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Abstract

We study the limit behaviour near the origin of nonnegative solutions of the
semilinear elliptic system�

��u+ jxjavp = 0;
��v + jxjbuq = 0; in RN (N � 3),

where p; q; a; b 2 R; with p; q > 0, pq 6= 1. Our main results are a priori estimates
in the superlinear case pq > 1 and the sublinear one pq < 1: They essentially
relie on �ne properties of subharmonic functions . We also point out that the
behaviour of the solutions is most often anisotropic.
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1 Introduction

This paper deals with the nonnegative solutions u; v of the semilinear elliptic system
in RN (N � 3) with absorption terms:�

��u+ jxjavp = 0;
��v + jxjbuq = 0; (1.1)

where p; q; a; b 2 R with p; q > 0; and pq 6= 1. We study the behaviour of the solutions
near an isolated singularity x = 0. This also provides the behaviour at in�nity by
Kelvin transform. Our results apply in particular to the nonnegative subharmonic
solutions of the biharmonic equation

��2u+ jxjbuq = 0; (1.2)

with q 6= 1; by taking p = 1 and a = 0: In the sequel, we suppose that u; v are de�ned
in B0 = B n f0g ; where B =

�
x 2 RN jjxj � 1

	
:

Our study extends the results relative to the scalar case of the nonnegative solu-
tions of equation

��w + jxj�wQ = 0 (1.3)

where Q > 0; Q 6= 1: Equation (1.3) was studied in detail in the superlinear case

Q > 1 in [20], [21], [8], [24], and more recently in the sublinear case Q < 1 in [5], and
in [4] when N = 2 . For any Q 6= 1; de�ning

� = (� + 2)=(Q� 1); (1.4)

it admits a particular radial solution :

w�(x) = C� jxj�� ; C� = (�(��N + 2))1=(Q�1); (1.5)

whenever C� > 0; which is a guide-line of the study. This nonlinear e�ect �ghts
with the linear one, due to the Laplacian. In the superlinear case Q > 1; all the
subsolutions satisfy the Keller-Osserman estimate near the origin

w(x) � C jxj�� ; (1.6)

where C = C(N;Q; �): And the solutions are asymptotically radial. When Q �
(N + �)=(N � 2); then w� does not exist, and the singularity is removable, which
means that the solutions stay bounded near the origin. In the sublinear case Q < 1,
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the linear e�ect can dominate the nonlinear one. The solutions, and more generally
the subharmonic supersolutions, of (1.3) satisfy the estimate

w(x) �
(
C max(jxj�� ; jxj2�N )) if Q 6= (N + �)=(N � 2);
C jxj2�N jln jxjj1=(1�Q)) if Q = (N + �)=(N � 2);

(1.7)

for some C > 0. Moreover the solutions may present an anisotropic behaviour.

The case of the system appears to be quite more complicated: for example, it will
be shown that the behaviour of one of the functions u; v can be of linear type, and the
behaviour of the other one of nonlinear type. Moreover, the anisotropic character of
the solutions is much more frequent. Technically, the maximum principle no longer
holds. Thus the construction of supersolutions, essential in [8], is no more available.
But the fundamental property of subharmonicity of the solutions is preserved. It will
be the essential tool of our proofs. As in the scalar case, our study is governed by
the existence of a radial particular solution (u�; v�) given by

u�(x) = A� jxj� ; v�(x) = B� jxj�� ; (1.8)

where

 = [(b+ 2)p+ a+ 2] =(pq � 1); � = [(a+ 2)q + b+ 2] =(pq � 1);
(1.9)

and (
A� = [( + 2�N)(�(� + 2�N))p]1=(pq�1) ;
B� = [�(� + 2�N)(( + 2�N))q]1=(pq�1) ;

(1.10)

whenever ( + 2�N) > 0 and �(� + 2�N) > 0: Notice the relations

 + a+ 2 = p�; � + b+ 2 = q: (1.11)

We shall distinguish between the superlinear case pq > 1; and the sublinear case
pq < 1: In the sequel, the same letter C denotes some positive constants which may

depend on u; v; unless otherwise stated:

We give in Section 2 the key lemmas of our paper. For any function w 2 C2(B0);
we denote by

w(r) =
1

jSN�1j

Z
SN�1

w(r; �) d� (1.12)

its mean value on the sphere of center 0 and radius r. In order to establish a priori
estimates for system (1.1), a simple idea is to obtain �rst the corresponding estimates
for the mean values u; v; by using the Jensen inequality:

wQ � wQ; if Q > 1; wQ � wQ; if Q < 1: (1.13)
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Then analogous estimates follow for u; v by using subharmonicity, as for example in
the scalar sublinear case in [5]. This method rapidly fails when for example p > 1
and q < 1: Our �rst argument relies in a �ner property of the mean-value of the
subharmonic functions. We compare the value w(x) in some point x 2 B0 to the
mean value w [jxj (1� ")] at some radius close to jxj . This allows us to cover the
cases where the Jensen inequality is no longer valid. Thus we are reduced to a system
of inequalities for u; v; involving the variables r and r(1 � "); which we call shifted
inequalities. The second argument of our proofs is a delicate technique of bootstrap
as " tends to 0, in order to treat the shifted radial system as a non-shifted one.

In Section 3 we give the a priori estimates in the superlinear case. Some recent
results of [25] give su�cient conditions of removability for the solutions, under the
restrictive assumption p � 1 and q � 1: Our main result is an extension of Keller-
Osserman estimates to system (1.1) when pq > 1, without any other restriction . We
prove the following.

Theorem 1.1 Let us assume pq > 1: Let u; v 2 C2(B0) be any nonnegative subsolu-
tions of (1.1) , that is �

��u+ jxjavp � 0;
��v + jxjbuq � 0: (1.14)

Then

u(x) � C jxj� ; v(x) � C jxj�� ; near the origin, (1.15)

where C = C(a; b; p; q;N):

With these estimates , we can follow again and extend to the general case the
removability results of [25] .

Corollary 1.2 Under the assumptions of theorem (1.1), if8<:
either max(; �) � N � 2;
or [ � N � 2 and p � (a+ 2)=(N � 2)] ;
or [� � N � 2 and q � (b+ 2)=(N � 2)] ;

(1.16)

then u and v are bounded near the origin.

In Section 4 we give the a priori estimates in the sublinear case. As in the scalar
case, the situation appears to be richer.

Theorem 1.3 Let us assume pq < 1: Let u; v 2 C2(B0) be any nonnegative subhar-
monic supersolutions of solutions of (1.1), that is�

0 � �u � jxjavp;
0 � �v � jxjbuq: (1.17)
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Then, up to the change from u; p; a into v; q; b;

i) if min(; �) > N � 2; then

u(x) � C jxj� ; v(x) � C jxj�� ; (1.18)

ii) if � < N � 2 and p > (N + a)=(N � 2); then

u(x) � C jxja+2�(N�2)p ; v(x) � C jxj2�N ; (1.19)

iii) if p < (N + a)=(N � 2) and q < (N + b)=(N � 2); then

u(x) + v(x) � C jxj2�N ; (1.20)

and in the critical cases,

iv) if p = (N + a)=(N � 2) and q < (N + b)=(N � 2); then

u(x) � C jxj2�N jln jxjj ; v(x) � C jxj2�N : (1.21)

v) if � = N � 2 < ; then

u(x) � C jxja+2�(N�2)p jln jxjjp=(1�pq) ; v(x) � C jxj2�N jln jxjj1=(1�pq) ;
(1.22)

vi) if � = N � 2 = ; then

u(x) � C jxj2�N jln jxjj(p+1)=(1�pq) ; v(x) � C jxj2�N jln jxjj(q+1)=(1�pq) ;
(1.23)

In Section 5, we look for particular solutions of the system (1.1) under the form

u(x) = jxj�U(�); v(x) = jxj��V(�); � 2 SN�1: (1.24)

It leads to the stationary system�
�SN�1U+ ( + 2�N)U�Vp = 0;
�SN�1V + �(� + 2�N)V �Uq = 0:

(1.25)

We show that system (1.25) can admit nonconstant positive solutions U;V, in addi-
tion to the constant ones A�; B�; even in the superlinear case .

Theorem 1.4 Assume that � = ( + 2 � N) > 0 and � = �(� + 2 � N) > 0: Let
�1; �2 be the two roots of equation

�2 � (�+ �)�� (pq � 1)�� = 0; (1.26)

with �1 < �2: Then for �xed � a branch of bifurcation (U(�);V(�)) appears near
(A�; B�) in system (1.25), at each time �2 crosses a nonzero eigenvalue of ��SN�1
if pq > 1; at each time �1 or else �2 crosses such an eigenvalue if pq < 1:
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Hence system (1.1) can admit anisotropic positive solutions. This phenomenon
is new in the superlinear case, and Theorem 1.4 shows that anisotropy is still more
commun in the sublinear one.

In Section 6, we take up the delicate question of precising the behaviour of the
solutions near 0. We show the great complexity of the possible behaviours. Excluding
for the sake of simplicity the critical cases, they can be divided into three categories:

(i)
�
jxj� ; jxj��

�
;

(ii)
�
jxja+2�(N�2)p ; jxj2�N

�
;
�
jxja+2 ; 1

�
;
�
jxj2�N ; jxjb+2�(N�2)q ;

�
;
�
1; jxjb+2

�
;

(iii)
�
jxj2�N ; jxj2�N

�
;
�
1; jxj2�N

�
;
�
jxj2�N ; 1

�
;

The solutions of type (i) can be both anisotropic, and the question of convergence
is still open. The solutions of type (ii) can present system a new form of anisotropy,
where only one function is anisotropic. Here we can prove the convergence, by using
the analyticity results of [19]. The solutions of type (iii) are isotropic.

In Section 7, we give extensions of our results to multipower systems of the form�
��u+ jxjausvp = 0;
��v + jxjbuqvt = 0; (1.27)

where p; q; s; t; a; b 2 R; with p; q > 0. We cover the corresponding sublinear case
pq < (1� s)(1� t), with s; t 2 (0; 1).

This article complements the results relative to the system with the other signs�
�u+ jxjavp = 0;
�v + jxjbuq = 0; (1.28)

and more generally �
�u+ jxjausvp = 0;
�v + jxjbuqvt = 0: (1.29)

We refer to [3] for a detailed study of the singularities of system (1.29). It covers
the sublinear case, and in the superlinear one up to a �rst critical condition. In case
s = q + 1; t = p+ 1; the study is carried on in [6] up to the second critical condition
p+ q+1 < (N +2)=(N � 2). See also [9], [16], [17], [18] for studies in whole RN , and
[10], [23] for the regular Dirichlet problem, and [11] for the singular one in the radial
case.

