Singularities in elliptic systems with absorption terms
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Abstract

We study the limit behaviour near the origin of nonnegative solutions of the
semilinear elliptic system
—Au+|z|*? =0, . N
>
{ —Av + |z|Pu? = 0, in R™ (N > 3),

where p,q,a,b € R, with p, ¢ > 0, pg # 1. Our main results are a priori estimates
in the superlinear case pg > 1 and the sublinear one pg < 1. They essentially
relie on fine properties of subharmonic functions . We also point out that the
behaviour of the solutions is most often anisotropic.
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1 Introduction

This paper deals with the nonnegative solutions u, v of the semilinear elliptic system
in RY (N > 3) with absorption terms:

_ a,p —
{ Au + |z]|%P =0, (1.1)

—Av + |z|Pud =0,

where p, ¢, a,b € R with p, ¢ > 0, and pq # 1. We study the behaviour of the solutions
near an isolated singularity = 0. This also provides the behaviour at infinity by
Kelvin transform. Our results apply in particular to the nonnegative subharmonic
solutions of the biharmonic equation

— A%y |z[u? =0, (1.2)

with ¢ # 1, by taking p = 1 and a = 0. In the sequel, we suppose that u, v are defined
in B'= B\ {0}, where B={z e RV ||z| < 1}.

Our study extends the results relative to the scalar case of the nonnegative solu-
tions of equation

—Aw + |z]7w? =0 (1.3)

where @@ > 0, @ # 1. Equation (1.3) was studied in detail in the superlinear case

@ > 11in [20], [21], [8], [24], and more recently in the sublinear case ) < 1 in [5], and
in [4] when N =2 . For any @ # 1, defining

I'=(c+2)/(Q—-1), (1.4)
it admits a particular radial solution :
w*(z) = C* z|™", C*= (D — N +2)V/ @1, (1.5)

whenever C* > 0, which is a guide-line of the study. This nonlinear effect fights
with the linear one, due to the Laplacian. In the superlinear case () > 1, all the
subsolutions satisfy the Keller-Osserman estimate near the origin

w(z) < C |z ™", (1.6)

where C = C(N,Q,0). And the solutions are asymptotically radial. When @ >
(N 4+ 0)/(N — 2), then w* does not exist, and the singularity is removable, which
means that the solutions stay bounded near the origin. In the sublinear case @ < 1,



the linear effect can dominate the nonlinear one. The solutions, and more generally
the subharmonic supersolutions, of (1.3) satisfy the estimate

M@S{memrﬁm*ﬁ>ifQ¢w+wﬂN 2) an

C 2PN fz|[VEDY i Q= (N +a)/(N - 2),

for some C > 0. Moreover the solutions may present an anisotropic behaviour.

The case of the system appears to be quite more complicated: for example, it will
be shown that the behaviour of one of the functions u, v can be of linear type, and the
behaviour of the other one of nonlinear type. Moreover, the anisotropic character of
the solutions is much more frequent. Technically, the maximum principle no longer
holds. Thus the construction of supersolutions, essential in [8], is no more available.
But the fundamental property of subharmonicity of the solutions is preserved. It will
be the essential tool of our proofs. As in the scalar case, our study is governed by
the existence of a radial particular solution (u*,v*) given by

uH(z) = A* 2|77, v (z) = B |z| ¢, (1.8)
where
y=[b+2)p+a+2]/(pg—1), {=[la+2)g+b+2]/(pg—1), »
and
A* = [y(y+2 - N)(EE+2 - N/,
{ B* = [£(6+2 — N)(y(y + 2 — N))q/ra=1) (1.10)
whenever (v +2 — N) > 0 and £(6 +2 — N) > 0. Notice the relations
Y+a+2=pf  E+b+2=q. (1.11)

We shall distinguish between the superlinear case pg > 1, and the sublinear case
pq < 1. In the sequel, the same letter C' denotes some positive constants which may

depend on u, v, unless otherwise stated.

We give in Section 2 the key lemmas of our paper. For any function w € C?(B’),
we denote by

1

w(r) = ST Jon w(r, 8) do (1.12)

its mean value on the sphere of center 0 and radius r. In order to establish a priori
estimates for system (1.1), a simple idea is to obtain first the corresponding estimates
for the mean values @, v, by using the Jensen inequality:

wl >w?, ifQ > 1, wl <wW?, ifQ < 1. (1.13)



Then analogous estimates follow for u,v by using subharmonicity, as for example in
the scalar sublinear case in [5]. This method rapidly fails when for example p > 1
and ¢ < 1. Our first argument relies in a finer property of the mean-value of the
subharmonic functions. We compare the value w(z) in some point z € B’ to the
mean value w [|z| (1 £ ¢)] at some radius close to |z| . This allows us to cover the
cases where the Jensen inequality is no longer valid. Thus we are reduced to a system
of inequalities for u,v, involving the variables r and r(1 = ¢), which we call shifted
inequalities. The second argument of our proofs is a delicate technique of bootstrap
as € tends to 0, in order to treat the shifted radial system as a non-shifted one.

In Section 3 we give the a priori estimates in the superlinear case. Some recent
results of [25] give sufficient conditions of removability for the solutions, under the
restrictive assumption p > 1 and ¢ > 1. Our main result is an extension of Keller-
Osserman estimates to system (1.1) when pg > 1, without any other restriction . We
prove the following.

Theorem 1.1 Let us assume pq > 1. Let u,v € C?(B') be any nonnegative subsolu-
tions of (1.1) , that is

—Au + |z|%P <0,
{ —Av + |z[Pu? < 0. (1.14)
Then
u(z) <C |z|™7, v(z) < C |z| 78, near the origin, (1.15)

where C' = C(CL, bapa q, N)

With these estimates , we can follow again and extend to the general case the
removability results of [25] .

Corollary 1.2 Under the assumptions of theorem (1.1), if

either max(v,§) < N — 2,
or [y<N-2 and p>(a+2)/(N —2)], (1.16)
or  [ESN-2 andg> (b+2)/(N -2),

then u and v are bounded near the origin.

In Section 4 we give the a priori estimates in the sublinear case. As in the scalar
case, the situation appears to be richer.

Theorem 1.3 Let us assume pq < 1. Let u,v € C*(B') be any nonnegative subhar-
monic supersolutions of solutions of (1.1), that is

< < AP
{ 0 < Au < |z|%P, (1.17)

0 < Av < |z|Pul.



Then, up to the change from u,p,a into v,q,b,

i) if min(y,&) > N — 2, then
u(@) <C 2|7, w(@) <C o], (1.18)
ii) if E<N—2andp>(N+a)/(N—2), then
w(z) < C |22V y@) <O 2V, (1.19)
iii) if p<(N+a)/(N—2)and q< (N +b)/(N —2), then
w(z) +v(z) < C |z, (1.20)

and in the critical cases,

w)if p=(N+a)/(N—-2)and ¢<(N+0b)/(N —2), then
wz) < C |z M|z, v(@)<C |2V, (1.21)
v) if =N —2 <, then

w(z) < C |z 2Ny || PP y(2) < C |2 |In |||V 0P
(1.22)

vi) if €= N —2=r, then

w(@) < C 2N el | PV OPD (@) < C a2V (o o@D/ 0-P0)
(1.23)

In Section 5, we look for particular solutions of the system (1.1) under the form
u(z) = |z|7U@), v(z) = |z|~5V (), g e SNL (1.24)
It leads to the stationary system

— — VP =
{ Agn-1U+~v(y+2-N)U-V 0, (1.25)

AgvaV+EE+2—-N)V -U?2=0.

We show that system (1.25) can admit nonconstant positive solutions U, V| in addi-
tion to the constant ones A*, B*, even in the superlinear case .

Theorem 1.4 Assume that « = y(y+2—N) >0 and f =&(E+2—N) > 0. Let
A1, Ao be the two roots of equation

X = (a+ B)A - (pg— )aB = 0, (1.26)

with A1 < Ao. Then for fized o a branch of bifurcation (U(B),V(B)) appears near
(A*, B*) in system (1.25), at each time Ao crosses a nonzero eigenvalue of —Agn-1
if pg > 1, at each time \1 or else Ay crosses such an eigenvalue if pg < 1.



Hence system (1.1) can admit anisotropic positive solutions. This phenomenon
is new in the superlinear case, and Theorem 1.4 shows that anisotropy is still more
commun in the sublinear one.

In Section 6, we take up the delicate question of precising the behaviour of the
solutions near 0. We show the great complexity of the possible behaviours. Excluding
for the sake of simplicity the critical cases, they can be divided into three categories:

@) (el 2l 7¢) 5

(i) (a2 W22 22N (a2 1) (P fe 2D ) (1 )
(i) (|l PN (L1 (127N 1) 5

The solutions of type (i) can be both anisotropic, and the question of convergence
is still open. The solutions of type (ii) can present system a new form of anisotropy,

where only one function is anisotropic. Here we can prove the convergence, by using
the analyticity results of [19]. The solutions of type (iii) are isotropic.

In Section 7, we give extensions of our results to multipower systems of the form

_ aySyP =
{ Au + |z|*u®vP = 0, (1.27)

—Av + |z[Pudvt = 0,

where p,q,s,t,a,b € R, with p,q > 0. We cover the corresponding sublinear case
pq < (1 —s)(1—1t), with s,¢ € (0,1).

This article complements the results relative to the system with the other signs

Au + |z|*P =0,
{ Av + |z|Pu? = 0; (1.28)
and more generally
Au + |z|*uvP = 0,
{ Av + |z|butvt = 0. (1.29)

We refer to [3] for a detailed study of the singularities of system (1.29). It covers
the sublinear case, and in the superlinear one up to a first critical condition. In case
s=q+1,t=p+ 1, the study is carried on in [6] up to the second critical condition
p+q+1<(N+2)/(N—2). See also [9], [16], [17], [18] for studies in whole RY and
[10], [23] for the regular Dirichlet problem, and [11] for the singular one in the radial
case.

2 The key tools

First we give a property of subharmonic nonnegative functions, essential in our study.
Let us denote B(z,r) = {y e R ||y —z| < r}, for any x € RN and r > 0.



