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Asymptotic behaviour of elliptic systems
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Abstract. We study the limit behaviour near the origin of the nonnegative solutions of the semilinear elliptic system

{ —Du + |z|*v? =0,

. N >
Av + \x|buq _ O, inR (N = 3)1

wherep, ¢, a,b € R, withp,q > 0, pq # 1. We give a priori estimates without any restriction on the valugsasfdg.

1. Introduction

Here we study the nonnegative solutians of the semilinear elliptic system iRY (N > 3) with
mixed absorption and source terms:

—Au + |z|*"P = 0,
{AU + |2|’ud = 0, 1.1
wherep, q,a,b € R with p,q > 0 andpq # 1. We describe the asymptotic behaviour of the solutions
near the origin. We suppose thatv are defined inB; \ {0}, where B, = B(0,r) andB(y,r) = {z €

RN | |z —y| < r}forany r > 0 andy € R™V. A Kelvin transform would give the behaviour near infinity.
In particular, we cover the case of the biharmonic equation

Nw + |z|7w? =0, (1.2)

for given realso, Q with Q > 0, Q # 1: we give the behaviour of the subharmonic or superharmonic
nonnegative solutions of (1.2), by takipg= 1, a =0, b=0co0orqg =1, a = o, b = 0in (1.1). This
article complements the preceeding works relative to the system with absorption terms

{ —Bu oo =0, o0 [5], (1.3)

—v + |x|u = 0,
and to the system with source terms

{Au + |z|*P =0,

Ao + |z]Put = 0, see [2]. 1.4)
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For a better understanding of system (1.1), let us recall the behaviour of the nonnegative solutions of
the two equations

—Aw + |z]°w® =0, (1.5)
and

Aw + |z]|7w® =0, (1.6)
for given realsy, Q with Q > 0, Q # 1.

Usually, (1.5) is called equation “with the good sign”, because the maximum principle applies. Notice
that the solutions are subharmonic, hence they satisfy the mean value inequality

1

w(r) < 75—
|B($, T)| B(z,r)

w(zx) dz, (1.7)
for any ballB(z,r) C B; \ {0}. As a consequence, any estimate of the spherical mean value

w! —71 . w(r
u(r)—-L3N1|jgNl (r,0) do

nearr = 0 implies an analogous estimate ©f see [4,22]. In such a way the obtention of a priori
estimates reduces to the study of an ordinary differential inequality. Defining

r=@+2/@Q-1 (1.8)
for any@Q # 1, the radial function
wi(@) = C* |z ", ¢ = (I(" = N +2)Y@ D, (1.9)

is a solution of (1.5) whenevdr(I" — N + 2) > 0. When@ > 1, any solutionw satisfies the Keller—
Osserman estimate near the origin

w(z) < Clz| T, (1.10)
whereC = C(N,Q,0). When@ > (N + 0)/(IN — 2), thenw* does not exist, and the singularity
is removable, which means thatis bounded near 0, see [9,19-21]. The behaviour of the solutions is

isotropic, that is, asymptotically radial. Whéh < 1, then (1.10) is no longer true and it is replaced by
the estimate

_ O(max(z| =1, |z|>N)) if Q# (N +0)/(N —2),
w(x) = { O(|x|2—N| In |x||l/(1—Q)) if Q= (N + 0)/(N — 2). (1.11)

Moreover, some anisotropic solutions can occur, see [3,4].
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The behaviour of the equation “with the bad sign” (1.6) is not completely known. It cannot be reduced
to a radial problem, because nawis superharmonic, hence for any b&l{z,r) C B; \ 0,

1

w(z) >
|B(z, )| /B

w(x) dx.

Equation (1.6) still admits a particular radial solution
wy(z) = C*|x|7p, Ci=(I'(N-2- F))l/(Q—l),

if '(N—-2-1)>0.When@ > 1 and (1.6) admits a nontrivial solution, théh> 0, which means
o + 2> 0. And any solutionw satisfies the estimate

w(z) = O(min(|z| =1, |2[>~N)), (1.12)

whenevel < (N+2)/(N—-2) (with@ # (N+2+20)/(N —2), if o # 0). Consequently, satisfies the
Harnack inequality, and its behaviour is isotropic, see, for example, [1,10,13]. Beyon@}/ (N — 2),
some anisotropic solutions can occur, for example, wea (N + 1)/(N — 3) ando = 0, see [7],
and the a priori estimate is not known, see also [23]. Wler< 1, the solutions only exist when
Q < (N +0)/(N — 2), which meand” < N — 2. Then any solution satisfies

w(z) — {O(max(lx|_F,1)) if " 0, (1.13)

O(In |z||Y1=@) if ' =0,

and its behaviour is still isotropic, see [14].

Now let us return to system (1.1). It involves both subharmonic and superharmonic functions, and one
may expect a mixed type behaviour. In Section 2, we give the main tools of our study: we essentially use
fine properties of comparison of functions with their spherical mean value, in addition to classical tools,
namely the maximum principle and the Brezis—Lions lemma [8].

In Section 3, we establish a priori estimates for the solutions of system (1.1), for, any 0, such
thatpq # 1. In that case it admits a particular solution

u(z) = A%|z|77, v*(x) = B*|z|7¢, (1.14)
where
T=(b+Qp+a+2)/(pg—1), &= ((a+2q+b+2)/(pg—1), (1.15)

and

= b+ 2 NE0Y -2 O, 019
B* = [é(N —2— 5)(7(7 +2- N))Q} 1/(10!1—1), )

whenevery(y+2— N) > 0 and{(IV — 2— &) > 0. In the superlinear cagg > 1, we get the following
estimates:
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Theorem 1.1. Assumeq > 1. Letu,v € C%(B1\{0}) be any nonnegative solutions(af1), with (u, v)
= (0,0). Then¢ > 0, and

u(z) =O(|z|™7), wv(z) =0O( min(|x|‘f, |x|2_N)), nearO. (1.17)
Moreover, ify < N — 2, thenw is bounded nea®.

This result shows a perfect behaviour of mixed type: the subharmonic funcgatisfies an estimate
of type (1.10), with an eventual removability, and the superharmonic function an estimate of type (1.12).
In the sublinear case; < 1, we get the following:

Theorem 1.2. Assumeyg < 1. Letu,v € C?(B1\{0}) be any nonnegative solutions(af1), with (u, v)
#(0,0). Then{ < N — 2,and

v(z) = O(|z)>), (1.18)

o) — { O(max(al 2~ (N -2P z2V) it p £ (a+ N)/(N ~2), (1.19)

Ol > In |[]) if p=(a+ N)/(N—2).

We notice that the estimates fodiffer from the estimates of the scalar case (1.13): hezan admit
a behaviour ifz|?>~Y, whereas any solutiom of (1.6) satisfiesv(z) = o(|z|>~") when@ < 1.

Observe that, contrary to the case of Eq. (1.6), we mavapper restriction omq in the superlinear
case. Our proofs lead to the following main conclusithve fact that one of the solutions of the system is
subharmonic implies a remarkable regularizing effect on the other longarticular,the superharmonic
functionv always satisfies Harnack inequality

In Section 4, we give the precise convergence results for the solutions and study the possible existence
of anisotropic solutions. As in [6] and [4], the behaviour of the system presents many possibilities. The
study is uneasy, in particular in the critical casgg = 0 or N — 2, since we have to combine the
techniques of the two signs. In [4], we had noticed that the anisotropy is more frequent for system (1.3)
than for system (1.4). Here we show that, for system (1hB),anisotropy is more frequent farthan
for v.

2. The key tools

Our main tools consist in precise comparisons between the two functions, either subharmonic or su-
perharmonic, with their spherical mean values. In the sequel, the same(letdimotes some positive
constants which may depend arw, unless otherwise stated.

2.1. Inequalities for superharmonic functions

Concerning the superharmonic functions, let us begin by a simple result.
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Lemma 2.1. Letw € C?(B; \ {0}) be any nonnegative superharmonic function, gng¢ —Aw. Then
w is monotonous for smatl, and there is a constar® (V) > 0 such that, for any- € (0, 1/2) and any
e €(0,1/2],

) > 2,2 : T(s). :
w(r) = C(N)er® o min o F6) (2.1)

Proof. Indeed, we have
_(TN_lmr)r — TN_lf,

which obviously implies the monotonicity near 0. Integrating froffl + ) to r, we get

‘s

A+ N (/0 + ) ~ ) > [ P OLY
r/(1+e

Integrating fromr to (1 + ¢),
14+ @A+ Mw@r) >w(r(l+¢) + QL+ ) Nw(r/(L+¢))

+ /T(HE) AN /'T sN"TF(s) ds, 2.2)

7/(A+¢)

and, in particular,

1 [r(l+e) T _
w(r) > = / r1=N / SN_lf(S) ds,
2 r 7/(1+¢)

which implies (2.1). O
Remark 2.1. Notice that, from (2.2),
(1+ @ +e)>Mw(@r) > T(rL+¢) + L+ ) Nw(r/(L+¢)),

hence any radial superharmonic positive functiomin, {0} satisfies the following form of the Harnack
inequality: for anyr € (0, 1/2) and any < (0, 1/2],

22" Nw(r) < w(r(L + €)) < 2w(r). (2.3)

Now we deduce a spherical form of the mean value inequality for superharmonic functions. We did
not find any reference of it in the literature, so we give here a simple proof.