2 The key tools

First we give a property of subharmonic nonnegative functions, essential in our study.
Let us denote B(x; r) =

�
y 2 RN j jy � xj � r

	
; for any x 2 RN and r > 0:
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Lemma 2.1 Let w 2 C2(B0) be any nonnegative subharmonic function nonconstant
near the origin. Then w is strictly monotone for small r (either increasing and
bounded, or decreasing with limr!0 rN�2w(r) > 0): Moreover there exists a constant
C(N) such that for any " 2 (0; 1=2] ;

w(x) � C(N) "1�N w [jxj (1� ")] near 0, (2.1)

with the sign + if w is increasing, and the sign � if w is decreasing. Finally, for
small r, and for any Q > 1;

wQ(r) � wQ(r) � (C(N) "1�N )Q wQ [r(1� ")] ; (2.2)

and for any Q 2 (0; 1) ;

wQ(r) � wQ(r) � (C(N) "1�N )Q�1 wQ�1 [r(1� ")] w(r): (2.3)

Proof. By hypothesis, (rN�1wr)r � 0; hence either rN�1wr has a nonnegative
limit. Then there is some � 2 (0; 1=2) such that w is either increasing on (0; �] ;
hence bounded, or decreasing on (0; �] ; with limr!0 rN�2 w(r) = l 2 (0;+1] : Let
x 2 B(0; 2�=3), and " 2 (0; 1=2]. Then from the mean value inequality of subharmonic
functions,

w(x) � 1

"N jxjN jBj

Z
B(x;"jxj)

w(y) dy: (2.4)

Hence denoting C" =
�
y 2 RN jjxj (1� ") � jyj � jxj (1 + ")

	
;

w(x) � 1

"N jxjN jBj

Z
C"
w(y) dy � N

"N jxjN
Z jxj(1+")

jxj(1�")
rN�1w(r) dr: (2.5)

Since w is monotone, it implies

w(x) � "�N
�
(1 + ")N � (1� ")N

�
w(jxj (1� ")); (2.6)

with the sign + if w is increasing, and the sign � if w is decreasing. Then (2.1) follows
with C(N) = 2N(3=2)N�1: Taking the Q - power for any x with jxj = r < 2�=3, and
integrating on the sphere jxj = r; we deduce that, for any Q > 0;

wQ(r) � (C(N) "1�N )Q wQ [r(1� ")] ; (2.7)

hence (2.2) if Q > 1: If Q 2 (0; 1) we take the (1�Q) - power in (2.1) we �rst get

w(x) �
�
C(N) "1�N w(jxj (1� "))

�1�Q
w(x)Q: (2.8)

Then we integrate again on jxj = r; and obtain (2.3).
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Remark 2.1 Lemma 2.1 implies the following weaker property, still used in [25]
and in [5], [4]: let w 2 C2(B0) be any nonnegative subharmonic function, such that
w satis�es an estimate of the form

w(r) = O(jln rjb ra) as r ! 0 (2.9)

for some a; b 2 R: Then w satis�es the corresponding estimate

w(x) = O(jln jxjjb jxja) as x! 0: (2.10)

In particular, if w(r) = o(r2�N ); then w(r) = O(1); hence w(x) = O(1) near 0.

Now we derive our second tool, which is a bootstrap result, allowing to transform
a shifted inequality into an ordinary one.

Lemma 2.2 Let d; h; ` 2 R with d 2 (0; 1) and y;� be two continuous positive
functions on some interval (0; R] : Assume that there exist some C;M > 0 and
"0 2 (0; 1=2] such that, for any " 2 (0; "0] ;

y(r) � C "�h�(r) yd [r(1� ")] and max
�2[r=2;r]

�(�) �M �(r);
(2.11)

or else

y(r) � C "�h�(r) yd [r(1 + ")] and max
�2[r;3r=2]

�(�) �M �(r);
(2.12)

for any r 2 (0; R=2] : Then there exists another C > 0 such that

y(r) � C �(r)1=(1�d) (2.13)

on (0; R=2] :

Proof. The result is obvious when h � 0; so we can suppose h > 0:
i) First assume (2.11). Consider the sequence "m = "0=2

m (m 2 N): Then for any
r 2 (0; R] and any m � 1; denoting Pm = (1� "1)::(1� "m);

y(rPm�1) � C "�hm �(rPm�1) y
d(rPm):

In particular ,8>><>>:
y(r) � C "�h1 �(r) yd(rP1);

yd(rP1) � Cd "�hd2 �d(rP1) y
d2(rP2);

:::

yd
m�1

(rPm�1) � Cd
m�1

"�hd
m�1

m �d
m�1

(rPm�1) yd
m
(rPm):

By the assumption on �; this implies

y(r) � C1+d+::+d
m�1

"�h1 "�hd2 ::"�hd
m�1

m �(r) �d(rP1)::�
dm�1(rPm�1) y

dm(rPm)
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for any m � 1: Hence

y(r) � (C"�h0 )1+d+::+d
m�1

2k(1+2d+::+md
m�1)

�Md+2d2+::+(m�1)dm�1�(r)1+d+::+d
m�1

yd
m
(rPm):

(2.14)

Let us go to the limit as m tends to +1; for any �xed r 2 (0; R] : the sequence (Pm)
has a �nite limit P > 0; since the series

P1
i=1 "i is convergent, hence lim y

dm(rPm) =
1; because d < 1; and

y(r) � (C"�h0 )1=(1�d) 2k=(1�d)
2
Md=(1�d)2�(r)1=(1�d); (2.15)

and (2.13) holds.

ii) Assume (2.12), and denote now Pm = (1 + "1)::(1 + "m): Then (Pm) still has
a �nite limit P > 0; and more precisely P � e; because lnPm �

Pm
i=1 "i � 2"0 �

1: Then inequality (2.14) is still available for any r 2 (0; R=2e] ; hence also (2.15).
This again implies (2.13).

Remark 2.2 This lemma shows that the solutions of the shifted inequality (2.11) or
(2.12) behave exactly as the solutions of the ordinary inequality

y(r) � C �(r) yd(r) (2.16)

relative to " = 0: This result is not evident and quite surprising in case h > 0;
since lim"!0 "�h = +1: Notice that the conditions on � are obviously satis�ed
by power functions �(r) = r! (! 2 R) or logarithmical ones �(r) = jln rj! ; or
�(r) = ln jln rj ; ::; or by products of this functions.

We complete this section by two simple integration results, which are complemen-
tary.

Lemma 2.3 Let �; k 2 R, and let y 2 C2((0; 1]) be nonnegative, such that

�y(r) � C r� jln rjk (2.17)

on (0; 1] ; for some C > 0. Then there is another C > 0 such that, near the origin,

y(r) � C

8>><>>:
r�+2 jln rjk if � +N < 0;

r2�N jln rjk+1 if � +N = 0 and k > �1;
r2�N jln jln rjj if � +N = 0 and k = �1;
r2�N if � +N > 0 or � +N = 0 and k < �1:

If moreover limr!0 y(r) = limr!0 rN�1yr(r) = 0; then

y(r) � C

(
r�+2 jln rjk if � + 2 > 0;

jln rjk+1 if � + 2 = 0 and k < �1:
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Proof. Let us de�ne

y(r) = r2�Ny(r); (2.18)

and

� = �(� +N): (2.19)

Then

(r3�Nyr)r � C r1�N�� jln rjk : (2.20)

Integrating twice over [r; r0] ;with r < r0 � 1; we get successively

r3�N0 yr(r0)� r3�Nyr(r) � C

Z r0

r
s1�N�� jln sjk ds;

y(r) � y(r0)� r3�N0 yr(r0)

Z r0

r
sN�3ds+ C I(r; r0; �) � C + C I(r; r0; �);

(2.21)

where

I(r; r0; �; k) =

Z r0

r
�N�3

Z r0

�
s1�N�� jln sjk ds: (2.22)

Now as r goes to 0,

I(r; r0; �; k) =

8>>><>>>:
1

�(�+N�2) r
�� jln rjk (1 + o(1)); if � > 0;

1
(N�2)(k+1) jln rj

k+1 (1 + o(1)); if � = 0 and k > �1;
1

(N�2) jln jln rjj (1 + o(1)); if � = 0; and k = �1;
C0(1 + o(1)); if � = 0 and k < �1; or � < 0;

(2.23)

with C0 = C(r0; �; k;N) > 0: Hence we get the results by returning to y. Now assume
that limr!0 y(r) = limr!0 rN�1yr(r) = 0: Then we integrate twice the inequality

(rN�1yr)r � C rN�1+� jln rjk ; (2.24)

over (0; r) and get the conclusions.

Lemma 2.4 Let �; k 2 R, and y 2 C2((0; 1]) be nonnegative, such that

�y(r) � C r� jLnrjk (2.25)

on (0; 1] ; for some C > 0. Then there is another C > 0 such that, near the origin,

y(r) � C

8>>>><>>>>:
r�+2 jln rjk if � +N < 0;

r2�N jln rjk+1 if � +N = 0 and k > �1;
r2�N jln jln rjj if � +N = 0 and k = �1;
r2�N if � +N = 0 and k < �1; or�N < � < �2;

or � + 2 = 0 and k > �1:
(2.26)
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In particular, if y is bounded, then � + 2 � 0; and � + 2 > 0 if k > �1: Moreover if
limr!0 y(r) = limr!0 rN�1yr(r) = 0; then

y(r) � C

(
r�+2 jln rjk if � + 2 > 0;

jln rjk+1 if � + 2 = 0 and k < �1:
(2.27)

Proof. Here

(r3�Nyr)r � C r�+1 jln rjk ; (2.28)

hence

r3�N0 yr(r0)� r3�Nyr(r) � C

Z r0

r
s1+� jln sjk ds; (2.29)

y(r) � y(r0)� r3�N0 yr(r0)

Z r0

r
sN�3ds+ C

Z r0

r
�N�3

Z r0

�
s1+� jln sjk ds;

� �C + C
Z r0

r
�N�3

Z r0

�
s1+� jln sjk ds:

(2.30)

Thus the conclusions follow from (2.23) in the �rst three cases, because the integral
is divergent. Moreover �y(r) > 0, that is

(r3�Nyr)r(r) = r3�N (yrr(r) + (3�N)yr(r)=r) > 0;

hence y is strictly monotone for r � r0 small enough: If � + 2 < 0; or � + 2 = 0
and k > �1; then y is decreasing, from (2.29), and y(r) � C > 0 from (2.30), and
y(r) � Cr2�N : We get (2.27) as in Lemma 2.3.

3 Estimates in the superlinear case

Here we give the proofs of Theorem 1.1, and Corollary 1.2.

In the case p = q > 1; a = b; the proof of Theorem 1.1 is simple. Indeed system
(1.1) admits particular solutions (w;w) , where w is any solution of equation (1.3)
with Q = p = q and � = a = b. Here Theorem 1.1 reduces to the Osserman estimate
(1.6) for the two functions u and v: The conclusion follows by observing that function
(u+ v)=2 is then a subsolution of equation (1.3).

Now let us come to the general case p; q > 0 and pq > 1. Here we present a
�rst proof, which uses the main arguments of Section 2, and a second proof, which is
shorter but restricted to the case p > 1 and q > 1; p 6= q. One can also �nd in [13] a
variant of the �rst proof, which is restricted to the case p � 1 and q � 1; where the
bootstrap technique is replaced by an energy argument.