Lemma 2.1 Let w € C%(B') be any nonnegative subharmonic function nonconstant
near the origin. Then W is strictly monotone for small r (either increasing and
bounded, or decreasing with lim,_o ™ ~2w(r) > 0). Moreover there exists a constant
C(N) such that for any € € (0,1/2],

w(z) < C(N) el N w[|z| (1 +e)] near 0, (2.1)

with the sign + if W s increasing, and the sign — if W is decreasing. Finally, for
small v, and for any Q > 1,

w9 (r) < wl(r) < (C(N) ™)@ wQ[r(1 £ )], (2.2)
and for any @ € (0,1),
w9 (r) > wl(r) > (C(N) M) L@@ L [r(1 + )] w(r). (2.3)

Proof. By hypothesis, ( W,)r > 0, hence either rV~1%, has a nonnegative
limit. Then there is some p € (0,1/2) such that w is either increasing on (0, p],
hence bounded, or decreasing on (0, p|, with lim, oY 2 w(r) = [ € (0,+00]. Let
x € B(0,2p/3),and ¢ € (0,1/2]. Then from the mean value inequality of subharmonic

functions,

’l“N_l

w(z) < L

< — w(y) dy. (2.4)
eV 2N |B| B el

Hence denoting C. = {y e RV ||z[ (1 —¢) < |y| < |z| (1 +¢) },

@< —— ways - [ Ny an @)
w(r) < ———— w(y yg/ r T Tw(r) dr. .
eN |2V |B| Je. eV |2V Jal1-2)
Since w is monotone, it implies
w(z) <e N [(1 +e)V —(1- E)N] w(|z| (1 £¢)), (2.6)

with the sign + if @ is increasing, and the sign — if w is decreasing. Then (2.1) follows
with C(N) = 2N (3/2)N~L. Taking the Q - power for any z with |z| = r < 2p/3, and
integrating on the sphere |z| = r, we deduce that, for any @ > 0,
wl(r) < (C(N) ™)@ wQ[r(1 £ )], (2.7)
hence (2.2) if @ > 1. If @ € (0,1) we take the (1 — Q) - power in (2.1) we first get
w(x) < [C(N) &N w(lz] (1+e) | w(@)?. (2.8)

Then we integrate again on || = r, and obtain (2.3). W



Remark 2.1 Lemma 2.1 implies the following weaker property, still used in [25]
and in [5], [4]: let w € C?(B’) be any nonnegative subharmonic function, such that
w satisfies an estimate of the form

w(r) = O(\lnr\bra) asrT — 0 (2.9)
for some a,b € R. Then w satisfies the corresponding estimate
w(z) = O(|ln|z||” |z|") as  — 0. (2.10)

In particular, if w(r) = o(r>~"), then w(r) = O(1), hence w(z) = O(1) near 0.

Now we derive our second tool, which is a bootstrap result, allowing to transform
a shifted inequality into an ordinary one.

Lemma 2.2 Let d,h,¢ € R with d € (0,1) and y,® be two continuous positive
functions on some interval (0,R] . Assume that there exist some C,M > 0 and
g0 € (0,1/2] such that, for any e € (0, &g],

y(r) < C e "o(r) y? r(1 — )] and max ®(17) < M P(r),
TE[r/2,7] (211)

or else

y(r) < C eth)(r) y? [r(1+¢)] and max (1) < M O(r),
T€E[r,3r/2] (212)

or any r € (0, R/2]. Then there exists another C > 0 such that
for any r € (0, R/2]

y(r) < C ®(r)/0-d) (2.13)
on (0,R/2].

Proof. The result is obvious when h < 0, so we can suppose h > 0.
i) First assume (2.11). Consider the sequence ¢, = €0/2™ (m € N). Then for any
r € (0, R] and any m > 1, denoting P,,, = (1 —€1)..(1 — &),
y(rPp-1) <C sr_nh D(rPyn-1) yd(TPm).

In particular ,

y(r) < Cer™ ®(r) yi(rpy),
yl(rP) < C4 e dd(rPy) yP (rPy),

y " (1P 1) < CU T e T oA T (e Py ) y T (r By,
By the assumption on ®, this implies

y(r) < QUFdTAd™ " oohohd o —hd™ g (1) o Py). @7 (rPyq) y? (PP



for any m > 1. Hence

y(T’) < (Cé‘ah>1+d+..+dm712k(1+2d+“+mdm71)

XMd+2d2+..+(mfl)dm*1(I)(r)1+d+..+dm*1ydm (rPp).
(2.14)

Let us go to the limit as m tends to 400, for any fixed r € (0, R] : the sequence (Py,)
has a finite limit P > 0, since the series Y 22, ; is convergent, hence limy?" (rP,,) =
1, because d < 1, and

y(T) < (ngh)l/(lfd) 2Ic/(lfcl)2]\4d/(17d)2(I)(T)l/(lfd)7 (215)

and (2.13) holds.

ii) Assume (2.12), and denote now P, = (1 +&1)..(1 + &;,). Then (P,,) still has
a finite limit P > 0, and more precisely P < e, because In P, < 2211 g < 2¢ <
1. Then inequality (2.14) is still available for any r € (0, R/2e], hence also (2.15).
This again implies (2.13). W

Remark 2.2 This lemma shows that the solutions of the shifted inequality (2.11) or
(2.12) behave exactly as the solutions of the ordinary inequality

y(r) < C &(r) y'(r) (2.16)
relative to € = 0. This result is not evident and quite surprising in case h > 0,
since lim,_ge " = 4o00. Notice that the conditions on ® are obviously satisfied
by power functions ®(r) = r“ (w € R) or logarithmical ones ®(r) = |lnr|”, or

®(r) =In|lnr|,.., or by products of this functions.

We complete this section by two simple integration results, which are complemen-
tary.

Lemma 2.3 Let 0,k € R, and let y € C?((0,1]) be nonnegative, such that
Ay(r) < C r° |lnr|? (2.17)
n (0,1], for some C > 0. Then there is another C' > 0 such that, near the origin,

ro+2 |In 7 |? if o+ N <O0;

2N |In [P if o+N=0 and k> —1;

r2~N|In [Inr|| if o+N=0 and k=-1;

r2=N if c+N>0 or c+N=0 and k<-1.

y(r) <C

If moreover lim, o y(r) = lim,_o ¥ ~1y,(r) = 0, then

rot2 Inr|* if o+2>0;
<C ’
y(r) < { ]lnr]kﬂ if o0+2=0 and k< -—1.



Proof. Let us define

y(r) =r*"Ny(r), (2.18)
and
A= —(oc+N). (2.19)
Then
(r3 Ny)r < Cr' V"M nr|F, (2.20)

Integrating twice over [r,ro] ,with r < rg < 1, we get successively

T0
o Nye(ro) = Ny(r) < C'/ s'"N"MIn s|* ds,
i,

T0
y(r) <y(ro) — rgNyr(rg)/ sN3ds + C I(r,ro,\) < C+ C I(r,ro, \),

(2.21)
where
o o

I(r,ro, A\, k) :/ TNS/ sV Ins|¥ ds. (2.22)
Now as r goes to 0,

o=y T IIn7|® (1+ o(1)), if A >0,

1 k+1 .
I(’)",T’O’A7k> _ m |In7‘| (1+0(1)), 1f)x=0andk> _1,
(=) In|ln7|| (14 o0(1)), ifA=0,and k= —1, (2.23)
Co(1+0(1)), if A\=0and k < —1,0or A <0,

with Cy = C(rg, A\, k, N) > 0. Hence we get the results by returning to y. Now assume
that lim, o y(r) = lim, o7V ~1y,.(r) = 0. Then we integrate twice the inequality

(rN 1y, < C PV I R (2.24)
over (0,7) and get the conclusions. W
Lemma 2.4 Let 0,k € R, and y € C?((0,1]) be nonnegative, such that
Ay(r) > C r° |Lnr|* (2.25)
n (0,1], for some C' > 0. Then there is another C' > 0 such that, near the origin,

o2 |In 7 |? if o+ N <O0;

P2 N el o4 N=0andk > —1;
y(r) > C r2=N|In [Inr|| if o+N=0andk=—1;
r2—N if c+N=0andk < -1, or— N <o < —2,(2.26)

oroc+2=0andk > —1.

10



In particular, if y is bounded, then 0 +2 > 0, and 0 +2 > 0 if k > —1. Moreover if
lim, o y(r) = lim, o7V " 1y.(r) = 0, then

2 e i o+ 2>0;
> (C ’ 2.27
y(r) 2 { |1n7°|kJrl if 04+42=0 and k< -1. ( )
Proof. Here
3 Ny,) > C ot Inr|t, (2.28)
hence
70
rS’fNyr(ro) — r3_Nyr(7") > C’/ site In s|k ds, (2.29)
I8
To T0 T0
y(r) = y(ro) — TgNyr(To)/ sN3ds + C’/ TN_3/ s |In s|* ds,
r r T
To To
>-C+ C/ TN_3/ s' In s|* ds.
! 4 (2.30)

Thus the conclusions follow from (2.23) in the first three cases, because the integral
is divergent. Moreover Ay(r) > 0, that is

(r*Nye)e(r) = 27N (yre (r) + (3 = N)ya(r) /1) > 0,

hence y is strictly monotone for » < rg small enough. If 0 +2 < 0, or c +2 =0
and k > —1, then y is decreasing, from (2.29), and y(r) > C > 0 from (2.30), and
y(r) > Cr?=N. We get (2.27) as in Lemma 2.3. W

3 Estimates in the superlinear case

Here we give the proofs of Theorem 1.1, and Corollary 1.2.

In the case p = q > 1, a = b, the proof of Theorem 1.1 is simple. Indeed system
(1.1) admits particular solutions (w,w) , where w is any solution of equation (1.3)
with Q@ = p =gqg and o = a =b. Here Theorem 1.1 reduces to the Osserman estimate
(1.6) for the two functions v and v. The conclusion follows by observing that function
(w4 v)/2 is then a subsolution of equation (1.3).

Now let us come to the general case p,q > 0 and pqg > 1. Here we present a
first proof, which uses the main arguments of Section 2, and a second proof, which is
shorter but restricted to the case p > 1 and ¢ > 1, p # ¢. One can also find in [13] a
variant of the first proof, which is restricted to the case p > 1 and ¢ > 1, where the
bootstrap technique is replaced by an energy argument.

