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Asymptotic behaviour of elliptic systems
with mixed absorption and source terms
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Abstract. We study the limit behaviour near the origin of the nonnegative solutions of the semilinear elliptic system{
−∆u+ |x|avp = 0,
∆v + |x|buq = 0,

in RN (N > 3),

wherep,q,a, b ∈ R, with p,q > 0, pq 6= 1. We give a priori estimates without any restriction on the values ofp andq.

1. Introduction

Here we study the nonnegative solutionsu,v of the semilinear elliptic system inRN (N > 3) with
mixed absorption and source terms:{−∆u+ |x|avp = 0,

∆v + |x|buq = 0,
(1.1)

wherep, q,a, b ∈ R with p, q > 0 andpq 6= 1. We describe the asymptotic behaviour of the solutions
near the origin. We suppose thatu,v are defined inB1 \ {0}, whereBr = B(0,r) andB(y, r) = {x ∈
RN | |x−y| < r} for any r > 0 andy ∈ RN . A Kelvin transform would give the behaviour near infinity.
In particular, we cover the case of the biharmonic equation

∆2w + |x|σwQ = 0, (1.2)

for given realsσ,Q with Q > 0, Q 6= 1: we give the behaviour of the subharmonic or superharmonic
nonnegative solutions of (1.2), by takingp = 1, a = 0, b = σ or q = 1, a = σ, b = 0 in (1.1). This
article complements the preceeding works relative to the system with absorption terms{−∆u+ |x|avp = 0,

−∆v + |x|buq = 0,
see [5], (1.3)

and to the system with source terms{
∆u+ |x|avp = 0,
∆v + |x|buq = 0,

see [2]. (1.4)
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For a better understanding of system (1.1), let us recall the behaviour of the nonnegative solutions of
the two equations

−∆w + |x|σwQ = 0, (1.5)

and

∆w + |x|σwQ = 0, (1.6)

for given realsσ,Q with Q > 0, Q 6= 1.
Usually, (1.5) is called equation “with the good sign”, because the maximum principle applies. Notice

that the solutions are subharmonic, hence they satisfy the mean value inequality

w(x) 6 1
|B(x, r)|

∫
B(x,r)

w(x) dx, (1.7)

for any ballB(x, r) ⊂ B1 \ {0}. As a consequence, any estimate of the spherical mean value

w(r) =
1

|SN−1|

∫
SN−1

w(r,θ) dθ

nearr = 0 implies an analogous estimate ofw, see [4,22]. In such a way the obtention of a priori
estimates reduces to the study of an ordinary differential inequality. Defining

Γ = (σ + 2)/(Q − 1) (1.8)

for anyQ 6= 1, the radial function

w∗(x) = C∗|x|−Γ , C∗ =
(
Γ (Γ −N + 2)

)1/(Q−1)
, (1.9)

is a solution of (1.5) wheneverΓ (Γ − N + 2) > 0. WhenQ > 1, any solutionw satisfies the Keller–
Osserman estimate near the origin

w(x) 6 C |x|−Γ , (1.10)

whereC = C(N ,Q,σ). WhenQ > (N + σ)/(N − 2), thenw∗ does not exist, and the singularity
is removable, which means thatw is bounded near 0, see [9,19–21]. The behaviour of the solutions is
isotropic, that is, asymptotically radial. WhenQ < 1, then (1.10) is no longer true and it is replaced by
the estimate

w(x) =

{
O(max(|x|−Γ , |x|2−N )) if Q 6= (N + σ)/(N − 2),
O(|x|2−N | ln |x||1/(1−Q)) if Q = (N + σ)/(N − 2).

(1.11)

Moreover, some anisotropic solutions can occur, see [3,4].
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The behaviour of the equation “with the bad sign” (1.6) is not completely known. It cannot be reduced
to a radial problem, because noww is superharmonic, hence for any ballB(x, r) ⊂ B1 \ 0,

w(x) > 1
|B(x, r)|

∫
B(x,r)

w(x) dx.

Equation (1.6) still admits a particular radial solution

w∗(x) = C∗|x|−Γ , C∗ =
(
Γ (N − 2− Γ )

)1/(Q−1)
,

if Γ (N − 2− Γ ) > 0. WhenQ > 1 and (1.6) admits a nontrivial solution, thenΓ > 0, which means
σ + 2> 0. And any solutionw satisfies the estimate

w(x) = O
(
min

(
|x|−Γ , |x|2−N

))
, (1.12)

wheneverQ 6 (N+2)/(N−2) (withQ 6= (N+2+2σ)/(N−2), if σ 6= 0).Consequently,w satisfies the
Harnack inequality, and its behaviour is isotropic, see, for example, [1,10,13]. Beyond (N + 2)/(N −2),
some anisotropic solutions can occur, for example, whenQ = (N + 1)/(N − 3) andσ = 0, see [7],
and the a priori estimate is not known, see also [23]. WhenQ < 1, the solutions only exist when
Q < (N + σ)/(N − 2), which meansΓ < N − 2. Then any solution satisfies

w(x) =

{
O(max(|x|−Γ , 1)) if Γ 6= 0,
O(| ln |x||1/(1−Q)) if Γ = 0,

(1.13)

and its behaviour is still isotropic, see [14].
Now let us return to system (1.1). It involves both subharmonic and superharmonic functions, and one

may expect a mixed type behaviour. In Section 2, we give the main tools of our study: we essentially use
fine properties of comparison of functions with their spherical mean value, in addition to classical tools,
namely the maximum principle and the Brezis–Lions lemma [8].

In Section 3, we establish a priori estimates for the solutions of system (1.1), for anyp, q > 0, such
thatpq 6= 1. In that case it admits a particular solution

u∗(x) = A∗|x|−γ , v∗(x) = B∗|x|−ξ, (1.14)

where

γ =
(
(b+ 2)p+ a+ 2

)
/(pq − 1), ξ =

(
(a+ 2)q + b+ 2

)
/(pq − 1), (1.15)

and

A∗ =
[
γ(γ + 2−N )

(
ξ(N − 2− ξ)

)p]1/(pq−1)
,

(1.16)
B∗ =

[
ξ(N − 2− ξ)

(
γ(γ + 2−N )

)q]1/(pq−1)
,

wheneverγ(γ+ 2−N ) > 0 andξ(N −2− ξ) > 0. In the superlinear casepq > 1, we get the following
estimates:
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Theorem 1.1. Assumepq > 1. Letu,v ∈ C2(B1\ {0}) be any nonnegative solutions of(1.1), with (u,v)
6= (0, 0). Thenξ > 0, and

u(x) = O
(
|x|−γ

)
, v(x) = O

(
min

(
|x|−ξ, |x|2−N

))
, near0. (1.17)

Moreover, ifγ 6 N − 2, thenu is bounded near0.

This result shows a perfect behaviour of mixed type: the subharmonic functionu satisfies an estimate
of type (1.10), with an eventual removability, and the superharmonic function an estimate of type (1.12).
In the sublinear casepq < 1, we get the following:

Theorem 1.2. Assumepq < 1. Letu,v ∈ C2(B1\ {0}) be any nonnegative solutions of(1.1), with (u,v)
6= (0, 0). Thenξ < N − 2, and

v(x) = O
(
|x|2−N

)
, (1.18)

u(x) =

{
O(max(|x|a+2−(N−2)p, |x|2−N )) if p 6= (a+N )/(N − 2),
O(|x|2−N | ln |x||) if p = (a+N )/(N − 2).

(1.19)

We notice that the estimates forv differ from the estimates of the scalar case (1.13): herev can admit
a behaviour in|x|2−N , whereas any solutionw of (1.6) satisfiesw(x) = o(|x|2−N ) whenQ < 1.

Observe that, contrary to the case of Eq. (1.6), we haveno upper restriction onpq in the superlinear
case. Our proofs lead to the following main conclusion:the fact that one of the solutions of the system is
subharmonic implies a remarkable regularizing effect on the other one. In particular,the superharmonic
functionv always satisfies Harnack inequality.

In Section 4, we give the precise convergence results for the solutions and study the possible existence
of anisotropic solutions. As in [6] and [4], the behaviour of the system presents many possibilities. The
study is uneasy, in particular in the critical casesγ, ξ = 0 or N − 2, since we have to combine the
techniques of the two signs. In [4], we had noticed that the anisotropy is more frequent for system (1.3)
than for system (1.4). Here we show that, for system (1.1),the anisotropy is more frequent foru than
for v.

2. The key tools

Our main tools consist in precise comparisons between the two functions, either subharmonic or su-
perharmonic, with their spherical mean values. In the sequel, the same letterC denotes some positive
constants which may depend onu,v, unless otherwise stated.

2.1. Inequalities for superharmonic functions

Concerning the superharmonic functions, let us begin by a simple result.
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Lemma 2.1. Letw ∈ C2(B1 \ {0}) be any nonnegative superharmonic function, andf = −∆w. Then
w is monotonous for smallr, and there is a constantC(N ) > 0 such that, for anyr ∈ (0, 1/2) and any
ε ∈ (0, 1/2],

w(r) > C(N )ε2r2 min
s∈[r(1−ε),r(1+ε)]

f (s). (2.1)

Proof. Indeed, we have

−
(
rN−1wr

)
r = rN−1f ,

which obviously implies the monotonicity near 0. Integrating fromr/(1 + ε) to r, we get

(1 + ε)1−Nwr
(
r/(1 + ε)

)
− wr(r) > r1−N

∫ r

r/(1+ε)
sN−1f (s) ds.

Integrating fromr to r(1 + ε),(
1 + (1 + ε)2−N )w(r)>w

(
r(1 + ε)

)
+ (1 + ε)2−Nw

(
r/(1 + ε)

)
+

∫ r(1+ε)

r
τ1−N

∫ τ

τ/(1+ε)
sN−1f (s) ds, (2.2)

and, in particular,

w(r) > 1
2

∫ r(1+ε)

r
τ1−N

∫ τ

τ/(1+ε)
sN−1f (s) ds,

which implies (2.1). 2

Remark 2.1. Notice that, from (2.2),(
1 + (1 + ε)2−N )w(r) > w

(
r(1 + ε)

)
+ (1 + ε)2−Nw

(
r/(1 + ε)

)
,

hence any radial superharmonic positive function inB1 \ {0} satisfies the following form of the Harnack
inequality: for anyr ∈ (0, 1/2) and anyε ∈ (0, 1/2],

21−Nw(r) 6 w
(
r(1 + ε)

)
6 2w(r). (2.3)

Now we deduce a spherical form of the mean value inequality for superharmonic functions. We did
not find any reference of it in the literature, so we give here a simple proof.