11



3.1 Proof of Theorem 1.1 (general case pq > 1).

Let u; v 2 C2(B0) satisfying (1.14). Then the mean values satisfy the system in (0; 1]

(rN�1 ur)r � ra+N�1 vp; (3.1)

(rN�1 vr)r � rb+N�1 uq: (3.2)

From Lemma 2.1 we are reduced to get estimates for u; v: If u or v is constant near
0, then u � v � 0: In the general case each of these functions is subharmonic, hence
strictly monotone on some interval (0; �], either bounded with ur > 0 (resp. vr > 0),
or unbounded with ur < 0 and u(r) > C r2�N (resp. v(r) > C r2�N ): Let " 2 (0; 1=8]
be �xed. We set

I"(r) =

Z r(1+")

r

Z �(1+")

�
uq(s)dsd�; J"(r) =

Z r(1+")

r

Z �(1+")

�
vp(s)dsd�;

(3.3)

for any r 2 (0; �=2] : First integrate (3.2) over [r; r(1 + ")] . If v is decreasing, then

�rN�1vr(r) � � [r(1 + ")]N�1 vr [r(1 + ")] +
Z r(1+")

r
sb+N�1uq(s)ds;

�
Z r(1+")

r
sb+N�1uq(s)ds;

and a new integration gives

v(r) � v [r(1 + ")] +

Z r(1+")

r
�1�N

Z �(1+")

�
sb+N�1uq(s)dsd�;

hence

v(r) � C rbI"(r): (3.4)

If v is increasing, we �nd

[r(1 + ")]N�1 vr [r(1 + ")] �
Z r(1+")

r
sb+N�1uq(s)ds;

hence

v(r(1 + ")2) � v [r(1 + ")] + C

Z r(1+")

r
�1�N

Z �(1+")

�
sb+N�1uq(s)dsd�;

which now implies

v(r) � C rbI"
�
r=(1 + ")2

�
: (3.5)
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Similarly

u(r) � C ra �
�
J"(r); if ur < 0;
J"
�
r=(1 + ")2

�
if ur > 0:

Without loss of generality, can assume p � q; hence q > 1: Then the Jensen inequality
applies, since q � 1, and

I"(r) �
Z r(1+")

r

Z �(1+")

�
uq(s)dsd� �

�
"2 r2 uq

�
r(1 + ")2

�
; if ur < 0;

"2 r2 uq(r); if ur > 0: (3.6)

Hence we arrive to a �rst shifted inequality between u and v:

v(r) � C "2 rb+2 �

8<:
uq
�
r(1 + ")2

�
; if ur < 0; vr < 0;

uq(r); if urvr < 0;
uq
�
r=(1 + ")2

�
; if ur > 0; vr > 0:

(3.7)

Now we argue according to the value of p.

First case: p � 1: Then we get similarly

u(r) � C "2 ra+2 �

8<:
vp
�
r(1 + ")2

�
; if ur < 0; vr < 0;

vp(r); if urvr < 0;
vp
�
r=(1 + ")2

�
; if ur > 0; vr > 0:

(3.8)

Therefore

v(r) � C "2(q+1) r(a+2)q+b+2 �

8<:
vpq
�
r(1 + ")2

�
; if ur < 0; vr < 0;

vpq(r); if urvr < 0;
vpq
�
r=(1 + ")2

�
; if ur > 0; vr > 0:

Changing " into "=3; this reduces to the estimates

v(r) � C "�2(q+1)=pq r�[(a+2)q+b+2]=pq
�
v1=pq [r(1� ")] ; if urvr > 0;

v1=pq(r); if urvr < 0: (3.9)

In case urvr < 0; we immediately deduce the expected estimate of v :

v(r) � C r�� near 0. (3.10)

In case urvr > 0, we are reduced to a shifted inequality of type (2.11) or (2.12). Thus
we can apply Lemma 2.2 to y = v; with d = 1=pq < 1; and get again (3.10). Taking
" = 1=2 in (3.7), it implies the corresponding estimate for u :

u(r) � C r� near 0, (3.11)

hence estimates (1.15) follow.
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Second case: p < 1: Here we use the fundamental inequality (2.3) for function
v :

vp(r) � (C(N) "1�N )p�1 vp�1 [r(1� ")] v(r); (3.12)

with the sign + if vr > 0 and � if vr < 0: Then we �nd

J"(r) � (C(N) "1�N )p�1
Z r(1+")

r

Z �(1+")

�
vp�1 [s(1� ")] v(s))dsd�

� C "N+1�(N�1)p r2 �
�
vp�1 [r(1� ")] v

�
r(1 + ")2

�
if vr < 0;

vp�1
�
r(1 + ")3

�
v(r); if vr > 0:

Hence

u(r) � C "N+1�(N�1)p ra+2 �

8>><>>:
vp�1 [r(1� ")] v

�
r(1 + ")2

�
; if ur < 0; vr < 0;

vp�1
�
r(1 + ")3

�
v(r); if ur < 0 < vr;

vp�1
�
r(1� ")=(1 + ")2

�
v(r); if vr < 0 < ur;

vp�1 [r(1 + ")] v
�
r=(1 + ")2

�
; if ur > 0; vr > 0:

(3.13)

By reporting (3.13) in (3.7), it comes

v(r) � C "2+(N+1�(N�1)p)q r(a+2)q+b+2

�

8>><>>:
v(p�1)q(r) vq

�
r(1 + ")4

�
; if ur < 0; vr < 0;

v(p�1)q
�
r(1 + ")3

�
vq(r); if ur < 0 < vr;

v(p�1)q
�
r(1� ")3

�
vq(r); if vr < 0 < ur;

v(p�1)q(r) vq
�
r=(1 + ")4

�
; if ur > 0; vr > 0;

after noticing that8<:
v(p�1)q

�
r(1 + ")2(1� ")

�
� v(p�1)q(r) if vr < 0;

v(p�1)q
�
r(1� ")=(1 + ")2

�
� v(p�1)q

�
r(1� ")3

�
if vr < 0;

v(p�1)q [r=(1 + ")] � v(p�1)q(r) if vr > 0:

Changing " into "=6; we �nally get, for " small enough,

v(r) � C "�(2=q+N+1�(N�1)p)

�
�
r�[(a+2)q+b+2]=q v1�(pq�1)=q [r(1� ")] ; if urvr > 0;

r�[(a+2)q+b+2]=(q�1) v1�(pq�1)=(q�1) [r(1� ")] ; if urvr < 0:
(3.14)

In any case we are still reduced to a shifted inequality. We can apply Lemma 2.2 to
y = v; with d = 1 � (pq � 1)=q < 1; or d = 1 � (pq � 1)=(q � 1) < 1: Thus we get
again estimate (3.10) and conclude as above.

14



3.2 Second Proof of Theorem 1.1 (case q > p > 1).

It relies directly on Keller-Osserman estimates for the scalar case, and is inspired
by the methods of [3] relative to system (1.29). Let x0 2 B(0; 1=2) and B0 =
B(x0; jx0j =2). Our proof consists in obtaining a suitable upper estimate of the min-
imum of the function u over B0, and then the corresponding estimate for u(x0) by
using the maximum principle. We can suppose that

m(x0) = min
x2B0

u(x) > 0: (3.15)

Recall that in case p = q; the function (u+v)=2 is a subsolution of equation (1.3). Here
we assume that q > p > 1: Now notice that for any subharmonic positive function
w and any � > 1; the function w� is still subharmonic. This leads to introduce the
function in B0

f = jxj� u� + v; (3.16)

with � = (q + 1)=(p+ 1) > 1 and � = (b� a)=(p+ 1). Let us compute its Laplacian:

�f = �(� � 1) jxj� u�
����ruu +

�

� � 1
rr
r

����2 � � jxj��2 u�
+� jxj� u��1�u+�v;

where � = �(�=(� � 1)2 + 2�N � �): Hence from (1.17)

��f + jxj�+a u��1(�vp + jxjp� up�) � � jxj��2 u�

and consequently f appears as a subsolution of a problem of the form

��f +A(x) fp � � jxj�2 f;

for which we can apply Osserman-Keller estimates. But A(x) = 2�p jxj�+a u��1(x)
depends on f: Now we minorize A in terms of m(x0), and get

��f + 2�(x0) fp � �(x0) f;

with

�(x0) = 2
�(p+1)min((1=2)�+a; (3=2)�+a) jx0j�+am(x0)��1; �(x0) = 4�=9 jx0j2 :

Hence from Young inequality,

��f + �(x0) fp � (�(x0)p=�(x0))1=(p�1) (3.17)

Then from Keller-Osserman estimates (see also [14]), we obtain

f(x) � C jx0j�2 �(x0)�1=(p�1) � C jx0j�2�(�+a)=(p�1)m(x0)�(��1)=(p�1)
(3.18)
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in B0; with C = C(N; p; q; a; b); in particular at x0: But f(x0) � jx0j� m(x0)�; hence
we get the estimate

m(x0) � C jx0j� : (3.19)

The same estimate is also available for u; since u; v are also subsolutions of system
(1.1), because p; q > 1: Let r0 = jx0j : Then there exists s0 2 [r0=2; 3r0=2] such that
u(s0) � Cr�0 : By induction, de�ning rn = r0=4

n , for any n 2 N there exists a
decreasing sequence (sn) such that sn 2 [rn=2; 3rn=2] and

u(sn) � C r�n � (2=3)�C s�n :

From the maximum principle in the annulus Cn =
�
y 2 RN j sn+1 � jyj � sn

	
; it

follows that

u(r) � (2=3)�C s�n+1 � (2=3)� max(1; 12) C r� in [sn+1; sn]

with C = C(N; p; q; a; b); since r 2 [sn+1; 12sn+1] : Then, with new constants C;

u(r) � C r� in (0; r0] ;

and from Lemma 2.1,

u(x) � C jxj� in B0: (3.20)

Now let 	 2 C2(B0) such that ��	 = 1 and 	 = 0 on @B0; and let '(x) =
	(2(x� x0)= jx0j). We multiply the �rst inequality of (1.14) by ', integrate over B0;
and apply the Green formula. It follows easily that

min
x2B0

v(x) � C jx0j�(a+2+)=p = C jx0j�� (3.21)

from (3.20). We get in the same way the estimate

v(x) � C jxj�� in B0; (3.22)

which achieves the proof.

3.3 Proof of Corollary 1.2

i) Let us prove that the condition  � N � 2 implies that u is bounded . Assume
that u is unbounded near 0. Then also u is unbounded, from Lemma 2.1, hence
u(r) � C r2�N for some C > 0; near 0. It implies  � N � 2 from (1.15), and in
fact  > N � 2 . Indeed if  = N � 2 , then

�v(r) � C rb�q = C r�2��;

hence v(r) � C r�� from Lemma 2.4. But v(r) � C r�� from (1.15). we report this
estimate into (3.1). Then we get

�u(r) � C ra�p� = C r�N ;
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from the Jensen inequality if p � 1; and from (3.12) if p < 1. We deduce u(r) �
C r2�N jln rj ; from Lemma 2.4, which contradicts (1.15). Similarly the condition
� � N � 2 implies that v is bounded. Hence the condition max(; �) � N � 2 implies
that u and v are bounded.

ii) Assume � � N � 2 (hence v is bounded ), q � (b + 2)=(N � 2) and suppose
that u is unbounded. Then u(r) � C r2�N near 0, hence

�v(r) � C rb�(N�2)q:

This is impossible from Lemma 2.4, since v is bounded. Similarly after exchanging u
and v.

4 Estimates in the sublinear case

Here also the estimates are simple in the case p = q < 1 and a = b. The system
(1.1) still admits particular solutions (w;w), where w is any solution of equation (1.3)
with Q = p = q < 1 and � = a = b. Here Theorem 1.3 reduces to the estimates
(1.7) for the two functions u and v: The conclusion follows by observing that function
(u+ v)=2 is a subharmonic supersolution of equation (1.3).

