(|\ln | x| |) & \text { if } q=(b+2) /(N-2)\end{cases}
$$

Then Proposition 4.3 applies after noticing that here $a+N>0$. And Proposition 4.4 applies when $q \geqslant(b+2) /(N-2)$ and u is bounded.
(iii) $p<(a+N) /(N-2)$ and $q \geqslant(b+N) /(N-2)$. We still have $u(x)+v(x)=\mathrm{O}\left(|x|^{2-N}\right)$. We know that $r^{2-N} \bar{u}(r)$ has a finite limit. It is necessary 0 , since $|x|^{b} u^{q} \in L^{1}\left(B_{1 / 2}\right)$, and $q \geqslant(b+N) /(N-2)$, and $r^{b} \overline{u^{q}} \geqslant C r^{b} \bar{u}^{q}$ from (3.19). Hence $u(x)=\mathrm{O}(1)$ and $v(x)=\mathrm{O}\left(|x|^{2-N}\right)$. Now v satisfies (3.2) for some $C_{2} \geqslant 0$, and \bar{u} has a finite limit $C_{1}^{\prime} \geqslant 0$.

First, suppose that $C_{2}>0$. Then $a+2-(N-2) p>0$ from Lemma 2.6. Either $b+N>0$. Then (4.19) holds. If $C_{1}^{\prime}=0$, then $u(x)=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$ as above. And (4.6) and (4.7) hold from Lemma 4.1(i). Or $b+N \leqslant 0$. Then $C_{1}^{\prime}=0$. Indeed, if $C_{1}^{\prime}>0$, then $r^{b} \overline{u^{q}} \geqslant C r^{b} \bar{u}^{q} \geqslant C r^{-N}$; this is impossible because $|x|^{b} \overline{u^{q}}(|x|) \in L^{1}\left(B_{1 / 2}\right)$. Then we obtain $u(x)=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$ from Lemma 2.6 and (3.12). And (4.6) and (4.7) hold again.

Now suppose that $C_{2}=0$. Either $b+N>0$. Then

$$
-\Delta v(x) \leqslant C|x|^{b}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, hence $v(x)=\mathrm{O}\left(|x|^{b+2}\right)+\mathrm{O}(|\ln | x| |)$, so that $v(x)=\mathrm{o}\left(|x|^{2-N}\right)$. Now $\gamma q=\xi+b+2>b+N$, hence $\gamma>0$. Then Proposition 4.4 applies. Or $b+N \leqslant 0$, and $C_{1}^{\prime}=0$, as above. Then we still have $a+2-(N-2) p>0$. Indeed, $\xi>(N-2)$ implies that $a+2-(N-2) p>-(b+N) / q$. It implies that $u(x)=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$ from Lemma 2.6. Let $\varepsilon_{0}=a+2-(N-2) p$. If $u(x)=\mathrm{O}\left(|x|^{\varepsilon}\right)$, for some $\varepsilon \geqslant \varepsilon_{0}$, then

$$
-\Delta v(x) \leqslant C|x|^{b+\varepsilon q}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, because $b+N+\varepsilon q>0$. Hence we have $v(x)=\mathrm{O}\left(|x|^{b+2+\varepsilon q}\right)$, till $b+2+\varepsilon q<0$. As a consequence,

$$
\Delta \bar{u}(r) \leqslant C r^{a+(b+2+\varepsilon q) p}
$$

in $(0,1 / 2)$. Observing that $a+2+(b+2+\varepsilon q) p \geqslant \gamma(p q-1)>0$, we deduce that $u(x)=\mathrm{O}\left(|x|^{\varepsilon p q+\gamma(p q-1)}\right)$ from Lemma 2.6. Defining from ε_{0} the sequence $\varepsilon_{n}=\varepsilon_{n-1} p q+\gamma(p q-1)$, we have $\lim \varepsilon_{n}=+\infty$. It follows that $v(x)=\mathrm{O}(1)$ after a finite number of steps, and then $u(x)=\mathrm{O}\left(|x|^{a+2}\right)$, since $a+2>0$. Now (4.10) and (4.11) follow from Lemma 4.1(iii).
(iv) $p=(a+N) /(N-2)$. Then $l_{1}=0, l_{2}+q l_{1}<0$, hence $l_{2}<0$, which means $q<(b+N) /(N-2)$. Here we have $v(x)=\mathrm{O}\left(|x|^{2-N}\right)$ and $u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |\right)$. Then Lemma 4.2(v) applies and gives (4.22). If $C_{2}=0$, then $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$, and we can apply Propositions 4.3 and 4.4 as in the second case.

Proposition 4.8. Assume $p q>1$ and $0<\gamma \leqslant N-2,0<\xi \leqslant N-2$, and γ or $\xi \neq N-2$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1). Then $b+N>0$, and Proposition 4.4 applies.