Lemma2.2. Letw € C?(B; \ {0}) be any nonnegative superharmonic function. Then there exists a
constantC'(V) > O such that, for any: € By, \ {0},

w(z) > C(N)w(|z]). (2.4)
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Proof. Letxg € By, \ {0}. We study the functionw in the annulu<’,, = {y € RN | |zo|/2 < |y| <
3|zo|/2}. We set

w(y) =W(2), z=y/l|zo|, Vy € Ca,

andzo = xo/|zo|. Then the range of is the annulug = {z € RY | 1/2 < |2| < 3/2}. Let G be the
Green function irC with Dirichlet conditions ordoC. Then we have the representation formula

W(z) = / G ) (—AW)() dy + / Pz, YW (V) ds(N),
C oC

where P(z,\) = —0G(z,\)/dv is the Poisson kernel id x 9C. From [18] there exists a constant
K = K(C), henceK = K(N) such that, for anyA \) € C x oC,

Ko@)z = A"V < P(2,)) < 2K o(2)|z — AV,

whereo(z) is the distance from to aC. In particular,P(zo, \) > 2~V K, hence
W) > 2 VK / W) ds()),
aC
sincelV is superharmonic id. Returning tow, we get

w(zo) > 27V Klzo| N /a w(y) ds(y).

0

That means that there exists a constafw) such that
w(zo) = C(N)[@(|wol/2) +w(3|wo|/2)].
But from the Harnack inequality (2.3), it implies that there is another conétéN? such that
w(xo) = C(N)w(|ol),
and the conclusion follows. O
Now we give an upper estimate which will play a crucial part in the sequel.

Lemma 2.3. Letw € C?(B; \ {0}) be any nonnegative superharmonic function, gng¢ —Aw. Then
there exists”(IV) > O such that, for any: € By, \ {0},

wie) < CO[Jaf? max £+ w(lal)] (2.5)
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Proof. We start from the representation formula for afy function w in a ball of centerB(z, R)
contained inB; \ {0}: for any p € (0, R],

w(z) = CN/ [z — D - psz] (—Aw)(z) dz + w(s) ds, (2.6)
B(z,p)

[0B(z, p)| JoB(@.)
wherecy = 1/N(N — 2)|B| = 1/(N — 2)|SV 1. It implies
1
oY Lw(z) < chN_l/ |z — 2> N (—Aw)(2) dz + TONTTI / w(s) ds,
B(z,p) ‘S ‘ 0B(z,p)

and, by integration from 0 t&,

w(z) < ey / |z — 2|2 N (—Aw)(z) dz + w(z) dz.

B(z.R) |B(z, R)| JB(z,R)

Hence, in particular, taking = |z|/2 and replacing the ball by an annulus,

w(x) < m\xlz max (—Aw) + 1 w(z) dz
S8 B(x.|x]/2) (12 /2)N | B J12)/2<Iy|<3)2l /2
1 5 N 3‘1“/2 N_1
<———|z]* max (—Aw)+ ——+= / r " w(r) dr
8NV — 2)| | B(z|z|/2) (z| /2N S| 2
1 ) N _
<——x max (—Aw)+ 3 max w
8(V f2)| | B(z,|x|/2>( ) [x]/2.32]/2]

hence (2.5) follows from (2.3). O
2.2. Inequalities for subharmonic functions

Concerning the subharmonic functions, our main argument is a comparison between the value of the
function at some point € By, \ {0} and the value of its mean value at some shifted ragitél + ¢),
proved in [4].

Lemma2.4.Letw € C%@x € Bi )\ {0}) be any nonnegative subharmonic function. Theris
monotonous for small, either decreasing withim,_.o N ~2w(r) > 0, or nondecreasing and bounded.
And there exists a consta6t(V) such that, for any € (0, 1/2],

w(z) < C(N)e*Nw(|z|(L+¢)) nearO, (2.7)

with the sign+ if w is nondecreasing, and the signif w is decreasing. Consequently, for smaknd
any@ > 1,

72(r) < wl(r) < (C(VN)e"M) B (r(1 + )%, (2.8)
And for smallr and any@ € (0, 1), if w # 0 nearO,

72(r) = wl(r) > (CWNM) 9w (r(d £ ) w(r). (2.9)
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As a consequence, any estimatawobf the form
w(r) = O(|Inr|’r*) asr—0 (2.10)
for given realsz, b implies the corresponding estimate
w(z) = O(]In ]me\xla) asr — 0, (2.11)

see also [3,22].
Property (2.1) of the superharmonic functions has to be compared with the following property, often
used in [4].

Lemma 2.5. Letw € C?(B; \ {0}) be any nonnegative subharmonic function, gnd Aw. Then there
is a constanC' (V) > 0 such that, for any € (0, 1/2] andr small enough,

w(r) = C(N)e2r? (s). (2.12)

in g
s€[r(l—e),r(1+¢)] g

Proof. Indeed, we haver(’' ~1w,), = rV—13. First, integrate overf| (1 + £)%/2] for » small enough.
Eitherw is decreasing, then

r(1+e)t/2
—rN 1w, (r) > / sN1g(s) ds, (2.13)

and a new integration gives

r(L+e)t/? 7(1+e)/?
w(r) > / =N / sN=1G(s) ds dr,

T T

hence

) S (1e2p2 ; als). .
w(r) = Cer SE[TTE?+€)] g(s) (2.14)

Orw is nondecreasing, and we find

r(14-€)1/2
(r1+ &)Y . (r(1 4 £)?) > / sN=1g5(s) ds,

T

hence

r(14e)1/? T(1+e)*/?
w(r(l+e) > C / AN / sN-15(s) ds dr,
T

T

which now implies

w(r) = Ce??  min_ g(s). (2.15)
s€[r(l—e),r]

In any case, (2.12) follows. O
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At last we recall some elementary properties given in [4].

Lemma 2.6. Leto € R, and lety € C?((0, 1)) be nonnegative.
(i) Assume that

Ay(r) = ypr(r) + yr(r) < Cr°

,
on (0,1), for someC > 0. lf ¢ + N < 0, theny(r) = O@F°*?). If o + N = 0, then
y(r) = O@?N|Inr|). If o + N > 0, theny(r) = Or?>N). If ¢ +2 > 0andlim,_oy(r) =
lim, o7V 1y,.(r) = 0, theny(r) = O@F+?).

(i) Assume that

Dy(r) = Cr°
on(0,1) for someC' > 0. If o + N < 0, theny(r) > Cr°*2 for anotherC > 0. If o + N = 0,
theny(r) > Cr?~N|Inr|. If =N < o < —2,theny(r) > Cr>~N.If yis bounded, thea +2 > 0.
If o +2 > 0andlim,_oy(r) = lim,_or"1y.(r) = 0, theny(r) > Cro+2.

2.3. Bootstrap result

Our third tool is a bootstrap result proved in [4], allowing to convert a shifted inequality into an
ordinary one. Let us recall it for a better understanding.

Lemma 2.7. Letd, h,l € R withd € (0,1) and y,® be two continuous positive functions on some
interval (0, R]. Assume that there exist sofieM > 0andeg € (0, 1/2] such that, for any € (0,e0],

y(r) < Ce"d(r)yd(r(1 —¢)) and max d(r) < Mo(r), (2.16)
or else,
y(r) < Ce o)y (r(1+ <)) and Tem%ﬂ d(1) < MP(r), (2.17)

for anyr € (0, R/2]. Then there exists anothér > 0 such that
y(r) < CP(r)Y/ -9 (2.18)

on(0,R/2].

3. A priori estimates

Let us return to system (1.1). First, notice that; = 0 in By \ {0}, then v = 0. Excluding this case,
there exists somé' > 0 such that

v(x) > C (3.1)
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in By, \ {0}, from the maximum principle. The functiom always satisfie®(r) = O@r?—N), since
rN=27 is concave near the origin. Moreover, from the Brezis—Lions lemma#8¢ € L (Bi), and
there exists somé€, > 0 such that

—Mv = |z|u? + Cabp  in D'(By), (3.2)
wheredg is the Dirac mass at the origin. And this implies that

|im0rN*25(r) =Cb. (3.3)

Notice thatu is positive inBy, \ {0}, since u € C?(B1\{0}) and Au(z) > C|z|* from (3.1). Butu can
eventually tend to 0 at the origin.

3.1. Main estimates

In the next theorem, we give a first inequality for the mean value, which is essential for upper or lower
estimates.