Now let us come to the general case. In this section and in the sequel of the study,
we set

`1 = (N � 2)p� (N + a); `2 = (N � 2)q � (N + b); (4.1)

and notice the relations

`1 + p`2 = (1� pq)( � (N � 2)); q`1 + `2 = (1� pq)(� � (N � 2)):
(4.2)

4.1 A sublinear shifted inequality

In order to prove Theorem 1.3, we �rst prove that the subharmonic supersolutions
of a sublinear shifted inequality present the same behaviour as the supersolutions of
the ordinary one .

Theorem 4.1 Let Q; �; h; k 2 R; with Q 2 (0; 1) ; k � 0 , and let y 2 C2((0; 1]):
Assume there exists some C > 0 and "0 2 (0; 1=2] such that, for any " 2 (0; "0] and
r 2 (0; 1] ;

0 � �y(r) � C "�h r� jln rjk yQ [r(1� ")] : (4.3)

Then y satis�es the same estimates as the solutions of inequality

0 � �w(r) � C r� jln rjk wQ: (4.4)
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More precisely, with another C > 0;

y(r) � C

8<:
r(2+�)=(1�Q) jln rjk=(1�Q) ; if Q > (N + �)=(N � 2);
r(2�N); if Q < (N + �)=(N � 2);
r(2�N)L(r); if Q = (N + �)=(N � 2); (4.5)

where L(r) = jln rj(k+1)=(1�Q) if k > �1; jln jln rjj1=(1�Q) if k = �1; 1 if k < �1:

Remark 4.1 When k = 0 one �nds again the estimates for equation (1.3) in the
radial case. The following proof relies closely on the proof of the estimates for this
equation, given in [5].

Proof. We can assume that h � 0; and y is nonidentically 0 near 0. Let us make
the change of variables (2.18). It leads to the inequality in (0; 1]

0 � (r3�Nyr)r(r) � C "�hr1�N�` jln rjk yQ [r(1� ")] ; (4.6)

where

` = (N � 2)Q� (N + �) = (1�Q)(��N + 2): (4.7)

Then y is monotone and positive for r � r0 small enough, since (r
3�Nyr)r(r) � 0.

If y is bounded, then y(r) = O(r2�N ) and Theorem 4.1 is proved in any case. Now
suppose that y is unbounded, then it is necessarily nonincreasing . Integrating over
[r; r0] ; we get

�r3�Nyr(r) � C + C "�h yQ [r(1� ")]
Z r0

r
s1�N�` jln sjk ds; (4.8)

and by a new integration,

y(r) � C + C "�h yQ [r(1� ")] I(r; r0; `; k); (4.9)

where I(r; r0; `; k) is de�ned in (2.22). If ` > 0; this implies from (2.23) the shifted
inequality

y(r) � C "�hr�` jln rjk yQ [r(1� ")] :
Then we can apply Lemma 2.2 with �(r) = r�` jln rjk ; and deduce the �rst part of
(4.5). If ` < 0; then we �nd from (2.23)

y(r) � C "�h yQ [r(1� ")] ;

hence y is bounded, from Lemma 2.2, hence a contradiction, and the second part of
(4.5) follows. If ` = 0; it implies8<: y(r) � C "�h jln rjk+1 yQ [r(1� ")] ; if k > �1;

y(r) � C "�h jln(jln rj)jyQ [r(1� ")] ; if k = �1;
y(r) � C "�h yQ [r(1� ")] ; if k < �1;

and the third part of (4.5) follows from Lemma 2.2.
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4.2 Proof of Theorem 1.3

If u � 0 near 0, then v is harmonic, hence v(x) � C jxj2�N ; and the estimates are
trivially satis�ed. So we can assume that u; v are positive near 0. Here we perform
the change of variables

u(x) = jxj2�N u(x); v(x) = jxj2�N v(x); (4.11)

It leads to a system of inequalities relative to u;v in (0; 1]:

0 � (r3�Nur)r � r1�N�`1 vp; (4.12)

0 � (r3�Nvr)r � r1�N�`2 uq: (4.13)

It follows that u and v are monotone and positive for r � r0 small enough. In case
of (1.20), we have `1 < 0 and `2 < 0 . In case of (1.23) and (1.21) we have `1 = 0 and
`2 � 0: First assume that v is bounded . Then v is also bounded, from Lemma 2.1.
That means v(x) � C jxj2�N ; which implies �u(r) � C ra�(N�2)p: From Lemmas
2.3 and 2.1, it follows that

u(x) �

8><>:
C jxja+2�(N�2)p ; if `1 > 0;

C jxj2�N jln jxjj ; if `1 = 0;

C jxj2�N ; if `1 < 0:

(4.14)

This implies (1.19), (1.20) and (1.23); and also (1.18), (1.22) since jxja+2�(N�2)p �
jxj� as soon as � � N � 2; and at last (1.21), because jln jxjj � jln jxjj(p+1)=(1�pq) :
Then we can assume that v is unbounded . Then v is decreasing. Using (4.12) we
get from Lemma 2.1

(r3�Nur)r(r) � C "�(N�1)p r1�N�`1 vp [r(1� ")] : (4.15)

Integrating over [r; r0] ;we get

�r3�Nur(r) � C + C "�(N�1)p vp [r(1� ")]
Z r0

r
s1�N�`1 ds;

since v is decreasing. A new integration gives

u(r) � C + C "�(N�1)p vp [r(1� ")] I(r; r0; `1; 0): (4.16)

First step: Proof of (1.18), (1.19) and (1.22)

Under the assumptions of (1.19) or (1.22), we have `1 > 0: In the case of (1.18), we
�nd `1 > 0 or `2 > 0; from (4.2). After exchanging u into v; we can still assume that
`1 > 0: Then I(r; r0; `1; 0) = O(r�`1 ); from (2.23), hence from (4.16)

u(r) � C + C "�(N�1)p r�`1 vp [r(1� ")] � C "�(N�1)p r�`1 vp [r(1� ")] :
(4.17)

19



Using (4.13) and Lemma 2.1, we get in the same way

(r3�Nvr)r(r) � C "�(N�1)q r1�N�`2 uq [r(1� ")] ; (4.18)

Reporting (4.17) into (4.18) and changing " into "=2 if necessary, we �nd

(r3�Nvr)r(r) � C "�(N�1)(p+1)q r1�N�(q`1+`2) vpq [r(1� ")] : (4.19)

That means that function v satis�es the shifted inequality

0 � �v(r) � C "�hr� vQ [r(1� ")] ; (4.20)

of the form (4.3), with Q = pq < 1; and h = (N � 1)(p+ 1)q; and � is given by

(N � 2)Q� (N + �) = q`1 + `2 = (1� pq)(� � (N � 2));

from (4.2), thus � = (a + 2)q + b. Then we can apply Theorem 4.1. Under the
assumption of (1.18), we have � > (N � 2); hence Q > (N + �)=(N � 2): Then from
(4.5),

v(r) � C r(2+�)=(1�Q) = C r��; (4.21)

and from (4.17),

u(r) � C r(N�2)(p�1)�`1�p� = C r� : (4.22)

It implies (1.18) from Lemma 2.1. Under the assumption of (1.19), we have � <
(N � 2); hence Q < (N + �)=(N � 2): Then from (4.5), v(r) � C r2�N ; which
contradits our assumption on v . In the case of (1.22), we have � = (N � 2); thus
Q = (N + �)=(N � 2); then from (4.5) ,

v(r) � C r2�N jln rj1=(1�pq) ; (4.23)

and from (4.17)

u(r) � C r2�N�`1 jln rjp=(1�pq) = C ra+2�(N�2)p jln rjp=(1�pq) ;
(4.24)

and (1.22) follows from Lemma 2.1.

Second step : Proof of (1.20)

Here `1 < 0 and `2 < 0 . Then I(r; r0; `1; 0) = O(1); from (2.23), and from (4.16)

u(r) � C "�(N�1)p vp [r(1� ")] ;

From symmetry we can also assume that u is unbounded, hence in the same way

v(r) � C "�(N�1)q uq [r(1� ")] :
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Thus with a new " > 0;

v(r) � C "�(N�1)(p+1)q vpq [r(1� ")] ;

and v is bounded from Lemma 2.2, which is a contradiction. Thus (1.20) follows.

Third step : Proof of (1.21)and (1.23)

Here `1 = 0 and `2 � 0: Then I(r; r0; `1; 0) = O(jLnrj); hence

u(r) � C "�(N�1)p jln rj vp [r(1� ")] : (4.25)

First suppose `2 < 0: By reporting (4.25) into (4.13), and we �nd with a new " > 0,

(r3�Nvr)r(r) � C "�(N�1)(p+1)q r1�N�`2 jln rjq vpq [r(1� ")] :

This implies in particular

(r3�Nvr)r(r) � C "�(N�1)(p+1)q r1�N�`2=2 vpq [r(1� ")] :

We can apply Theorem 4.1, with � de�ned by `2=2 = (N � 2)pq� (N +�): Thus v is
bounded from (4.5), hence a contradiction holds. Now suppose `2 = 0: Then we can
assume that u is unbounded, and similarly

v(r) � C "�(N�1)q jln rj uq [r(1� ")] ;

then with a new ";

v(r) � C "�(N�1)(p+1)q jln rjq+1 vpq [r(1� ")] ;

hence from Lemma 2.2 and (4.25)

v(r) � C jln rj(q+1)=(1�pq) ; u(r) � C jln rj(p+1)=(1�pq) ;

hence (1.23) is proved.

5 Existence of anisotropic solutions

First recall the results relative to the scalar case of equation (1.3) for any Q 6= 1. If
we look for particular solutions of the form

w(x) = jxj��W(�); � 2 SN�1; (5.1)

where � is given by (1.4), we are leaded to the equation on SN�1

�SN�1W + �W �WQ = 0: (5.2)

with � = �(� + 2 � N). It has no positive solution if � � 0; that means Q �
(N + �)=(N � 2) � 1 or Q � (N + �)=(N � 2) � 1: This comes by multiplication
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by W and integration over SN�1: Now assume that � > 0: In the superlinear case,
it admits only one positive solution, the constant �1=(Q�1); see [22]. Hence equation
(1.3) has no positive nonradial solutions. In the sublinear case, if �(1�Q) � N �1 it
admits only the constant positive solution. If not, it can admit nonconstant solutions:
let (�k)k2N be the sequence of eigenvalues of ��SN�1 on SN�1; given by

�k = k(k +N � 2); 8k 2 N:

Then equation (5.2) admits a continuum of solutions for any � in the neighborhood
of �k=(1�Q); obtained by bifurcation, see [5]. Moreover it can admit many solutions
with dead cores, which are not obtained by bifurcation, see [5] and [4]. Hence equation
(1.3) can admit nonradial positive solutions.

Now let us return to the case of system (1.1). Searching solutions of the form
(1.24), we are lead to system (1.25). Here we prove the theorem 1.4, showing that
system (1.1) can admit nonradial positive solutions even in the superlinear case.