Lemma 2.2. Let w ∈ C2(B1 \ {0}) be any nonnegative superharmonic function. Then there exists a
constantC(N ) > 0 such that, for anyx ∈ B1/2 \ {0} ,

w(x) > C(N )w
(
|x|
)
. (2.4)
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Proof. Let x0 ∈ B1/2 \ {0}. We study the functionw in the annulusCx0 = { y ∈ RN | |x0|/2 6 |y| 6
3|x0|/2}. We set

w(y) = W (z), z = y/|x0|, ∀y ∈ Cx0,

andz0 = x0/|x0|. Then the range ofz is the annulusC = { z ∈ RN | 1/2 6 |z| 6 3/2}. Let G be the
Green function inC with Dirichlet conditions on∂C. Then we have the representation formula

W (z) =

∫
C
G(z,η)(−∆W )(η) dη +

∫
∂C
P (z,λ)W (λ) ds(λ),

whereP (z,λ) = −∂G(z,λ)/∂ν is the Poisson kernel inC × ∂C. From [18] there exists a constant
K = K(C), henceK = K(N ) such that, for any (z,λ) ∈ C × ∂C,

K%(z)|z − λ|1−N 6 P (z,λ) 6 2K%(z)|z − λ|1−N ,

where%(z) is the distance fromz to ∂C. In particular,P (z0,λ) > 2−NK, hence

W (z0) > 2−NK
∫
∂C
W (λ) ds(λ),

sinceW is superharmonic inC. Returning tow, we get

w(x0) > 2−NK|x0|1−N
∫
∂Cx0

w(y) ds(y).

That means that there exists a constantC(N ) such that

w(x0) > C(N )
[
w
(
|x0|/2

)
+ w

(
3|x0|/2

)]
.

But from the Harnack inequality (2.3), it implies that there is another constantC(N ) such that

w(x0) > C(N )w
(
|x0|

)
,

and the conclusion follows.2

Now we give an upper estimate which will play a crucial part in the sequel.

Lemma 2.3. Letw ∈ C2(B1 \ {0}) be any nonnegative superharmonic function, andf = −∆w. Then
there existsC(N ) > 0 such that, for anyx ∈ B1/2 \ {0} ,

w(x) 6 C(N )
[
|x|2 max

B(x,|x|/2)
f + w

(
|x|
)]
. (2.5)
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Proof. We start from the representation formula for anyC2 function w in a ball of centerB(x,R)
contained inB1 \ {0}: for any ρ ∈ (0,R],

w(x) = cN

∫
B(x,ρ)

[
|z − x|2−N − ρ2−N ](−∆w)(z) dz +

1
|∂B(x,ρ)|

∫
∂B(x,ρ)

w(s) ds, (2.6)

wherecN = 1/N (N − 2)|B1| = 1/(N − 2)|SN−1|. It implies

ρN−1w(x) 6 cNρN−1
∫
B(x,ρ)

|z − x|2−N (−∆w)(z) dz +
1

|SN−1|

∫
∂B(x,ρ)

w(s) ds,

and, by integration from 0 toR,

w(x) 6 cN
∫
B(x,R)

|z − x|2−N (−∆w)(z) dz +
1

|B(x,R)|

∫
B(x,R)

w(z) dz.

Hence, in particular, takingR = |x|/2 and replacing the ball by an annulus,

w(x)6 cN |SN−1|
8

|x|2 max
B(x,|x|/2)

(−∆w) +
1

(|x|/2)N |B1|

∫
|x|/26|y|63|x|/2

w(z) dz

6 1
8(N − 2)

|x|2 max
B(x,|x|/2)

(−∆w) +
N

(|x|/2)N

∫ 3|x|/2

|x|/2
rN−1w(r) dr

6 1
8(N − 2)

|x|2 max
B(x,|x|/2)

(−∆w) + 3N max
[|x|/2,3|x|/2]

w,

hence (2.5) follows from (2.3). 2

2.2. Inequalities for subharmonic functions

Concerning the subharmonic functions, our main argument is a comparison between the value of the
function at some pointx ∈ B1/2 \ {0} and the value of its mean value at some shifted radius|x|(1± ε),
proved in [4].

Lemma 2.4. Let w ∈ C2(x ∈ B1 \ {0}) be any nonnegative subharmonic function. Thenw is
monotonous for smallr, either decreasing withlimr→0 r

N−2w(r) > 0, or nondecreasing and bounded.
And there exists a constantC(N ) such that, for anyε ∈ (0, 1/2],

w(x) 6 C(N )ε1−Nw
(
|x|(1± ε)

)
near0, (2.7)

with the sign+ if w is nondecreasing, and the sign− if w is decreasing. Consequently, for smallr and
anyQ > 1,

wQ(r) 6 wQ(r) 6
(
C(N )ε1−N)Qw(r(1± ε))Q. (2.8)

And for smallr and anyQ ∈ (0, 1), if w 6= 0 near0,

wQ(r) > wQ(r) >
(
C(N )ε1−N)Q−1

w
(
r(1± ε)

)Q−1
w(r). (2.9)



124 M.-F. Bidaut-Véron and P. Grillot / Asymptotic behaviour of elliptic systems

As a consequence, any estimate ofw of the form

w(r) = O
(
| ln r|bra

)
asr → 0 (2.10)

for given realsa, b implies the corresponding estimate

w(x) = O
(∣∣ ln |x|∣∣b|x|a) asx→ 0, (2.11)

see also [3,22].
Property (2.1) of the superharmonic functions has to be compared with the following property, often

used in [4].

Lemma 2.5. Letw ∈ C2(B1 \ {0}) be any nonnegative subharmonic function, andg = ∆w. Then there
is a constantC(N ) > 0 such that, for anyε ∈ (0, 1/2] andr small enough,

w(r) > C(N )ε2r2 min
s∈[r(1−ε),r(1+ε)]

g(s). (2.12)

Proof. Indeed, we have (rN−1wr)r = rN−1g. First, integrate over [r, r(1 + ε)1/2] for r small enough.
Eitherw is decreasing, then

−rN−1wr(r) >
∫ r(1+ε)1/2

r
sN−1g(s) ds, (2.13)

and a new integration gives

w(r) >
∫ r(1+ε)1/2

r
τ1−N

∫ τ (1+ε)1/2

τ
sN−1g(s) dsdτ ,

hence

w(r) > Cε2r2 min
s∈[r,r(1+ε)]

g(s). (2.14)

Orw is nondecreasing, and we find

(
r(1 + ε)1/2)N−1

wr
(
r(1 + ε)1/2) > ∫ r(1+ε)1/2

r
sN−1g(s) ds,

hence

w
(
r(1 + ε)

)
> C

∫ r(1+ε)1/2

r
τ1−N

∫ τ (1+ε)1/2

τ
sN−1g(s) dsdτ ,

which now implies

w(r) > Cε2r2 min
s∈[r(1−ε),r]

g(s). (2.15)

In any case, (2.12) follows.2
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At last we recall some elementary properties given in [4].

Lemma 2.6. Letσ ∈ R, and lety ∈ C2((0, 1))be nonnegative.

(i) Assume that

∆y(r) := yrr(r) +
N − 1
r

yr(r) 6 Crσ

on (0, 1), for someC > 0. If σ + N < 0, then y(r) = O(rσ+2). If σ + N = 0, then
y(r) = O(r2−N | ln r|). If σ + N > 0, theny(r) = O(r2−N ). If σ + 2 > 0 and limr→0 y(r) =
limr→0 r

N−1yr(r) = 0, theny(r) = O(rσ+2).
(ii) Assume that

∆y(r) > Crσ

on (0, 1), for someC > 0. If σ +N < 0, theny(r) > Crσ+2 for anotherC > 0. If σ + N = 0,
theny(r) > Cr2−N | ln r|. If−N < σ 6 −2, theny(r) > Cr2−N . If y is bounded, thenσ+2> 0.
If σ + 2> 0 and limr→0 y(r) = limr→0 r

N−1yr(r) = 0, theny(r) > Crσ+2.

2.3. Bootstrap result

Our third tool is a bootstrap result proved in [4], allowing to convert a shifted inequality into an
ordinary one. Let us recall it for a better understanding.

Lemma 2.7. Let d,h, l ∈ R with d ∈ (0, 1) and y,Φ be two continuous positive functions on some
interval (0,R]. Assume that there exist someC,M > 0 andε0 ∈ (0, 1/2] such that, for anyε ∈ (0,ε0],

y(r) 6 Cε−hΦ(r)yd
(
r(1− ε)

)
and max

τ∈[r/2,r]
Φ(τ ) 6MΦ(r), (2.16)

or else,

y(r) 6 Cε−hΦ(r)yd
(
r(1 + ε)

)
and max

τ∈[r,3r/2]
Φ(τ ) 6MΦ(r), (2.17)

for anyr ∈ (0,R/2]. Then there exists anotherC > 0 such that

y(r) 6 CΦ(r)1/(1−d) (2.18)

on (0,R/2].

3. A priori estimates

Let us return to system (1.1). First, notice that, ifv = 0 inB1 \ {0}, then u = 0. Excluding this case,
there exists someC > 0 such that

v(x) > C (3.1)
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in B1/2 \ {0}, from the maximum principle. The functionv always satisfiesv(r) = O(r2−N ), since
rN−2v is concave near the origin. Moreover, from the Brezis–Lions lemma [8],|x|buq ∈ L1

loc(B1), and
there exists someC2 > 0 such that

−∆v = |x|buq + C2δ0 in D′(B1), (3.2)

whereδ0 is the Dirac mass at the origin. And this implies that

lim
r→0

rN−2v(r) = C2. (3.3)

Notice thatu is positive inB1/2 \ {0}, since u ∈ C2(B1 \ {0}) and ∆u(x) > C|x|a from (3.1). Butu can
eventually tend to 0 at the origin.