11



3.1 Proof of Theorem 1.1 (general case pg > 1).

Let u,v € C?(B') satisfying (1.14). Then the mean values satisfy the system in (0, 1]

(rN1g,), > rotN-1yp, (3.1)

(rN13,), > TN, (3.2)

From Lemma 2.1 we are reduced to get estimates for w,v. If @ or ¥ is constant near
0, then © = v = 0. In the general case each of these functions is subharmonic, hence
strictly monotone on some interval (0, p], either bounded with @, > 0 (resp. 7, > 0),
or unbounded with %, < 0 and u(r) > C 7>~V (vesp. v(r) > C r>~). Let € € (0,1/8]
be fixed. We set

r(l+e) pr(l+e) r(l+e) pr(l4+e)
I.(r) :/ / ul(s)dsdr, Je(r) :/ / vP(s)dsdr,

for any r € (0, p/2]. First integrate (3.2) over [r,7(1 +¢)] . If T is decreasing, then

(3.3)

r(1+¢€)
—rN G (1) > = [r(14 )N o, [r(1 + )] +/ N s Nl (s)ds,

r(14¢) L
>/ sPHNLyd(s)ds,
and a new integration gives
r(l+e) 7(14¢) L
o(r) >v[r(l+e¢)] +/ Tl_N/ sPHNLud(s)dsdr,
hence
o(r) > C rPL(r). (3.4)
If ¥ is increasing, we find
N r(l+e¢) o
(14 N 17, (1 + )] > / N1 () ds,
hence
r(1+e) 7(1+4¢) L
o(r(1+e)?) >vr(l+e)]+C / TIN/ sPTN 14 (s)dsdr,
which now implies

o(r) > CrPL [r/(1+¢)%]. (3.5)

12



Similarly
JE(T)’ 1f HT‘ < O,

u(r)zcr“x{ J: [r/(1+¢)?] if @, >0.

Without loss of generality, can assume p < ¢, hence ¢ > 1. Then the Jensen inequality
applies, since ¢ > 1, and

r(1+e) pr(l+4e) 2.2 —q 2 e
roz [ [0 w2 { GG 0 D

2.2 =q : m
e“reui(r), it @, >0. (3.6)

Hence we arrive to a first shifted inequality between @ and v:

a [r(1+¢)?], if  w <0, <0,
o(r) > C " ¢ wi(r), it ww, <0, (3.7)
wl[r/(1+¢)?, if u >079 >0

Now we argue according to the value of p.

First case: p > 1. Then we get similarly

w [r(1+¢)?], if w<0,v, <0,
a(r) > C 2 rit? x { wP(r), if @, <0, (3.8)
w [r/(1+¢)?], it w > 0,9, >0.
Therefore
o1 [r(1+¢)?], if @, <0,7, <0,
o(r) > C 2@t pla2)atbt2 o 1 gwa (), it @, <0,
w1 [r/(1+¢€)?], if @ > 0,79, >0.

Changing ¢ into €/3, this reduces to the estimates

5(r) < C e~2atD)/pa —(at2)a+b+2)/pa v r(1xe)], if wo, >0,
= TP (1), if @, <O. (3.9)
In case @, v, < 0, we immediately deduce the expected estimate of T :
T(r) < Cr near 0. (3.10)

In case @, v, > 0, we are reduced to a shifted inequality of type (2.11) or (2.12). Thus
we can apply Lemma 2.2 to y = 7, with d = 1/pg < 1, and get again (3.10). Taking
e =1/21in (3.7), it implies the corresponding estimate for @ :

u(r) < Cr7 near 0, (3.11)

hence estimates (1.15) follow.
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Second case: p < 1. Here we use the fundamental inequality (2.3) for function

WP(r) > (C(N) el M )P 1gP= L (1 £ €)] B(r), (3.12)

with the sign + if 7, > 0 and — if ¥,, < 0. Then we find

(1+e) pr(l+e)
Js('r> > (C p l/ / P~ 1 1 :|:€)] ﬁ(s))dsd'r
-p—1 _ — 2 . _
N+1-(V=1p 2 f TTHIr(L—e)] T[r(1+¢e)?] if T, <0,
=0 ' X{ w7 [r(1+¢)°] o(r), if v, >0.
Hence
o r(1—e)] vr(1+¢)*], if u, < 0,7, <0,
_ _(N— 1t r(1+¢)?] o(r) ifu, <0<w
> N+1—-(N-1)p ,.a+2 v [T( ) r )
u(T') = Ce T X 5;;_1 [T‘(l _ 8)/(1 + 5)2 5(7“), ifo T, < 0< u(g 13
wlr(l+e) vlr/(1+¢)?], if @ > 0,7, 30

By reporting (3.13) in (3.7), it comes

5(7“) > C €2+(N+1—(N—1)p)q 7n(a-i—2)q—|—b—‘,—2

ﬁ(pfl)q('l“)i [ (1+€) ]; if Up < 0767‘ < 07
y o= 1)q[r1+5 ] (r), if uw, <0 <7y,
U(pfl)q |:’," 1 —5 :| U ), lf WT < O <H7‘,
)

after noticing that

o@D [r(1 4+ £)2(1 — )] > v®P-Da(r) it v, <0,
U(pfl)q [’I”(l _ 6)/(1 + 6)2] > U(pfl)q [r(l — 5)3] if 7, <0,
wP—1)a [r/(1+¢)] > @(p—l)q(r) if o, > 0.

Changing ¢ into /6, we finally get, for € small enough,
6(7") < C 87(2/q+N+17(N71)p)
rol@2)atb+2l/a Fl-pa-1)/a [p(1 £ ¢)] if W, >0
X _ SN . ’ o ’(3.14)
r [(a+2)Q+b+2]/(q 1) Ul (pq 1)/(q 1) [r(l 4+ 6)] , if Up U < 0.

In any case we are still reduced to a shifted inequality. We can apply Lemma 2.2 to
y=1v,withd=1—-(pg—1)/¢<1l,ord=1—-(pg—1)/(¢—1) < 1. Thus we get
again estimate (3.10) and conclude as above. W
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3.2 Second Proof of Theorem 1.1 (case ¢ > p > 1).

It relies directly on Keller-Osserman estimates for the scalar case, and is inspired
by the methods of [3] relative to system (1.29). Let zp € B(0,1/2) and By =
B(xg, |xo| /2). Our proof consists in obtaining a suitable upper estimate of the min-
imum of the function u over By, and then the corresponding estimate for u(zg) by
using the maximum principle. We can suppose that

m(zg) = min u(x) > 0. (3.15)

z€ By

Recall that in case p = ¢, the function (u+v)/2 is a subsolution of equation (1.3). Here
we assume that ¢ > p > 1. Now notice that for any subharmonic positive function
w and any 6 > 1, the function w® is still subharmonic. This leads to introduce the
function in By

f=lz["ul + v, (3.16)

with 0 = (¢+1)/(p+1) >1and 7= (b—a)/(p+ 1). Let us compute its Laplacian:

\% vr|? _
2y T — k||l
u

o o T _ 0
Af = 6(6—-1)|z|"u 51,

+6 |z|" w T Au + A,
where k = 7(7/(6 — 1)2 +2 — N — 7). Hence from (1.17)
CAF 4 2T w60 4 (2T ) < ka2l
and consequently f appears as a subsolution of a problem of the form
—Af+A) f7 < mla] 7,

for which we can apply Osserman-Keller estimates. But  A(z) = 277 || * w0~ 1 ()
depends on f. Now we minorize A in terms of m(xg), and get

—Af 4 2a(xo) f* < B(xo) f,
with
a(zo) = 27" min((1/2)77, (3/2)7F%) lwo| ™ m(z0)’ ", Blao) = 4k/9 |zol*.
Hence from Young inequality,
—Af + alwo) 7 < (Blwo)? /o))" (317)
Then from Keller-Osserman estimates (see also [14]), we obtain
J () < C fao| 2 o) O < C gl 2 THEY ) ~O7D/

(3.18)
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in By, with C = C(N,p,q,a,b), in particular at xq. But f(zo) > |xo|” m(x0)?, hence
we get the estimate

m(zo) < C |zo| 7. (3.19)

The same estimate is also available for @, since @, are also subsolutions of system
(1.1), because p,q > 1. Let 9 = |zo|. Then there exists so € [ro/2,3r0/2] such that
u(so) < Cry . By induction, defining 7, = r9/4™ , for any n € N there exists a
decreasing sequence (s,,) such that s, € [r,/2,3r,/2] and

u(s,) <Cr,7" <(2/3)77C s,".

From the maximum principle in the annulus C, = {y ERYN |51 < |y < sn }, it
follows that

u(r) < (2/3)77C 57:11 <(2/3) "max(1,127) C r™7 in [Spt1,Sn
with C = C(N, p,q,a,b), since r € [Sp11,125,41]. Then, with new constants C,
u(r)y < Cr™7 in (0,79],
and from Lemma 2.1,
u(z) <C x| in B (3.20)

Now let ¥ € C?(B’) such that —A¥ = 1 and ¥ = 0 on 9B, and let p(x) =
U(2(x — xz9)/ |xo]). We multiply the first inequality of (1.14) by ¢, integrate over By,
and apply the Green formula. It follows easily that

min v(z) < C o ~@FHN/P = C || ¢ (3.21)
xrebo

from (3.20). We get in the same way the estimate
v(z) < C |z 7¢ in B', (3.22)

which achieves the proof. Wl

3.3 Proof of Corollary 1.2

i) Let us prove that the condition v < N — 2 implies that u is bounded . Assume
that « is unbounded near 0. Then also @ is unbounded, from Lemma 2.1, hence
u(r) > C r?2~N for some C > 0, near 0. It implies ¥ > N — 2 from (1.15), and in
fact y > N — 2 . Indeed if y = N — 2 | then

Av(r) > C Pt = ¢ 278,

hence o(r) > C r~¢ from Lemma 2.4. But o(r) < C r~¢ from (1.15). we report this
estimate into (3.1). Then we get

At(r) > Cro P =Cr N,
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from the Jensen inequality if p > 1, and from (3.12) if p < 1. We deduce u(r) >
C >N |Inr|, from Lemma 2.4, which contradicts (1.15). Similarly the condition
¢ < N — 2 implies that v is bounded. Hence the condition max(y,&) < N — 2 implies
that w and v are bounded.

ii) Assume & < N — 2 (hence v is bounded ), ¢ > (b+ 2)/(N — 2) and suppose
that u is unbounded. Then @(r) > C 72~ near 0, hence

AB(r) > C rb=(N=2)g,

This is impossible from Lemma 2.4, since v is bounded. Similarly after exchanging u
and v. W

4 Estimates in the sublinear case

Here also the estimates are simple in the case p = ¢ < 1 and a = b. The system
(1.1) still admits particular solutions (w,w), where w is any solution of equation (1.3)
with @ = p =¢q < 1 and 0 = a = b. Here Theorem 1.3 reduces to the estimates
(1.7) for the two functions v and v. The conclusion follows by observing that function
(w4 v)/2 is a subharmonic supersolution of equation (1.3).