Proof of Theorem 1.4

We consider more generally the system on SN�1�
�SN�1U+ � U�Vp = 0;
�SN�1V + � V �Uq = 0;

(5.3)

for any �; � > 0: We look for bifurcation branches around the constant solutions
(A;B); with

A = (��p)1=(pq�1); B = (�q�)1=(pq�1):

Here we follow the proof given in the scalar sublinear case in [5]. In order to avoid the
question of multiplicity of the eigenvalues �k; we look for solutions U;V which are
radially symmetric by respect to some diameter. In other words they depend only on
some polar angle � 2 (0; �) : The system reduces to�

LU+ � U�Vp = 0;
LV + � V �Uq = 0;

(5.4)

where
L!(�) = sin2�N �

�
(sinN�2 �) !�

�
�
; 8� 2 (0; �) :

We know that (I � L)�1 is a compact self-adjoint operator in the weighted space

L2� [(0; �)]) =

�
! 2 D0 [(0; �)]

���� Z �

0
!2(�) sinN�2 � d� < +1

�
:

And �L and ��SN�1 have the same spectrum and each eigenspace of �L is one-
dimensional, see [2],[7]. Denoting

U(�) = A+H(�); V(�) = B +K(�);
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system (5.4) takes the matricial form

L

�
H
K

�
+M

�
H
K

�
�
�
T (K;�; �)
S(H;�; �)

�
=

�
0
0

�
;

where
S(H;�; �) = (A+H)q �Aq � qAq�1H;

T (K;�; �) = (B +K)p �Bp � pBp�1K;

M =

�
� �pBp�1
�qAq�1 �

�
:

The matrix M is invertible, since detM = ��(1 � pq) 6= 0: Its eigenvalues are the
two distinct roots �1 < �2 of equation

�2 � (�+ �)�� (pq � 1)�� = 0:

Observe that �1 < 0 < �2 if pq > 1, and 0 < �1 < �2 if pq < 1:We reduce the system
to the diagonal form by setting�

H
K

�
= R

�
H0

K0

�
; R =

�
pBp�1 � � �2
�� �1 qAq�1

�
;

and obtain �
LH0 + �1 H0 � T 0(H0;K0; �; �) = 0;
LK0 + �2 K0 � S0(H0;K0; �; �) = 0;

with

T 0(H0;K0; �; �) = (detR)�1
�
(� � �2) S(H;�; �) + qAq�1 T (K;�; �)

�
;

S0(H0;K0; �; �) = (detR)�1
�
pBp�1 S(H;�; �) + (�� �1) T (K;�; �)

�
:

Let �k be an eigenvalue of ��SN�1 . Let us �x � > 0; such that �k > �. We
apply the local bifurcation theorem by respect to the second parameter �: Notice
that the function �2(�; :) is increasing. Then there exists a unique �k > 0 such that
�k = �2(�; �k). Let us assume that �1(�; �k) is not an eigenvalue of ��SN�1 if
pq > 1: We set

X =
�
v 2 C2([0; �]) j v�(0) = v�(�) = 0

	
; Y = C([0; �]):

Let S = (�k � �; �k + �) ; with � < �k=2 small enough such that �2(�; S) belongs
to (�k=2; 3�k=2) : Consider a closed ball B of X; of center 0 and radius � > 0 small
enough such that T 0; S0 are well-de�ned and smooth for (H0;K0) 2 B. One can take
� � min

�
(2�p��pk)

1=(pq�1); (2�1�q�k)
1=(pq�1)� : Then the local bifurcation theorem

applies to the function

f(�;H0;K0) =�
LH0 + �1(�; �)H

0 � T 0(H0;K0; �; �); LK0 + �2(�; �)K
0 � S0(H0;K0; �; �)

�
23



from S � B into Y � Y: Indeed the operators

L0 = D2f(�k; 0; 0); L1 = D1D2f(�k; 0; 0);

are given for any (H0;K0) 2 B by

L0(H0;K0) =
�
LH0 + �1(�; �k)H

0; LK0 + �2(�; �k)K
0� ;

L1(H0;K0) =

�
@�1(�; �k)

@�
H0;

@�2(�; �k)

@�
K0
�
:

Then
KerL0 = f0g �Ker(L+�2(�; �k) I);

since �1(�; �k) is not an eigenvalue of ��SN�1 : Hence Ker L0 is one-dimensional,
generated by (0; wk); where wk is an eigenvector of �L for �2(�; �k). And the image

RL0 = Y �R(L+�k I);

hence it has a codimension 1 in Y �Y: At last L1(0; wk) =2 RL0; since @�1(�; �k)=@� 6=
0: Hence a branch of bifurcation appears at �k; i.e. at each time �2 crosses an
eigenvalue of ��SN�1 and �1 is not such an eigenvalue. Now if pq < 1 and �

(1 � pq)=2 > �k; then there exists a unique f�k such that �k = �1(�;f�k); since the
function �1(�; :) is increasing. We prove in the same way that a bifurcation occurs
when �1 crosses �k:

Remark 5.1 This theorem gives one case of existence of nonconstant solutions of
system (1.25). In fact the situation can be quite more intricated, at least in the
sublinear case. Suppose for example that p = q < 1; and a = b: Then the system
admits solutions (W;W) whereW satis�es (5.2), withQ = p = q. Then a bifurcation
occurs in system (1.25) at each time �1 = �(1 � q) crosses an eigenvalue of �SN�1 ;
from [5], even if �2 = �(1+q) is also an eigenvalue of �SN�1 : Moreover system (1.25)
can admit many solutions with dead cores. Hence system (1.1) can admit anisotropic
solutions with dead cores. In the general case pq < 1; the most simple example is
given when a = b = 0: Then ; � are negative, and system (1.1) admits solutions with
support in (RN )+ :

u�(x) = A�1
�
(xn)

+
��

; v�(x) = B�1
�
(xn)

+
���

;

with x = (x1; x2; ::; xN ); and

A�1 = [( + 1)(�(� + 1))
p]1=(pq�1) ; B�1 = [�(� + 1)(( + 1))

q]1=(pq�1) :

Otherwise we shall also see other types of anisotropy in the next section.
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6 Convergence results

6.1 The scalar case

First recall the precise results in the scalar case.

Theorem 6.1 ([20],[24]) Let w 2 C2(B0) be any nonnegative solution of equation
(1.3), with Q > 1:
i) If Q � (N + �)=(N � 2) ( i.e. � � N � 2), then

lim
x!0

u(x) = C � 0:

ii) If Q < (N + �)=(N � 2) ( i.e. � > N � 2), then

either lim
x!0

jxj� u(x) = C�; or lim
x!0

jxjN�2 u(x) = C > 0; or lim
x!0

u(x) = C � 0:

Theorem 6.2 ([5]) Let w 2 C2(B0) be any nonnegative solution of equation (1.3),
with Q < 1:
i) If Q > (N + �)=(N � 2) ( i.e. � > N � 2), then

w(x) � C jxj��):

ii) If Q < (N + �)=(N � 2) � 1 ( i.e. 0 � � < N � 2), then

lim
x!0

jxjN�2w(x) = C > 0; or w � 0 near 0:

iii) If Q < 1 < (N + �)=(N � 2) ( i.e. � < 0 ), then

either lim
x!0

jxjN�2w(x) = C > 0; or lim
x!0

w(x) = C 0 > 0; or w(x) = O(jxj��):

iv) If Q = (N + �)=(N � 2) ( i.e. � = N � 2), then

lim
x!0

jxjN�2 jln jxjj�1=(1�Q)w(x) = ( 1�Q
N � 2)

1=(1�Q); or u � 0 near 0:

Remark 6.1 Moreover if Q < 1 and w(x) = O(jxj��) , setting

w(x) = jxj��W (t; �); t = � ln r; � 2 SN�1; (6.1)

then the limit set of W (t; :) in C2(SN�1) as t ! +1 is contained in the set of
stationary solutions of equation (5.2). If 0 is in the limit set, then w � 0 near 0; see
[5].

25



6.2 Convergence Lemmas

Let u; v be any nonnegative solutions of system (1.1). We want to give a precise
behaviour of u and v near 0. At each time when we have an upper estimate of the
form

u(x) � C jxj�� ; v(x) � C jxj�� ; near the origin, (6.2)

we use the change of variables

u(x) = jxj�� U(t; �); v(x) = jxj�� V (t; �); t = � ln r; � 2 SN�1:
(6.3)

It leads to a system in the cylinder (0;+1)� SN�1 :�
Utt � (N � 2� 2�)Ut +�SN�1U + �(� + 2�N)U � e�(�+a+2��p)tV p = 0;
Vtt � (N � 2� 2�)Vt +�SN�1V + �(� + 2�N)V � e�(�+b+2��q)tU q = 0; (6.4)

where U and V are bounded for large t: Then the idea is the following: if one
exponential is negative, for example � + a+ 2� �p > 0; then we can obtain a result
of convergence to a solution of the equation

�SN�1U + �(� + 2�N)U = 0:

Then reporting it in the second equation, and get in turn a second result of conver-
gence for V . Both of them rely upon a result of [6]. Let us recall it for a better
understanding.

Proposition 6.3 Let Y 2 C2((0;+1)� SN�1) be a bounded solution of equation

Ytt � (a+ b)Yt + ab Y +�SN�1Y + ' = 0;

with given reals a < b; with ab � 0:
i) If k'(t; :)kC(SN�1) = O(t�1) at +1; then

Y (t; :)� Y (t)
C(SN�1)

= O(t�1=2):

ii) If k'(t; :)kC(SN�1) = O(t��) with � > 1; then Y (t; :) converges in C1(SN�1) to a
constant C (C = 0 if ab 6= 0); and

k(jY � Cj+ jYtj+ jrY j)(t; :)kC(SN�1) =
�
O(t��) if ab 6= 0;
O(t1��); if ab = 0:

ii) If k'(t; :)kC(SN�1) = O(e�`t) at +1; with ` > 0; then

k(jY � Cj+ jYtj+ jrY j)(t; :)kC(SN�1) =

8<:
O(e�`t); if a = 0:

O(e�`t) +O(eat); if a < 0; a 6= �`:
O(te�`t); if a = �`:
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The application of this Proposition provides several results of convergence.