Proof. We have $u(x)=\mathrm{O}\left(|x|^{-\gamma}\right)$. If $\gamma<N-2$, hence $u(x)=\mathrm{O}(1)$, since u is subharmonic. If $\gamma=N-2$, then $\xi<N-2$, hence $v(x)=\mathrm{O}\left(|x|^{-\xi}\right)=\mathrm{o}\left(|x|^{2-N}\right)$ from Theorem 1.1. And $r^{2-N} \bar{u}(r)$ has a finite limit $C_{1} \geqslant 0$. Let us prove that $C_{1}^{\prime}=0$. If $C_{1}^{\prime}>0$, then from (3.20),

$$
\Delta \bar{u}(r) \geqslant C r^{-N}
$$

in $(0,1 / 2)$. It implies that $\bar{u}(r) \geqslant C r^{2-N}|\ln r|$ from Lemma 2.6, which is impossible. Then we get in any case $u(x)=\mathrm{O}(1)$. And v satisfies (3.2) with $C_{2}=0$, since $v(x)=\mathrm{o}\left(|x|^{2-N}\right)$. In this case, $0<\gamma q=b+2+\xi \leqslant b+N$, since $\xi \leqslant N-2$, hence $b+N>0$. Then we can apply Proposition 4.4.

Proposition 4.9. Assume $p q>1$ and $\gamma=0$, and $0<\xi<N-2$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1). Then

$$
\begin{equation*}
u(x)=\mathrm{O}\left(\left.|\ln | x\right|^{-1 /(p q-1)}\right), \quad v(x)=\mathrm{O}\left(\left.|x|^{-\xi}|\ln | x\right|^{-q /(p q-1)}\right) \tag{4.30}
\end{equation*}
$$

Proof. Here again u is bounded, and $\bar{u}(r)$ has a finite limit $C_{1}^{\prime} \geqslant 0$. The change of variables (4.3) gives

$$
\left\{\begin{array}{l}
U_{t t}-(N-2) U_{t}+\Delta_{S^{N-1}} U-V^{p}=0 \\
V_{t t}-(N-2-2 \xi) V_{t}+\Delta_{S^{N-1}} V-\xi(N-2-\xi) V+U^{q}=0
\end{array}\right.
$$

From (3.20), there exists a constant $C>0$, such that, for large t,

$$
-\bar{U}_{t t}+(N-2) \bar{U}_{t}+C \bar{U}^{p q} \leqslant 0
$$

If $C_{1}^{\prime}>0$, there exists another constant $C>0$ such that $\mathrm{e}^{-(N-2) t}\left(\bar{U}_{t}(t)+C\right)$ is nondecreasing; it tends to 0 , since \bar{U}_{t} is bounded from Schauder estimates. Then $\bar{U}(t)+C t$ is nonincreasing, which is impossible. Then $C_{1}^{\prime}=0$. Now the equation

$$
-y_{t t}+(N-2) y_{t}+C y^{p q}=0
$$

admits a solution Y such that $Y(t)=((N-2) / C(p q-1))^{1 /(Q-1)} t^{-1 /(p q-1)}(1+\mathrm{o}(1))$, see [19]. But for any $\varepsilon \in(0,1]$, the function $\varepsilon \bar{U}$ is again a subsolution of this equation. Choosing ε small enough, we deduce that $\varepsilon \bar{U} \leqslant Y$. This proves that $\bar{U}(t)=\mathrm{O}\left(t^{-1 /(p q-1)}\right)$, that is, $u(x)=\mathrm{O}\left(|\ln | x| |^{-1 /(p q-1)}\right)$. Then

$$
-\Delta v(x) \leqslant C|x|^{b}|\ln | x| |^{-q /(p q-1)}=C|x|^{-2-\xi}|\ln | x| |^{-q /(p q-1)}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, because $N-2-\xi>0$. It follows that $v(x)=\mathrm{O}\left(|x|^{-\xi}|\ln | x| |^{-q /(p q-1)}\right)$, from the maximum principle.