Now let us come to the general case. In this section and in the sequel of the study,
we set

bi=(N-2)p—(N+a), {la2=(N-2)q—(N+b), (4.1)
and notice the relations

b+pla=(1=pg)(vy—(N-2)), gbi+le=(1-pg)(§—(N-2)). w2
4.2

4.1 A sublinear shifted inequality

In order to prove Theorem 1.3, we first prove that the subharmonic supersolutions
of a sublinear shifted inequality present the same behaviour as the supersolutions of
the ordinary one .

Theorem 4.1 Let Q,0,h,k € R, with Q € (0,1),k > 0, and let y € C?((0,1]).
Assume there exists some C' > 0 and g9 € (0,1/2] such that, for any € € (0,e0] and
r € (0,1],

0<Ay(r) <Ce ™ [Inr® y@[r(1 +e)]. (4.3)
Then y satisfies the same estimates as the solutions of inequality

0 < Aw(r) <Cr7 |lnr|" w?. (4.4)
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More precisely, with another C' > 0,

r(2+0)/(1-Q) |lnr|k/(1_Q) , if @>(N+o0)/(N-2),
y(r) <Cq r&N 0 if Q< (N+0)/(N -2),
VL), Q= (N +o)/(N - 2) (45)

where L(r) = Inr|*/0=9) ir k> 1 jin Inr| VO if k= 1,1 if k < —1.

Remark 4.1 When k£ = 0 one finds again the estimates for equation (1.3) in the
radial case. The following proof relies closely on the proof of the estimates for this
equation, given in [5].

Proof. We can assume that h > 0, and y is nonidentically 0 near 0. Let us make
the change of variables (2.18). It leads to the inequality in (0, 1]

0< (@ Ny ) (r) < Ce P Nlnr|f y9r(1+e)], (4.6)
where
(=(N-2)Q—(N+0)=(1-Q)I —N+2). (4.7)

Then y is monotone and positive for 7 < r¢ small enough, since (r3~Ny,),(r) > 0.
If y is bounded, then y(r) = O(r>~") and Theorem 4.1 is proved in any case. Now
suppose that y is unbounded, then it is necessarily nonincreasing . Integrating over
[r,70], we get

ro
3 Ny (r) <C+Cehy?[r(1+e)] / s N n s|* ds, (4.8)

and by a new integration,
y(r) < C+Cehy?r(1xe)] I(r,ro,4, k), (4.9)

where I(r, 79,4, k) is defined in (2.22). If £ > 0, this implies from (2.23) the shifted
inequality
y(r) < Cer~fnrFy? [r(1 £¢)].

Then we can apply Lemma 2.2 with ®(r) = r—*[Inr|*, and deduce the first part of
(4.5). If £ < 0, then we find from (2.23)

y(r)<Ce"y?r(1 +e)],

hence y is bounded, from Lemma 2.2, hence a contradiction, and the second part of
(4.5) follows. If £ = 0, it implies

y(r) < Ce v/ yQ (1 £e)], if k> —1,
y(r) < C e n(lInr|)|y? [r(1 £ ¢)], if k =—1,
y(r) < CehyQr(1+¢)], if £ < —1,

and the third part of (4.5) follows from Lemma 2.2. W
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4.2 Proof of Theorem 1.3

If @ = 0 near 0, then v is harmonic, hence v(z) < C'|z|*™, and the estimates are
trivially satisfied. So we can assume that @, v are positive near 0. Here we perform
the change of variables

u(@) = 2N u(z),  v(z) =2V v(w), (4.11)
It leads to a system of inequalities relative to @, v in (0, 1]:

0< (3 Na,), <rt-N-b3p (4.12)

0< (P Nv,), <rt-N-fua (4.13)

It follows that @ and Vv are monotone and positive for r < ry small enough. In case
of (1.20), we have ¢; < 0 and ¢2 < 0. In case of (1.23) and (1.21) we have ¢; = 0 and
¢5 < 0. First assume that v is bounded . Then v is also bounded, from Lemma 2.1.
That means v(z) < C |z[*~", which implies Au(r) < C r* V=2 From Lemmas
2.3 and 2.1, it follows that

C |a|* T2 NP if ¢ >0,
u(z) < C 2> In|z||, if 0,=0, (4.14)
C |z, if £, <0.

This implies (1.19), (1.20) and (1.23); and also (1.18), (1.22) since |z|*t2~"V=2P <

|z| ™7 as soon as £ > N — 2; and at last (1.21), because |In |z|| < [In |z||P+D/ AP0
Then we can assume that ¥ is unbounded . Then ¥V is decreasing. Using (4.12) we
get from Lemma 2.1

(3N, (r) < C e WP pl=N=bogr(p(1 — ¢)). (4.15)

Integrating over [r, o] ,we get

T

0
—r3 NG (r) < C+ C e WP [r(1 - ¢)] / st N0 g,

T
since V is decreasing. A new integration gives
a(r) < C+C e NV=UPP (1 = ¢)] I(r,70,41,0). (4.16)

First step: Proof of (1.18), (1.19) and (1.22)

Under the assumptions of (1.19) or (1.22), we have ¢; > 0. In the case of (1.18), we
find ¢1 > 0 or ¢35 > 0, from (4.2). After exchanging v into v, we can still assume that
¢1 > 0. Then I(r,79,¢1,0) = O(r~% ), from (2.23), hence from (4.16)

Ur) <C+Ce W=D p=bigrp(1 —e) < Ce WP gPr(1 —g)].
(4.17)
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Using (4.13) and Lemma 2.1, we get in the same way
(r3 N (r) < C e WDa pI=N=toqa (1 £ ¢)] (4.18)
Reporting (4.17) into (4.18) and changing ¢ into £/2 if necessary, we find
(r3 N (r) < C e= N0+ p1=N=(ab+62) 3pa [r(] — ¢)] . (4.19)
That means that function T satisfies the shifted inequality
0<AT(r) < Ce M 39 r(1—e)], (4.20)
of the form (4.3), with Q@ = pg < 1, and h = (N — 1)(p + 1)g; and o is given by
(N=2)Q — (N+0)=ql1+b = (1-pg)(§— (N ~-2)),

from (4.2), thus 0 = (a + 2)g + b. Then we can apply Theorem 4.1. Under the
assumption of (1.18), we have £ > (N — 2), hence Q > (N + 0)/(N — 2). Then from
(45),

o(r) < C r@t9)/0-Q) = ¢ p=¢, (4.21)
and from (4.17),
a(r) < C rN=20-D-b-pf — ¢ =7, (4.22)

It implies (1.18) from Lemma 2.1. Under the assumption of (1.19), we have & <
(N —2), hence Q@ < (N + 0)/(N — 2). Then from (4.5), o(r) < C 2=, which
contradits our assumption on v . In the case of (1.22), we have £ = (N — 2), thus
Q= (N+o0)/(N —2), then from (4.5) ,

o(r) < C N Inp|/07D (4.23)
and from (4.17)

a(r) < C r*N=f r\p/(lqu) = C o2 (N=2p r|p/(17PQ) ,
(4.24)

and (1.22) follows from Lemma 2.1.
Second step : Proof of (1.20)
Here ¢1 <0 and ¢3 < 0. Then I(r,rg,¢1,0) = O(1), from (2.23), and from (4.16)

t(r) <O e W-DPgP[r(1 —¢)],
From symmetry we can also assume that 1 is unbounded, hence in the same way

V(r) < CeWagd [p(1 —¢)].
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Thus with a new £ > 0,
V(r) < C e W=DeHagpa[r(1 — ¢)]

and V is bounded from Lemma 2.2, which is a contradiction. Thus (1.20) follows.
Third step : Proof of (1.21)and (1.23)
Here ¢1 = 0 and ¢3 < 0. Then I(r,r9,¢1,0) = O(|Lnr|), hence

a(r) < Ce NP |Inp| ¥ [r(1 —¢)]. (4.25)
First suppose £ < 0. By reporting (4.25) into (4.13), and we find with a new ¢ > 0,
(P9 (r) < € e N E PN L i1 5271 ).
This implies in particular
(B3 NF,), (r) < C e~ W=DE+a p1-N=b/25pa (1 _ ¢)].

We can apply Theorem 4.1, with o defined by ¢3/2 = (N —2)pg — (N + o). Thus v is
bounded from (4.5), hence a contradiction holds. Now suppose ¢ = 0. Then we can
assume that U is unbounded, and similarly

V(r) < Ce WDy @l [r(1 - ¢)],
then with a new e,
v(r) < C e W=D+ 1y 01 gPa (1 — ¢)]
hence from Lemma 2.2 and (4.25)
v(r)<C |lnr\(q+1)/(1_pq) : u(r) < C |lnr|(p+1)/(1_pQ) :

hence (1.23) is proved. B

5 Existence of anisotropic solutions

First recall the results relative to the scalar case of equation (1.3) for any @ # 1. If
we look for particular solutions of the form

w(z) = |z TW(O), 0esV (5.1)
where T is given by (1.4), we are leaded to the equation on SV—1
Agn-1W 4+ pW — W@ = 0. (5.2)

with p = I'(T' + 2 — N). It has no positive solution if p < 0, that means @ >
(N+0o)/(N=2)>1or Q@ < (N+o0)/(N—2) <1 This comes by multiplication
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by W and integration over SV ~!. Now assume that p > 0. In the superlinear case,
it admits only one positive solution, the constant p'/(@=1 see [22]. Hence equation
(1.3) has no positive nonradial solutions. In the sublinear case, if p(1—-Q) < N—1it
admits only the constant positive solution. If not, it can admit nonconstant solutions:
let (ux)ren be the sequence of eigenvalues of —Agn—1 on SV~1 given by

wr=k(k+N—2), VkeNl.

Then equation (5.2) admits a continuum of solutions for any p in the neighborhood
of ux/(1—@Q), obtained by bifurcation, see [5]. Moreover it can admit many solutions
with dead cores, which are not obtained by bifurcation, see [5] and [4]. Hence equation
(1.3) can admit nonradial positive solutions.