Theorem 3.1. Letu,v € C?(B1\ {0}) be any nonnegative solutions of sysidmi)with p, ¢ > 0. Then
there exists som@ > 0 such that, for any- € (0, 1/2),

a(r) = Cre2min(T?(r), vP(r)), (3.4)
o(r) = CrPt2ai(r). (3.5)

Proof. We only need to prove the estimates+#far 0 small enough, from the continuity and the positivity
of @, 7. Hence we can assume thai are monotonous. We first apply Lemma 2.5 to functicend get

— > 2,.a+2 i P(s). .
u(r) = Cer Se[rﬂ[ﬂgl)gﬂﬁﬂ vP(s) (3.6)

Then eithep > 1, hence? > v?, and (3.4) follows from (2.3). Qs < 1, hence? is still superharmonic,
and (3.4) follows by applying (2.3) to”. Now we apply Lemma 2.1 to functiom For anye € (0, 1/2],

o(r) > Ce2rbt2 min ua(s). 3.7
’U(T‘) Cetr se[r(l—al),r(l—i—a)]u (S) ( )

First, assume that > 1. Thenu? > w?, hence

o(r) > Ce?rbt? min 4(s).
s€[r(l—e),r(1+¢)]

In particular, from the monotonicity af,
max(w(4r/5),7(4r/3)) > CrP+2ai(r),

and (3.5) follows from (2.3).
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Now assume thaj < 1. Then

wi(r) > C( ﬂqfl(s))a(r), (3.8)

min
s€[r(l—e),r(1+¢)]
from Lemma 2.4. Reporting (3.8) into (3.7), we deduce that

o(r) > Ce?rbt? min 791(s) min a(s).
s€[r(1—e)2,r(14-¢)?] s€[r(1—e),r(1+¢)]

Hence

o(r) max a1 9D(s) > CerPt? n @
s€[r(1—e)2,r(14+<)? s€[r(l—e),r(1+€)]

(s)-
It implies
o(r/(L+€)a™ D (r(1 — £)?/(1 + €)) > C2rt2u(r)
if @ is nonincreasing, and
T(r/(1— )T D (r(1+)?/(1 —¢)) = Ce?r"F2a(r)
if w is nondecreasing. In any case, we deduce from (2.3) the estimate

u(r) < Ca_zr_(b+2)ﬁ(r)ﬂ(l_® (rl+e))

after an homothethy ofnn Now we can use our bootstrap technique and apply Lemma 2.7 with function
&o(r) = r~®+25(r), becausa satisfies (2.3). Hence we find

a(r) < Cr~CHdagl/agy,
and we get again (3.5).0

Now we can prove an essential comparison property for the superharmonic composieich shows
the regularizing effect due to the subharmonic componenh turn, it gives a remarkable punctual
relation betweem andv, which is valid for anyp, ¢ > 0.

Theorem 3.2. Letu,v € C?(B1\ {0}) be any nonnegative solutions of systdni)with p,q > 0. Then
there exists a constait > 0 such that, for any: € By, \ {0},

C'0(|z]) < w(z) < Co(a)), (3.9)

and, consequently; satisfies the Harnack inequality i, \ {0} . In particular, v always satisfies the
estimate

v(x) = O(|z[>) (3.10)
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nearO, and
O(x|*t2~N=2) if p > (a + N)/(N — 2),
u(z) = { O(zN|Inlzl)) ifp=(a+N)/(N —2) (3.11)
O(|x|2_N) if p<(a+ N)/(N —2).

Moreover, there exists sondé> 0 such that

u(@) < Ou(|z)) (3.12)
in By, \ {0}, and, consequently,

v(z) > Clz|2ui(x). (3.13)

Proof. The minorization ofv has been proved in Lemma 2.2. Here also we can supposg:thatO is
small enough. Applying Lemma 2.3 to functionwe get

o(e) < ol 2( max ) + ()]

But u is subharmonic. From Lemma 2.4 there exists another consi@ij such that

u(x) < C(N max . 3.14
(v) ( )[\x\/2,3\:v\/2] ( )

Then, from estimate (3.5),

v(z) < C{|x|b+2 max u? +5(|x|)} < C[

v+ .
[lal /4.9lz] /4] 5+ 7(|a])]

max
[lz]/4.92|/4]

Using (2.3), we finally deduce (3.9). It implies thatsatisfies the Harnack inequality i/, \ {0} .
Clearly, (3.10) follows from (3.3), and (3.11) from (3.10), (3.14) and Lemma 2.6. From the Harnack
inequality, there exist some constantg C> > 0 such that

C1oP(r) < vP(r) < C20°(r) (3.15)

for r € (0,1/2). As a consequencd, also satisfies the Harnack inequality. Indeed, we can write the
equation forz under the form

Au = hu  with h = r%P /.
Now, from (3.15) and (3.4),
hr) < CrogP(r) /a(r) < Cr 2,
which, in turn, implies the Harnack inequality. Then, for ang (0, 1/2) and any € (0, 1],
C~Ya(r) <a(r(l+¢)) < 2Ca(r), (3.16)

and (3.12) follows from (3.14) and (3.16). Finally, we obtain (3.13) from (3.5), (3.9) and (3.12).
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Remark 3.1. From (3.5), (3.4) and (3.15), we always have two symmetric relations i), 1

o(r) = CrPt2ai(r), a(r) = Crot2oP(r). (3.17)
Hence
a(r) > Crot2tO2egpay - 5(r) > Opbt2Het2agra(p, (3.18)

Notice also the inequalities for amgy> 0O,
C1u’(r) < ui(r) < Cau'(r), (3.19)

for some other constants;, C> > 0. Indeed, this comes from (2.8) and (2.9), where we fix and use
(3.16).

Remark 3.2. On the one hand, inequality (3.13) implies that
Au(z) > C|a | HO+2Pypa(y) (3.20)

in By, \ {0}. That means that: is a subsolution of an equation of type (1.5), with sjlli= pq, and now
o = a+ (b+ 2)p. On the other hand, (3.19) and (3.17) imply that

—A(r) = rPud(r) = Crhul(r) > Crbtiet2agra(y) (3.21)
in (0, 1/2). That means that is a supersolution of an equation of type (1.5), with= pg ando =
b+ (a+ 2)q.

Remark 3.3. If ¢ > 1, we can prove the Harnack property foin a shorter way. We apply (2.6) to the
superharmonic function and get

w@zey [ [l=afN - (1al/2)" V(-0 s

B(w,|x[/2)

>2N=2(oN=2 _ 1)cN]m\2_N/ |2|Pud(2) dz
B(z,|z[/4)

> C’|x|b+2*N/ u?(z) dz
B(z,|z|/4)
in By, \ {0} . But the functionu? is also subharmonic, singe> 1. Then also
2—2N‘x’—N

u!(z) <
|Bi

/ u9(z) dz < Claz|~F2y(a),

B(w,|x|/4)

hence we find again (3.13). Then we write the equation satisfiedunyler the form
—Mv = Hv  with H = |z|?u/v,

and observe thatl (x) < C|z|~2. This implies the Harnack inequality iB1/, \ {0}.
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3.2. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. From (3.21)7 is a supersolution of an equation of type (1.6), With= pq > 1
ando = b+ (a + 2)q. Theno + 2 > 0, from [2, Lemma A2], that is{ > 0. Herepq > 1, hence, from
(3.18),

u(r) < Cr™7, o(r) < Cr&.
Then from (3.12) and (3.9), we get
u(@) < Clz|™,  w(x) < Cla| %, (3.22)

and (1.17) follows from (3.10) and (3.22). Moreover;if< N — 2, thenu = o(r>~), hencea is
bounded, since it is subharmonic. Ands bounded from Lemma 2.4.0

Proof of Theorem 1.2. From (3.21)7 is a supersolution of an equation of type (1.6), with= pg < 1
ando = b+ (a+2)q. Then@ < (N +0)/(N — 2), from [2, Lemma A2], that is§ < N — 2. And (1.18)
and (1.19) follows directly from Theorem 3.20
Remark 3.4. In the sublinear casey < 1, relations (3.18) imply the estimates from below:

u(r)y = Cr7, o(r) = Cr, (3.23)
for r € (0, 1/2]. From (3.9), we also deduce that

v(z) > Clz|~¢ (3.24)
in By, \ {0}
3.3. Further results in the superlinear case

Estimate (3.13) can be written under the equivalent form
[ u(z) < Ozl u(z) ™. (3.25)

Let us give another way to obtain relations of the same type. As in [2], we look for a direct comparison
between the two functions andv. In [2], one uses a product of the solutions in order to get some
nonexistence results. Here the same method applies with a quotient of the solutions and gives again the
estimate (3.22):

Proposition 3.3. Letu, v € C?(B’) be any nonnegative solutions of systgni)with pg > 1. Then for
anyd € (0, 1)with d < 1/q, there exists a constadt; > 0, such that

e[ u(z) < Callz o))" (3.26)
in By/5 \ {0} . As a consequence, we find again the estimate

u(x) < Clz| 7.
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Proof. Let us consider the functiofi = uw™v~™, for somem > 1, and compute its Laplacian in
Bi2 \ {0}

Af = m(m — D™ 20 1" |uVu — uVol? + mlz| ™ ol 4 (m— 1) Pu™ T
Then for anyk > 1,

Af = u™ ™™ (m)z|%P T 4 (m — 1)|2[Pu?)