3.1. Main estimates

In the next theorem, we give a first inequality for the mean value, which is essential for upper or lower
estimates.

Theorem 3.1. Letu,v ∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1)with p, q > 0. Then
there exists someC > 0 such that, for anyr ∈ (0, 1/2),

u(r) > Cra+2 min
(
vp(r),vp(r)

)
, (3.4)

v(r) > Crb+2uq(r). (3.5)

Proof. We only need to prove the estimates forr > 0 small enough, from the continuity and the positivity
of u,v. Hence we can assume thatu,v are monotonous. We first apply Lemma 2.5 to functionu and get

u(r) > Cε2ra+2 min
s∈[r(1−ε),r(1+ε)]

vp(s). (3.6)

Then eitherp > 1, hencevp > vp, and (3.4) follows from (2.3). Orp < 1, hencevp is still superharmonic,
and (3.4) follows by applying (2.3) tovp. Now we apply Lemma 2.1 to functionv. For anyε ∈ (0, 1/2],

v(r) > Cε2rb+2 min
s∈[r(1−ε),r(1+ε)]

uq(s). (3.7)

First, assume thatq > 1. Thenuq > uq, hence

v(r) > Cε2rb+2 min
s∈[r(1−ε),r(1+ε)]

uq(s).

In particular, from the monotonicity ofu,

max
(
v(4r/5),v(4r/3)

)
> Crb+2uq(r),

and (3.5) follows from (2.3).
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Now assume thatq < 1. Then

uq(r) > C
(

min
s∈[r(1−ε),r(1+ε)]

uq−1(s)
)
u(r), (3.8)

from Lemma 2.4. Reporting (3.8) into (3.7), we deduce that

v(r) > Cε2rb+2 min
s∈[r(1−ε)2,r(1+ε)2]

u(q−1)(s) min
s∈[r(1−ε),r(1+ε)]

u(s).

Hence

v(r) max
s∈[r(1−ε)2,r(1+ε)2]

u(1−q)(s) > Cε2rb+2 min
s∈[r(1−ε),r(1+ε)]

u(s).

It implies

v
(
r/(1 + ε)

)
u(1−q)(r(1− ε)2/(1 + ε)

)
> Cε2rb+2u(r)

if u is nonincreasing, and

v
(
r/(1− ε)

)
u(1−q)(r(1 + ε)2/(1− ε)

)
> Cε2rb+2u(r)

if u is nondecreasing. In any case, we deduce from (2.3) the estimate

u(r) 6 Cε−2r−(b+2)v(r)u(1−q)(r(1± ε))
after an homothethy onε. Now we can use our bootstrap technique and apply Lemma 2.7 with function
Φ(r) = r−(b+2)v(r), becausev satisfies (2.3). Hence we find

u(r) 6 Cr−(b+2)/qv1/q(r),

and we get again (3.5).2

Now we can prove an essential comparison property for the superharmonic componentv, which shows
the regularizing effect due to the subharmonic componentu. In turn, it gives a remarkable punctual
relation betweenu andv, which is valid for anyp, q > 0.

Theorem 3.2. Letu,v ∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1)with p, q > 0. Then
there exists a constantC > 0 such that, for anyx ∈ B1/2 \ {0} ,

C−1v
(
|x|
)
6 v(x) 6 Cv

(
|x|
)
, (3.9)

and, consequently,v satisfies the Harnack inequality inB1/2 \ {0} . In particular, v always satisfies the
estimate

v(x) = O
(
|x|2−N

)
(3.10)
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near0, and

u(x) =

O(|x|a+2−(N−2)p) if p > (a+N )/(N − 2),
O(|x|2−N | ln |x||) if p = (a+N )/(N − 2),
O(|x|2−N ) if p < (a+N )/(N − 2).

(3.11)

Moreover, there exists someC > 0 such that

u(x) 6 Cu
(
|x|
)

(3.12)

in B1/2 \ {0} , and, consequently,

v(x) > C|x|b+2uq(x). (3.13)

Proof. The minorization ofv has been proved in Lemma 2.2. Here also we can suppose that|x| > 0 is
small enough. Applying Lemma 2.3 to functionv, we get

v(x) 6 C(N )
[
|x|b+2

(
max

B(x,|x|/2)
uq
)

+ v
(
|x|
)]
.

But u is subharmonic. From Lemma 2.4 there exists another constantC(N ) such that

u(x) 6 C(N ) max
[|x|/2,3|x|/2]

u. (3.14)

Then, from estimate (3.5),

v(x) 6 C
[
|x|b+2 max

[|x|/4,9|x|/4]
uq + v

(
|x|
)]
6 C

[
max

[|x|/4,9|x|/4]
v + v

(
|x|
)]
.

Using (2.3), we finally deduce (3.9). It implies thatv satisfies the Harnack inequality inB1/2 \ {0} .
Clearly, (3.10) follows from (3.3), and (3.11) from (3.10), (3.14) and Lemma 2.6. From the Harnack
inequality, there exist some constantsC1,C2 > 0 such that

C1v
p(r) 6 vp(r) 6 C2v

p(r) (3.15)

for r ∈ (0, 1/2). As a consequence,u also satisfies the Harnack inequality. Indeed, we can write the
equation foru under the form

∆u = hu with h = ravp/u.

Now, from (3.15) and (3.4),

h(r) 6 Cravp(r)/u(r) 6 Cr−2,

which, in turn, implies the Harnack inequality. Then, for anyr ∈ (0, 1/2) and anyε ∈ (0, 1],

C−1u(r) 6 u
(
r(1 + ε)

)
6 2Cu(r), (3.16)

and (3.12) follows from (3.14) and (3.16). Finally, we obtain (3.13) from (3.5), (3.9) and (3.12).2
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Remark 3.1. From (3.5), (3.4) and (3.15), we always have two symmetric relations in (0, 1/2):

v(r) > Crb+2uq(r), u(r) > Cra+2vp(r). (3.17)

Hence

u(r) > Cra+2+(b+2)pupq(r), v(r) > Crb+2+(a+2)qvpq(r). (3.18)

Notice also the inequalities for anyq > 0,

C1u
q(r) 6 uq(r) 6 C2u

q(r), (3.19)

for some other constantsC1,C2 > 0. Indeed, this comes from (2.8) and (2.9), where we fix anε and use
(3.16).

Remark 3.2. On the one hand, inequality (3.13) implies that

∆u(x) > C|x|a+(b+2)pupq(x) (3.20)

in B1/2 \ {0}. That means thatu is a subsolution of an equation of type (1.5), with stillQ = pq, and now
σ = a+ (b+ 2)p. On the other hand, (3.19) and (3.17) imply that

−∆v(r) = rbuq(r) > Crbuq(r) > Crb+(a+2)qvpq(r) (3.21)

in (0, 1/2). That means thatv is a supersolution of an equation of type (1.5), withQ = pq andσ =
b+ (a+ 2)q.

Remark 3.3. If q > 1, we can prove the Harnack property forv in a shorter way. We apply (2.6) to the
superharmonic functionv and get

v(x)> cN
∫
B(x,|x|/2)

[
|z − x|2−N −

(
|x|/2

)2−N ]
(−∆v)(z) dz

> 2N−2(2N−2− 1
)
cN |x|2−N

∫
B(x,|x|/4)

|z|buq(z) dz

> C|x|b+2−N
∫
B(x,|x|/4)

uq(z) dz

in B1/2 \ {0} . But the functionuq is also subharmonic, sinceq > 1. Then also

uq(x) 6 2−2N |x|−N
|B|

∫
B(x,|x|/4)

uq(z) dz 6 C|x|−(b+2)v(x),

hence we find again (3.13). Then we write the equation satisfied byv under the form

−∆v = Hv with H = |x|buq/v,

and observe thatH(x) 6 C|x|−2. This implies the Harnack inequality inB1/2 \ {0}.
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3.2. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. From (3.21),v is a supersolution of an equation of type (1.6), withQ = pq > 1
andσ = b+ (a + 2)q. Thenσ + 2 > 0, from [2, Lemma A2], that is,ξ > 0. Herepq > 1, hence, from
(3.18),

u(r) 6 Cr−γ, v(r) 6 Cr−ξ.

Then from (3.12) and (3.9), we get

u(x) 6 C|x|−γ , v(x) 6 C|x|−ξ, (3.22)

and (1.17) follows from (3.10) and (3.22). Moreover, ifγ 6 N − 2, thenu = o(r2−N ), henceu is
bounded, since it is subharmonic. Andu is bounded from Lemma 2.4.2

Proof of Theorem 1.2. From (3.21),v is a supersolution of an equation of type (1.6), withQ = pq < 1
andσ = b+ (a+ 2)q. ThenQ < (N +σ)/(N −2), from [2, Lemma A2], that is,ξ < N −2. And (1.18)
and (1.19) follows directly from Theorem 3.2.2

Remark 3.4. In the sublinear casepq < 1, relations (3.18) imply the estimates from below:

u(r) > Cr−γ, v(r) > Cr−ξ, (3.23)

for r ∈ (0, 1/2]. From (3.9), we also deduce that

v(x) > C|x|−ξ (3.24)

in B1/2 \ {0}.

3.3. Further results in the superlinear case

Estimate (3.13) can be written under the equivalent form

|x|γu(x) 6 C
(
|x|ξv(x)

)1/q
. (3.25)

Let us give another way to obtain relations of the same type. As in [2], we look for a direct comparison
between the two functionsu and v. In [2], one uses a product of the solutions in order to get some
nonexistence results. Here the same method applies with a quotient of the solutions and gives again the
estimate (3.22):

Proposition 3.3. Letu,v ∈ C2(B′) be any nonnegative solutions of system(1.1) with pq > 1. Then for
anyd ∈ (0, 1)with d 6 1/q, there exists a constantCd > 0, such that

|x|γu(x) 6 Cd
(
|x|ξv(x)

)d
(3.26)

in B1/2 \ {0} . As a consequence, we find again the estimate

u(x) 6 C|x|−γ .
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Proof. Let us consider the functionf = umv1−m, for somem > 1, and compute its Laplacian in
B1/2 \ {0}:

∆f = m(m− 1)um−2v−1−m|v∇u− u∇v|2 +m|x|aum−1v1−m+p + (m− 1)|x|bum+qv−m.