Now let us return to the case of system (1.1). Searching solutions of the form
(1.24), we are lead to system (1.25). Here we prove the theorem 1.4, showing that
system (1.1) can admit nonradial positive solutions even in the superlinear case.

Proof of Theorem 1.4

We consider more generally the system on SV ~!

— P —
{ AsN—lU‘FOZU V 0, (53)

Agn1V+V -U?=0,

for any «a, 8 > 0. We look for bifurcation branches around the constant solutions
(A, B), with
A = (apP)V/pa—1), B = (a9B)Y/(Pa=1),

Here we follow the proof given in the scalar sublinear case in [5]. In order to avoid the
question of multiplicity of the eigenvalues ui, we look for solutions U,V which are
radially symmetric by respect to some diameter. In other words they depend only on
some polar angle ¢ € (0, 7). The system reduces to

VP —
{LU—i-aU VP =0, (5.4)

LV + 5V -U1=0,

where

Lw(¢) =sin> V¢ [(sin 2 ¢) w¢]¢, Vo € (0,7).

We know that (I — L)_1 is a compact self-adjoint operator in the weighted space

£2[(0,7)]) = {w & D' [(0, )

/ﬂwZ(gb) sinV 2 ¢ do < +oo} .
0

And —L and —Agn-1 have the same spectrum and each eigenspace of —L is one-
dimensional, see [2],[7]. Denoting

U(¢) = A+ H(¢), V(o) =B+K(¢),
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system (5.4) takes the matricial form
H H\ TK,e, )\ _( 0
f(a ) o) - (G )= (),

S(H,a, ) = (A + H)' Aqu*H
T(K.a.8) = (B+K)” - B” — pB' 'K,

[« —po_1
= e ).

The matrix M is invertible, since det M = af(1 — pq) # 0. Its eigenvalues are the
two distinct roots A1 < A9 of equation

X —(a+B)A—(pg—1)ap = 0.

Observe that A} < 0 < A2 if pg > 1, and 0 < Ay < A9 if pg < 1. We reduce the system
to the diagonal form by setting

H\ H ([ pBPTl By
(k)-2() == (20 o).

LH +\ H — T'(H K, a, 8) =0,
LK + M K —S'(H,K',a,8) =0,

where

and obtain

with

T'(H,K',a, ) = (det R)~" [(8 —X2) S(H,a, 8) + qAT ' T(K,, B)] ,
S'(H',K',a, ) = (det R)™! [pBP~ S(H,a, 8) + (o — A1) T(K,, B)] -

Let pux be an eigenvalue of —Agn-1. Let us fix @ > 0, such that i > a. We
apply the local bifurcation theorem by respect to the second parameter 5. Notice
that the function Ao(c,.) is increasing. Then there exists a unique ; > 0 such that
ur = A2(a, ). Let us assume that Aj(a, B;) is not an eigenvalue of —Agn-1 if
pq > 1. We set

X ={v e C%0,7])| v4(0) = vy(n) =0}, Y = C([0,7]).

Let S = (Br — p, B + p), with p < B/2 small enough such that A2(c,S) belongs
to (pr/2,3uk/2) . Consider a closed ball B of X, of center 0 and radius n > 0 small
enough such that 7", 5" are well-defined and smooth for (H', K’) € B. One can take
n < min [(27Pafl)Y/ P4~ (272a9p;)/Pi=D] | Then the local bifurcation theorem
applies to the function

f(B,H K') =
[LH + A\i(a, ))H - T'(H', K/, o, B), LK + (0, )K' — S'(H K, v, §)]
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from S x B into Y x Y. Indeed the operators
Lo = D2 f(Br,0,0), L1 = D1Dsf(B,0,0),
are given for any (H', K’) € B by
Lo(H K') = [LH' + Ai(e, Bp) B, LK + Ao(ev, B)K']

01 (o, Br) o OXa(av, Br) K|

Li(H K = o5 5

Then
KerLy = {0} x Ker(L+ Xo(a, i) I),

since A1(a, Bx) is not an eigenvalue of —Agn-1. Hence Ker Ly is one-dimensional,
generated by (0, wy), where wy, is an eigenvector of —L for Aa(a, fi). And the image

RLy =Y X R(L+3,1),

hence it has a codimension 1 in Y xY. At last £1(0, wy) ¢ RLo, since O\ («, B) /08 #
0. Hence a branch of bifurcation appears at (i, i.e. at each time Ao crosses an
eigenvalue of —Agn-1 and A is not such an eigenvalue. Now if p¢g < 1 and «
(1 —pq)/2 > pi, then there exists a unique Bk such that py = )\1(01,@), since the
function Ai(c,.) is increasing. We prove in the same way that a bifurcation occurs
when A; crosses pg. W

Remark 5.1 This theorem gives one case of existence of nonconstant solutions of
system (1.25). In fact the situation can be quite more intricated, at least in the
sublinear case. Suppose for example that p = ¢ < 1, and a = b. Then the system
admits solutions (W, W) where W satisfies (5.2), with Q = p = ¢. Then a bifurcation
occurs in system (1.25) at each time A\; = a(1 — gq) crosses an eigenvalue of Agn-1,
from [5], even if Ay = a(1+¢) is also an eigenvalue of Agn-1. Moreover system (1.25)
can admit many solutions with dead cores. Hence system (1.1) can admit anisotropic
solutions with dead cores. In the general case pg < 1, the most simple example is
given when a = b = 0. Then ~, £ are negative, and system (1.1) admits solutions with
support in (RV)* :

ut(x) = Af [(za)*] 77, v*(2) = BY [(za)*] %,
with z = (21,22, ..,2N), and

A7 = [y + D(EE+ DY B = [6E+ DOy + 1) 0.

Otherwise we shall also see other types of anisotropy in the next section.
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6 Convergence results

6.1 The scalar case

First recall the precise results in the scalar case.

Theorem 6.1 (/20],/24]) Let w € C*(B’) be any nonnegative solution of equation
(1.3), with Q > 1.
i)If Q> (N+0)/(N—-2) (ie I'>N-—2), then

lin%u(m) =C2>0.

i) If Q< (N+0)/(N—2) (ie.T'>N—2), then

either lim |z|" u(z) = Cx, or lim |z|¥ 2 u(z) = C >0, or limu(z) = C > 0.
z—0 x—0 x—0

Theorem 6.2 ([5]) Let w € C%(B') be any nonnegative solution of equation (1.3),
with @ < 1.
i)If Q> (N+o0)/(N—2) (ie I'>N—2), then
w(z) < C |z| ).
i) If Q< (N+0)/(N—-2)<1 (ie. 0<T <N —2), then
“w(x) =C >0, or w=0 near0.
iii) If Q<1< (N+o0)/(N—2) (ie I' <0 ), then
either liH(l) |z 2 w(z) =C >0, or lir%w(x) =C" >0, orw(x)=0(z").

w)If Q=(N+o0)/(N—-2) (ie I'=N—-2), then

1—
lin%) ||V 2 \ln\$||71/(17Q) w(z) = (Nig)l/(l*@, or u =0 near 0.

Remark 6.1 Moreover if Q < 1 and w(z) = O(|z| ™) , setting
w(z) = |z TW(t,0), t=-lnr, 6e SV (6.1)

then the limit set of W(¢,.) in C?(SV~1) as t — +oo is contained in the set of
stationary solutions of equation (5.2). If 0 is in the limit set, then w = 0 near 0, see

[5].
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6.2 Convergence Lemmas

Let u,v be any nonnegative solutions of system (1.1). We want to give a precise
behaviour of u and v near 0. At each time when we have an upper estimate of the
form

u(z) < C x|, v(z) < C |z|~°, near the origin, (6.2)
we use the change of variables

w(z) = |z|"U+,0), v(z)=|z°V(0), t=—Inr eSSV
(6.3)

It leads to a system in the cylinder (0, 4+o00) x SVN~1:

{ Uy — (N — 2 = 20)U; + Agn 21U +n(n + 2 — N)U — e~ (1tat2=)typ =

Vit — (N =2 =20V, + Agn 1V + (¢ + 2 — N)V — e~ (CH0+2ma)tyra — (6.4)

where U and V are bounded for large ¢. Then the idea is the following: if one
exponential is negative, for example n 4+ a + 2 — (p > 0, then we can obtain a result
of convergence to a solution of the equation

Agn1U+n(n+2—-N)U =0.

Then reporting it in the second equation, and get in turn a second result of conver-
gence for V' . Both of them rely upon a result of [6]. Let us recall it for a better
understanding.

Proposition 6.3 Let Y € C?((0,+00) x SN1) be a bounded solution of equation
Yo —(a+ b)Y, +abY + Agn 1Y + p =0,

with given reals a < b, with ab < 0.

) 17 gl sy = O at 45, then [Y(t,2) = V(8)|ggvr, = O2).
i) If lo(t, )l oen-1y = O(t=*) with A > 1, then Y (t,.) converges in C*(SV=1) to a
constant C (C =0 if ab # 0), and

_f o) ifab#0,
107 = €1+ 141+ 1Y Dt Mesv = { O sy e 2o
it) If [[o(t, )l osv-1) = O(e=") at +oo, with £ > 0, then
O(e™™), ifa=0.
(Y = Cl+ Ve + VY (&, Ml gsv-1) = ¢ Oe™) +O(e™), if a < 0,a # —L.
O(te™™), ifa=—L.
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The application of this Proposition provides several results of convergence.

Lemma 6.4 Let u,v be any nonnegative solutions of system (1.1), with pq # 1.

i) If u(z) = o(|z|*™) near 0, then u(z) = O(1), similarly for v.

i) Assume that u(x) + v(z) = O(|z|*™Y) near 0, and p < (N + a)/(N — 2) or
qg<(N+b)/(N—2). Then

Iin%) 2N 2 u(z) = C1 > 0, or lin% 2N 2 u(z) = Cy > 0, (6.5)
r— r—

and

O(lz[*T =22y L O(1)  ifp# (a+2)/(N —2),
@)

o=t ={ G ip=(a+2)/(N -2,

(6.6)

or

(Je P22 L O(1)  ifq# (b+2)/(N —2),

-~ _J O
o) = Cale? ‘{O<lnrxu> fa=(b+2)/(N—2).