Lemma 6.4 Let u; v be any nonnegative solutions of system (1.1), with pq 6= 1.

i) If u(x) = o(jxj2�N ) near 0, then u(x) = O(1); similarly for v:

ii) Assume that u(x) + v(x) = O(jxj2�N ) near 0, and p < (N + a)=(N � 2) or
q < (N + b)=(N � 2). Then

lim
x!0

jxjN�2 u(x) = C1 � 0; or lim
x!0

jxjN�2 v(x) = C2 � 0; (6.5)

and

u(x)� C1 jxj2�N =
�
O(jxja+2�(N�2)p) +O(1) if p 6= (a+ 2)=(N � 2);
O(jLn jxjj) if p = (a+ 2)=(N � 2);

(6.6)

or

v(x)� C2 jxj2�N =
�
O(jxjb+2�(N�2)q) +O(1) if q 6= (b+ 2)=(N � 2);
O(jln jxjj) if q = (b+ 2)=(N � 2):

(6.7)

iii) Assume that u(x) = O(jxj2�N ); v(x) = O(1); and a+N > 0 and (N � 2)q� (b+
2) < 0. Then

lim
x!0

jxjN�2 u(x) = C1 � 0; lim
x!0

v(x) = C 02 � 0; (6.8)

and v(x)� C 02 = O(jxjb+2�(N�2)q) and

u(x)� C1 jxj2�N =
�
O(jxja+2) +O(1) if a+ 2 6= 0;
O(jln jxjj) if a+ 2 = 0:

(6.9)

If C1 = 0; then u(x) = O(1):

iv) Assume that u(x) + v(x) = O(1); and a+ 2 > 0 (or b+ 2 > 0) .Then

lim
x!0

u(x) = C 01 � 0 (or lim
x!0

v(x) = C 02 � 0); (6.10)

and u(x)� C 01 = O(jxja+2) (or v(x)� C 02 = O(jxjb+2)):

Proof. i) It comes directly from Remark 2.1.

ii) Assume for example p < (N + a)=(N � 2): Here we perform the change of
variables (6.3) with � = � = N � 2; and get�

Utt + (N � 2)Ut +�SN�1U � e`1tV p = 0;
Vtt + (N � 2)Vt +�SN�1V � e`2tU q = 0;

(6.11)
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with `1; `2 given by (4.2), hence `1 < 0: Then there exist some C1 � 0 such that

kU(t; :)� C1kC(SN�1) =
�
O(e�(N�2)t) +O(e`1t); if `1 6= 2�N
O(te�(N�2)t); if `1 = 2�N;

from Proposition 6.3. Hence the results hold for u and similarly for v: If C1 = 0; then
u is bounded, because it is subharmonic, similarly for v:

iii) Here we use the transformation (6.3) with � = N � 2 and � = 0 and obtain�
Utt + (N � 2)Ut +�SN�1U � e�(a+N)tV p = 0;
Vtt � (N � 2)Vt +�SN�1V � e�(b+2�(N�2)q)tU q = 0;

(6.12)

with negative exponentials. Then there exist constants C1; C
0
2 � 0 such that

kU(t; :)� C1kC(SN�1) =
�
O(e�(N�2)t) +O(e�(a+N)t); if a+ 2 6= 0;
O(te�(N�2)t); if a+ 2 = 0;

and kV (t; :)� C 02kC(SN�1) = O(e((N�2)q�b�2)t); from Proposition 6.3, which proves

(6.9).
iv) Here we use the transformation (6.3) with � = � = 0; which gives�

Utt � (N � 2)Ut +�SN�1U � e�(a+2)tV p = 0;
Vtt � (N � 2)Vt +�SN�1V � e�(b+2)tU q = 0:

(6.13)

If for example a+ 2 > 0; then in the same way there exists a constants C 01 � 0 such
that kU(t; :)� C 01kC(SN�1) = O(e�(a+2)t), hence the result. .

The next lemma essentially shows that a new form of anisotropy can occur in
system (1.1), where one and only one of the functions u; v presents an asymptotically
nonradial behaviour.

Lemma 6.5 Let u; v be any nonnegative solutions of system (1.1), with pq 6= 1.
i) Assume that u(x) = O(jxja+2�(N�2)p); v(x) = O(jxj2�N ); and (��N+2)(pq�1) >
0 and � = [(N � 2)p� (a+ 2)] [(N � 2)p� (a+N)] > 0 . Then

lim
x!0

jxjN�2 v(x) = C2 � 0; (6.14)

and

lim
x!0

h
jxj(N�2)p�(a+2) u(jxj ; :)� ��1Cp2

i
exists (6.15)

in C(SN�1); and it belongs to ker(�SN�1 + � I).

ii) Assume that u(x) = O(jxja+2); v(x) = O(1); and �(pq � 1) > 0 and � = (a +
2)(a+N) > 0 . Then

lim
x!0

v(x) = C 02 � 0; (6.16)

lim
x!0

h
jxj�(a+2) u(jxj ; :)� ��1C 02

i
= 0 exists (6.17)

in C(SN�1); and it belongs to ker(�SN�1 + � I).
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Proof. i) Here we use the transformation (6.3) with � = (N � 2)p � a � 2 and
� = N � 2; and get�

Utt � [N � 2� 2((N � 2)p� (a+ 2)]Ut +�SN�1U + �U � V p = 0;
Vtt + (N � 2)Vt +�SN�1V � e�(��N+2)(pq�1)tU q = 0; (6.18)

and the exponential is negative. Then Proposition 6.3 still applies: there is a constant
C2 � 0 such that kV (t; :)� C2kC(SN�1) = O(e��t) , with � = (��N+2)(pq�1) > 0.
Now the function

W (t; �) = U(t; �)� ��1Cp2 (6.19)

satis�es an equation of the form

Wtt � [N � 2� 2((N � 2)p� (a+ 2)]Wt +�SN�1W + �W =  ;
(6.20)

where k (t; :)kC(SN�1) = kV 0p(t; :)� C
p
2kC(SN�1) = O(e��t) for some � > 0 : And the

coe�cient ofWt is di�erent from 0. Then we can apply Simon's theorem (see [19],[7])
as in [6](Theorem 4.1). It implies that the function W (t; :) precisely converges to a
solution of the stationary equation

�SN�1$ + �$ = 0

hence the conclusion follows.

ii) Now we use the transformation (6.3) with � = �a� 2 and � = 0; and get�
Utt � (N + 2 + 2a)Ut +�SN�1U + �U � V p = 0;
Vtt � (N � 2)Vt +�SN�1V � e��(pq�1)tU q = 0;

(6.21)

with again a negative exponential. There exists a constant C 02 � 0 such that
kV (t; :)� C 02kC(SN�1) = O(e��(pq�1)t) , from Proposition 6.3. Then (6.16) and (6.17)
follows as above, since the coe�cient of Ut is di�erent from 0.

6.3 The open problems

The question of convergence is partly open in the case u; v satisfy one of the estimates
(1.15), (1.18). Indeed the change of variables (6.3) with � =  and � = � now gives�

Utt � (N � 2� 2)Ut +�SN�1U + ( + 2�N)U � V p = 0:
Vtt + (N � 2 + 2�)Vt +�SN�1V + �(� + 2�N)V � U q = 0: (6.22)

This system has no negative exponential: it is autonomous. Denote by E the set of
solutions (U;V) of system (1.25), which is the stationary system associated to (6.22).
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Unlike in the scalar case, we miss a suitable energy function in order to prove that
the limit set

�(U; V ) =
\
t�0

[
��t
(U(�; :); V (�; :)

C2(SN�1)
(6.23)

is contained in E, and the problem is open. We conjecture that it is true, and
moreover that if 0 2 �(U; V ); then �(U; V ) =f0g ; which implies that u(x) = o(jxj�)
and v(x) = o(jxj��):We also conjecture that in that case u � v � 0 near 0, if pq < 1:
Remark 6.2 In the radial case, �(U; V ) is a singleton, hence 0 2 �(U; V ) implies
�(U; V ) =f0g from connectedness .

6.4 The superlinear case

The question of convergence is not easy, since precisely (1.15) holds. The case
min(; �) > N � 2 is the most delicate, since the particular solutions u�; v� do exist.
Here we search the behaviour of solutions that

u(x) = o(jxj�) and v(x) = o(jxj��):

First look at the radial case, with p > 1 and q > 1: Then the linearization of system
(6.22) is possible; and gives the estimates U(t)+V (t) = O( max(e(N�2�)t; e(N�2��)t)):
They imply that u(r) = O(r2�N ); or v(r) = O(r2�N ): In the general case we extend
this result and describe the behaviour, under an additional assumption on u and v:

Proposition 6.6 Assume pq > 1 and min(; �) > N � 2. Let u; v 2 C2(B0) be any
nonnegative solutions of system (1.1). Assume that

u(x) = O(jxj�+"); or v(x) = O(jxj��+"); for some " > 0:

Then, up to the change from u; p; a into v; q; b, we have q < (b+N)=(N � 2),

lim
x!0

jxjN�2 v(x) = C2 � 0; (6.24)

and
i) either p > (a+N)=(N � 2); and

lim
x!0

h
jxj(N�2)p�(a+2) u(jxj ; :)� (`1(`1 +N � 2))�1Cp2

i
exists (6.25)

and it belongs to ker(�SN�1 + `1(`1 +N � 2) I).
ii) or p < (a+N)=(N � 2); and

lim
x!0

jxjN�2 u(x) = C1 � 0; (6.26)

iii) or p = (a+N)=(N � 2); and

lim jxjN�2 jln jxjju(x) = Cp2=(N � 2): (6.27)

If C2 = 0, then v is bounded. If C1 = 0; then u is bounded.
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Proof. The assumption min(; �) > N � 2 reduces to

`1 + p`2 < 0; q`1 + `2 < 0: (6.28)

It implies `1 < 0 or `2 < 0: By symmetry we can suppose `2 < 0; hence q <
(b+N)=(N � 2): Now notice that the assumption u(x) = O(jxj�+") implies

�v(r) � C rb�q+q" = C r�2��+q";

hence v(r) = O(r��+q"); and v(x) = O(jxj��+q"); till q" < � �N + 2; from Lemmas
2.3 and 2.1. Reciprocally any estimate on v implies an analogous one on u: Hence
we can start from the assumption u(x) = O(jxj�+"); with " small enough. Consider
"0 = " and "00 = q"; and de�ne "n = p"0n�1; and "

0
n = q "n: Then by induction

u(r) = O(r�+"n); v(r) = O(r��+"
0
n);

till q"n < ��N+2; and p"0n < �N+2: But "n = pq "n�1; hence lim "n = +1: Hence
there is a �rst integer n0 such that q"n0 � � �N + 2 or "n0 = p"0n0�1 �  �N + 2.
Then from Lemmas 2.3 and 2.1,

u(x) + v(x) = O(jxj2�N jln jxjj): (6.29)

It implies
�v(r) � C" r

b�(N�2)q�";

for any " > 0: But the condition `2 < 0 implies b+N � (N � 2)q > 0: Hence in fact

v(x) = O(jxj2�N ) (6.30)

from Lemma 2.3 and 2.1. Then

0 � �u(r) � C ra�(N�2)p:

Applying Lemma 2.3, we discuss according to the sign of a+N � (N � 2)p = �`1:
i) Case `1 > 0: Then u(x) = O(jxja+2�(N�2)p) from Lemmas 2.3 and 2.1. Now we

can apply Lemma 6.5, because � > N � 2: Hence (6.24) and (6.25) follow.
ii) Case `1 < 0: Then u(x)+v(x) = O(jxj2�N ). Then (6.24) and (6.26) follow from

Lemma 6.4, ii). Moreover u(x)�C1 jxj2�N = O(jxja+2�(N�2)p) and v(x)�C2 jxj2�N =
O(jxjb+2�(N�2)q). Now assume that C2 = 0; hence v is bounded . Observe that our
assumptions implies a+N > 0; and b+N > 0:

iii) Case `1 = 0: Then u(x) = O(jxj2�N jln jxjj); v(x) = O(jxj2�N ): The transfor-
mation (6.3) with � = � = N � 2 gives�

Utt + (N � 2)Ut +�SN�1U � V p = 0;
Vtt + (N � 2)Vt +�SN�1V � e`2t U q = 0:

(6.31)
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And kU(t; :)kC(SN�1) = O(t): Then kV (t; :)� C 02kC(SN�1) = O(e��t); for some � > 0;
from Proposition 6.3, since `2 < 0. Consequently,

U tt + (N � 2)U t = C 0p2 +O(e
��t);

hence by integration,

U(t) =
C 0p2
N � 2 t+O(1): (6.32)

Now setting

U(t; :) = t W (t; :); (6.33)

we �nd

Wtt + (N � 2 + 2
t
)Wt +�SN�1W +

1

t
[(N � 2)W � V p] = 0: (6.34)

In particular

Wtt + (N � 2)Wt +�SN�1W = 	; (6.35)

with k	(t; :)kC(SN�1) = O(1=t): Then
W (t; :)�W (t)

C(SN�1)
= O(t�1=2) , from

Proposition 6.3. We deduce (6.24) and (6.27). In any case, if C2 = 0, or C1 = 0, then
v or u is bounded.