Then for anyk > 1,

∆f > um−1v−m
(
m|x|avp+1 + (m− 1)|x|buq+1)

> (m− 1)|x|(a(k−1)+b)/kum−1+(q+1)/kv−m+(p+1)(k−1)/k,

from the Hölder inequality. Letd = (m− 1)/m ∈ (0, 1). If d < 1/q < p, we can choose

k = 1 +
1− dq
p− d =

p+ 1− d(q + 1)
p− d ,

which gives

∆f > d

1− d |x|
a+(b−a)/kfη, (3.27)

with

η = 1 + (pq − 1)(1− d)/
(
p+ 1− d(q + 1)

)
. (3.28)

Thenη > 1, and from the Osserman–Keller estimate,

f (x) = u1/(1−d)(x)v−d/(1−d)(x) 6 C|x|−(a+2+(b−a)/k)/(η−1) = C|x|(dξ−γ)/(1−d)

in B1/2 \ {0}, whereC = C(N ,p, q,a, b,d). And (3.26) holds for anyd < 1/q and, by continuity, also
for d = 1/q. It implies that

∆u(x) > C|x|a−pξ+pγ/dup/d.

As p/d > pq > 1, we again deduce that

u(x) 6 C|x|−[a+2−pξ+pγ/d]/(p/d−1) = C|x|−γ

in B1/2 \ {0}, from the Osserman–Keller estimate.2

4. The convergences

4.1. Possible behaviours

Here we try to give the precise behaviour of the solutions according to the different values of the
parameters. Let us define, as in [4],

l1 = (N − 2)p− (a+N ), l2 = (N − 2)q − (b+N ). (4.1)
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Notice the relations

l1 + pl2 = (pq − 1)(N − 2− γ), l2 + ql1 = (pq − 1)(N − 2− ξ). (4.2)

The study will show that the behaviour of the couple (u,v) can present various types which can be divided
in five categories whenγ, ξ 6= 0,N − 2:

(I) (|x|−γ , |x|−ξ);
(II) ( |x|a+2−(N−2)p, |x|2−N ), (|x|a+2, 1);

(III) ( |x|2−N , |x|b+2−(N−2)q), (1,|x|b+2);

(IV) ( |x|2−N , |x|2−N ), (1,|x|2−N ), (|x|2−N , 1);

(V) (|x|2−N | ln |x||, |x|2−N ), (|x|2−N | ln |x||, 1).

As in [4], the system can admitanisotropic solutions, which makes difficult the question of convergences.
More precisely, the solutionsu,v of type (I) can be both anisotropic. In that case, the problem

of the convergences is still open. Consider any solution (u,v) satisfying an upper estimateu(x) =
O(|x|−γ), v(x) = O(|x|−ξ). Let (r,θ) ∈ (0,+∞) × SN−1 be the spherical coordinates inRN\{0}.
The change of variables

u(x) = |x|−γU (t,θ), v(x) = |x|−ξV (t,θ), r = |x|, t = − ln r, (4.3)

leads to the autonous system in the cylinder (0,+∞)× SN−1:{
Utt − (N − 2− 2γ)Ut + ∆SN−1U + γ(γ −N + 2)U − V p = 0,
Vtt − (N − 2− 2ξ)Vt + ∆SN−1V − ξ(N − 2− ξ)V + U q = 0.

(4.4)

We look at its behaviour whent tends to+∞. As in [4], the stationary system associated to (4.4),{
∆SN−1U + αU− Vp = 0,
∆SN−1V − βV + Uq = 0,

(4.5)

with α = γ(γ − N + 2) andβ = ξ(N − 2 − ξ), can admit nonconstant solutions for suitable pos-
itive values ofα andβ. We conjecture that the limit setG at infinity of the trajectories of (U ,V ) in
C2(SN−1) is contained in the set of stationary solutions; and that, if 0∈ G, thenG = {0}, hence
u(x) = o(|x|−γ), v(x) = o(|x|−ξ).

Concerning the solutions of type (II) and (III),the situation is not symmetric by respect tou and v.
The following lemma shows that the behaviour ofu is often more anisotropic than the behaviour ofv.

Lemma 4.1. Letu,v ∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1), with pq 6= 1.

(i) Assume thatu(x) = O(|x|a+2−(N−2)p), v(x) = O(|x|2−N ), and (ξ − N + 2)(pq − 1) > 0 and
ρ = [(N − 2)p− (a+ 2)][(N − 2)p− (a+N )] > 0. Then

lim
x→0
|x|N−2v(x) = C2 > 0, (4.6)

and, ifρ > 0, then

lim
x→0

[
|x|(N−2)p−(a+2)u

(
|x|, .

)
− ρ−1Cp2

]
(4.7)
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exists(in the uniform convergence topology onSN−1), and it belongs toker(∆SN−1 + ρI).
(ii) Assume thatu(x) = O(|x|2−N ), v(x) = O(|x|b+2−(N−2)q), and (γ − N + 2)(pq − 1) > 0 and

η = −((N − 2)q − (b+ 2))((N − 2)q − (b+N )) > 0. Then

lim
x→0
|x|N−2u(x) = C1 > 0, (4.8)

and, ifη > 0, then

lim
x→0
|x|(N−2)q−(b+2)v(x) = η−1Cq1. (4.9)

(iii) Assume thatu(x) = O(|x|a+2), v(x) = O(1), andν = (a + 2)(a +N ) > 0 andξ(pq − 1) > 0.
Then

lim
x→0

v(x) = C ′2 > 0, (4.10)

and, ifν > 0, then

lim
x→0

[
|x|−(a+2)u

(
|x|, .

)
− ν−1C ′2

]
(4.11)

exists(in the uniform convergence topology onSN−1), and it belongs toker(∆SN−1 + νI). And
v(x)− C ′2 = O(|x|ξ(pq−1)).

(iv) Assume thatu(x) = O(1), v(x) = O(|x|b+2), andµ = −(b+ 2)(b+N ) > 0 andγ(pq − 1)> 0.
Then

lim
x→0

u(x) = C ′1 > 0, (4.12)

and, ifµ > 0, then

lim
x→0
|x|−(b+2)v(x) = µ−1Cq1, (4.13)

andu(x)− C ′1 = O
(
|x|γ(pq−1)).

Proof. In case (i), the proof of [4, Lemma 6.4] adapts: we define

u(x) = |x|a+2−(N−2)pU ′(t,θ), v(x) = |x|2−NV ′(t,θ), (4.14)

and get{
U ′tt − [N − 2− 2((N − 2)p− (a+ 2))]U ′t + ∆SN−1U ′ + ρU ′ − V ′p = 0,
V ′tt + (N − 2)V ′t + ∆SN−1V ′ + e−(ξ−N+2)(pq−1)tU ′q = 0,

(4.15)

and the exponential is negative. From [6], there is a constantC2 > 0 such that‖V ′(t, .)−C2‖C(SN−1) =

O(e−αt) for someα > 0. Then the functionW ′(t,θ) = U ′(t,θ) − ρ−1Cp2 satisfies an equation of the
form

W ′tt −
[
N − 2− 2

(
(N − 2)p− (a+ 2)

)]
W ′t + ∆SN−1W ′ + ρW ′ = ψ,
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where‖ψ(t, .)‖C(SN−1) = O(e−βt) for someβ > 0. Then we can apply the Simon theorem as in [6,
Theorem 4.1], see also [7,17]. It implies that the functionW ′(t, .) precisely converges to a solution of the
stationary equation

∆SN−1$ + ρ$ = 0,

that means an element of ker(∆SN−1 + ρI).
In case of (ii), we define

u(x) = |x|2−NU ′′(t,θ), v(x) = |x|b+2−(N−2)qV ′′(t,θ),

and now get

{
U ′′tt + (N − 2)U ′′t + ∆SN−1U ′′ − e−(γ−N+2)(pq−1)tV ′′p = 0,
V ′′tt − [N − 2− 2((N − 2)q − (b+ 2))]V ′′t + ∆SN−1V ′′ − ρV ′′ + U ′′q = 0.

Then there is a constantC1 > 0 such that‖U ′′(t, .) − C1‖C(SN−1) = O(e−αt) for someα > 0. But now
the functionW ′′(t,θ) = V ′′(t,θ)− ρ−1Cq1 converges to a solution of the stationary equation

∆SN−1$ − ρ$ = 0,

that is 0. We get (iii) and (iv) in a similar way.2

In case of types (III), (IV) or (V), the two solutions are isotropic. In those cases, we shall use the results
of [4], which adapt with no difficulty.

Lemma 4.2. Letu,v ∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1), with pq 6= 1.

(i) Assume thatu(x)+v(x) = O(|x|2−N ) near0, andp < (N+a)/(N−2) or q < (b+N )/(N−2).
Then

lim
x→0
|x|N−2u(x) = C1 > 0, (4.16)

or

lim
x→0
|x|N−2v(x) = C2 > 0. (4.17)

(ii) Assume thatu(x) = O(|x|2−N ), v(x) = O(1), anda+N > 0 and(N −2)q− (b+ 2)< 0. Then

lim
x→0
|x|N−2u(x) = C1 > 0, lim

x→0
v(x) = C ′2 > 0, (4.18)

andv(x)− C ′2 = O(|x|b+2−(N−2)q).
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(iii) Assume thatu(x) = O(1), v(x) = O(|x|2−N ), andb + N > 0 and (N − 2)p − (a + 2) < 0.
Then

lim
x→0

u(x) = C ′1 > 0, lim
x→0
|x|N−2v(x) = C2 > 0, (4.19)

andu(x)−C ′1 = O(|x|a+2−(N−2)p).
(iv) Assume thatu(x) + v(x) = O(1), anda+ 2> 0, or b+ 2> 0. Then

lim
x→0

u(x) = C ′1 > 0, (4.20)

or

lim
x→0

v(x) = C ′2 > 0, (4.21)

andu(x)−C ′1 = O(|x|a+2) (or v(x)− C ′2 = O(|x|b+2)).
(v) Assumeu(x) = O(|x|2−N | ln |x||), v(x) = O(|x|2−N ), and p = (a + N )/(N − 2) and q <

(b+N )/(N − 2), then

lim
x→0
|x|N−2v(x) = C2 > 0, lim

x→0
|x|N−2∣∣ ln |x|∣∣−1

u(x) = Cp2/(N − 2), (4.22)

andu(x)−Cp2/(N − 2)|x|2−N | ln |x|| = O(|x|2−N ).
(vi) Assumeu(x) = O(|x|2−N | ln |x||), v(x) = O(1), anda+N = 0 andq < (b+ 2)/(N − 2), then

lim
x→0

v(x) = C ′2 > 0, lim
x→0
|x|N−2∣∣ ln |x|∣∣−1

u(x) = C ′p2 /(N − 2). (4.23)

(vii) Assumeu(x) = O(|x|2−N ), v(x) = O(| ln |x||), anda+N > 0 andq = (b+ 2)/(N − 2), then

lim
x→0
|x|N−2u(x) = C1 > 0, lim

x→0

∣∣ ln |x|∣∣−1
v(x) = Cq1/(N − 2). (4.24)

(viii) Assumeu(x) = O(1),v(x) = O(| ln |x||), anda+ 2> 0 andb+ 2 = 0, then

lim
x→0

u(x) = C1 > 0, lim
x→0

∣∣ ln |x|∣∣−1
v(x) = Cq1/(N − 2), (4.25)

andv(x)− (Cq1/(N − 2))| ln |x|| = O(1).