(6.7)

iti) Assume that u(z) = O(|z|> V), v(z) = O(1), and a+ N > 0 and (N — 2)q — (b+
2) < 0. Then

lin%) lz|¥ 2 u(z) = CL >0, lim v(z) = C4 > 0, (6.8)

z—0

and v(z) — Cy = O(|z|P T N=29) gnd

e [ 0" +001) Fa+240,
)~ aulaf = { G far2=o.  ©9
If C1 =0, then u(z) = O(1).
iv) Assume that u(x) +v(x) = O(1), and a+2 >0 (or b+2 > 0) .Then
liH[l) u(x) =C1 >0 (or lin% v(z) = C4 >0), (6.10)

and u(x) — C1 = O(|z|"*?) (or v(z) - C4 = O(|«|"*?)).

Proof. i) It comes directly from Remark 2.1.
ii) Assume for example p < (N + a)/(N — 2). Here we perform the change of
variables (6.3) with n = = N — 2, and get

{ Uy + (N — 2)Ut + AsN—lU — eélth — (),

Vit + (N = 2)V; + Agn 1V — e2tU7 = 0, (6.11)
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with ¢1, ¢y given by (4.2), hence ¢; < 0. Then there exist some C; > 0 such that

O(e”N=2)  O(eM), if &4 #2-N
[U(¢,.) = Cillgsn-1y = { O(te~(N-21), if (=2 — N,

from Proposition 6.3. Hence the results hold for u and similarly for v. If C; = 0, then
u is bounded, because it is subharmonic, similarly for v.

iii) Here we use the transformation (6.3) with n = N — 2 and ¢ = 0 and obtain

Ust + (N = 2)U; + Agn—1U — e~ (@tNtyr — (6.12)
Vie — (N = 2)V; + Agna V — e~ 0H2=(N=2)9)t a0 — '
with negative exponentials. Then there exist constants Cf, C’é > 0 such that
O(e=N=2t) 1 O (e~ (a+N)t), ifa+2#0,

U, .) - CIHC(SN—I) - { O(te~(N=2)t), ifa+2=0,

and ||V (¢,.) — CéHC(SN_l) = O(el(N=2)a=b=2)) " from Proposition 6.3, which proves
(6.9).
iv) Here we use the transformation (6.3) with n = { = 0, which gives
Ut — (N = 2)U; + Agn—1U — e~ (@F2tyP =
_(b12)t (6.13)
%t—(N—2)‘/t+AsN71V—€ U?=0.

If for example a + 2 > 0, then in the same way there exists a constants C| > 0 such
that ||U(¢,.) — CiHC’(SN*l) = O(e~(@+2!) hence the result. W

The next lemma essentially shows that a new form of anisotropy can occur in
system (1.1), where one and only one of the functions u, v presents an asymptotically
nonradial behaviour.

Lemma 6.5 Let u,v be any nonnegative solutions of system (1.1), with pq # 1.

i) Assume that u(z) = O(|z|*" "2~V =2P) y(z) = O(|z*™™), and (E—=N+2)(pg—1) >
Oand p=[(N—=2)p—(a+2)][(N—-2)p—(a+ N)]| >0 . Then

lim, lz[N 2 u(z) = Cy > 0, (6.14)
and

hII(l) || V=2 @F2) (], ) — p_ng] exists (6.15)

in C(SN=Y), and it belongs to ker(Agn-1 + p I).

i) Assume that u(z) = O(|z|*™2), v(z) = O1), and £(pg —1) > 0 and v = (a +
2)(a+ N)>0. Then

lir% v(z) = Cy >0, (6.16)
lim0 2|7 y(|z],.) — v CL| = 0 exists (6.17)

in C(SN1), and it belongs to ker(Agn—1 + v I).
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Proof. i) Here we use the transformation (6.3) with n = (N — 2)p — a — 2 and
(=N —2, and get

{ Utt—[N—Q—Q((N—Q)p—(CL—|—2)]U1§+A5N—1U+,OU—VPZO,

Vit + (N = 2)V; + Agn-1V — e~ EN+2)pa-Dtgra — g, (6.18)

and the exponential is negative. Then Proposition 6.3 still applies: there is a constant
CQ >0 such that HV(t, ) — C2”C(SN_1) = O(e*at) , with o« = (§—N+2)(pq— 1) > (.
Now the function

W(t,0)=U(t0) —p 'CY (6.19)
satisfies an equation of the form

Wi — [N —=2—=2((N—-2)p—(a+2)| Wi + Agn1 W + pW =1,
(6.20)

where [[¢(t,.)|[c(sn-1) = VP (t,.) — OgHC(SN*l) = O(e ") for some > 0 . And the
coefficient of W; is different from 0. Then we can apply Simon’s theorem (see [19],[7])
as in [6](Theorem 4.1). It implies that the function W (¢,.) precisely converges to a
solution of the stationary equation

Agy-rw + pw =0

hence the conclusion follows.

ii) Now we use the transformation (6.3) with n = —a — 2 and { = 0, and get

{ Uy — (N +2+2a)U; + Agn-1U 4+ vU — VP =0, (6.21)

Vie — (N = 2)V; + Agn-1V — e8P Diya =

with again a negative exponential. There exists a constant C, > 0 such that
\V(t,.)— CéHC(SN_I) = O(e~¢wa=1t) | from Proposition 6.3. Then (6.16) and (6.17)
follows as above, since the coefficient of Uy is different from 0. W

6.3 The open problems

The question of convergence is partly open in the case u, v satisfy one of the estimates
(1.15), (1.18). Indeed the change of variables (6.3) with n = v and { = £ now gives

{ U — (N =2 =29)U; + Agn 12U +y(y+2 - N)U - VP =0.

Vie + (N =242V + Agn 1V +E(E+2 - N)V - U =0. (6.22)

This system has no negative exponential: it is autonomous. Denote by E the set of
solutions (U, V) of system (1.25), which is the stationary system associated to (6.22).

29



Unlike in the scalar case, we miss a suitable energy function in order to prove that
the limit set

02( Nfl)
rU,v)=Jw ), v i (6.23)

t>01>t

is contained in E, and the problem is open. We conjecture that it is true, and
moreover that if 0 € I'(U, V), then I'(U, V) ={0} , which implies that u(z) = o(|z|™7)
and v(z) = o(|z|~%). We also conjecture that in that case u = v = 0 near 0, if pg < 1.

Remark 6.2 In the radial case, I'(U,V) is a singleton, hence 0 € T'(U, V') implies
I'(U,V) ={0} from connectedness .
6.4 The superlinear case

The question of convergence is not easy, since precisely (1.15) holds. The case
min(v,£) > N — 2 is the most delicate, since the particular solutions u*,v* do exist.
Here we search the behaviour of solutions that

u(z) = o(|z[7) and  v(z) = of|z|*).

First look at the radial case, with p > 1 and ¢ > 1. Then the linearization of system
(6.22) is possible, and gives the estimates U (t)+V (t) = O( max(e(N 2=t (N=2-8)ty),
They imply that u(r) = O(r2=N), or v(r) = O(r?>=V). In the general case we extend
this result and describe the behaviour, under an additional assumption on u and v.

Proposition 6.6 Assume pqg > 1 and min(vy,£) > N — 2. Let u,v € C%(B’) be any
nonnegative solutions of system (1.1). Assume that

w(z) = O(|z| "), or w(z)=0(z|"*"), for somee > 0.
Then, up to the change from u,p,a into v,q,b, we have ¢ < (b+ N)/(N — 2),
liH(l) |2V "2 u(z) = Cy > 0; (6.24)
€Tr—>

and
i) either p > (a+ N)/(N —2), and

lim [yx|<N—2>p—<a+2> u(z|,.) = (b1(6, + N — 2))—105] exists (6.25)

and it belongs to ker(Agn-1 + ¢1({1 + N — 2) I).
ii) or p < (a+ N)/(N —2), and

lim lz|V "2 u(z) = C, >0, (6.26)
iii) orp=(a+ N)/(N — 2), and
lim ||V =2 |In|z|| u(z) = CE/(N - 2). (6.27)

If C5 =0, then v is bounded. If C1 = 0, then u is bounded.
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Proof. The assumption min(v,{) > N — 2 reduces to
1+ ply <0, gl + £y < 0. (6.28)

It implies 1 < 0 or 5 < 0. By symmetry we can suppose f5 < 0, hence ¢ <
(b+ N)/(N —2). Now notice that the assumption u(z) = O(|z|~7"¢) implies

AT(r) < C pPmateE = ¢ pm28taE

hence B(r) = O(r~$%%), and v(z) = O(|z| %), till g¢ < £ — N + 2, from Lemmas
2.3 and 2.1. Reciprocally any estimate on v implies an analogous one on u. Hence
we can start from the assumption u(z) = O(|z|~7"¢), with ¢ small enough. Consider

g0 = ¢ and ¢, = ¢¢, and define ¢, = pe!, 4, and €/, = q £,,. Then by induction

a(r) = O(r~7* ), o(r) = O(r=¢Fn),

till g, < €= N+2, and pe], < y—N+2. But &, = pq €,,—1, hence lime,, = +00. Hence
there is a first integer ng such that geny > & — N +2or ey = pe;,, 4 > 7 — N +2.
Then from Lemmas 2.3 and 2.1,

u(z) +v(z) = O(|z*~ N |In|z|]). (6.29)
It implies
Av(r) < Ce rb_(N_Q)q_a,

for any € > 0. But the condition ¢3 < 0 implies b+ N — (N — 2)g > 0. Hence in fact
v(@) = O(lz*~") (6.30)
from Lemma 2.3 and 2.1. Then
0<Au(r)<C ra=(N=2)p,

Applying Lemma 2.3, we discuss according to the sign of a + N — (N — 2)p = —/¢;.

i) Case £, > 0. Then u(z) = O(|z|**>~ ™ =2P) from Lemmas 2.3 and 2.1. Now we
can apply Lemma 6.5, because £ > N — 2. Hence (6.24) and (6.25) follow.

i) Case £1 < 0. Then u(z)+v(z) = O(|z[* ). Then (6.24) and (6.26) follow from
Lemma 6.4, ii). Moreover u(z)—Cy |z = O(|z|*t*~ W =2P) and v(z)—Cy 2>V =
O(|x\b+2_(N_2)q). Now assume that Cy = 0, hence v is bounded . Observe that our
assumptions implies ¢ + N > 0, and b+ N > 0.

iii) Case £1 = 0. Then u(z) = O(|z|* ™ [In |z||), v(z) = O(|z|* ). The transfor-
mation (6.3) with n =( = N — 2 gives

{ U 4+ (N = 2)U; + Agn—1U — VP =0,

Vi + (N — 2V + Agn 1V — elat 74 = ) (6.31)
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And |U(L,.)[lo(sn-1y = O(t). Then [V(t,.) = Gyl ggn-1) = O(e~?), for some o > 0,
from Proposition 6.3, since 2 < 0. Consequently,

Utt + (N - Q)Ut = Cép + O(e_at),

hence by integration,

'p

U(t) = ch 5 t+O0(). (6.32)
Now setting
Ul(t,.) =t W(t,.), (6.33)
we find
th+(N_2+%)Wt+ASN,1W+%[(N—2)W_VP} —0. (634)
In particular
Wi+ (N = 2)W + Agn W = U, (6.35)

Wlth H\I/(t, )”C(SN_l) = O(l/t) Then HW(t, ) _W(t)“c(sl\fil) = O<t71/2) y from
Proposition 6.3. We deduce (6.24) and (6.27). In any case, if Co = 0, or C1 = 0, then
v or u is bounded. W

Remark 6.3 Contrary to the scalar superlinear case, we observe that some logarith-
mical behaviours can occur, and they are isotropic.