Proposition 4.10. Assume $p q>1$ and $\xi=N-2$, and $\gamma<0$ or $\gamma>N-2$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1). Then

$$
\begin{equation*}
u(x)=\mathrm{O}\left(\left.|x|^{-\gamma}|\ln | x\right|^{-p /(p q-1)}\right), \quad v(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |^{-1 /(p q-1)}\right) \tag{4.31}
\end{equation*}
$$

Proof. The change of variables (4.3) gives

$$
\left\{\begin{array}{l}
U_{t t}-(N-2-2 \gamma) U_{t}+\Delta_{S^{N-1}} U-\gamma(N-2-\gamma) U-V^{p}=0 \\
V_{t t}+(N-2) V_{t}+\Delta_{S^{N-1}} V+U^{q}=0
\end{array}\right.
$$

Then $\left(\mathrm{e}^{(N-2) t} \overline{V_{t}}\right)_{t} \leqslant 0$, hence $\overline{V_{t}} \leqslant C \mathrm{e}^{-(N-2) t}$, and \bar{V} has a finite limit. If it is positive, then $\bar{u}(r) \geqslant C r^{-\gamma}$ from (3.4); in turn, $r^{b} \bar{u}^{q}(r) \geqslant C r^{-2-\xi}=C r^{-N}$, which is impossible. Hence \bar{V} tends to 0 , hence $v(x)=\mathrm{o}\left(|x|^{2-N}\right)$. Consequently $u(x)=\mathrm{o}\left(|x|^{-\gamma}\right)$ from (3.5) and (3.12). From (3.21), there exists a constant $C>0$, such that, for large t,

$$
\bar{V}_{t t}+(N-2) \bar{V}_{t}+C \bar{V}^{p q} \leqslant 0
$$

This implies that $\bar{V}(t)=\mathrm{O}\left(t^{-1 /(p q-1)}\right)$ at infinity, see, for example, [6, Theorem 5.1]. We deduce that $v(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |^{-1 /(p q-1)}\right)$ from (3.9). Then

$$
\Delta \bar{u}(r) \leqslant C r^{a-p \xi}|\ln r|^{-p /(p q-1)}=C r^{-2-\gamma}|\ln r|^{-p /(p q-1)}
$$

in $(0,1 / 2)$, hence $u(x)=\mathrm{O}\left(\left.|x|^{-\gamma}|\ln | x\right|^{-p /(p q-1)}\right)$, from (3.12) and [4, Lemma 2.3].
Remark 4.1. In the critical case $\xi=N-2, \gamma=0$, we find $u(x)=\mathbf{O}\left(|\ln | x| |^{-1 /(p q-1)}\right)$ as in Proposition 4.9, and $v(x)=\mathrm{O}\left(\left.|x|^{2-N}|\ln | x\right|^{-1 /(p q-1)}\right)$ as in Proposition 4.10. But these estimates are not optimal, as in [2, Theorem 5.1]. We conjecture that

$$
u(x)=\mathrm{O}\left(\left.|\ln | x\right|^{-(p+1) /(p q-1)}\right), \quad v(x)=\mathrm{O}\left(\left.|x|^{2-N}|\ln | x\right|^{-(q+1) /(p q-1)}\right)
$$

4.3. The sublinear case

Now we describe the behaviour according to the value of $p-(a+N) /(N-2)$.
Proposition 4.11. Assume $p q<1$ with $p>(a+N) /(N-2)$, and $\gamma \neq N-2, \xi \neq 0$. Let u, v $\in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1). Then (4.6) and (4.7) hold. Now, if $C_{2}=0$, then
(i) either $\xi>0$ and $\gamma>N-2$, and

$$
\begin{equation*}
C^{-1} r^{-\gamma} \leqslant \bar{u}(r) \leqslant C r^{-\gamma}, \quad C^{-1}|x|^{-\xi} \leqslant v(x) \leqslant C|x|^{-\xi} \tag{4.32}
\end{equation*}
$$

(ii) or $\xi<0$. Then either $a+N<0$ and (4.10) and (4.11) hold. Or $a+N=0$, and (4.23) holds. Or $a+N>0$ and $\gamma<N-2$ and (4.18) holds; if $C_{1}>0$, then $q<(b+2) /(N-2)$; if $C_{1}=0$, then $\gamma<0, a+2>0$, and (4.20) and (4.21) hold; if $C_{1}^{\prime}>0$, then $b+2>0$; if $C_{1}^{\prime}=0$, then (4.10) and (4.11) hold;
(iii) or $\xi>0$ and $\gamma<N-2$, and either (4.8) and (4.9) hold with $C_{1}>0$. Or (4.20) and (4.21) hold as above, and if $C_{1}^{\prime}=0$, then (4.10) and (4.11) hold.

Proof. We have $v(x)=\mathrm{O}\left(|x|^{2-N}\right)$ and $u(x)=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$ from Theorem 1.2. And $l_{2}+q l_{1}<0$ and $l_{1}>0$ imply $l_{2}<0$, that is, $q<(b+N) /(N-2)$. Now Lemma 4.1(i) applies, because $\varepsilon_{0}=$ $(\xi-N+2)(p q-1)=-\left(l_{2}+q l_{1}\right)>0$. More precisely,

$$
v(x)-C_{2}|x|^{2-N}= \begin{cases}\mathrm{O}\left(|x|^{2-N+\varepsilon_{0}}\right)+\mathrm{O}(1) & \text { if } \varepsilon_{0} \neq N-2 \\ \mathrm{O}(|\ln | x| |) & \text { if } \varepsilon_{0}=N-2\end{cases}
$$

from [6]. Now suppose that $C_{2}=0$.