4.2. The superlinear case

First, we give some general properties of convergence:

Proposition 4.3. Let u,v ∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1), with pq > 1.
Assume thatq < (b+N )/(N − 2) andγ > N − 2.
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(i) Supposeq > (b+ 2)/(N − 2) and

v(x) = O
(
|x|b+2−(N−2)q).

Hencea+N > 0, and either(4.8)and(4.9)hold withC1 > 0, or u(x) = O(1).
(ii) Supposeq = (b+ 2)/(N − 2) and

v(x) = O
(∣∣ ln |x|∣∣).

Hence againa+N > 0. Then(4.25)holds withC1 > 0, or u(x) = O(1).
(iii) Now supposeq < (b+ 2)/(N − 2) and

v(x) = O(1).

If a + N < 0, then(4.10)and (4.11)hold. If a +N = 0, then(4.23)holds. Ifa+ N > 0, then
(4.18)holds; if C1 = 0, thena + 2 > 0, and(4.20)and (4.21)hold withC ′1 > 0, or (4.10)and
(4.11)hold.

Proof. (i) q > (b+2)/(N−2). Thena+N > 0; indeed,ξ > 0, hence (a+2)q > −(b+2)> −(N−2)q.
Now

∆u(r) 6 Cra+(b+2)p−(N−2)pq

in (0, 1/2), anda + (b + 2)p − (N − 2)pq +N = (pq − 1)(γ − N + 2) > 0. Thenu(x) = O(|x|2−N )
from Lemma 2.6 and (3.12). Now Lemma 4.1(ii) applies sinceγ > N − 2 and (4.8) follows. IfC1 > 0,
then Lemma 4.1(ii) gives (4.9). IfC1 = 0, thenu is bounded, hence alsou from (3.12).

(ii) q = (b+ 2)/(N − 2). Here again we geta+N > 0. Then

∆u(r) 6 Cra| ln r|p 6 Cεra−ε

in (0, 1/2), for anyε > 0, hence againu(x) = O(|x|2−N ) from Lemma 2.6 and from (3.12). Then (4.25)
follows from Lemma 4.2(vii). IfC1 = 0, thenu is bounded as above.

(iii) q < (b+ 2)/(N − 2). Here

∆u(r) 6 Cra

in (0, 1/2). From Lemma 2.6, we distinguish three cases:

– Eithera+N < 0; thenu(x) = O(|x|a+2). Then (4.10) and (4.11) follow from Lemma 4.1(iii).
– Ora+N = 0; thenu(x) = O(|x|2−N | ln |x||), and we get (4.23) from Lemma 4.2(vi).
– Or a + N > 0; thenu(x) = O(|x|2−N ). Then (4.18) holds from Lemma 4.2(ii). IfC1 = 0,

thenu(x) = O(1). It impliesa + 2 > 0 from Lemma 2.6. And we get (4.20) and (4.21) from
Lemma 4.2(iv), withu(x) = C ′1 + O(|x|a+2). If C ′1 = 0, then (4.10) and (4.11) hold from
Lemma 4.1(iii). 2
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Proposition 4.4. Letu,v ∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1). Assume

u(x) = O(1), v(x) = o
(
|x|2−N

)
,

andb+N > 0 andγ > 0. Then, either

(i) b+ 2< 0 and(4.12)and(4.13)hold; or
(ii) b+ 2 = 0 and(4.25)holds; or
(iii) b+ 2> 0 and(4.20)and(4.21)hold, and ifC ′1 = 0, then(4.10)and(4.11)hold.

Proof. (i) b+ 2< 0. Hencea+ 2> 0, sinceγ > 0. Thenµ = −(b+ 2)(b+N ) > 0, and Lemma 4.1(iv)
applies and (4.12) follows. We deduce (4.13). IfC ′1 = 0, thenu(x) = O(|x|ε0), with ε0 = γ(pq−1)> 0.
But any estimateu(x) = O(|x|ε) implies the estimate

−∆v(x) 6 C|x|b+qε

in D′(B1/2), because|x|b+qε ∈ L1(B1/2), sinceb+N > 0. Thenv(x) = O(|x|b+2+qε) if b+ 2+ εq < 0,
andv(x) = O(| ln |x||) if b+2+εq = 0, andv(x) = O(1) if b+2+εq > 0, from the maximum principle.
Till b+ 2 + εq < 0, it gives

∆u(r) 6 Cra+(b+2)p+pqε

in (0, 1/2), henceu(x) = O(|x|a+2+(b+2)p+pqε) = O(|x|ε0+pqε), from Lemma 2.6, sinceε0 + pqε > 0.
Now observe that the sequence defined byεn = ε0 + pqεn−1, satisfies limn→+∞ εn = +∞. Then by
modifying slightlyε0 if necessary, we deduce thatv(x) = O(1) after a finite number of steps. Then

∆u(r) 6 Cra

in (0, 1/2), henceu(x) = O(|x|a+2) from Lemma 2.6. At last, (4.10) and (4.11) hold from Lemma 4.1(iii).
(ii) b+ 2 = 0. Hence againa+ 2> 0. Then Lemma 4.2(viii) gives (4.25). Moreover, ifC1 = 0, then

v(x) = O(1), andu(x) = O(|x|a+2) from Lemma 2.6. Then (4.10) and (4.11) hold as above.
(iii) b+ 2 > 0. Thenu(x) + v(x) = O(1). It impliesa+ 2 > 0 from Lemma 2.6. And we get (4.20),

(4.21) from Lemma 4.2(iv), withu(x) = C ′1 + O(|x|a+2). If C ′1 = 0, then (4.10) and (4.11) hold from
Lemma 4.1(iii). 2

Now we can give the different types of behaviour according to the values ofγ andξ. First, we look at
the solutions which have a power upper estimate strictly smaller than the one of the particular solution
given in (1.14).

Proposition 4.5. Assumepq > 1 and0< ξ < N − 2, andγ > N − 2. Letu,v ∈ C2(B1 \ {0}) be any
nonnegative solutions of system(1.1), such that

u(x) = O
(
|x|−γ+ε), or v(x) = O

(
|x|−ξ+ε

)
, for someε > 0. (4.26)

Thenq < (b + N )/(N − 2) and p > (a + N )/(N − 2), and Proposition4.3 applies. Moreover, if
q > (b+ 2)/(N − 2) andu is bounded, then Proposition4.4applies.
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Proof. From (4.2), we havel1 + pl2 < 0 < l2 + ql1, hencel2 < 0 < l1, that is,q < (b + N )/(N − 2)
andp > (a + N )/(N − 2). From (1.17) we havev(x) = O(|x|−ξ), hencev(x) = o(|x|2−N ). Then the
constantC2 defined in (3.2) is zero. Now notice that the assumptionu(x) = O(|x|−γ+ε) implies

−∆v(x) 6 C|x|b−γq+qε = C|x|−2−ξ+qε

in D′(B1/2), because|x|−2−ξ+qε ∈ L1(B1/2), sinceN − 2− ξ > 0. Hence

v(x) =

O(|x|−ξ+qε) if ξ > qε,
O(| ln |x||) if ξ = qε,
O(1) if ξ < qε,

from the maximum principle. And any estimatev(x) = O(|x|−ξ+ε′) implies

∆u(r) 6 Cra−ξp+pε′ = Cr−2−γ+pε′

in (0, 1/2). Consequently,

u(x) =

O(|x|−γ+pε′) if pε′ < γ −N + 2,
O(|x|2−N | ln |x||) if pε′ = γ −N + 2,
O(|x|2−N ) if pε′ > γ −N + 2,

from Lemma 2.6 and (3.12). We can start from the assumptionu(x) = O(|x|−γ+ε), with ε small enough.
Considerε0 = ε andε′0 = q ε, and defineεn = pε′n−1 andε′n = qεn. Then, by induction,u(x) =

O(|x|−γ+εn) andv(x) = O(|x|−ξ+ε′n), till p ε′n < γ − N + 2, andξ > q εn. But εn = pq εn−1, hence
limn→+∞ εn = +∞. Then by modifying sligthlyε0 if necessary, we find after a finite number of steps
that eitheru(x) = O(|x|2−N ), or v(x) = O(1). Now ifu(x) = O(|x|2−N ), then

−∆v(x) 6 C|x|b−(N−2)q

in D′(B1/2), because|x|b−(N−2)q ∈ L1(B1/2), sinceq < (b +N )/(N − 2). Hence in any case we have
the estimate

v(x) = O
(
|x|b+2−(N−2)q)+ O

(∣∣ ln |x|∣∣), (4.27)

and Proposition 4.3 applies. Whenq > (b+ 2)/(N − 2) andu is bounded, then Proposition 4.4 applies,
sinceb+N > 0 andγ > N − 2> 0. 2

Proposition 4.6. Assumepq > 1 and 0 < ξ < N − 2, and γ < 0. Let u,v ∈ C2(B1 \ {0}) be any
nonnegative solutions of system(1.1). Assume that

u(x) = O
(
|x|−γ+ε), or v(x) = O

(
|x|−ξ+ε

)
, for some smallε > 0. (4.28)

Thenb+ 2< 0, a+ 2> 0, and(4.10)and(4.11)hold.
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Proof. We haveγ < 0 < ξ, henceb + 2 < 0 anda + 2 > 0. As above, the assumptionu(x) =
O(|x|−γ+ε) impliesv(x) = O(|x|−ξ+qε), till qε < ξ.Nowu(x) tends to 0. From Lemma 2.6, the estimate
v(x) = O(|x|−ξ+ε′) still implies thatu(x) = O(|x|−γ+pε′), since−γ + pε′ > 0. Considerε0 = ε
andε′0 = q ε, andεn = p ε′n−1, ε′n = qεn. Thenu(x) = O(|x|−γ+εn) andv(x) = O(|x|−ξ+ε′n), till
qεn < ξ. But lim εn = +∞, hence we deduce thatv(x) = O(1) after a finite number of steps. Then
againu(x) = O(|x|a+2) from Lemma 2.6, sincea + 2 > 0. As above, we find (4.10) and (4.11) from
Lemma 4.1(iii). 2

Now we consider the cases where the particular solution (1.14) does not exist.