> (m — 1)|z| @00/ Ky m=14@ 0/ ky —m+p+DE-1/k

from the Holder inequality. Lei = (m — 1)/m € (0,1). Ifd < 1/q < p, we can choose

1-dq p+1-dig+1)

p— 1 —_—

k + b d b d )

which gives
d a+(b—a)/k
Af > ——|z] m, (3.27)
1-d

with

n=1+(pq—1)A-d)/(p+1-d(g+1)). (3.28)

Thenn > 1, and from the Osserman—Keller estimate,

f(z) = u/ D (g)p= A= (g) < C|x|~(0t2HE-a/R)/0-1) — | |(dE=)/A=d)

in By, \ {0}, where C' = C(N, p,q,a,b,d). And (3.26) holds for anyl < 1/q and, by continuity, also
for d = 1/q. Itimplies that

Au(z) > C|a|@PErPr/dyp/d,
Asp/d > pq > 1, we again deduce that
u(z) < C|x|—[a+2—p§+pv/d]/(p/d—l) = Clz| ™

in By, \ {0}, from the Osserman—Keller estimate

4. The convergences
4.1. Possible behaviours

Here we try to give the precise behaviour of the solutions according to the different values of the
parameters. Let us define, as in [4],

L=(N—-2p—(a+N), L= —2)q—(@b+N). (4.1)
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Notice the relations

lh+pleo=@Pg—1WN -2-7), l+q¢i=pPq¢-1N -2-§). (4.2)

The study will show that the behaviour of the coupley) can present various types which can be divided
in five categories whem, ¢ # 0, N — 2:
(1) (J 7, ] 79);

() (fa|* =2, [222N), (|2|*+2, 1);

() (f2N, otz N=20), (1, |2(0+2);

(V) (>N, 22 N), @, f>N), (e, 1);

V) (2> NInfzll, [z2~Y), (z>~N]In|z]], 1).
As in [4], the system can adnanisotropic solutionswhich makes difficult the question of convergences.

More precisely, the solutions,v of type (I) can be both anisotropic. In that case, the problem
of the convergences is still open. Consider any solutipn) satisfying an upper estimatg(x) =
O(lz|™), v(z) = O(z|%). Let (r,0) € (0,+0c) x SN~1 be the spherical coordinates RV \{0}.
The change of variables

u(x) = |z| Ut 0), v(x) = |z V(t,0), r=|z|,t=—Inr, (4.3)
leads to the autonous system in the cylindery{(8;) x SN~

{Utt(N227)Ut+ASN_1U+7(7N+2)UVP:0,

Vit — (N — 2= 26)V; + Agn1V — (N — 2— )V + U7 = 0, (4.4)

We look at its behaviour whentends to+oco. As in [4], the stationary system associated to (4.4),

{ASN_1U +aU — VP =0,

Agn-1V — BV + U7 =0, (4.5)

with a = v(y — N 4+ 2) andg = £V — 2 — £), can admit nonconstant solutions for suitable pos-
itive values ofa and 3. We conjecture that the limit s&t at infinity of the trajectories of{(, V) in
C?(SN-1) is contained in the set of stationary solutions; and that, i @3, thenG = {0}, hence
u(z) = o(\z| ™), v(x) = o(|z| ).

Concerning the solutions of type (ll) and (Ilkhe situation is not symmetric by respectit@nd v.
The following lemma shows that the behaviouruaf often more anisotropic than the behaviouwof

Lemma 4.1. Letu,v € C?(B1 \ {0}) be any nonnegative solutions of syst@ni), with pq # 1.

(i) Assume thati(z) = O(jz|*t2~(N=2P), y(z) = O(z|>~ V), and(¢ — N + 2)(pqg — 1) > O and
p=UN—-2)p—(a+2[(N —2)p—(a+ N)] > 0. Then

|im0|x|N*2v(x) =C5>0, (4.6)
and, ifp > 0, then

lim [ 2 (ja,.) - p7C) 47
xr—
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exists(in the uniform convergence topology 6/ —1), and it belongs t&ker@gn-1 + pI).
(i) Assume thati(z) = O(z|>~ V), v(z) = O(|z|*+> V=24, and(y — N + 2)(pqg — 1) > O and
n=—((N—-2q—0+2)N —2)q— (b+ N)) > 0. Then
|im0|x|N*2u(x) =(Cy >0, (4.8)

and, ifp > 0, then

lim || N =21+ (z) = = 10f. (4.9)

(iii) Assume that(z) = O(|x|“+2), v(z) = O(1), andv = (a + 2)(a + N) > 0and&(pg — 1) > 0.
Then

Iimov(x) = (% >0, (4.10)
and, ifv > 0, then

glciino x| =@y (|z],.) — v 10y (4.11)

exists(in the uniform convergence topology 6" ~1), and it belongs tker(Agn-1 + vI). And
v(z) — C4 = O(|z[¢Ca—Y),
(iv) Assume that(r) = O(1), v(z) = O(z|*T2), andyu = —(b+ 2)(b + N) > 0and~(pg — 1) > 0.
Then
Iimou(m) =C1 >0, (4.12)

and, if > 0,then

|im0|x|*(b+2)v(x) =pu Y, (4.13)

andu(z)— C} = O(|z|Pi—Y).
Proof. In case (i), the proof of [4, Lemma 6.4] adapts: we define
u(z) = |2[*T2V2rU(,0),  o(x) = 2PNV, 6), (4.14)
and get

{ U, —[N—=2-2((N —2)p — (a+ 2)U; + Agn1U" + pU’ — V'? =0, (4.15)

Vi 4+ (N = 2)V/ + Dgn1 V' + e E-N+2ba-Dtra — ,

and the exponential is negative. From [6], there is a congtant 0 such thaf|V'(t,.) — C2|osn-1) =

O(e ?) for somea > 0. Then the functioW’'(¢,0) = U'(t,0) — p~1C} satisfies an equation of the
form

W), — [N —2—2((N —2)p — (a + 2))]W/ + Dgn-1 W' + pW' = 1p,
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where [[9(, )l csy-1) = O(e ") for some > 0. Then we can apply the Simon theorem as in [6,
Theorem 4.1], see also [7,17]. It implies that the functiG(t, .) precisely converges to a solution of the
stationary equation

Agn-1ww + pw =0,

that means an element of k&g(v-1 + pI).
In case of (ii), we define

u(@) = |27 NU"60),  v(@) = [af T N2V, 0),
and now get

Ul + (N — 20Ul + Agn1U" — e~ N+2a-1iym — g
{ Vi~ [N = 2= 2((N = 2)g = b+ 20V’ + BV = pV" + U™ = 0.

Then there is a constadl; > 0 such that|U”(t,.) — C1||¢(sn-1) = O(e*") for somea > 0. But now
the functionW”'(t, ) = V" (t,0) — p~1C? converges to a solution of the stationary equation

Agn-1mw — pw = 0,
that is 0. We get (iii) and (iv) in a similar way.O

In case of types (lll), (IV) or (V), the two solutions are isotropic. In those cases, we shall use the results
of [4], which adapt with no difficulty.

Lemma 4.2. Letu,v € C?(B1 \ {0}) be any nonnegative solutions of syst@ni), with pq # 1.

(i) Assume that(z)+v(z) = O(z|>~") near0, andp < (N +a)/(N —2)or g < (b+N)/(N —2).
Then

iiinoyx\N*Zu(x) =C1 >0, (4.16)

or
lim 2|V 2u(z) = Co > 0. (4.17)
(i) Assume thati(z) = O(|z|>~), v(z) = O(1), anda + N > 0and(N —2)g — (b+2) < 0. Then

|imoym\N—2u(x) =C1 >0, lim v(z) = C5 >0, (4.18)

andu(z) — Cy = O(|x|>+2-(N=2)a),
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(iii) Assume that(z) = O(1), v(z) = O(z|>~V), andb + N > 0and (N — 2)p — (a + 2) < O.
Then

lim u(z) = Cy >0, |im0|x|N_zv(x) =C5 >0, (4.19)

andu(z) — O] = O(|z|*+2~(N=2p),
(iv) Assume that(x) + v(z) = O(1), anda +2 > 0,0rb+ 2 > 0. Then

Iimou(x) =1 >0, (4.20)
or

Iimov(m) =C% >0, (4.21)

andu(z) — C1 = O(|z|**?) (or v(x) — Cy = O(|z["+2)).
(v) Assumeu(r) = O(z[>N|In|z|]), v(z) = O(z[>N),andp = (a + N)/(N —2)andq <
b+ N)/(N — 2), then
lim J2]"%u(2) = C2 >0, lim |«[""2|In ]| tu(z) = CBJ(N — 2), (4.22)

andu(z) — CY /(N — 2)|z|>~ V| In |z|| = O(lz|>~ ).
(vi) Assumeu(z) = O(|z|>~V|In|z||), v(z) = O(1), anda + N = 0andq < (b + 2)/(N — 2), then

lim v(@) = C3 >0, Iim |e[N 2| Inf|| "u(z) = CF /(N - 2). (4.23)
(vii) Assumaeu(z) = O(|z|>~N), v(z) = O(|In|z||), anda + N > 0andq = (b + 2)/(N — 2), then
glciino|x|N‘2u(x) =C1 >0, J[nm] In |x|\_1v(x) = CY/(N - 2). (4.24)
(viii) Assumeu(z) = O(1),v(z) = O(|In |z||), anda + 2 > 0 andb + 2 = 0, then
lim u(e) = C1>0,  lim|In jz|| o) = CL/(N - 2), (4.25)
andu(z) — (Cf/(N — 2))|Inz|| = O(1).
4.2. The superlinear case

First, we give some general properties of convergence:

Proposition 4.3. Letu,v € C%(By \ {0}) be any nonnegative solutions of systéin), with pg > 1.
Assume thag < (b+ N)/(N —2)andy > N — 2.
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(i) Suppose > (b+ 2)/(IN — 2)and
v(x) — O(|£E|b+2_(N_2)q).