- Either $\varepsilon_{0}>N-2$, hence $\xi<0$ and $v(x)=\mathrm{O}(1)$.
- Or $\varepsilon_{0}<N-2$, hence $v(x)=\mathrm{O}\left(|x|^{2-N+\varepsilon_{0}}\right)$.
- Or $\varepsilon_{0}=N-2$, hence $v(x)=\mathrm{O}\left(|x|^{2-N+\varepsilon_{0}-\varepsilon^{\prime}}\right)$ for any $\varepsilon^{\prime}>0$. As in Proposition 4.7, any estimate $v(x)=\mathrm{O}\left(|x|^{2-N+\varepsilon_{n}}\right)$ implies that

$$
u(x)= \begin{cases}u(x)=\mathrm{O}\left(|x|^{a+2+p \varepsilon_{n}-(N-2) p}\right) & \text { if } \lambda_{n}=(N-2) p-\left(a+N+p \varepsilon_{n}\right)>0 \\ \mathrm{O}\left(|x|^{2-N}\right) & \text { if } \lambda_{n}<0 \\ \mathrm{O}\left(|x|^{2-N}|\ln | x| |\right) & \text { if } \lambda_{n}=0\end{cases}
$$

But here the sequence defined from ε_{0} by $\varepsilon_{n}=\varepsilon_{0}+p q \varepsilon_{n-1}$ tends to $\varepsilon_{0} /(1-p q)$. Hence $2-N+\varepsilon_{n}$ tends to $-\xi$, and the sequence λ_{n} decreases to $\lambda=\gamma-N+2$. As a consequence, if $\gamma<N-2$ or $\xi<0$, we find $v(x)=\mathrm{O}(1)$ or $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$. If $\gamma>N-2$ and $\xi>0$, then $v(x)=\mathrm{O}\left(|x|^{-\xi-\varepsilon}\right)$ for any $\varepsilon>0$.
(i) $\gamma>N-2$ and $\xi>0$. Then we have in fact $v(x)=\mathrm{O}\left(|x|^{-\xi}\right)$. Indeed, any estimate $v(x) \leqslant$ $C_{\varepsilon_{n}}|x|^{2-N+\varepsilon_{n}}$ in $B_{1 / 2} \backslash\{0\}$ implies more precisely

$$
u(x) \leqslant C|x|^{2-N}+C C_{n} C_{\varepsilon_{n}}^{p}|x|^{a+2+p \varepsilon_{n}-(N-2) p}
$$

with $C_{n}=1 /\left(\lambda_{n}\left(\lambda_{n}+N-2\right)\right) \leqslant 1 / \lambda^{2}$, see [4, Lemma 2.3]. Hence, with a new constant $C>0$,

$$
u(x) \leqslant C\left(1+C_{\varepsilon_{n}}^{p}\right)|x|^{a+2+p \varepsilon_{n}-(N-2) p} .
$$

And then

$$
v(x) \leqslant C_{n}^{\prime} C^{q}\left(1+C_{\varepsilon_{n}}^{p}\right)^{q}|x|^{2-N+\varepsilon_{0}+p q \varepsilon_{n}}+C
$$

from the maximum principle, with $C_{n}^{\prime}=1 /\left(\varepsilon_{0}+p q \varepsilon_{n}\right)\left(N-2-\varepsilon_{0}-p q \varepsilon_{n}\right) \leqslant 1 / \varepsilon_{0} \xi$. Then

$$
v(x) \leqslant C_{\varepsilon_{n}}|x|^{2-N+\varepsilon_{n}},
$$

with $C_{\varepsilon_{n}}=C\left(1+C_{\varepsilon_{n-1}}^{p q}\right)$, for another C. It follows that $v(x) \leqslant C|x|^{-\xi}$, because the sequence $\left(C_{\varepsilon_{n}}\right)$ is convergent. Then $u(x)=\mathrm{O}\left(|x|^{-\gamma}\right)$ from (3.5) and (3.12), and we deduce (4.32) from (3.23).
(ii) $\gamma<N-2$ or $\xi<0$ and $v(x)=\mathrm{O}(1)$. Now we apply Lemma 2.6. Either $a+N<0$, and then $u(x)=\mathrm{O}\left(|x|^{a+2}\right)$. Then Lemma 4.1(iii) applies, because $\xi(p q-1)<0$, and we get (4.10) and (4.11). Or $a+N \geqslant 0$, and $\gamma+2-N \leqslant \gamma+a+2=p \xi<0$, hence $\gamma<N-2$. If $a+N=0$, then $u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |\right)$, and $q<(b+2) /(N-2)$, since $(a+2) q+b+2>0$. Then we get (4.23) from Lemma 4.2(vi). Now consider the case $a+N>0$; then $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$.