Proposition 4.7. Assumepq > 1 andξ > N − 2. Letu,v ∈ C2(B1 \ {0}) be any nonnegative solutions
of system(1.1).

(i) Assumep > (a+N )/(N − 2). Thenq < (b+N )/(N − 2) andγ > N − 2. And either(4.6)and
(4.7)hold withC2 > 0, or Proposition4.3applies. And ifq > (b+ 2)/(N −2) andu is bounded,
then Proposition4.4applies.

(ii) Assumep < (a+N )/(N − 2) andq < (b+N )/(N − 2). Then(4.16)and(4.17)hold. IfC2 > 0
andC1 = 0, thenp < (a + 2)/(N − 2), and (4.19)holds; and ifC ′1 = 0, then(4.6) and (4.7)
hold. IfC2 = 0, then Proposition4.3applies(with a+N > 0). And ifq > (b+ 2)/(N − 2) and
u is bounded, then Proposition4.4applies.

(iii) Assumep < (a + N )/(N − 2) and q > (b + N )/(N − 2). Then either(4.19)holds for some
C2 > 0, and ifC ′1 = 0, in particular, if b + N 6 0, then(4.6) and (4.7) hold. OrC2 = 0. Then
eitherb+N > 0, and Proposition4.4applies. Orb+N 6 0, and(4.10)and(4.11)hold.

(iv) Assumep = (a + N )/(N − 2). Thenq < (b + N )/(N − 2), and (4.22)holds. IfC2 = 0, then
Proposition4.3applies(with a + N > 0). And if q > (b + 2)/(N − 2) andu is bounded, then
Proposition4.4applies.

Proof. We have estimates (3.10) and (3.11) from Theorem 3.2.
(i) p > (a+N )/(N−2).Herel1 > 0; andl2+ql1 < 0, hencel2 < 0, that is,q < (b+N )/(N−2), and

l1 + pl2 < l1(1− pq) < 0, that is,γ > N −2. As v(x) = O(|x|2−N ), we haveu(x) = O(|x|a+2−(N−2)p).
Then we find (4.6) and (4.7) from Lemma 4.1(i). IfC2 = 0, then

−∆v(x) 6 C|x|b+(a+2)q−(N−2)pq = C|x|(ξ−N+2)(pq−1)−N

in D′(B1/2), because|x|(ξ−N+2)(pq−1)−N ∈ L1(B1/2). Applying the maximum principle, it follows that
v(x) = O(|x|2−N+ε0) + O(1), withε0 = (ξ −N + 2)(pq − 1) if ε0 6= N − 2; andv(x) = O(| ln |x||) if
ε0 = N − 2. But from Lemma 2.6, any estimatev(x) = O(|x|2−N+ε) implies

u(x) =

O(|x|a+2+pε−(N−2)p) if p > (a+N + pε)/(N − 2),
O(|x|2−N ) if p < (a+N + pε)/(N − 2),
O(|x|2−N | ln |x||) if p = (a+N + pε)/(N − 2).

In the first case,

−∆v(x) 6 C|x|b+(a+2)q−(N−2)pq+pqε = C|x|ε0−N+pqε (4.29)
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inD′(B1/2), hencev(x) = O(|x|2−N+ε0+pqε)+O(1) if ε0+pqε 6= N−2. But the sequence defined from
ε0 by εn = ε0 + pqεn−1 tends to+∞. Hence, changing slightlyε0 if necessary, after a finite number of
steps we find that eitheru(x) = O(|x|2−N ), or v(x) = O(1). In any case we have estimate (4.27). And
we get the conclusions of Proposition 4.3, and of Proposition 4.4 in caseq > (b + 2)/(N − 2) andu is
bounded.

(ii) p < (a +N )/(N − 2) andq < (b +N )/(N − 2). Then we haveu(x) + v(x) = O(|x|2−N ) from
(3.10) and (3.11). First, notice thatl1, l2 < 0, hence alsol1 + pl2 < 0, so thatγ > N − 2. Then we
deduce (4.16) and (4.17) from Lemma 4.2(i). IfC1 = 0, thenu(x) = O(1), sinceu is subharmonic. If
C2 > 0 andC1 = 0, then

∆u(r) > Cra−(N−2)p

in (0, 1/2), hencea + 2− (N − 2)p > 0 from Lemma 2.6; and (4.19) holds from Lemma 4.2(ii), since
b + N > 0. Moreover, ifC ′1 = 0, thenu(x) = O(|x|a+2−(N−2)p) and (4.6) and (4.7) hold. IfC2 = 0,
then

v(x) =

{
O(|x|b+2−(N−2)q) + O(1) if q 6= (b+ 2)/(N − 2),
v(x) = O(| ln |x||) if q = (b+ 2)/(N − 2).

Then Proposition 4.3 applies after noticing that herea + N > 0. And Proposition 4.4 applies when
q > (b+ 2)/(N − 2) andu is bounded.

(iii) p < (a+N )/(N−2) andq > (b+N )/(N−2).We still haveu(x)+v(x) = O(|x|2−N ).We know
thatr2−Nu(r) has a finite limit. It is necessary 0, since|x|buq ∈ L1(B1/2), andq > (b + N )/(N − 2),
andrbuq > Crbuq from (3.19). Henceu(x) = O(1) andv(x) = O(|x|2−N ). Now v satisfies (3.2) for
someC2 > 0, andu has a finite limitC ′1 > 0.

First, suppose thatC2 > 0. Thena+2−(N−2)p > 0 from Lemma 2.6. Eitherb+N > 0. Then (4.19)
holds. IfC ′1 = 0, thenu(x) = O(|x|a+2−(N−2)p) as above. And (4.6) and (4.7) hold from Lemma 4.1(i).
Or b + N 6 0. ThenC ′1 = 0. Indeed, ifC ′1 > 0, thenrbuq > Crbuq > Cr−N ; this is impossible
because|x|buq(|x|) ∈ L1(B1/2). Then we obtainu(x) = O(|x|a+2−(N−2)p) from Lemma 2.6 and (3.12).
And (4.6) and (4.7) hold again.

Now suppose thatC2 = 0. Eitherb+N > 0. Then

−∆v(x) 6 C|x|b

inD′(B1/2), hencev(x) = O(|x|b+2)+O(| ln |x||), so thatv(x) = o(|x|2−N ).Nowγq = ξ+b+2> b+N ,
henceγ > 0. Then Proposition 4.4 applies. Orb + N 6 0, andC ′1 = 0, as above. Then we still have
a+ 2− (N − 2)p > 0. Indeed,ξ > (N − 2) implies thata + 2− (N − 2)p > −(b+N )/q. It implies
thatu(x) = O(|x|a+2−(N−2)p) from Lemma 2.6. Letε0 = a+ 2− (N −2)p. If u(x) = O(|x|ε), for some
ε > ε0, then

−∆v(x) 6 C|x|b+εq

in D′(B1/2), becauseb + N + εq > 0. Hence we havev(x) = O(|x|b+2+εq), till b + 2 + εq < 0. As a
consequence,

∆u(r) 6 Cra+(b+2+εq)p
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in (0, 1/2). Observing thata+2+(b+2+εq)p > γ(pq−1)> 0, we deduce thatu(x) = O(|x|εpq+γ(pq−1))
from Lemma 2.6. Defining fromε0 the sequenceεn = εn−1pq + γ(pq − 1), we have limεn = +∞. It
follows thatv(x) = O(1) after a finite number of steps, and thenu(x) = O(|x|a+2), sincea + 2 > 0.
Now (4.10) and (4.11) follow from Lemma 4.1(iii).

(iv) p = (a+N )/(N−2). Thenl1 = 0, l2+ql1 < 0, hencel2 < 0, which meansq < (b+N )/(N−2).
Here we havev(x) = O(|x|2−N ) andu(x) = O(|x|2−N | ln |x||). Then Lemma 4.2(v) applies and gives
(4.22). IfC2 = 0, thenu(x) = O(|x|2−N ), and we can apply Propositions 4.3 and 4.4 as in the second
case. 2

Proposition 4.8. Assumepq > 1 and 0 < γ 6 N − 2, 0 < ξ 6 N − 2, andγ or ξ 6= N − 2. Let
u,v ∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1). Thenb+N > 0, and Proposition4.4
applies.