Hencea + N > 0, and either(4.8) and (4.9) hold withCy > 0, or u(x) = O(2).
(i) Suppose = (b + 2)/(IN — 2)and

v(z) = O(]In|z]]).

Hence agairu + N > 0. Then(4.25)holds withCy > 0, or u(z) = O(1).
(i) Now suppose < (b+ 2)/(N — 2)and

v(x) = O(1).

If a + N < 0, then(4.10)and (4.11)hold. Ifa + N = 0, then(4.23)holds. Ifa + N > 0, then
(4.18)holds if C1 = 0,thena + 2 > 0, and(4.20)and (4.21)hold withC{ > 0, or (4.10)and
(4.11)hold.

Proof. (i) ¢ > (b+2)/(N—2). Thena+N > 0;indeed{ > 0, hence¢+2)q > —(b+2) > —(N —2)q.
Now

Na(r) < Crot(+2p—(N-2)pq

in (0,1/2), anda + (b + 2)p — (N — 2pqg + N = (pg — 1)(y — N + 2) > 0. Thenu(z) = O(z|>~)
from Lemma 2.6 and (3.12). Now Lemma 4.1(ii) applies since N — 2 and (4.8) follows. I{C; > 0,
then Lemma 4.1(ii) gives (4.9). ¥, = 0, thenw is bounded, hence alsofrom (3.12).

(i) g = (b+ 2)/(N — 2). Here again we get+ N > 0. Then

Nu(r) < CréInrlP < Cor®™*

in (0, 1/2), for anye > 0, hence again(x) = O(lz|>~") from Lemma 2.6 and from (3.12). Then (4.25)
follows from Lemma 4.2(vii). IfCy = 0, thenu is bounded as above.
(i) ¢ < (b+2)/(N — 2). Here

Nu(r) < Cr®

in (0, 1/2). From Lemma 2.6, we distinguish three cases:

— Eithera + N < 0; thenu(z) = O(|z|**2). Then (4.10) and (4.11) follow from Lemma 4.1(jii).

— Ora+ N = 0; thenu(z) = O(|z|>~"|In|z||), and we get (4.23) from Lemma 4.2(vi).

— Ora+ N > 0; thenu(z) = O(z|>~Y). Then (4.18) holds from Lemma 4.2(ii). f; = 0,
thenu(x) = O(1). It impliesa + 2 > 0 from Lemma 2.6. And we get (4.20) and (4.21) from
Lemma 4.2(iv), withu(z) = C; + O(|lz|*T?). If C} = 0, then (4.10) and (4.11) hold from
Lemma 4.1(iii)). O
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Proposition 4.4. Letu,v € C?(B1 \ {0}) be any nonnegative solutions of sysidni). Assume
u(zr) = O(1), v(x) = o(|z[>),

andb+ N > 0and~ > 0. Then, either

(i) b+ 2 < 0and(4.12)and(4.13)hold; or
(i) b+ 2= 0and(4.25)holds or
(i) b+ 2> 0and(4.20)and(4.21)hold, and ifC] = 0, then(4.10)and (4.11)hold.

Proof. (i) b+2 < 0. Hencex +2 > 0, sincey > 0. Theny = —(b+2)(b+ N) > 0, and Lemma 4.1(iv)
applies and (4.12) follows. We deduce (4.13)Cf= 0, thenu(z) = O(|z|*°), with e = v(pg — 1) > O.
But any estimatei(x) = O(|x|?) implies the estimate

~Mu(z) < ClafPtee

in D'(By ), becausér|*T% € LY(By,), sinceb+ N > 0. Thenu(z) = O(lz|""2T4) if b+ 2+¢eq < O,
andv(z) = O(|In |z||) if b+2+eq = 0, andv(z) = O(1) if b+2+4¢eq > 0, from the maximum principle.
Till b+ 2+eq < 0, it gives

Na(r) < o+ (0+2)p+pee

in (0,1/2), henceu(z) = O(|z|¢+2FC+2ptras) — O(|x|0FP%), from Lemma 2.6, sincey + pge > O.
Now observe that the sequence definedpy= co + pqe,,—1, satisfies lim_, ;. &, = +o00. Then by
modifying slightly g if necessary, we deduce thdt:) = O(1) after a finite number of steps. Then

Au(r) < Cr

in (0, 1/2), henceu(zr) = O(|z|**2) from Lemma 2.6. At last, (4.10) and (4.11) hold from Lemma 4. 1(jii).
(i) b+ 2 = 0. Hence agaim + 2 > 0. Then Lemma 4.2(viii) gives (4.25). Moreover(f = 0, then
v(z) = O(1), andu(z) = O(|z|**+2) from Lemma 2.6. Then (4.10) and (4.11) hold as above.
(i) b+ 2 > 0. Thenu(x) + v(x) = O(1). It impliesa + 2 > 0 from Lemma 2.6. And we get (4.20),
(4.21) from Lemma 4.2(iv), withu(z) = C} + O(|z|*T2). If C{ = 0, then (4.10) and (4.11) hold from
Lemma 4.1(iii)). O

Now we can give the different types of behaviour according to the valuesntlé. First, we look at
the solutions which have a power upper estimate strictly smaller than the one of the particular solution
givenin (1.14).

Proposition 4.5. Assumeyg > land0 < £ < N —2,andy > N — 2. Letu,v € C?(B; \ {0}) be any
nonnegative solutions of systénl), such that

u(z) = O(|z| "), or wv(x)= O(|z|~5*¢), for somes > 0. (4.26)

Theng < (b+ N)/(N —2)andp > (a + N)/(IN — 2), and Proposition4.3 applies. Moreover, if
q = (b+2)/(N — 2)andu is bounded, then Propositich4 applies.
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Proof. From (4.2), we havé; + plo < 0 < l2 + ql1, hencel; < 0 < I3, thatis,g < (b+ N)/(IN — 2)
andp > (a + N)/(N — 2). From (1.17) we have(z) = O(|z|~¢), hencev(z) = o(jz|>~V). Then the
constantC, defined in (3.2) is zero. Now notice that the assumptir) = O(|x|~7*¢) implies

—Mo(z) < Clz|P~791eE = Oz| =276 Fe
in D'(By2), becausez| =274 € LY(By,), sinceN — 2 — £ > 0. Hence

O(Infz[l)  if &= ge,
0(1) if & < ge,

O(x| %) if € > ge,
v(z) =
from the maximum principle. And any estimatér) = O(|z|~¢*¢") implies

Nu(r) < Cre=sptee’ = op=2-vtpe!

in (0, 1/2). Consequently,

O(|lz|~7+re") if pe <v—N+2,
u(x) =< O(z|>N|In|z|]) ifp’=~v—-N+2,
o(lz|>N) if p/ >v— N +2,

from Lemma 2.6 and (3.12). We can start from the assumptfoh = O(|z|~7*¢), with e small enough.
Considereg = ¢ ande = ge, and defines,, = pe/,_; ande), = ge,,. Then, by inductionu(z) =
O(jz|~7*e») andv(z) = O(z|¢Fen), till pe/, < v — N + 2, andé > qe,. Bute, = pge,_1, hence
lim,_ ., = +00. Then by modifying sligthlye if necessary, we find after a finite number of steps
that eitheru(z) = O(|z|>~), orv(z) = O(1). Now if u(z) = O(|z|>~Y), then

—Mu(z) < x|~ W2

in D'(By,,), becausér|*~ (N =24 € LY(By ), sinceq < (b + N)/(V — 2). Hence in any case we have
the estimate

v(x) = O(\x!b+2_(N_2)q) + O(’ In ]mH), (4.27)

and Proposition 4.3 applies. Wher (b + 2)/(N — 2) andu is bounded, then Proposition 4.4 applies,
sinceb+ N >0andy >N —-2>0. O

Proposition 4.6. Assumepg > 1and0 < € < N —2,andy < 0. Letu,v € C%By \ {0}) be any
nonnegative solutions of syst¢inl). Assume that

u(z) = O(|z|77*%), or w(x)=O(|z|7*T¢), for some smalt > 0. (4.28)

Thenb+ 2 < 0,a+ 2> 0,and(4.10)and(4.11)hold.
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Proof. We havey < 0 < &, henceb + 2 < 0 anda + 2 > 0. As above, the assumptici(z) =
O(lz|~7*+) impliesv(x) = O(jz|~¢79%), till ge < £. Now u(z) tends to 0. From Lemma 2.6, the estimate
v(z) = O(z|~¢+¢) still implies thatu(z) = O(z|~7*+<"), since—v + pe’ > 0. Considersy = ¢
ande) = qe, ande, = pe’,_ 4, €, = qe,. Thenu(z) = O(lz| o) andv(z) = O(lz|~&*=n), till
gen, < €. Butlime, = 400, hence we deduce tha{r) = O(1) after a finite number of steps. Then
againu(zr) = O(|z|**2) from Lemma 2.6, since + 2 > 0. As above, we find (4.10) and (4.11) from

Lemma 4.1(jii). O
Now we consider the cases where the particular solution (1.14) does not exist.