- Either $q<(b+2) /(N-2)$. Then Lemma 4.2(ii) applies and gives (4.18) with $v(x)-C_{2}^{\prime}=$ $\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)$. Now suppose that $C_{1}=0$. Then $u(x)=\mathrm{O}(1)$, hence $\gamma \leqslant 0$ from (3.23). It implies $a+2>0$ from Lemma 2.6. Then $\gamma<0$, since $\gamma=p \xi-(a+2)$. Then there is a constant $C_{1}^{\prime} \geqslant 0$ such that $u(x)=C_{1}^{\prime}+\mathrm{O}\left(|x|^{a+2}\right)$, from Lemma 4.1(iv). If $C_{1}^{\prime}>0$, then $b+2>0$ from (3.5), since v is bounded. In the same way there is a constant $C_{2}^{\prime}>0$ such that $v(x)=C_{2}^{\prime}+\mathrm{O}\left(|x|^{b+2}\right)$, from Lemma 4.1(iv). If $C_{1}^{\prime}=0$, then $u(x)=\mathrm{O}\left(|x|^{a+2}\right)$, with $v(x)=\mathrm{O}(1)$. We get again (4.10) and (4.11) from Lemma 4.1(iii), because $\xi(p q-1)>0$.
- Or $q \geqslant(b+2) /(N-2)$. We know that $r^{N-2} \bar{u}(r)$ has a finite limit C_{1}. Let us prove that $C_{1}=0$. If $C_{1}>0$, then

$$
-\Delta \bar{v}(r) \geqslant C r^{b-(N-2) q} \geqslant C r^{-2}
$$

in $(0,1 / 2)$. This is impossible because v is bounded. Hence $u(x)=\mathrm{O}(1)$, and we conclude as above.
(iii) $\gamma<N-2$ or $\xi<0$ and $u(x)=\mathbf{O}\left(|x|^{2-N}|\ln | x| |\right)$. Then $a+N \geqslant 0$, from (3.1) and (3.4).

- Either $a+N=0$. Then $q<(b+2) /(N-2)$, and

$$
-\Delta v(x) \leqslant C|x|^{b-(N-2) q-\varepsilon}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, for any $\varepsilon>0$, since $q<(b+N) /(N-2)$. Hence $v(x)=\mathrm{O}(1)$ from the maximum principle, and we return to the preceeding case.

- Or $a+N>0$, and $v(x)=\mathrm{O}\left(|x|^{(b+2-(N-2) q-\varepsilon}\right)+\mathrm{O}(1)$ from the maximum principle. Either $q<$ $(b+2) /(N-2)$, hence $v(x)=\mathrm{O}(1)$, and we again return to the second case. Or $q>(b+2) /(N-2)$, then $v(x)=\mathrm{O}\left(|x|^{(b+2-(N-2) q-\varepsilon}\right)$, and $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$ from Lemma 2.6, since $\gamma<N-2$. And (4.8) and (4.9) hold from Lemma 4.1(ii), because $(\gamma-N+2)(p q-1)>0$. If $C_{1}=0$, then $u(x)=\mathrm{O}(1)$, and we return to the second case.

Remark 4.2. In the critical cases $\xi=0$ or $\gamma=N-2$, our proofs give the estimate $v(x)=\mathbf{O}\left(|x|^{-\varepsilon}\right)$ for any $\varepsilon>0$, and, consequently, $u(x)=\mathrm{O}\left(|x|^{-\gamma-\varepsilon}\right)$ from (3.5).
(i) In the case $\xi=0, \gamma>N-2$, we also have the lower estimates

$$
\begin{equation*}
\bar{u}(r) \geqslant C r^{-\gamma}|\ln r|^{p /(1-p q)}, \quad v(x) \geqslant C|\ln | x| |^{1 /(1-p q)} . \tag{4.33}
\end{equation*}
$$

Indeed, we have

$$
-\Delta \bar{v}(r) \geqslant C r^{-2} \bar{v}^{p q}(r)
$$

in $(0,1 / 2)$, from (3.21), hence $\bar{v}(r) \geqslant C|\ln r|^{1 /(1-p q)}$ from [2, Lemma A2], and (4.33) follow from (3.4) and (3.9). We conjecture that the upper estimates

$$
u(x)=\mathrm{O}\left(|x|^{-\gamma}|\ln | x| |^{p /(1-p q)}\right), \quad v(x)=\mathrm{O}\left(|\ln | x| |^{1 /(1-p q)}\right)
$$

are true.
(ii) In the case $\xi>0, \gamma=N-2$, we conjecture that

$$
u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |^{1 /(1-p q)}\right), \quad v(x)=\mathrm{O}\left(\left.|x|^{-\xi}|\ln | x\right|^{q /(1-p q)}\right)
$$