Remark 6.3 Contrary to the scalar superlinear case, we observe that some logarith-
mical behaviours can occur, and they are isotropic.

Proposition 6.7 Assume pq > 1 and � � N � 2. Let u; v 2 C2(B0) be any nonneg-
ative solutions of system (1.1). Then v is bounded.

Proof. This comes from the proof of Corollary 1.2. If moreover q > (b+2)=(N � 2);
then u is also bounded.

Remark 6.4 The behaviour of the system in the case where one solution is bounded
will be given in paragraph 6.6.

6.5 The sublinear case

Here we can give a quite complete description of the behaviour of the system, from
the estimates of Theorem 1.3. In case (1.18) we have conjectured the existence of a
dead core for u and v: Now we study the cases (1.18) to (1.21) .

Proposition 6.8 Assume pq < 1 and � < N � 2 and p > (N + a)=(N � 2): Let u; v
2 C2(B0) be any nonnegative solutions of system (1.1). Then

lim
x!0

jxjN�2 v(x) = C2 � 0; (6.36)
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and

lim
x!0

h
jxj(N�2)p�(a+2) u(jxj ; :)� (`1(`1 +N � 2))�1Cp2

i
exists (6.37)

and it belongs to ker(�SN�1 + `1(`1 +N � 2) I). If C2 = 0 , then v is bounded.

Proof. First notice that the assumptions can be written under the form

`1 > 0; q`1 + `2 < 0; (6.38)

from (4.1) and (4.2), hence they imply `2 < 0; that is q < (b+N)=(N�2): From The-
orem 1.3, we have the estimates u(x) = O(jxj(a+2)�(N�2)p) and v(x) = O(jxj2�N ):
Then Lemma 6.5 applies and gives (6.36) and (6.37). If C2 = 0; then v(x) =
o(jxj2�N ); hence v is bounded .

Proposition 6.9 Assume pq < 1 and q < (N + b)=(N �2): Let u; v 2 C2(B0) be any
nonnegative solutions of system (1.1).

i) If p < (N + a)=(N � 2), then

lim
x!0

jxjN�2 u(x) = C1 � 0; lim
x!0

jxjN�2 v(x) = C2 � 0: (6.39)

ii) If p = (N + a)=(N � 2), then

lim
x!0

jxjN�2 u(x) = Cp2=(N � 2) � 0; lim
x!0

jxjN�2 v(x) = C2 � 0:

iii) In any case, if C2 = 0; then v is bounded, and  < N � 2. If C1 = 0; then u is
bounded, and � < N � 2:

Proof. Here our assumptions resume to

`1 � 0; `2 < 0; (6.40)

hence they imply � < N � 2 and  � N � 2 from (4.1) and (4.2). From Theorem
1.3, we have the estimates (1.20) if `1 < 0 and (1.21) if `1 = 0: Then we argue as in
Proposition 6.6, ii) and iii).

Remark 6.4 Let us give attention on the critical cases (1.22) and (1.23), which are
not completely described.

i) Assume � = N � 2 < : Setting

u(x) = jxja+2�(N�2)p jln jxjjp�X(t; �); v(x) = jxj2�N jln jxjj� Y (t; �);
(6.41)

with � = 1=(1� pq); we get the system8<: Xtt �
h
M � 2p�

t

i
Xt +�SN�1X + (�� p�M

t + p�(p��1)
t2

)X � Y p = 0;

Ytt + (N � 2 + 2�
t )Yt +�SN�1Y +

1
t

h
�(N � 2 + ��1

t )Y�X
q
i
= 0; (6.42)
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whereM = N�2�2((N�2)p� (a+2): Here also we miss a suitable energy function
to conclude. We presume that an anisotropic behaviour of logarithmical type can
appear. It means that Y behaves like Xq=�(N � 2); and X like one of the possibly
nonconstant solutions of equation

�SN�1X + �X � (�(N � 2))�pXpq = 0;

or X(t; :); Y (t; :) converge to 0.

ii) Assume � = N � 2 = : Setting

u(x) = jxj2�N jln jxjj(p+1)�R(t; �); v(x) = jxj2�N jln jxjj(q+1)� S(t; �);
(6.43)

we now obtain8<: Rtt +
h
N � 2 + 2(p+1)�

t

i
Rt +�SN�1R+

(p+1)�
t

h
(N � 2 + (p+1)��1

t )R� Sp
i
= 0;

Stt + (N � 2 + 2�
t )St +�SN�1S +

(p+1)�
t

h
(N � 2 + (q+1)��1

t )S�Rq
i
= 0: (6.44)

Here we conjecture that the behaviour is isotropic, and R(t; :); S(t; :) converge respec-

tively to [(N � 2)(p+ 1)]1=(pq�1) ; [(N � 2)(q + 1)]1=(pq�1) ; or to 0.

6.6 Behaviour of the bounded solutions

Here we study the behaviour of the system in the superlinear or the sublinear case,
when at least one of the solutions, for example v; is bounded near 0. The question is
not simple, all the more since the solutions can tend to 0. We distinguish three cases,
according to the sign of a+N:

Proposition 6.10 Assume pq 6= 1: Let u; v be any nonnegative solutions of system
(1.1), with v bounded near 0, and a+N < 0: Then q < (b+ 2)=(N � 2) and

lim
x!0

v(x) = C 02 � 0; (6.45)

lim
x!0

h
jxj�(a+2) u(jxj ; :)� ((a+ 2)(a+N))�1C 02

i
exists (6.46)

and it belongs to ker(�SN�1 + (a+ 2)(a+N) I). Moreover

i) If C 02 > 0; then �(pq � 1) > 0:
ii) If C 02 = 0; and �(pq � 1) > 0; and  < N � 2 if pq < 1 , then

lim
x!0

jxjN�2 u(x) = C1 � 0; (6.47)

lim
x!0

h
jxj(N�2)q�(b+2) v(jxj ; :)� (`2(`2 +N � 2))�1Cq1

i
exists (6.48)

and it belongs to ker(�SN�1 + (`2(`2 +N � 2)) I): If  > N � 2 and pq < 1; then

u(x) = O(jxj�); v(x) = O(jxj��): (6.49)
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Proof. By hypothesis, v is bounded, hence v has a limit C 02 � 0.

Since a+N < 0; we have u(x) = O(jxja+2) from Lemma 2.3 and 2.1.

i) First suppose C 02 > 0: Then v(x) � C > 0; from (2.2) and (2.3). Then u(r) �
C ra+2 from Lemma 2.4, hence

�v(r) � C rb+(a+2)q;

hence also b+2+(a+2)q > 0; because v is bounded: Now b+2+(a+2)q = �(pq�1);
so that Lemma 6.5 applies . We deduce (6.45) and (6.46), with C 02 > 0.

ii) Now suppose C 02 = 0: Then limx!0 v(x) = 0 from subharmonicity, hence (6.45)
again holds. Now

�v(r) � C rb+(a+2)q:

Under the assumption �(pq � 1) > 0; it implies v(x) � C jxjek ; with ek = �(pq � 1) =
(a+ 2)q + b+ 2; from Lemma 2.3, hence

�u(r) � Cpra+
ekp:

Observe that 0 < (a+2)q+(b+2) < b+2� (N � 2)q; and that  > N � 2 if pq > 1;
from (1.11).

{First suppose a+N + ekp > 0: then u(x) = O(jxj2�N ); and v(x) = O(jxjb+2�(N�2)q)
from Lemmas 2.3 and 2.1. In the case pq > 1; we can apply Lemma 6.5 after
exchanging u and v; and get (6.47) and (6.48). In the case pq < 1 and  > N � 2; it
implies u(x) = O(jxj�) and v(x) = O(jxj��); because b + 2 � (N � 2)q > �� from
(1.11).

{Now suppose a+N + ekp � 0: Then any estimate v(r) � Ck r
k with a+N + kp < 0

implies
�u(r) � Cpk r

a+kp;

hence u(r) = O(ra+2+kp) from Lemma 2.3. More precisely, we get u(r) � C r2�N +
C Cpkr

a+2+kp; from 2.21 and 2.23, hence u(r) � C(1 + Cpk) r
a+2+kp: Now

�v(r) � Cq(1 + Cpk)
q rb+(a+2)q+kpq;

and b + 2 + (a + 2)q + kpq > 0. Hence v(r) � C 0Cq(1 + Cpk)
qrb+2+(a+2)q+kpq from

Lemma 2.3. Then
v(r) � Ckn r

kn ;

with

k0 = ek; kn = b+ 2 + (a+ 2)q + kn�1pq; and Ckn = C(1 + Cpqkn�1);

with a new constant C, till a+N + knp < 0: If pq > 1; then lim kn = +1; if pq < 1,
then lim kn = ��; and a + N � p� = N � 2 � : In the case pq > 1; or pq < 1 and
 < N � 2, after a �nite number n0 of steps, we get a+N + kn0p > 0; by changing
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sligthly k0 if necessary. Thus we �nd again u(r) = O(r2�N ); hence u(x) = O(jxj2�N ),
and v(x) = O(jxjb+2�(N�2)q): We get (6.47) and (6.48) as above. In the case pq < 1
and  > N�2; it follows that v(r) � C r��; because the sequence (Ckn) is convergent.
Then

�u(r) � C ra�p� = C r��2;

hence u(x) = O(jxj�) from Lemmas 2.3 and 2.1, because  > N � 2. �

Proposition 6.11 Assume pq 6= 1: Let u; v be any nonnegative solutions of system
(1.1), with v bounded near 0, and a+N > 0: Then

lim
x!0

v(x) = C 02 � 0; (6.50)

lim
x!0

jxjN�2 u(x) = C1 � 0: (6.51)

Now we can distinguish di�erent cases.

i) If C1 > 0; then q < (b+2)=(N�2): If moreover C 02 = 0 and (�N+2)(pq�1) > 0;
then

lim
x!0

h
jxj(N�2)q�(b+2) v(jxj ; :)� (`2(`2 +N � 2))�1Cq1

i
exists (6.52)

and it belongs to ker(�SN�1 + (`2(`2 +N � 2)) I).

ii) If C1 = 0; then

lim
x!0

u(x) = C 01 � 0; lim
x!0

v(x) = C 02 � 0: (6.53)