Proposition 4.7. Assumey > 1and¢ > N — 2. Letu,v € C?(B;1\ {0}) be any nonnegative solutions
of syster1.1).

(i) Assume > (a+ N)/(N —2). Theng < (b+ N)/(N —2)and~ > N — 2. And either(4.6) and
(4.7)hold withC> > 0, or Proposition4.3applies. And if; > (b+ 2)/(N — 2) andw is bounded,
then Propositiort.4 applies.

(i) Assume < (a+ N)/(N —2)andq < (b+ N)/(IN — 2). Then(4.16)and(4.17)hold. IfC, > 0
andC1 = 0,thenp < (a + 2)/(N — 2), and (4.19)holds and if C} = 0, then(4.6) and (4.7)
hold. If C> = 0, then Propositiord.3applies(with a + N > 0). And if¢ > (b + 2)/(IV — 2) and
u is bounded, then Propositich4 applies.

(i) Assumep < (a + N)/(N —2)andq > (b + N)/(N — 2). Then either(4.19) holds for some
C> > 0, and ifC] = 0O, in particular, if b + N < 0, then(4.6)and(4.7) hold. OrC, = 0. Then
eitherb + N > 0, and Propositiod.4 applies. Orb + N < 0,and(4.10)and (4.11)hold.

(iv) Assume = (a + N)/(N — 2). Theng < (b + N)/(N — 2), and(4.22) holds. IfC> = 0, then
Proposition4.3 applies(with a + N > 0). And if¢ > (b + 2)/(N — 2) andu is bounded, then
Proposition4.4 applies.

Proof. We have estimates (3.10) and (3.11) from Theorem 3.2.

() p > (a+N)/(IN —2). Herely > 0; andi>+ql1 < 0, hencd, < 0, thatisg < (b+N)/(N —2), and
I1+4 pla < l1(1—pq) < 0, thatis;y > N — 2. Asv(z) = O(jz[>V), we haveu(z) = O(jz|*+2~(N=2p),
Then we find (4.6) and (4.7) from Lemma 4.1())d% = 0, then

_A’U(x) g C’m‘b+(a+2)q—(N—2)pq _ C’m‘(f—N-i-Z)(pq—l)—N

in D'(By7), becausgr |~ N+T2ea-1=N ¢ L1(B, ). Applying the maximum principle, it follows that
(x) = O(z2~N+90) + O(1), witheo = (€ — N + 2)(pg — 1) if c0 # N — 2; andv(z) = O(|In|z]]) if
€0 = N — 2. But from Lemma 2.6, any estimatéz) = O(|z|>~V*¢) implies

Oo(lz|>N) if p<(a+ N+ pe)/(N - 2),

{ O(|x|“+2+p5_(N—2)p) if p>(a+ N +pe)/(N —2),
u(z) =
O(lz >N In [x]]) if p=(a+ N +pe)/(N - 2).

In the first case,

—Av(z) < C|a|rHet2a-(N=2patree — |y |co-N+rae (4.29)
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in D'(By2), hencev(z) = O(|x|>N*eotPra=) 1 O(1) if eg + pge # N — 2. But the sequence defined from
eo by e, = €0 + pgen_1 tends to+-oco. Hence, changing slightlyy if necessary, after a finite number of
steps we find that either(z) = O(|z|>~), or v(z) = O(1). In any case we have estimate (4.27). And
we get the conclusions of Proposition 4.3, and of Proposition 4.4 incasé + 2)/(N — 2) andu is
bounded.

(i) p < (@ + N)/(N —2)andg < (b + N)/(N — 2). Then we havei(z) + v(z) = O(z|>~V) from
(3.10) and (3.11). First, notice that I, < 0, hence alsd, + pl, < 0, so thaty > N — 2. Then we
deduce (4.16) and (4.17) from Lemma 4.2())(Jf = 0, thenu(x) = O(1), sinceu is subharmonic. If
C> > 0andC; = 0, then

Nu(r) > Cro-(N=2p

in (0,1/2), hencex + 2 — (N — 2)p > 0 from Lemma 2.6; and (4.19) holds from Lemma 4.2(ii), since
b+ N > 0. Moreover, ifC} = 0, thenu(z) = O(|z|*t?~(N=2P) and (4.6) and (4.7) hold. i, = 0,
then

(o) = { QUL I 0 ity £+ 2/ 2
~ Lef@) = O(In]al) = (+2)/(V -2

Then Proposition 4.3 applies after noticing that her¢ N > 0. And Proposition 4.4 applies when
q = (b+2)/(N — 2) andu is bounded.

(iii) p < (a+N)/(N —2)andg > (b+N)/(N — 2). We still haveu(z) +v(x) = O(z[>~"). We know
thatr?~N7(r) has a finite limit. It is necessary 0, singg’u? € L(By)2), andg > (b + N)/(N — 2),
andrbu? > Crbu? from (3.19). Henceu(r) = O(1) andv(z) = O(|z|>~"). Now v satisfies (3.2) for
someC > 0, andu has a finite limitCj > 0.

First, suppose tha&t, > 0. Thena+2—(N —2)p > 0from Lemma 2.6. Eitheés+ N > 0. Then (4.19)
holds. IfC{ = 0, thenu(z) = O(|z|*T2~(V=2P) as above. And (4.6) and (4.7) hold from Lemma 4.1(j).
Orb+ N < 0. ThenC} = 0. Indeed, ifC] > 0, thenrbud > Cr*u? > Cr~—V; this is impossible
becausez|"ud(|z|) € L1(By/,). Then we obtaini(z) = O(|z|**2~(V=2F) from Lemma 2.6 and (3.12).
And (4.6) and (4.7) hold again.

Now suppose that’, = 0. Eitherb + N > 0. Then

—Mo(z) < Clz|b
in D'(By2), hencev(z) = O(z|*T2)+0( In |x[), so that(z) = o(|z[>~). Now~yq = {+b+2 > b+N,
hencey > 0. Then Proposition 4.4 applies. @r+ N < 0, andC; = 0, as above. Then we still have
a+2—(N—2)p>0.Indeed¢ > (N — 2) implies thata + 2 — (N — 2)p > —(b + N)/q. Itimplies
thatu(z) = O(|z|*+t2~(V=2PP) from Lemma 2.6. Letg = a + 2 — (N — 2)p. If u(z) = O(z|¥), for some
€ > gg, then

—MNu(z) < Clx|Pted

in D'(By,), becausé + N + ¢ > 0. Hence we have(z) = O(jz["t#9), till b+ 2+eq < 0. As a
consequence,

Au(r) < Cratb+2+eq)p
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in (0, 1/2). Observing thai+2+(b+2+4cq)p > v(pg—1) > 0, we deduce that(z) = O(|z|Pe+7Pa—1)
from Lemma 2.6. Defining fromag the sequence,, = ¢,_1pq + v(pg — 1), we have lime,, = +o0. It
follows thatv(x) = O(1) after a finite number of steps, and the@a) = O(jz|**?), sincea + 2 > 0.
Now (4.10) and (4.11) follow from Lemma 4.1(iii).

(iv) p = (a+N)/(N —2). Thenly = 0,12+ql1 < 0, hencd, < 0, which meang < (b+N)/(N —2).
Here we have(z) = O(|z|>~") andu(z) = O(z|>~V|In|z||). Then Lemma 4.2(v) applies and gives
(4.22). 1fC, = 0, thenu(z) = O(|z|>~), and we can apply Propositions 4.3 and 4.4 as in the second
case. O

Proposition 4.8. Assumepg > land0 < vy < N -2, 0< ¢ < N —2,andvyor ¢ # N — 2 Let
u,v € C?(By1\ {0}) be any nonnegative solutions of syst@dni). Thenb + N > 0, and Propositior4.4
applies.

Proof. We haveu(z) = O(|z|™7). If v < N — 2, henceu(x) = O(1), sinceu is subharmonic. If
v = N —2,then¢ < N — 2, hencev(z) = O(jz|~¢) = o(|lz|>~) from Theorem 1.1. Anat>~Nz(r)
has a finite limitC;, > 0. Let us prove tha€; = 0. If C] > 0, then from (3.20),

Nu(r) > cr—N

in (0,1/2). It implies thata(r) > Cr?>~N|Inr| from Lemma 2.6, which is impossible. Then we get
in any caseu(z) = O(1). And v satisfies (3.2) withC, = 0, sincev(z) = o(jz|>~%). In this case,
0<vqg=0+24+& < b+ N,sinceé < N—2,henceh+ N > 0. Then we can apply Proposition 4.40

Proposition 4.9. Assumepg > landy = 0,and0 < ¢ < N — 2. Letu,v € C¥ By \ {0}) be any
nonnegative solutions of systéinl). Then

1 —1 _ — -1
u(z) = O(] In ||| /pa )), v(z) = O(|x| 5| In|z|| a/(pa )). (4.30)
Proof. Here again: is bounded, and(r) has a finite limitC’; > 0. The change of variables (4.3) gives

Ut — (N — 2)U; + Dgn-1U — VP =0,
Vit = (N —2—=28)V; + Dgn-1V — &N —2 -V + U = 0.