Proof. We haveu(x) = O(|x|−γ). If γ < N − 2, henceu(x) = O(1), sinceu is subharmonic. If
γ = N − 2, thenξ < N − 2, hencev(x) = O(|x|−ξ) = o(|x|2−N ) from Theorem 1.1. Andr2−Nu(r)
has a finite limitC1 > 0. Let us prove thatC ′1 = 0. If C ′1 > 0, then from (3.20),

∆u(r) > Cr−N

in (0, 1/2). It implies thatu(r) > Cr2−N | ln r| from Lemma 2.6, which is impossible. Then we get
in any caseu(x) = O(1). And v satisfies (3.2) withC2 = 0, sincev(x) = o(|x|2−N ). In this case,
0< γq = b+2+ξ 6 b+N , sinceξ 6 N−2, henceb+N > 0. Then we can apply Proposition 4.4.2

Proposition 4.9. Assumepq > 1 and γ = 0, and 0 < ξ < N − 2. Let u,v ∈ C2(B1 \ {0}) be any
nonnegative solutions of system(1.1). Then

u(x) = O
(∣∣ ln |x|∣∣−1/(pq−1))

, v(x) = O
(
|x|−ξ

∣∣ ln |x|∣∣−q/(pq−1))
. (4.30)

Proof. Here againu is bounded, andu(r) has a finite limitC ′1 > 0. The change of variables (4.3) gives{
Utt − (N − 2)Ut + ∆SN−1U − V p = 0,
Vtt − (N − 2− 2ξ)Vt + ∆SN−1V − ξ(N − 2− ξ)V + U q = 0.

From (3.20), there exists a constantC > 0, such that, for larget,

−U tt + (N − 2)U t + CU
pq 6 0.

If C ′1 > 0, there exists another constantC > 0 such that e−(N−2)t(U t(t) + C) is nondecreasing; it tends
to 0, sinceU t is bounded from Schauder estimates. ThenU (t)+Ct is nonincreasing, which is impossible.
ThenC ′1 = 0. Now the equation

−ytt + (N − 2)yt + Cypq = 0

admits a solutionY such thatY (t) = ((N − 2)/C(pq − 1))1/(Q−1)t−1/(pq−1)(1 + o(1)), see [19]. But
for anyε ∈ (0, 1], the functionεU is again a subsolution of this equation. Choosingε small enough, we
deduce thatεU 6 Y . This proves thatU (t) = O(t−1/(pq−1)), that is,u(x) = O(| ln |x||−1/(pq−1)). Then

−∆v(x) 6 C|x|b
∣∣ ln |x|∣∣−q/(pq−1)

= C|x|−2−ξ∣∣ ln |x|∣∣−q/(pq−1)
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inD′(B1/2), becauseN−2−ξ > 0. It follows thatv(x) = O(|x|−ξ| ln |x||−q/(pq−1)), from the maximum
principle. 2

Proposition 4.10. Assumepq > 1 andξ = N − 2, andγ < 0 or γ > N − 2. Letu,v ∈ C2(B1 \ {0})
be any nonnegative solutions of system(1.1). Then

u(x) = O
(
|x|−γ

∣∣ ln |x|∣∣−p/(pq−1))
, v(x) = O

(
|x|2−N

∣∣ ln |x|∣∣−1/(pq−1))
. (4.31)

Proof. The change of variables (4.3) gives{
Utt − (N − 2− 2γ)Ut + ∆SN−1U − γ(N − 2− γ)U − V p = 0,
Vtt + (N − 2)Vt + ∆SN−1V + U q = 0.

Then (e(N−2)tVt)t 6 0, henceVt 6 Ce−(N−2)t, andV has a finite limit. If it is positive, thenu(r) > Cr−γ
from (3.4); in turn,rbuq(r) > Cr−2−ξ = Cr−N , which is impossible. HenceV tends to 0, hence
v(x) = o(|x|2−N ). Consequentlyu(x) = o(|x|−γ ) from (3.5) and (3.12). From (3.21), there exists a
constantC > 0, such that, for larget,

V tt + (N − 2)V t + CV
pq 6 0.

This implies thatV (t) = O(t−1/(pq−1)) at infinity, see, for example, [6, Theorem 5.1]. We deduce that
v(x) = O(|x|2−N | ln |x||−1/(pq−1)) from (3.9). Then

∆u(r) 6 Cra−pξ| ln r|−p/(pq−1) = Cr−2−γ| ln r|−p/(pq−1)

in (0, 1/2), henceu(x) = O(|x|−γ| ln |x||−p/(pq−1)), from (3.12) and [4, Lemma 2.3].2

Remark 4.1. In the critical caseξ = N − 2, γ = 0, we findu(x) = O(| ln |x||−1/(pq−1)) as in Propo-
sition 4.9, andv(x) = O(|x|2−N | ln |x||−1/(pq−1)) as in Proposition 4.10. But these estimates are not
optimal, as in [2, Theorem 5.1]. We conjecture that

u(x) = O
(∣∣ ln |x|∣∣−(p+1)/(pq−1))

, v(x) = O
(
|x|2−N

∣∣ ln |x|∣∣−(q+1)/(pq−1))
.

4.3. The sublinear case

Now we describe the behaviour according to the value ofp− (a+N )/(N − 2).

Proposition 4.11. Assumepq < 1 with p > (a + N )/(N − 2), and γ 6= N − 2, ξ 6= 0. Let u,v
∈ C2(B1 \ {0}) be any nonnegative solutions of system(1.1). Then(4.6)and(4.7)hold. Now, ifC2 = 0,
then

(i) eitherξ > 0 andγ > N − 2, and

C−1r−γ 6 u(r) 6 Cr−γ, C−1|x|−ξ 6 v(x) 6 C|x|−ξ; (4.32)
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(ii) or ξ < 0. Then eithera + N < 0 and (4.10)and (4.11)hold. Ora +N = 0, and (4.23)holds.
Or a+N > 0 andγ < N − 2 and(4.18)holds; if C1 > 0, thenq < (b+ 2)/(N − 2); if C1 = 0,
thenγ < 0, a + 2 > 0, and (4.20)and (4.21)hold; if C ′1 > 0, thenb + 2 > 0; if C ′1 = 0, then
(4.10)and(4.11)hold;

(iii) or ξ > 0 andγ < N − 2, and either(4.8)and(4.9)hold withC1 > 0. Or (4.20)and(4.21)hold
as above, and ifC ′1 = 0, then(4.10)and(4.11)hold.

Proof. We havev(x) = O(|x|2−N ) andu(x) = O(|x|a+2−(N−2)p) from Theorem 1.2. Andl2 + ql1 < 0
and l1 > 0 imply l2 < 0, that is,q < (b + N )/(N − 2). Now Lemma 4.1(i) applies, becauseε0 =
(ξ −N + 2)(pq − 1) = −(l2 + ql1) > 0. More precisely,

v(x)− C2|x|2−N =

{
O(|x|2−N+ε0) + O(1) if ε0 6= N − 2,
O(| ln |x||) if ε0 = N − 2,

from [6]. Now suppose thatC2 = 0.

– Eitherε0 > N − 2, henceξ < 0 andv(x) = O(1).
– Orε0 < N − 2, hencev(x) = O(|x|2−N+ε0).
– Orε0 = N − 2, hencev(x) = O(|x|2−N+ε0−ε′) for anyε′ > 0. As in Proposition 4.7, any estimate
v(x) = O(|x|2−N+εn) implies that

u(x) =

u(x) = O(|x|a+2+pεn−(N−2)p) if λn = (N − 2)p− (a+N + pεn) > 0,
O(|x|2−N ) if λn < 0,
O(|x|2−N | ln |x||) if λn = 0.

But here the sequence defined fromε0 by εn = ε0 +pqεn−1 tends toε0/(1−pq). Hence 2−N+εn
tends to−ξ, and the sequenceλn decreases toλ = γ −N + 2. As a consequence, ifγ < N − 2 or
ξ < 0, we findv(x) = O(1) oru(x) = O(|x|2−N ). If γ > N −2 andξ > 0, thenv(x) = O(|x|−ξ−ε)
for anyε > 0.

(i) γ > N − 2 andξ > 0. Then we have in factv(x) = O(|x|−ξ). Indeed, any estimatev(x) 6
Cεn|x|2−N+εn in B1/2 \ {0} implies more precisely

u(x) 6 C|x|2−N + CCnC
p
εn|x|

a+2+pεn−(N−2)p

with Cn = 1/(λn(λn +N − 2))6 1/λ2, see [4, Lemma 2.3]. Hence, with a new constantC > 0,

u(x) 6 C
(
1 + Cpεn

)
|x|a+2+pεn−(N−2)p.

And then

v(x) 6 C ′nCq
(
1 + Cpεn

)q|x|2−N+ε0+pqεn + C,

from the maximum principle, withC ′n = 1/(ε0 + pqεn)(N − 2− ε0− pqεn) 6 1/ε0ξ. Then

v(x) 6 Cεn|x|2−N+εn ,
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with Cεn = C(1 + Cpqεn−1
), for anotherC. It follows thatv(x) 6 C|x|−ξ, because the sequence (Cεn) is

convergent. Thenu(x) = O(|x|−γ) from (3.5) and (3.12), and we deduce (4.32) from (3.23).
(ii) γ < N − 2 or ξ < 0 andv(x) = O(1). Now we apply Lemma 2.6. Eithera + N < 0, and then

u(x) = O(|x|a+2). Then Lemma 4.1(iii) applies, becauseξ(pq − 1) < 0, and we get (4.10) and (4.11).
Or a + N > 0, andγ + 2− N 6 γ + a + 2 = pξ < 0, henceγ < N − 2. If a + N = 0, then
u(x) = O(|x|2−N | ln |x||), andq < (b + 2)/(N − 2), since (a + 2)q + b + 2 > 0. Then we get (4.23)
from Lemma 4.2(vi). Now consider the casea+N > 0; thenu(x) = O(|x|2−N ).

– Either q < (b + 2)/(N − 2). Then Lemma 4.2(ii) applies and gives (4.18) withv(x) − C ′2 =
O(|x|b+2−(N−2)q). Now suppose thatC1 = 0. Thenu(x) = O(1), henceγ 6 0 from (3.23). It
impliesa+ 2 > 0 from Lemma 2.6. Thenγ < 0, sinceγ = pξ − (a+ 2). Then there is a constant
C ′1 > 0 such thatu(x) = C ′1+O(|x|a+2), from Lemma 4.1(iv). IfC ′1 > 0, thenb+2> 0 from (3.5),
sincev is bounded. In the same way there is a constantC ′2 > 0 such thatv(x) = C ′2 + O(|x|b+2),
from Lemma 4.1(iv). IfC ′1 = 0, thenu(x) = O(|x|a+2), with v(x) = O(1). We get again (4.10) and
(4.11) from Lemma 4.1(iii), becauseξ(pq − 1)> 0.