If C 01 = 0; and C
0
2 > 0; then moreover a+ 2 > 0 ; and �(pq � 1) > 0; and

lim
x!0

h
jxj�(a+2) u(jxj ; :)� ((a+ 2)(a+N))�1C 02

i
= 0 exists (6.54)

and it belongs to ker(�SN�1+(a+2)(a+N) I). And similarly if C
0
1 > 0; and C

0
2 = 0;

then b+ 2 > 0, and (pq � 1) > 0; and

lim
x!0

h
jxj�(b+2) v(jxj ; :)� ((b+ 2)(b+N))�1C 01

i
= 0 exists (6.55)

and it belongs to ker(�SN�1 + (b+ 2)(b+N) I).

iii) If C 01 = C 02 = 0 and pq > 1 and max(; �) > 0; then

u � v � 0 near 0. (6.56)

If C 01 = C 02 = 0 and pq < 1 and max(; �) < 0; then

u(x) = O(jxj�); v(x) = O(jxj��): (6.57)
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Proof. Since a + N > 0; we have u(x) = O(jxj2�N ) from Lemma 2.3, hence
rN�2u has a limit C1 � 0:
i) Assume C1 > 0; then jxjN�2 u(x) � C > 0; from (2.2) and (2.3). Consequently

�v(r) � C rb�(N�2)q;

hence b + 2 � (N � 2)q > 0 from Lemma 2.4. Then Lemma 6.4, iii) applies. We

deduce (6.51), with C1 > 0; and v(x)� C 02 = O(jxj(b+2�(N�2)q)). If moreover C 02 = 0
and ( �N +2)(pq� 1) > 0, then Lemma 6.5 applies after exchanging u and v: And
(6.52) follows.

ii) Now assume C1 = 0: Then u and v are bounded, hence u; v admit some limits C
0
1;

C 02 � 0. If C 02 > 0; then
�u(r) � C ra;

hence a + 2 > 0 because u is bounded. Hence limx!0 u(x) = C 01 from Lemma 6.4,
iii), and u(x)� C 01 = O(jxja+2). And also

�v(r) � C rb+(a+2)q;

hence b+2+ (a+2)q = �(pq� 1) > 0: If C 02 > 0 and C 01 > 0; then similarly b+2 > 0
and limx!0 v(x) = C 02; and (6.53) follows. If C

0
2 > 0 and C 01 = 0; then Lemma 6.5

gives (6.53) and (6.54), as in the case a+N < 0.

iii) Suppose C 01 = C 02 = 0: Then limx!0 u(x) = limx!0 v(x) = 0 from subharmonicity.
If moreover pq > 1 and max(; �) > 0; or pq < 1 and max(; �) < 0; then a + 2 > 0
or b+ 2 > 0: We can suppose that a+ 2 > 0: Then (a+ 2)q + b+ 2 > 0: Here again

from Lemma 2.3, v(x) � C jxjek ; with ek = �(pq � 1) = (a+ 2)q + b+ 2; hence

�u(r) � Cpra+
ekp:

Then any estimate v(r) � Ck r
k with k > 0 implies

�u(r) � Cpk r
a+kp:

This in turn implies u(r) � CCpk r
a+2+kp; hence

�v(r) � CqCpqk rb+(a+2)q+kpq:

If pq < 1; we get in the same way v(r) � C r��; and

�u(r) � C ra�p� = C r��2;

hence u(r) � C r� from Lemma 2.3, because  < 0 . If pq > 1; using a sequence
as above, we deduce that v(x) = O(jxjm) for any m > 0; hence also u(x) = O(jxjm).
We can �nd again these results and improve the last one by using the techniques of
Section 2: the mean values u; v satisfy the system

0 � (rN�1ur)r � rN�1+a vp; (6.58)

37



0 � (rN�1vr)r � rN�1+b uq; (6.59)

and u; v are increasing for small r; and limr!0 rN�1ur(r) = limr!0 rN�1vr(r) = 0;
because u; v are subharmonic. From Lemma 2.1 ,

(rN�1ur)r(r) � C "�(N�1)p rN�1+a vp [r(1 + ")] :

We can integrate twice (6.58) between 0 and r; and get successively

rN�1ur(r) � C "�(N�1)p
Z r

0
sa+N�1 vp [s(1 + ")] ds � C "�(N�1)prN+a vp [r(1 + ")] ;

u(r) � C "�(N�1)p
Z r

0
sa+1 vp [s(1 + ")] ds � C "�(N�1)pra+2 vp [r(1 + ")] ;

(6.60)

since a+ 2 > 0: Plugging into (6.59) and using again Lemma 2.1, we �nd

(rN�1vr)r(r) � C "�(N�1)(p+1)q rN�1+(a+2)q+b vpq [r(1 + ")] ;
(6.61)

for a new " > 0; where (a+ 2)q + b+ 2 = �(pq � 1) > 0: Then similarly by a double
integration,

v(r) � C "�(N�1)(p+1)q r(a+2)q+b+2 vpq [r(1 + ")] : (6.62)

If pq < 1 we �nd again hence v(r) = O( r��) from Lemma 2.2, and u(r) = O( r�)
from (6.60); thus (6.57) follows. If pq > 1 and v is non identically 0, then v is positive
for small r; and

v�1(r) � C "�(N�1)(p+1)q=pq r((a+2)q+b+2)=pq (v�1)1=pq(r=(1 + ")):
(6.63)

Then from Lemma 2.2
v�1(r) � C r�;

which is impossible, since � > 0: Hence v � 0 near 0, and u � 0 from (6.60). And
(6.56) follows. �

Proposition 6.12 Assume pq 6= 1: Let u; v be any nonnegative solutions of system
(1.1), with v bounded near 0, and a+N = 0: Then

lim
x!0

v(x) = C 02 � 0; (6.64)

lim
x!0

jxjN�2 jln jxjj�1 u(x) = C 0p2 =(N � 2): (6.65)

If C 02 = 0, and b+2� (N �2)q > 0; then the results of Proposition 6.11 are still valid
(with C 02 = 0):
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Proof. Here a+N = 0; hence u(x) = O(jxj2�N jln jxjj) from Lemma 2.3.

i) If C 02 > 0; then again b+2+ (a+2)q > 0; that is b+2� (N � 2)q > 0: The change
of variables (6.3) with � = N � 2 and � = 0 gives�

Utt + (N � 2)Ut +�SN�1U � V p = 0;
Vtt � (N � 2)Vt +�SN�1V � e�(b+2�(N�2)q)t U q = 0;

(6.66)

with kU(t; :)kC(SN�1) = O(t): Then kV (t; :)� C 02kC(SN�1) = O(e((N�2)q�b�2+")t); for
any " > 0 small enough, from Proposition 6.3. Using the same arguments as in
Proposition 6.6, iii), we deduce that U(t) = C 0p2 t=(N � 2) + O(1). Then (6.65)
follows

ii) If C 02 = 0; and b+ 2� (N � 2)q > 0; then U(t) = O(1), hence u(x) = O(jxj2�N ).
We deduce (6.51) to (6.53) and (6.55) to (6.57) as in the case a+N > 0: �

7 Extensions to multipower systems

Our system (1.1) is Hamiltonian, i.e. of the form�
��u+ @H=@v = 0;
��v + @H=@u = 0; (7.1)

with

H(x; u; v) = jxja vp+1=(p+ 1) + jxjb uq+1=(q + 1): (7.2)

But this fact did not interfere in our proofs. In fact they extend in some measure to
the system (1.27). When pq 6= (1 � s)(1 � t), this system still admits a particular
solution under the form

u�(x) = fA� jxj�e ; v � (x) = fB� jxj�e� ; (7.3)

whith new e and e�; given by
e = ((b+ 2)p+ (a+ 2)(1� s))=D; e� = ((a+ 2)q + (b+ 2)(1� t))=D;

(7.4)

where

D = pq � (1� s)(1� t); (7.5)

and new coe�cients fA�;fB�; whenever e(e+2�N) > 0 and e�(e�+2�N) > 0: Notice
the relations which extend (1.11):

e(1� s) + a+ 2 = pe�; e�(1� t) + b+ 2 = qe: (7.6)

We can extend the a priori estimates of theorem 1.3 to the new sublinear case D < 0:
For simplicity we obmit the critical cases, and just give the ideas of the proof.
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Theorem 7.1 Let p; q; s; t; a; b 2 R with p; q > 0; and s; t 2 (0; 1) : Assume pq <
(1 � s)(1 � t): Let u; v 2 C2(B0) be any nonnegative subharmonic supersolutions of
system (1.27), that is �

0 � �u � jxjausvp;
0 � �v � jxjbuqvt: (7.7)

Then, up to the change from u; p; a into v; q; b;

i) if min(e; e�) > N � 2; then

u(x) � C jxj�e ; v(x) � C jxj�e� ; (7.8)

ii) if e� < N � 2 and p+ s > (N + a)=(N � 2); then

u(x) � C jxj(a+2�(N�2)p)=(1�s) ; v(x) � C jxj2�N ; (7.9)

iii) if p+ s < (N + a)=(N � 2) and q + t < (N + b)=(N � 2); then

u(x) + v(x) � C jxj2�N : (7.10)

Proof. Here the change of variables (4.11) leads to the system

0 � (r3�Nur)r � r1�N�
è
1 usvp; (7.11)

0 � (r3�Nvr)r � r1�N�
è
2 uqvt; (7.12)

with

è
1 = (N � 2)(p+ s)� (N + a); è

2 = (N � 2)(q + t)� (N + b):
(7.13)

They satisfy the relations

(1� t) è1 + p è2 = �D (e � (N � 2)); q è1 + (1� s) è2 = �D (e� � (N � 2)):
(7.14)

Assume min(e; e�) > N�2; hence for example è1 > 0: First suppose that v is bounded.
Then

�u(r) � C ra�(N�2)pus(r) � C ra�(N�2)pus(r):

From (1.7), and Lemma 2.1 it follows that u(x) = O(jxj(a+2�(N�2)p)=(1�s)) = O(jxj�e);
because è1 > 0 and e� � N�2: Then (7.8) is proved: Now suppose that v is unbounded:
From Lemma 2.1, we have

usvp(r) � C "�(N�1)p us(r) vp [r(1� ")] � C "�(N�1)p us(r) vp [r(1� ")] ;
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since s < 1: Hence

(r3�Nur)r(r) � C "�(N�1)pr1�N�
è
1 us(r) vp [r(1� ")] :

Similarly we can assume that u is unbounded. Then integrating twice over [r; r0] ;we
get

�r3�Nur(r) � C "�(N�1)pr1�N�
è
1 us(r) vp [r(1� ")] ;

u(r) � C "�(N�1)pr�
è
1 us(r) vp [r(1� ")] ;

which gives a majorization of u; since s < 1: In the same way, since t < 1;

(r3�Nvr)r � C "�(N�1)qr1�N�
è
2 vt(r) uq([r(1� ")] ;

then with a new ";

(r3�Nvr)r(r) � C "�(N�1)(p=(1�s)+1)q r1�N�(q
è
1=(1�s)+ è2) vt+pq=(1�s) [r(1� ")] :

It means that function v satis�es the shifted inequality

0 � �v(r) � C "�hr� vd [r(1� ")] (7.15)

with d = t + pq=(1 � s) < 1; and (N � 2)d � (N + �) = q è1=(1 � s) + è
2 : Theorem

4.1 applies and gives (7.8); and (7.9) and (7.10) follow similarly.

Remark 7.1 The question of a priori estimates for system 1.27 is still open in the
superlinear case, and also in case s � 1 or t � 1.
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