Proposition 6.7 Assume pqg > 1 and € < N — 2. Let u,v € C?(B’) be any nonneg-
ative solutions of system (1.1). Then v is bounded.

Proof. This comes from the proof of Corollary 1.2. If moreover g > (b+2)/(N — 2),
then u is also bounded. B

Remark 6.4 The behaviour of the system in the case where one solution is bounded
will be given in paragraph 6.6.
6.5 The sublinear case

Here we can give a quite complete description of the behaviour of the system, from
the estimates of Theorem 1.3. In case (1.18) we have conjectured the existence of a
dead core for u and v. Now we study the cases (1.18) to (1.21) .

Proposition 6.8 Assume pg <1 and{ <N —2 andp > (N +a)/(N —2). Let u,v
€ C%(B') be any nonnegative solutions of system (1.1). Then

lim lz|N "2 u(z) = Cy > 0, (6.36)
€Tr—
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and
lim [wN—?)P—(W) u(z],.) — (1(61 + N — 2))—105] exists (6.37)
and it belongs to ker(Agn—1 +¢1({1 + N —2) I). If Co =0, then v is bounded.
Proof. First notice that the assumptions can be written under the form
1 >0, ql1 + (2 <0, (6.38)

from (4.1) and (4.2), hence they imply ¢3 < 0, that is ¢ < (b+N)/(N —2). From The-

orem 1.3, we have the estimates u(z) = O(|z|“T?~"=2P) and v(z) = O(jz|*N).

Then Lemma 6.5 applies and gives (6.36) and (6.37). If Cy = 0, then v(x) =
2-N :

o(|z|*~™), hence v is bounded . W

Proposition 6.9 Assume pg <1 and g < (N +b)/(N —2). Let u,v € C*(B’) be any
nonnegative solutions of system (1.1).

i) If p < (N +a)/(N —2), then
lim 2N 2 u(z) = CL >0, lim 2N 2 u(x) = Cy > 0. (6.39)
i) If p= (N +a)/(N —2), then
lim lz|N 2 u(z) = CY /(N —2) > 0, lim 2N 2 u(z) = Cy > 0.

iit) In any case, if Cy = 0, then v is bounded, and v < N — 2. If C; = 0, then u is
bounded, and £ < N — 2.

Proof. Here our assumptions resume to
/1 <0, ly <0, (6.40)

hence they imply £ < N — 2 and v < N — 2 from (4.1) and (4.2). From Theorem
1.3, we have the estimates (1.20) if /1 < 0 and (1.21) if /; = 0. Then we argue as in
Proposition 6.6, ii) and iii). W

Remark 6.4 Let us give attention on the critical cases (1.22) and (1.23), which are
not completely described.

i) Assume £ = N — 2 < . Setting

u(w) = [PV I 2P X (4,6),  w(z) = |27 el Y (2, 0),
(6.41)

with = 1/(1 — pq), we get the system

Xip = [M = 28] Xy + Agnor X + (- 28 4 2=y x - e —,
Yok (N =24+ 2)Y; + Mg + 4 [u(N =2+ 52V =X1] =0, (g.49)
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where M = N —2—2((N —2)p— (a+2). Here also we miss a suitable energy function
to conclude. We presume that an anisotropic behaviour of logarithmical type can
appear. It means that Y behaves like X4/u(N — 2), and X like one of the possibly
nonconstant solutions of equation

Agva X + pX — (u(N —2))"PXP1 =0,
or X(t,.),Y(t,.) converge to 0.
ii) Assume £ = N — 2 = ~. Setting

u(@) = 2> N I |z|PFHR(,0),  w(@) =[xV |In |2 TV S(,0),
(6.43)

we now obtain
R+ [N =2+ 20800 Ry Ay R WED [(v — 9 4 @ER=lyp o] — g,
S + (N— 2+ 27“)57: +ASN—1S+ @ {(N -2+ %)S—Rq} = 0. (644)

Here we conjecture that the behaviour is isotropic, and R(t,.), S(t,.) converge respec-
tively to [(NV — 2)(p+ D)]Y®=Y (N = 2)(g+ 1)]Y®7D  or to 0.

6.6 Behaviour of the bounded solutions

Here we study the behaviour of the system in the superlinear or the sublinear case,
when at least one of the solutions, for example v, is bounded near 0. The question is
not simple, all the more since the solutions can tend to 0. We distinguish three cases,
according to the sign of a + N.

Proposition 6.10 Assume pq # 1. Let u,v be any nonnegative solutions of system
(1.1), with v bounded near 0, and a+ N < 0. Then ¢ < (b+2)/(N —2) and

lin%) v(z) = CH >0, (6.45)

lim 2|~ (2], ) = ((a +2)(a+ N))'Ch| eists (6.46)

and it belongs to ker(Agn-1 + (a+2)(a+ N) I). Moreover
i) If C% > 0, then £(pg — 1) > 0.
i) If C4, =0, and {(pg — 1) >0, and vy < N —2 if pg < 1, then

lim lz|Y "2 u(z) = CL >0, (6.47)
lim |2V w((a],) — (€2 + N - 2))—1014] exists (6.48)

and it belongs to ker(Agn-1 + (bo(ba+ N —2)) I). If v > N — 2 and pq < 1, then
u(z) =0(lz|7),  wv(@) = O(|z["%). (6.49)
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Proof. By hypothesis, v is bounded, hence 7 has a limit C4 > 0.

a+2)

Since a + N < 0, we have u(z) = O(|z| from Lemma 2.3 and 2.1.

i) First suppose C% > 0. Then v(z) > C > 0, from (2.2) and (2.3). Then u(r) >
C r%*2 from Lemma 2.4, hence

Av(r) > C rb+(a+2)q;

hence also b+2+ (a+2)g > 0, because v is bounded. Now b+2+(a+2)q = £(pg—1),
so that Lemma 6.5 applies . We deduce (6.45) and (6.46), with C% > 0.

ii) Now suppose C5 = 0. Then lim,_gv(z) = 0 from subharmonicity, hence (6.45)
again holds. Now
AB(r) < C rblat2),

Under the assumption &(pg — 1) > 0, it implies v(z) < C |:13|E, with k = E(pg—1) =
(a+2)g+ b+ 2, from Lemma 2.3, hence

Au(r) < CPrathe,

Observe that 0 < (a+2)g+ (b+2) <b+2— (N —2)q, and that v > N —2if pg > 1,
from (1.11).
~First suppose a4 N + kp > 0. then u(z) = O(|z|*™"), and v(z) = O(]a:|b+2*(N72)q)
from Lemmas 2.3 and 2.1. In the case pg > 1, we can apply Lemma 6.5 after
exchanging v and v, and get (6.47) and (6.48). In the case pg < 1 and v > N — 2, it
implies u(z) = O(]z| ™) and v(z) = O(|z|™%), because b+ 2 — (N — 2)q > —¢ from
(1.11).
—Now suppose a + N —I—Ep < 0. Then any estimate v(r) < C r* with a4+ N +kp < 0
implies

Au(r) < C¥ rathp,
hence u(r) = O(r*+2+kP) from Lemma 2.3. More precisely, we get u(r) < C r2=N +
C CProt2+kp from 2.21 and 2.23, hence u(r) < C(1+ C}) r®t2++ Now

AB(r) < CU(1 + C’Z;)q 7alﬂr(aJr2)q+kpq’

and b+ 2 + (a + 2)g + kpg > 0. Hence o(r) < C'CI(1 + CP)rbT2+(a+2)a+kpa from
Lemma 2.3. Then
o(r) < Cy,

with
ko=k, kn=b+2+(a+2)q+kn-1pg, and Cy, =C(1+ CP ),

with a new constant C, till a + N + k,p < 0. If pg > 1, then lim k,, = +o0; if pg < 1,
then limk, = —¢, and a + N —p§ = N — 2 — ~. In the case pg > 1, or pg < 1 and
v < N — 2, after a finite number ng of steps, we get a + N + ky,p > 0, by changing
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sligthly ko if necessary. Thus we find again w(r) = O(r2N), hence u(z) = O(|z|* ™),
and v(z) = O(|x|b+2*(N72)q). We get (6.47) and (6.48) as above. In the case pg < 1
and v > N —2, it follows that o(r) < C r~¢, because the sequence (C}, ) is convergent.
Then

ATu(r) < Cro P = C r 772,

hence u(z) = O(|z|™") from Lemmas 2.3 and 2.1, because vy > N —2. B

Proposition 6.11 Assume pq # 1. Let u,v be any nonnegative solutions of system
(1.1), with v bounded near 0, and a + N > 0. Then

lin(l) v(z) =C4 >0, (6.50)
lim 2N 2 u(z) = Cy > 0. (6.51)

Now we can distinguish different cases.

i) If Ch > 0, then g < (b+2)/(N —2). If moreover C5 =0 and (y—N+2)(pg—1) > 0,
then

tim || 20 ofa] ) — (66 + N — 2))*105] exists (6.52)
and it belongs to ker(Agn-1 + (b2(ly + N —2)) I).
ii) If C1 =0, then
lin% u(z) = Cy >0, lin% v(z) = Cy > 0. (6.53)