(iii) In the case $\xi=0, \gamma=N-2$, we conjecture that

$$
u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |^{(p+1) /(1-p q)}\right), \quad v(x)=\mathrm{O}\left(|x|^{-\xi}|\ln | x| |^{(q+1) /(1-p q)}\right)
$$

Proposition 4.12. Assume $p q<1$ with $p<(a+N) /(N-2)$, and $\xi \neq 0$ if $\gamma<0$. Let $u, v \in C^{2}\left(B^{\prime}\right)$ be any nonnegative solutions of system (1.1). Then $\gamma<N-2$.
(i) Suppose $q<(b+N) /(N-2)$. Then (4.16) and (4.17) hold. If $C_{2}>0$ and $C_{1}=0$, then $\gamma<0$, $p<(a+2) /(N-2)$, and (4.19) holds; if $C_{1}^{\prime}=0$, then (4.6) and (4.7) hold. If $C_{1}>0$ and $C_{2}=0$, then either $q>(b+2) /(N-2)$ and (4.8) and (4.9) hold, or $q<(b+2) /(N-2)$ and (4.18) holds. If $C_{1}=C_{2}=0$, then $\gamma<0, a+2>0$, and:

- Either $b+2<0$, and (4.12) and (4.13) hold; if $C_{1}^{\prime}=0$, then either $\xi>0$ and (4.32) holds, or (4.10) and (4.11) hold.
- Either $b+2>0$, and (4.20) and (4.21) hold; if $C_{1}^{\prime}=0$, then (4.10) and (4.11) hold.
- Or b $+2=0$, and (4.25) holds.
(ii) Suppose $q \geqslant(b+N) /(N-2)$. If $b+N>0$, then (4.19) holds. If $C_{2}>0$ and $C_{1}^{\prime}=0$, then (4.6) holds. If $C_{2}=0$, we conclude as above. If $b+N \leqslant 0$, then either $\xi>0$ and (4.32) holds, or (4.10) and (4.11) hold.

Proof. First, notice that here $\gamma<N-2$; indeed, $l_{1}<0, l_{2}+q l_{1}<0$, hence $l_{1}+p l_{2}<l_{1}(1-p q)<0$. We have $u(x)+v(x)=\mathrm{O}\left(|x|^{2-N}\right)$ from Theorem 1.2. Hence $r^{N-2} \bar{u}(r)$ has a finite limit $C_{1} \geqslant 0, r^{N-2} \bar{v}(r)$ has a finite limit $C_{2} \geqslant 0$, and v satisfies (3.2).
(i) $q<(b+N) /(N-2)$. We get (4.16) and (4.17) from [4, Lemma 6.3]. Moreover,

$$
u(x)-C_{1}|x|^{2-N}= \begin{cases}\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)+\mathrm{O}(1) & \text { if } p \neq(a+2) /(N-2), \tag{4.34}\\ \mathrm{O}(|\ln | x| |) & \text { if } p=(a+2) /(N-2),\end{cases}
$$

and

$$
v(x)-C_{2}|x|^{2-N}= \begin{cases}\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)+\mathrm{O}(1) & \text { if } q \neq(b+2) /(N-2) \tag{4.35}\\ \mathrm{O}(|\ln | x| |) & \text { if } q=(b+2) /(N-2)\end{cases}
$$

Now suppose that $C_{1}=0$ or $C_{2}=0$. We consider each case separately.

- Either $C_{2}>0$ and $C_{1}=0$. Then u is bounded, hence $\gamma \leqslant 0$ from (3.23); in fact, $\gamma<0$. Indeed, if $\gamma=0$, then (4.32) hold, which contradicts $C_{2}>0$. And we obtain $p<(a+2) /(N-2)$ from Lemma 2.6. Then (4.19) holds from Lemma 4.1, and $u(x)-C_{1}^{\prime}=\mathrm{O}\left(|x|^{a+2-(N-2) p}\right)$. If $C_{1}^{\prime}=0$, then (4.6) and (4.7) hold, because $(\xi-N+2)(p q-1)>0$.
- Or $C_{1}>0$ and $C_{2}=0$. If $q>(b+2) /(N-2)$, then $v(x)=\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)$ and we get (4.8), since $(\gamma-N+2)(p q-1)>0$. If $q \leqslant(b+2) /(N-2)$, then $v(x)=\mathrm{O}(1)$. And (4.18) holds, because $b+N>0$. If $q=(b+2) /(N-2)$, then

$$
-\Delta \bar{v}(r) \geqslant C r^{-2}
$$

in $(0,1 / 2)$, which is impossible.