From (3.20), there exists a const@nt> 0, such that, for large,
*Utt + (N — Z)Ut + Cqu <0.

If C1 > 0, there exists another constant> 0 such thale(N—z)t(Ut(t) + () is nondecreasing; it tends
to 0, sincel/, is bounded from Schauder estimates. Tbét)-+C't is nonincreasing, which is impossible.
ThenC? = 0. Now the equation

—yu + (N = 2)y; + Cy?1 =0
admits a solutiort” such thatY' () = (N — 2)/C(pg — 1))/ @-D¢=Y@a=1(1 + 0o(1)), see [19]. But

for anye € (0, 1], the functioreU is again a subsolution of this equation. Choosirgmall enough, we
deduce thatU < Y. This proves that/(t) = O@—Y®1-1), that is,u(z) = O(| In |z||~¥/®4=D). Then

—Dv(z) < Clzl’|In ‘foq/(qul) — Cla|%¢|In ’mH*q/(qul)
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in D'(By,), becauseV —2—¢ > 0. It follows thatv(z) = O(|z|~¢|In |z||~¢/®4=D), from the maximum
principle. O

Proposition 4.10. Assumeyq > 1and¢é = N — 2,andy < 0ory > N — 2. Letu,v € C%(By \ {0})
be any nonnegative solutions of systdni). Then

u() = Ol [In ]| 7/P7Y), w(@) = O(|# 2N Infa| VT, (4.31)
Proof. The change of variables (4.3) gives

Up — (N —2—29)U; + Agn-1U —y(N —2—~)U — VP =0,
Vit + (N = 2)V; + Agn 1V + U9 = 0.

Then (éV—2'V}), < 0, hencd/; < Ce~ V=2t andV has a finite limit. If itis positive, then(r) > Cr—7
from (3.4); in turn,7*@i(r) > Cr—2¢ = Cr—, which is impossible. Henc& tends to 0, hence
v(z) = o(xz|>~N). Consequentlyu(z) = o(lz|~7) from (3.5) and (3.12). From (3.21), there exists a
constantC' > 0, such that, for large,

Viu—+ (N -2V, +CV" <.

This implies thatl/(t) = O(@t~Y/®1-1) at infinity, see, for example, [6, Theorem 5.1]. We deduce that
v(x) = O(|z|?>N|In |z||~Y/®a=D) from (3.9). Then

Au(r) < Crafp5| In T|7p/(qul) = Cr7277| In T|7p/(qul)
in (0,1/2), henceu(x) = O(lz|~7|In |z||~?/®2=1), from (3.12) and [4, Lemma 2.3].0
Remark 4.1. In the critical cas& = N — 2, v = 0, we findu(z) = O(|In |z||~Y/®?~Y) as in Propo-

sition 4.9, andv(z) = O(lz|>~N|In |z||~Y®4—D) as in Proposition 4.10. But these estimates are not
optimal, as in [2, Theorem 5.1]. We conjecture that

u(z) = O(|In ‘fo(erl)/(qul))’ o(z) = OOx,Z—N’ In ’me(qul)/(qul)).
4.3. The sublinear case
Now we describe the behaviour according to the valug ef(a + N)/(N — 2).
Proposition 4.11. Assumepg < 1withp > (a + N)/(N — 2),andy # N — 2, £ # 0. Letu,v

€ C?%(B1\ {0}) be any nonnegative solutions of syst@ni). Then(4.6)and(4.7) hold. Now, ifC, = 0,
then

(i) either¢ >0andy > N — 2,and

Clr <ar) < Cr Y, C7 )™ < wx) < Clz|75; (4.32)
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(i) or& < 0. Then eithern + N < 0and(4.10)and(4.11)hold. Ora + N = 0, and (4.23) holds.
Ora+ N > 0andy < N —2and(4.18)holds if C; > 0,theng < (b+ 2)/(N — 2);if C1, =0,
theny < 0,a + 2 > 0,and(4.20)and (4.21) hold; if C; > 0, thenb + 2 > 0;if C] = 0, then
(4.10)and(4.11)hold;

(i) or¢ > 0andy < N — 2, and either(4.8)and (4.9) hold withC'; > 0. Or (4.20)and (4.21)hold
as above, and i€} = 0, then(4.10)and (4.11)hold.

Proof. We havev(z) = O(|z|>~") andu(z) = O(z|*+t2~(N=2PP) from Theorem 1.2. And, + ql; < O
andl; > O imply /[, < O, thatis,g < (b + N)/(IN — 2). Now Lemma 4.1(i) applies, becausg =
(& — N+ 2)(pg— 1) = —(I2 + ql1) > 0. More precisely,

O(lz|>N*e0) 4+ 0(1) ifeg# N — 2,

_ 2-N _
v(w) = Cale] { o( In |z||) if s =N — 2,

from [6]. Now suppose that’, = 0.
— Eithereg > N — 2, hence < 0 andu(z) = O(2).

— Oreg < N — 2, hencey(z) = O(|z|>~V+e0).
— Oreg = N — 2, hencev(z) = O(jz[>~V+50==") for any<’ > 0. As in Proposition 4.7, any estimate
v(z) = O(j=[>~N+en) implies that

u(x) = O(|z|et2tren—(N=2P) jf \, = (N — 2)p — (a + N + pey) > 0,
u(x) = { O(|x|2_N) if A, <O,
O(z[Z N In|z||) if A, =0.
But here the sequence defined fregiby e,, = o+ pge,,—1 tends teeg /(1 — pg). Hence 2- N +¢,,
tends to—¢, and the sequence, decreases td = v — N + 2. As a consequence,if < N — 2 or
¢ < 0, we findv(z) = O(1) oru(z) = O(z|>~N). If v > N —2 and¢ > 0, thenv(z) = O(|z|~¢79)
for anye > 0.

() v > N — 2 and¢ > 0. Then we have in fact(z) = O(|z|~¢). Indeed, any estimate(r) <

C., |z N*enin By, \ {0} implies more precisely

w(@) < ClaPN + CC,CP |g|ot2Hpen—(N=2)p

with C,, = 1/(A\,(\, + N — 2)) < 1/)?, see [4, Lemma 2.3]. Hence, with a new constant 0,

u(z) < C(1+ CP))|a|rH2Hpen—(N=2p,

And then

v(z) < CLCY 1+ Cg’n)qym‘z—Nﬁoﬂqen el

from the maximum principle, witl”), = 1/(co + pgen)(N — 2 — 0 — pgen) < 1/0€. Then

o(@) < Ce, |22V Hen,
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with C¢,, = C(1+ C?7_)), for anotherC. It follows thatv(z) < C|z|~¢, because the sequence.() is
convergent. Then(x) = O(|z|~7) from (3.5) and (3.12), and we deduce (4.32) from (3.23).

(i) vy < N —2o0r¢ < 0andv(x) = O(1). Now we apply Lemma 2.6. Either+ N < 0, and then
u(z) = O(|z|**+2). Then Lemma 4.1(iii) applies, becaus@q — 1) < 0, and we get (4.10) and (4.11).
Ora+ N >0,andy+2—- N <v+a+2=pf <0, hencey < N—2.Ifa+ N = 0, then
uw(z) = O(|z|>N|In|z||), andg < (b + 2)/(N — 2), since & + 2)g + b + 2 > 0. Then we get (4.23)
from Lemma 4.2(vi). Now consider the case- N > 0; thenu(z) = O(|z|>~V).

— Eitherq < (b + 2)/(N — 2). Then Lemma 4.2(ii) applies and gives (4.18) witfx:) — C% =
O(|z|>+2~(N—=2)a), Now suppose thafy = 0. Thenu(z) = O(1), hencey < 0 from (3.23). It
impliesa + 2 > 0 from Lemma 2.6. Then < 0, sincey = p§ — (a + 2). Then there is a constant
C4 > 0such thati(z) = C} +0O(x|*+?), from Lemma 4.1(iv). I{C} > 0, thenb+2 > 0 from (3.5),
sincew is bounded. In the same way there is a constgnt> 0 such thaw(z) = C% + O(|z[**2),
from Lemma 4.1(iv). IfC; = 0, thenu(x) = O(|z|**2), with v(z) = O(1). We get again (4.10) and
(4.11) from Lemma 4.1(iii), becaug€pq — 1) > 0.