If C{ =0, and C4 > 0, then moreover a+2 >0, and {(pqg — 1) > 0, and
lir% “x|_(a+z) u(|z],.) — ((a+2)(a + N))*lCé} =0 exists (6.54)

and it belongs to ker(Agn-1+ (a+2)(a+ N) I). And similarly if C| > 0, and C, = 0,
then b+2 >0, and v(pg — 1) > 0, and

lim [|xr<b+2> o(lz],.) — ((b+2)(b+ N))—lcg] — 0 exists (6.55)

and it belongs to ker(Agn-1 + (b+2)(b+ N) I).
iii) If C1 = C4 =0 and pqg > 1 and max(v,§) > 0, then

U

v=0 near 0. (6.56)
If C1 =C% =0 and pg < 1 and max(v,&) < 0, then

u(z) = 0|z 77),  w(x) = O(la|™*). (6.57)
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Proof. Since a + N > 0, we have u(z) = O(|z|*"") from Lemma 2.3, hence
rN=2% has a limit C; > 0.

i) Assume Cy > 0, then |z|¥ 2 u(z) > C > 0, from (2.2) and (2.3). Consequently
AB(r) > C rb=N=2)a,

hence b+ 2 — (N — 2)g > 0 from Lemma 2.4. Then Lemma 6.4, iii) applies. We
deduce (6.51), with Cq > 0; and v(x) — C} = O(|z|®+2= =29 If moreover Cy=0
and (y— N +2)(pg—1) > 0, then Lemma 6.5 applies after exchanging v and v. And
(6.52) follows.

ii) Now assume C; = 0. Then u and v are bounded, hence @, v admit some limits C1,
Cy > 0. If C4 > 0, then
Au(r) > Cr?,

hence a + 2 > 0 because u is bounded. Hence lim, o u(z) = C] from Lemma 6.4,

iii), and u(z) — €] = O(|z|*™®). And also
AB(r) > C rbHat2)a

hence b+ 2+ (a+2)qg = &(pg—1) > 0. If C4 > 0 and C] > 0, then similarly b+2 > 0
and lim,_ov(z) = C4, and (6.53) follows. If C4 > 0 and C] = 0, then Lemma 6.5
gives (6.53) and (6.54), as in the case a + N < 0.

iii) Suppose Cf = C% = 0. Then lim,_,o u(x) = lim,_,0 v(z) = 0 from subharmonicity.
If moreover pg > 1 and max(vy,£) > 0, or pg < 1 and max(y,§) < 0, then a +2 > 0
or b+ 2 > 0. We can suppose t~hat a+2>0. Then (a+2)g+ b+ 2 > 0. Here again

from Lemma 2.3, v(z) < C |z|*, with k = &(pg — 1) = (a + 2)q + b + 2, hence
At(r) < CPrathe,
Then any estimate v(r) < Cy r* with k& > 0 implies
Au(r) < CY rathp,
This in turn implies u(r) < CCY r@t2+kP hence
AT(r) < CI1CP pbt(a+2)a+kpg
If pg < 1, we get in the same way o(r) < C r¢; and
AT(r) < Cra P = Cr 772

hence u(r) < C r~7 from Lemma 2.3, because v < 0 . If pg > 1, using a sequence
as above, we deduce that v(z) = O(|z|™) for any m > 0, hence also u(z) = O(|z|™).
We can find again these results and improve the last one by using the techniques of
Section 2: the mean values u, v satisfy the system

0 < (PN 1m,), < PN1eyp, (6.58)
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0< (rV13,), < rN-1Hbya, (6.59)

1

and %, v are increasing for small r; and lim, oV, (r) = lim,_or¥~17,(r) = 0,

because w, 7 are subharmonic. From Lemma 2.1 |
(PN 1), (r) < O em WP pN=ltage (1 4 ¢)).

We can integrate twice (6.58) between 0 and r, and get successively

PN, (r) < € emWp / sITNTLGP [s(1 + )] ds < C e N=VPpNFagp (1 4 )] |
0

u(r) < C E(Nl)p/ sOTLGP [s(1 + &) ds < C e N=VPpat2 52 [1(1 4 ¢)]
0 (6.60)

since a + 2 > 0. Plugging into (6.59) and using again Lemma 2.1, we find

(rV=15,),(r) < € e~ N=DP+10a N1+t Da+b 5va [1(1 1 ¢)]
(6.61)

for a new £ > 0, where (a +2)g+ b+ 2 = &(pg — 1) > 0. Then similarly by a double
integration,

o(r) < C e~ (N=1)(p+1)q ,.(a+2)g+b+2 7pq [r(1+¢)]. (6.62)

If pg < 1 we find again hence v(r) = O( r~¢) from Lemma 2.2, and u(r) = O( r77)
from (6.60); thus (6.57) follows. If pg > 1 and v is non identically 0, then 7 is positive
for small r, and

v i) <C e~ (N=1)(p+1)a/pq ,.((a+2)q+b+2)/pq (5—1)1/1311(1"/(1 +¢)).
(6.63)

Then from Lemma 2.2
6_1(7’) <Crs,

which is impossible, since £ > 0. Hence v = 0 near 0, and v = 0 from (6.60). And
(6.56) follows. W

Proposition 6.12 Assume pq # 1. Let u,v be any nonnegative solutions of system
(1.1), with v bounded near 0, and a + N = 0. Then

lir% v(z) =C4 >0, (6.64)
lim 2N 72 In |z|| "t u(x) = CP/(N - 2). (6.65)

IfC5 =0, and b+2— (N —2)q > 0, then the results of Proposition 6.11 are still valid
(with C4 =0).
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Proof. Here a + N = 0, hence u(z) = O(|z|* " [In|z]]) from Lemma 2.3.

i) If C% > 0, then again b+ 2+ (a+2)g > 0, that is b+2 — (N — 2)g > 0. The change
of variables (6.3) with n = N — 2 and ¢ = 0 gives

{ Uy + (N = 2)U; + Agn1U — VP =0, (6.66)

Vie — (N = 2)Vi + Agn1 V — e~ (0H2=(N=2)9)t 70 —

with [[U(Z, ) losv-1y = O(t). Then [[V(t,.) — Chllogv-1) = O(el(N=2)a=b=2+e)t) " for
any ¢ > 0 small enough, from Proposition 6.3. Using the same arguments as in
Proposition 6.6, iii), we deduce that U(t) = CFt/(N —2) + O(1). Then (6.65)
follows

ii) If C4 =0, and b+ 2 — (N — 2)g > 0, then U(¢) = O(1), hence u(z) = O(|z|*~ ).
We deduce (6.51) to (6.53) and (6.55) to (6.57) as in the case a+ N > 0. B

7 Extensions to multipower systems

Our system (1.1) is Hamiltonian, i.e. of the form

—Au+ 0H/0v =0, (7.1)
—Av+0H/0u =0, )
with
H(w,u,0) = [a]* " /(p+ 1) + [z u?™ /(g + 1). (7.2)

But this fact did not interfere in our proofs. In fact they extend in some measure to
the system (1.27). When pg # (1 — s)(1 — t), this system still admits a particular
solution under the form

wi@) =A% 2|7, v (z) = B*la] ¢, (7.3)

whith new 54 and §~, given by

FY=(b+2)p+(a+2)(1-5))/D, &= ((a+2)q+ (b+2)(1-1))/D, -
7.4
where

D =pq—(1-s)(1-1), (7.5)

and new coefficients A*, B*, whenever (3 +2— N) > 0 and £(£ +2— N) > 0. Notice
the relations which extend (1.11):

F1—s)+a+2=pf, E1-t)+b+2=4. (7.6)

We can extend the a priori estimates of theorem 1.3 to the new sublinear case D < 0.
For simplicity we obmit the critical cases, and just give the ideas of the proof.
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Theorem 7.1 Let p,q,s,t,a,b € R with p,q > 0, and s,t € (0,1). Assume pqg <
(1 —8)(1 —t). Let u,v € C?(B') be any nonnegative subharmonic supersolutions of
system (1.27), that is

ay8,p
{ 0 - i:é y'ﬂbgq:t.’ (7.7)
Then, up to the change from u,p,a into v,q,b,
i) if min(¥,€) > N — 2, then
w(@) < Clel ™, (@) < Clal s, (7.8)
i) if E< N —2andp+s> (N +a)/(N —2), then
u(z) < C \x|(a+27(N72)p)/(175) , v(z) <C \x|27N, (7.9)
i) ifp+s< (N+a)/(N—2)and g+t < (N +b)/(N —2), then
u(z) +v(z) < C [of V. (7.10)
Proof. Here the change of variables (4.11) leads to the system
0< (P Nu,), < r Nl wvT, (7.11)
0 < (P Ng,), < 1Nl yavi, (7.12)
with
li=(N=2)p+5)—(N+a), Llr=(N-2)(g+t)— (N +b). -
7.13

They satisfy the relations

=) +ph=-DF - (N=2), ali+(1—s)f=—DE—(N-2).
(7.14)

Assume min(7, E ) > N —2, hence for example 1 > 0. First suppose that v is bounded.
Then

At(r) < C ro=WN=2ys(r) < C o= (N=2pgge (),
From (1.7), and Lemma 2.1 it follows that u(z) = O(||* T2~ N=20)/A=9)) — O(|z|77),
because ¢1 > 0 and £ > N—2. Then (7.8) is proved. Now suppose that Vv is unbounded.
From Lemma 2.1, we have

WP (r) < C e WDPus(r) 9P [r(1 —¢)] < C e NP @ (r) ¥ [r(1 — 2)] ,
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since s < 1. Hence

(PN () < € e NIIN ) (1 - ).

Similarly we can assume that @ is unbounded. Then integrating twice over [r, o] ,we

get

3N, (r) < C e N-DPp Nl s () 92 [(1 — )]

a(r) < C e N Dr= b s () ¥ [r(1 — €],

which gives a majorization of u, since s < 1. In the same way, since ¢t < 1,

(r*7NV), < O e NI S ) w(r(1 )]

then with a new ¢,

(3 NF,), (1) < C e~ N=DE/(A=9)+1q p1-N—(ah1/(1=8)+L2) Ft+pa/(1=9) [-(1 _ ¢)] .

It means that function T satisfies the shifted inequality

0 < AT(r) < C e T r(1 — €)] (7.15)

with d =t +pg/(1 —s) < 1,and (N —2)d— (N +0) = ql1/(1 — s) + £5 . Theorem
4.1 applies and gives (7.8); and (7.9) and (7.10) follow similarly. W

Remark 7.1 The question of a priori estimates for system 1.27 is still open in the
superlinear case, and also in case s > 1 or ¢t > 1.
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