– Orq > (b+ 2)/(N − 2). We know thatrN−2 u(r) has a finite limitC1. Let us prove thatC1 = 0. If
C1 > 0, then

−∆v(r) > Crb−(N−2)q > Cr−2

in (0, 1/2). This is impossible becausev is bounded. Henceu(x) = O(1), and we conclude as above.

(iii) γ < N − 2 or ξ < 0 andu(x) = O(|x|2−N | ln |x||). Thena+N > 0, from (3.1) and (3.4).

– Eithera+N = 0. Thenq < (b+ 2)/(N − 2), and

−∆v(x) 6 C|x|b−(N−2)q−ε

in D′(B1/2), for anyε > 0, sinceq < (b + N )/(N − 2). Hencev(x) = O(1) from the maximum
principle, and we return to the preceeding case.

– Ora + N > 0, andv(x) = O(|x|(b+2−(N−2)q−ε) + O(1) from the maximum principle. Eitherq <
(b+2)/(N−2), hencev(x) = O(1), and we again return to the second case. Orq > (b+2)/(N−2),
thenv(x) = O(|x|(b+2−(N−2)q−ε), andu(x) = O(|x|2−N ) from Lemma 2.6, sinceγ < N − 2. And
(4.8) and (4.9) hold from Lemma 4.1(ii), because (γ − N + 2)(pq − 1) > 0. If C1 = 0, then
u(x) = O(1), and we return to the second case.2

Remark 4.2. In the critical casesξ = 0 orγ = N − 2, our proofs give the estimatev(x) = O(|x|−ε) for
anyε > 0, and, consequently,u(x) = O(|x|−γ−ε) from (3.5).

(i) In the caseξ = 0, γ > N − 2, we also have the lower estimates

u(r) > Cr−γ| ln r|p/(1−pq), v(x) > C
∣∣ ln |x|∣∣1/(1−pq)

. (4.33)

Indeed, we have

−∆v(r) > Cr−2vpq(r)
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in (0, 1/2), from (3.21), hencev(r) > C| ln r|1/(1−pq) from [2, Lemma A2], and (4.33) follow
from (3.4) and (3.9). We conjecture that the upper estimates

u(x) = O
(
|x|−γ

∣∣ ln |x|∣∣p/(1−pq))
, v(x) = O

(∣∣ ln |x|∣∣1/(1−pq))
are true.

(ii) In the caseξ > 0, γ = N − 2, we conjecture that

u(x) = O
(
|x|2−N

∣∣ ln |x|∣∣1/(1−pq))
, v(x) = O

(
|x|−ξ

∣∣ ln |x|∣∣q/(1−pq))
.

(iii) In the caseξ = 0, γ = N − 2, we conjecture that

u(x) = O
(
|x|2−N

∣∣ ln |x|∣∣(p+1)/(1−pq))
, v(x) = O

(
|x|−ξ

∣∣ ln |x|∣∣(q+1)/(1−pq))
.

Proposition 4.12. Assumepq < 1 with p < (a+N )/(N − 2), andξ 6= 0 if γ < 0. Letu,v ∈ C2(B′) be
any nonnegative solutions of system(1.1). Thenγ < N − 2.

(i) Supposeq < (b+N )/(N − 2). Then(4.16)and(4.17)hold. IfC2 > 0 andC1 = 0, thenγ < 0,
p < (a + 2)/(N − 2), and (4.19) holds; if C ′1 = 0, then (4.6) and (4.7) hold. If C1 > 0 and
C2 = 0, then eitherq > (b+ 2)/(N − 2) and(4.8)and (4.9)hold, orq < (b + 2)/(N − 2) and
(4.18)holds. IfC1 = C2 = 0, thenγ < 0, a+ 2> 0, and:

– Eitherb+ 2< 0, and(4.12)and(4.13)hold; if C ′1 = 0, then eitherξ > 0 and(4.32)holds, or
(4.10)and(4.11)hold.

– Eitherb+ 2> 0, and(4.20)and(4.21)hold; if C ′1 = 0, then(4.10)and(4.11)hold.
– Or b+ 2 = 0, and(4.25)holds.

(ii) Supposeq > (b + N )/(N − 2). If b + N > 0, then(4.19)holds. IfC2 > 0 andC ′1 = 0, then
(4.6) holds. IfC2 = 0, we conclude as above. Ifb+ N 6 0, then eitherξ > 0 and (4.32)holds,
or (4.10)and(4.11)hold.

Proof. First, notice that hereγ < N−2; indeed,l1 < 0, l2+ql1 < 0, hencel1+pl2 < l1(1−pq) < 0. We
haveu(x) + v(x) = O(|x|2−N ) from Theorem 1.2. HencerN−2u(r) has a finite limitC1 > 0, rN−2v(r)
has a finite limitC2 > 0, andv satisfies (3.2).

(i) q < (b+N )/(N − 2). We get (4.16) and (4.17) from [4, Lemma 6.3]. Moreover,

u(x)− C1|x|2−N =

{
O(|x|a+2−(N−2)p) + O(1) if p 6= (a+ 2)/(N − 2),
O(| ln |x||) if p = (a+ 2)/(N − 2),

(4.34)

and

v(x)− C2|x|2−N =

{
O(|x|b+2−(N−2)q) + O(1) if q 6= (b+ 2)/(N − 2),
O(| ln |x||) if q = (b+ 2)/(N − 2).

(4.35)

Now suppose thatC1 = 0 orC2 = 0. We consider each case separately.
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– EitherC2 > 0 andC1 = 0. Thenu is bounded, henceγ 6 0 from (3.23); in fact,γ < 0. Indeed,
if γ = 0, then (4.32) hold, which contradictsC2 > 0. And we obtainp < (a + 2)/(N − 2) from
Lemma 2.6. Then (4.19) holds from Lemma 4.1, andu(x) − C ′1 = O(|x|a+2−(N−2)p). If C ′1 = 0,
then (4.6) and (4.7) hold, because (ξ −N + 2)(pq − 1)> 0.

– OrC1 > 0 andC2 = 0. If q > (b + 2)/(N − 2), thenv(x) = O(|x|b+2−(N−2)q) and we get (4.8),
since (γ−N+2)(pq−1)> 0. If q 6 (b+2)/(N −2), thenv(x) = O(1). And (4.18) holds, because
b+N > 0. If q = (b+ 2)/(N − 2), then

−∆v(r) > Cr−2

in (0, 1/2), which is impossible.
– OrC1 = C2 = 0. Thenu(x) = O(1), hence againγ 6 0, and, in fact,γ < 0. Indeed, ifγ = 0, then

(4.32) hold, but then

∆u(r) > Cr−2

in (0, 1/2), which contradicts Lemma 2.6. Then we get alsoa+ 2> 0 from Lemma 2.6. And

−∆v(x) 6 C|x|b

in D′(B1/2), sinceb + N > 0, hencev(x) = O(|x|b+2) + O(| ln |x||). First, suppose thatb + 2 <
0, thenv(x) = O(|x|b+2), and (4.12) and (4.13) hold, sinceγ(pq − 1) > 0. Moreover,u(x) =
C ′1 + O(|x|γ(pq−1)). If C ′1 = 0, thenu(x) = O(|x|ε0) with ε0 = γ(pq − 1). But any estimateu(x) =
O(|x|ε) again implies that

−∆v(x) 6 |x|b+εq

in D′(B1/2), hencev(x) = O(|x|b+2+εq) + O(1). And any estimatev(x) = O(|x|b+2+εq) in turn
implies u(x) = O(|x|a+2+(b+2)p+εpq) from Lemma 2.6, sinceu(x) tends to 0. But the sequence
defined fromε0 by εn = a + 2 + (b + 2)p + εn−1pq tends to−γ. After a finite number of steps,
we arrive tou(x) = O(|x|−γ+ε′) for anyε′ > 0, orv(x) = O(1). In the first case, we can prove as
in Proposition 4.11 that, in fact,u(x) = O(|x|−γ), sinceξ 6= 0. This implies estimate (4.32), and
necessarilyξ > 0. In the second case, we find again (4.10) and (4.11). Now assume thatb+ 2> 0.
Then we obtain (4.20) and 4.21, and (4.10) and (4.11) in caseC ′1 = 0. At last, assume thatb+2 = 0.
Then we get (4.25) from Lemma 4.2(viii).

(ii) q > (b+N )/(N−2). ThenC1 = 0, because|x|buq ∈ L1(B1/2). Henceu is bounded. Ifb+N > 0,
then (4.19) holds from [4, Lemma 6.3]. IfC2 > 0, andC ′1 = 0, then (4.6) and (4.7) hold. IfC2 = 0, we
conclude as above. Ifb+N 6 0, thenl2 > (N −2)q, hencel1 < 2−N , sincel2 + ql1 < 0. Thenγ < 0,
becausepl2+ l1 < (1−pq)l1 < (2−N )(1−pq). Necessarily limx→0u(x) = 0, since|x|buq ∈ L1(B1/2).
We conclude as above that eitheru(x) = O(|x|−γ), henceξ > 0, and (4.32) holds, orv(x) = O(1), and
(4.10) and (4.11) hold. 2

Proposition 4.13. Assumepq < 1 withp = (a+N )/(N−2). Letu,v ∈ C2(B1\{0}) be any nonnegative
solutions of system(1.1). Then(4.22)holds. IfC2 = 0, then eitherq > (b + 2)/(N − 2) and (4.8) and
(4.9)hold, orq < (b+ 2)/(N − 2), and(4.18)holds, orq = (b+ 2)/(N − 2), and(4.24)holds.
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Proof. We haveu(x) = O(|x|2−N | ln |x||) andv(x) = O(|x|2−N ) from Theorem 1.2. As in Proposi-
tion 4.7, we conclude to (4.22). IfC2 = 0, thenu(x) = O(|x|2−N ), and we haveq < (b+N )/(N − 2).
If q > (b+ 2)/(N −2), thenv(x) = O(|x|b+2−(N−2)q), and we get (4.8) and (4.9) from Lemma 4.1(ii). If
q < (b+ 2)/(N − 2), thenv(x) = O(1), and we get (4.18) from Lemma 4.2(ii). Ifq = (b+ 2)/(N − 2),
thenv(x) = O(| ln |x||), and (4.24) follows from Lemma 4.2(vii).2
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