- Or $C_{1}=C_{2}=0$. Then $u(x)=\mathrm{O}(1)$, hence again $\gamma \leqslant 0$, and, in fact, $\gamma<0$. Indeed, if $\gamma=0$, then (4.32) hold, but then

$$
\Delta \bar{u}(r) \geqslant C r^{-2}
$$

in ($0,1 / 2$), which contradicts Lemma 2.6. Then we get also $a+2>0$ from Lemma 2.6. And

$$
-\Delta v(x) \leqslant C|x|^{b}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, since $b+N>0$, hence $v(x)=\mathrm{O}\left(|x|^{b+2}\right)+\mathrm{O}(|\ln | x| |)$. First, suppose that $b+2<$ 0 , then $v(x)=\mathrm{O}\left(|x|^{b+2}\right)$, and (4.12) and (4.13) hold, since $\gamma(p q-1)>0$. Moreover, $u(x)=$ $C_{1}^{\prime}+\mathrm{O}\left(|x|^{\gamma(p q-1)}\right)$. If $C_{1}^{\prime}=0$, then $u(x)=\mathbf{O}\left(|x|^{\varepsilon_{0}}\right)$ with $\varepsilon_{0}=\gamma(p q-1)$. But any estimate $u(x)=$ $\mathrm{O}\left(|x|^{\varepsilon}\right)$ again implies that

$$
-\Delta v(x) \leqslant|x|^{b+\varepsilon q}
$$

in $\mathcal{D}^{\prime}\left(B_{1 / 2}\right)$, hence $v(x)=\mathrm{O}\left(|x|^{b+2+\varepsilon q}\right)+\mathrm{O}(1)$. And any estimate $v(x)=\mathrm{O}\left(|x|^{b+2+\varepsilon q}\right)$ in turn implies $u(x)=\mathrm{O}\left(|x|^{a+2+(b+2) p+\varepsilon p q}\right)$ from Lemma 2.6, since $u(x)$ tends to 0 . But the sequence defined from ε_{0} by $\varepsilon_{n}=a+2+(b+2) p+\varepsilon_{n-1} p q$ tends to $-\gamma$. After a finite number of steps, we arrive to $u(x)=\mathrm{O}\left(|x|^{-\gamma+\varepsilon^{\prime}}\right)$ for any $\varepsilon^{\prime}>0$, or $v(x)=\mathrm{O}(1)$. In the first case, we can prove as in Proposition 4.11 that, in fact, $u(x)=\mathrm{O}\left(|x|^{-\gamma}\right)$, since $\xi \neq 0$. This implies estimate (4.32), and necessarily $\xi>0$. In the second case, we find again (4.10) and (4.11). Now assume that $b+2>0$. Then we obtain (4.20) and 4.21, and (4.10) and (4.11) in case $C_{1}^{\prime}=0$. At last, assume that $b+2=0$. Then we get (4.25) from Lemma 4.2(viii).
(ii) $q \geqslant(b+N) /(N-2)$. Then $C_{1}=0$, because $|x|^{b} u^{q} \in L^{1}\left(B_{1 / 2}\right)$. Hence u is bounded. If $b+N>0$, then (4.19) holds from [4, Lemma 6.3]. If $C_{2}>0$, and $C_{1}^{\prime}=0$, then (4.6) and (4.7) hold. If $C_{2}=0$, we conclude as above. If $b+N \leqslant 0$, then $l_{2}>(N-2) q$, hence $l_{1}<2-N$, since $l_{2}+q l_{1}<0$. Then $\gamma<0$, because $p l_{2}+l_{1}<(1-p q) l_{1}<(2-N)(1-p q)$. Necessarily $\lim _{x \rightarrow 0} u(x)=0$, since $|x|^{b} u^{q} \in L^{1}\left(B_{1 / 2}\right)$. We conclude as above that either $u(x)=\mathrm{O}\left(|x|^{-\gamma}\right)$, hence $\xi>0$, and (4.32) holds, or $v(x)=\mathrm{O}(1)$, and (4.10) and (4.11) hold.

Proposition 4.13. Assume $p q<1$ with $p=(a+N) /(N-2)$. Let $u, v \in C^{2}\left(B_{1} \backslash\{0\}\right)$ be any nonnegative solutions of system (1.1). Then (4.22) holds. If $C_{2}=0$, then either $q>(b+2) /(N-2)$ and (4.8) and (4.9) hold, or $q<(b+2) /(N-2)$, and (4.18) holds, or $q=(b+2) /(N-2)$, and (4.24) holds.