— Org = (b+2)/(N — 2). We know that-V =2 (r) has a finite limitC;. Let us prove tha€; = 0. If
C1 > 0, then

~NG(r) = COrb=N=2M > o2

in (0, 1/2). This is impossible becausés bounded. Hence(x) = O(1), and we conclude as above.
(iiiy v < N —2o0r¢ < 0andu(z) = O(z|>N|In|z||). Thena + N > 0, from (3.1) and (3.4).
— Eithera + N = 0. Theng < (b + 2)/(N — 2), and

—Mu(z) < ||t~ N -2e

in D'(By,), for anye > 0, sinceq < (b + N)/(N — 2). Hencev(z) = O(1) from the maximum
principle, and we return to the preceeding case.

— Ora+ N > 0, andv(z) = O(|z|®+2-(N=2a—=) 4+ O(1) from the maximum principle. Either <
(b+2)/(N —2), hences(x) = O(1), and we again return to the second case; 9r(b+2)/(N —2),
thenv(z) = O(|z|®+2-(N=2—¢) andu(z) = O(|z|>~V) from Lemma 2.6, since < N — 2. And
(4.8) and (4.9) hold from Lemma 4.1(ii), because<{ N + 2)(pg — 1) > 0. If C; = 0, then
u(x) = O(1), and we return to the second caseél

Remark 4.2. In the critical case§ = 0 ory = N — 2, our proofs give the estimatéz) = O(|x| ) for
anye > 0, and, consequentlyy(x) = O(|z|~7¢) from (3.5).

() Inthe casg =0, v > N — 2, we also have the lower estimates
T - p/(1-pq) 1/(1—pq)
a(r) = Cr 7| Inr| , v(z) = C|In|z|| . (4.33)
Indeed, we have

—O6(r) > Cr—2oP9(r)
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in (0,1/2), from (3.21), henc&(r) > C|Inr|YA-r9 from [2, Lemma A2], and (4.33) follow
from (3.4) and (3.9). We conjecture that the upper estimates

u(@) = O(jz| | In]z| /APy, w(@) = O In |z P

are true.
(i) Inthe caset > 0, v = N — 2, we conjecture that

— 1/(1- _ 1—
u(z) = O(‘x’2 N’ In ||| /( PQ))1 v(z) = O(|z| 5{ In ‘foI/( plI)).
(iii) Inthe case¢ =0, v = N — 2, we conjecture that
- 1)/(1— B /(1
u(z) = O(|z[*V]In |x|{(er 4 pQ)), v(z) = O(|z|~¢|In |x||(q+ )/( pq))‘

Proposition 4.12. Assumeyg < 1withp < (a + N)/(N — 2), and¢ # 0if 4 < 0. Letu,v € C?(B’) be
any nonnegative solutions of systétil). Theny < N — 2.

(i) Supposeg < (b+ N)/(N — 2). Then(4.16)and(4.17)hold. If C> > 0andC; = 0, theny < 0,
p < (a + 2)/(N — 2), and (4.19) holds if C; = 0, then(4.6) and (4.7) hold. If C; > 0 and
Cy = 0, then eitherg > (b + 2)/(IN — 2) and(4.8)and (4.9) hold, orq < (b + 2)/(N — 2) and
(4.18)holds. IfCy = C, = 0,theny < 0,a + 2 > 0, and

— Eitherb + 2 < 0, and(4.12)and (4.13)hold; if C7 = 0, then eithert > 0 and(4.32)holds, or
(4.10)and(4.11)hold.

— Eitherb + 2 > 0,and(4.20)and (4.21)hold; if C; = 0, then(4.10)and (4.11)hold.

— Orb+2=0,and(4.25)holds.

(i) Suppose; > (b+ N)/(N —2). If b+ N > 0, then(4.19)holds. IfC> > 0 andC] = 0, then
(4.6) holds. IfC, = 0, we conclude as above.df+ N < 0, then eitherf > 0 and (4.32) holds,
or (4.10)and(4.11)hold.

Proof. First, notice that here < N—2;indeed]1 < 0, l2+¢ly < 0, hencd,+ply < l1(1—pq) < 0. We
haveu(z) + v(z) = O(|z|?>~Y) from Theorem 1.2. Hence" —2u(r) has a finite limitCy > 0, ¥ —2%(r)
has a finite limitC, > 0, andv satisfies (3.2).

() g < (®+ N)/(N —2). We get (4.16) and (4.17) from [4, Lemma 6.3]. Moreover,

v [O(a] ™02y { O(1) ifp £ (a+ 2/(N - 2),
utr) = Cafar* = { o In [z]) it p= (a+2)/(N - 2). (4-34)
and
ey (O L O) g £ (b + 2)/(N — 2),
vla) e = { G g2 (bt 2/(N 2) (4:35)

Now suppose that'; = 0 or C> = 0. We consider each case separately.
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— Either(C; > 0 andC; = 0. Thenwu is bounded, hence < 0 from (3.23); in fact;y < 0. Indeed,

if v+ = 0, then (4.32) hold, which contradicf$, > 0. And we obtainp < (a + 2)/(N — 2) from
Lemma 2.6. Then (4.19) holds from Lemma 4.1, atfd) — C} = O(|z|*+t2~(N=2P) If C} = 0,
then (4.6) and (4.7) hold, becauge{ N + 2)(pqg — 1) > 0.

OrCy > 0andC, = 0.1f ¢ > (b + 2)/(N — 2), thenv(z) = O(|z|>+2~(N—2)1) and we get (4.8),
since ¢ — N +2)(pg—1) > 0.If ¢ < (b+2)/(N —2), thenwv(xz) = O(1). And (4.18) holds, because
b+ N >0.1fg=(0b+2)/(N —2), then

—AT(r) = Cr—?

in (0, 1/2), which is impossible.
OrCy = Cy = 0. Thenu(x) = O(1), hence again < 0, and, in fact;y < 0. Indeed, ify = 0, then
(4.32) hold, but then

Nu(r) = Cr—?
in (0, 1/2), which contradicts Lemma 2.6. Then we get alsp 2 > 0 from Lemma 2.6. And
—Dv(z) < Clz|

in D'(By2), sinceb + N > 0, hencev(z) = O(z|""2) + O( In|x|). First, suppose thadt+ 2 <
0, thenu(z) = O(lz|*+?), and (4.12) and (4.13) hold, sineépq — 1) > 0. Moreover,u(z) =
Cf 4 O(|z["Pa=D). If C} = 0, thenu(x) = O(|z|*°) with g = v(pg — 1). But any estimate(zr) =
O(|z|®) again implies that

—Dv(z) < |z[PFe

in D'(By,), hencev(z) = O(z|*T27°7) + O(1). And any estimatey(z) = O(|z|*"2™<9) in turn
implies w(z) = O(jx|*+2++2p+era) from Lemma 2.6, sincei(z) tends to 0. But the sequence
defined fromeg by e, = a + 2+ (b + 2)p + £,_1pq tends to—-. After a finite number of steps,
we arrive tou(z) = O(|x|—7+5') for anye’ > 0, orv(z) = O(1). In the first case, we can prove as
in Proposition 4.11 that, in fact(z) = O(|x|~7), since{ # 0. This implies estimate (4.32), and
necessarily > 0. In the second case, we find again (4.10) and (4.11). Now assurnie-ttat> 0.
Then we obtain (4.20) and 4.21, and (4.10) and (4.11) in€4se 0. At last, assume that+2 = 0.
Then we get (4.25) from Lemma 4.2(viii).

(ii) ¢ = (b+N)/(N —2). ThenCy = 0, becauser|’u? € Ll(Bl/z). Henceu is bounded. Ib+ N > 0,
then (4.19) holds from [4, Lemma 6.3].d, > 0, andC’ = 0, then (4.6) and (4.7) hold. &> = 0, we
conclude as above. ¥+ N < 0, thenl, > (IV — 2)q, hencd; < 2— N, sincel, + ¢l1 < 0. Theny < 0,
becauselz+11 < (1—pg)l1 < (2— N)(1—pq). Necessarily lim_o u(z) = 0, sincelz|’u? € L*(Byy).
We conclude as above that eithérr) = O(jz| "), hence¢ > 0, and (4.32) holds, ar(z) = O(1), and
(4.10) and (4.11) hold. O

Proposition 4.13. Assumeyq < 1withp = (a+N)/(N —2). Letu,v € C?(B1\{0}) be any nonnegative
solutions of systerflL.1). Then(4.22)holds. IfC, = 0, then eitherg > (b + 2)/(/N — 2) and (4.8) and
(4.9)hold, org < (b+ 2)/(N — 2),and(4.18)holds, orq = (b + 2)/(IN — 2), and (4.24)holds.
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Proof. We haveu(z) = O(lz|>V|In|z||) andv(z) = O(z|>~") from Theorem 1.2. As in Proposi-
tion 4.7, we conclude to (4.22). f, = 0, thenu(z) = O(|z|>~), and we haveg < (b + N)/(N — 2).

If ¢ > (b+2)/(N —2), thenw(z) = O(|z|*+2~(N—2)1), and we get (4.8) and (4.9) from Lemma 4.1(ii). If
q < (b+2)/(N — 2), thenv(x) = O(1), and we get (4.18) from Lemma 4.2(ii).df= (b + 2)/(N — 2),
thenv(xz) = O(|In |x||), and (4.24) follows from Lemma 4.2(vii). O
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