Proof. We have $u(x)=\mathrm{O}\left(|x|^{2-N}|\ln | x| |\right)$ and $v(x)=\mathrm{O}\left(|x|^{2-N}\right)$ from Theorem 1.2. As in Proposition 4.7, we conclude to (4.22). If $C_{2}=0$, then $u(x)=\mathrm{O}\left(|x|^{2-N}\right)$, and we have $q<(b+N) /(N-2)$. If $q>(b+2) /(N-2)$, then $v(x)=\mathrm{O}\left(|x|^{b+2-(N-2) q}\right)$, and we get (4.8) and (4.9) from Lemma 4.1(ii). If $q<(b+2) /(N-2)$, then $v(x)=\mathrm{O}(1)$, and we get (4.18) from Lemma 4.2(ii). If $q=(b+2) /(N-2)$, then $v(x)=\mathrm{O}(|\ln | x| |)$, and (4.24) follows from Lemma 4.2(vii).

References

[1] P. Aviles, On isolated singularities in some nonlinear partial differential equations, Indiana Univ. Math. J. 35 (1983), 773-791.
[2] M.F. Bidaut-Véron, Local behaviour of solutions of a class of nonlinear elliptic systems, Adv. Differential Equations (1996), to appear.
[3] M.F. Bidaut-Véron, V. Galaktionov, P. Grillot and L. Véron, Singularities for a 2-dimensional semilinear elliptic equation with a non-Lipschitz nonlinearity, J. Differential Equations (1997), to appear.
[4] M.F. Bidaut-Véron and P. Grillot, Asymptotic behaviour of the solutions of sublinear elliptic equations with a potential, Appl. Anal. (1998), to appear.
[5] M.F. Bidaut-Véron and P. Grillot, Singularities in elliptic systems with absorption terms, Preprint.
[6] M.F. Bidaut-Véron and T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations 21 (1996), 1035-1086.
[7] M.F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539.
[8] H. Brezis and P.L. Lions, A note on isolated singularities for linear elliptic equations, Math. Anal. Appl. Adv. Math., Suppl. Stud. 7A (1981), 263-266.
[9] H. Brezis and L. Véron, Removable singularities of some nonlinear elliptic equations, Arch. Rational Mech. Anal. 75 (1980), 1-6.
[10] L.A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.
[11] D. De Figueiredo and P. Felmer, A Liouville-type theorem for elliptic systems, Ann. Scuola Norm. Sup. Pisa 21 (1994), 387-397.
[12] M. Garcia, R. Manasevitch, E. Mitidieri and C. Yarur, Existence and nonexistence of singular positive solutions for a class of semilinear elliptic systems, Arch. Rational Mech. Anal. 140 (1997), 253-284.
[13] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598.
[14] T. Raoux, Local and global behaviour for an Emden-Fowler type equation with a sublinear nonlinearity, Adv. Math. Sci. Appl. 7 (1997), 859-879.
[15] J. Serrin and H. Zou, Non-existence of positive solutions of the Lane Emden system, Differential Integral Equations 9 (1996), 635-653.
[16] J. Serrin and H. Zou, Existence of positive solutions of the Lane Emden system, Atti Sem. Mat. Fis. Univ. Modena (1997), to appear.
[17] L. Simon, Isolated singularities of extrema of geometric variational problems, in: Harmonic Mappings and Minimal Immersions, Lecture Notes in Math., Vol. 1161, 1985, pp. 206-277.
[18] E. Stein, Boundary behaviour of holomorphic functions of several complex variables, in: Math. Notes, Vol. 9, Princeton University Press, Princeton, 1972.
[19] L. Véron, Comportement asymptotique des solutions d'équations elliptiques semilinéaires dans \mathbb{R}^{N}, Ann. Mat. Pura Appl. 127 (1981), 25-50.
[20] L.Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5 (1981), 225-242.
[21] C. Yarur, Singularidades de ecuaciones de Schrödinger estacionarias, Tesis Doctoral, Univ. Complutense, Madrid, 1984.
[22] C. Yarur, Nonexistence of positive singular solutions for a classs of semilinear elliptic systems, Electron. J. Differential Equations 8 (1996), 1-22.
[23] H. Zou, Slow decay and the Harnack inequality for positive solutions of $\Delta u+u^{p}=0$ in \mathbb{R}^{n}, Differential Integral Equations 8 (1995), 1355-1368.
[24] H. Zou, Existence and non-existence of positive solutions of the scalar field in \mathbb{R}^{n}, I, Calc. Var. Partial Differential Equations 4 (1996), 219-248.

[^0]: *Corresponding author. Tel.: +33 2473672 60; Fax: +33 2473670 68; E-mail: veronmf@univ-tours.fr.

