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Abstract
We study the limit behaviour of nonnegative solutions of the semi-
linear elliptic equation with a sublinear nonlinearity and a potential

—Au—cu|2 + |z|”u? =0 in RN (N > 3),
x

where ¢ € (0,1), and ¢,0 € R. The estimates lie upon a mean value
inequality for the Helmoltz operator u — Au + k% u (k > 0) in case
¢ > 0. The behaviour of the solutions is essentially anisotropic, with
possible dead cores.
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1 Introduction

Here we consider the solutions of the semilinear elliptic equation in RY (N >
3):

—Au—c#—l— 2|7 [u| " u = 0, (1.1)
T

where ¢,0,¢ € R | in the sublinear case ¢ € (0,1). We study the behaviour
of the solutions near the singular point x = 0. The introduction of the
power o allows to give the behaviour at infinity by using Kelvin transform,
which leads to an equation of the same type, where o is replaced by o' =
(N —2)qg — (N 4+ 2+ o). In the sequel, we can suppose that u is defined
in B = B\ {0}, where B = {# € R"| |z]| <1}. We denote by (r,6) the
spherical coordinates of z, with r = |z| and § € SN~1.

In this equation, there are two effects which tend to cancel each other: the
diffusion one, coming from the Laplacian with a potential V (z) = —¢/ |z|°,
and the absorption one, coming from the sublinear term u — |z|” [u|" " u,
which actually is non-Lipschitz. For any ¢ # 1, defining

7=(0+2)/(1-q), (1.2)
equation 1.1 admits a particular radial solution:

uo(x) = Ag |z[”, Ag= (" + (N =2)y+c)/@ D, (1.3)



whenever Ay > 0, which is the expression of the nonlinear effect.
In the superlinear case ¢ > 1, the behaviour of the solutions is well known.
The essential works concern the equation without potential (¢ = 0)

—Au+ |z|7 |u] u =0, (1.4)

see [19], [20], [7], [21]. The extension to 1.1 is carried out in [13], at least
when o = 0. All the solutions of equation 1.1 with ¢ > 1 satisfy the Keller-
Osserman estimate near the origin

uw(z) < Clz|”, (1.5)

where C'= C(N, q,0), and the nonnegative ones present an isotropic behav-
iour, i.e. asymptotically radial. The behaviour can be anisotropic only in
case of changing sign solutions. In the sublinear case 0 < ¢ < 1, up to now,
no estimates had been given in the nonradial case, even in the simpler case
of the equation 1.4.

In Section 2 we give a priori estimates for the nonnegative solutions. In
case of equation 1.4, the estimates follow easily from corresponding estimates
for the mean value

1

u(r) = ST Jovn u(r,0)do (1.6)

of u on the sphere of radius r, because the solution wu is subharmonic,
and consequently satisfies the mean value inequality . In the general case
of equation 1.1 this property is no longer true, as soon as ¢ > 0. Then
the idea is to use a local mean value inequality for the Helmoltz operator
Au+k? u(k € R). It implies that for any subsolution of equation 1.7, any a
priori estimate of the mean value implies the same estimate for the function.
By this way the study reduces to an ordinary differential inequality. We show
that the uniform a priori estimate 1.5is not always true in the sublinear case.
Indeed the linear effect can get the upper hand over the nonlinear one, and
the solutions can behave as the radial solutions of the linear equation

u
—Au—c——5 =0 (1.7)
|z
when such solutions exist, that is when ¢ < ¢*, where

¢ = (N —2)%/4. (1.8)



Observe that the particular solution uy tends to 0 at the origin whenever
oc+2>0.

Besides the lack of uniform apriori estimate, a second point of interest of
equation 1.1 is the existence of anisotropic solutions, in particular nonnega-
tive ones. Their study is the objective of Section 3. The classical change of
variables

w(z) = |z|'U(t,0), t=—Lnr, eSSV, (1.9)
leads to the equation on [0, +00) x SV~1

Uy + (N =2+ 27U + Agv U+ (y(y+ N =2) + o)U — U ' U = 0.
(1.10)

Searching anisotropic solutions independent on t reduces to finding noncon-
stant solutions of the equation

AgvaU+ (y(y+ N =2)+o)U — U ' U =0 (1.11)

on the sphere S™~!. Thus we show in Theorems 3.3 and 3.2 that equation 1.1,
and even equation 1.4, can admit anisotropic changing sign solutions, and
also positive ones, which differs from the superlinear case. Moreover we can
exhibit anisotropic solutions presenting dead cores. This phenomenon was
known in the radial case, see [14], where by Kelvin transform, it reduces to a
property of compact support of the solutions, proper to sublinear problems.
At last in the case ¢ = (N +2+20)/(N —2), some types of travelling waves
may exist.

In Section 4 we study the precise convergence of the solutions, according
to the different values of ¢, o, N, c. They use some general results of conver-
gence in a cylinder, proved in the Appendix . The behaviour of the solutions,
given in Theorems 4.1 and 4.2 presents a great diversity. Going back to equa-
tion 1.4, it shows that three types of behaviour are possible when o 4+ 2 > 0:

Theorem 1.1 Let u € C*(B') be any nonnegative solution of equation 1.4.
i) Assume 0 +2 >0 (hence g <1< (N +0)/(N —2)). Then

lim |z|Y 7 u(z) = Cy > 0. (1.12)

z—0



If Cy =0, then

lim u(z) = Cy > 0, (1.13)

z—0

hence u € C°(B). If C; = 0, then
u(z) = O(|z]"). (1.14)

ii) Assume ¢ < (N +0)/(N —2) < 1. Then either 1.12 holds, or u =0 near
the origin.

iii) Assume (N +0)/(N —2) < g < 1. Then 1.1} holds.
iv) Assume ¢ = (N +0)/(N —2) < 1. Then either

tim 2] Y2 Ln Jo] |70 () = (1= q)/(N =209,
(1.15)

or u = 0 near the origin.

Concerning the solutions of 1.1 or 1.4 which satisfy u(z) = O(|z|"),
we prove that the limit set in C?( S¥~1) of the trajectories 7 u(r,.) as
r goes to 0 is contained in the set of stationary solutions of 1.10. If moreover
lim 7,7 (supy,,, u(x)) = 0 for some sequence 7, — 0, then u = 0 near the
origin. This last property was also obtained very recently and independently
n [11]. Asin [20] for the superlinear case, the question of exact convergence
to one of these solutions is still open in case of changing sign solutions, or
solutions with dead cores. It can be solved in dimension 2 when the limit-set
is one-dimensional, by using Jordan curve theorem. We refer to [5] for the
study of convergence for equation 1.4 in R?, and to [12] for a detailed study
of 1.1 in dimension 2, and for the behaviour at infinity in the general case.

2 A priori estimates

2.1 Statement of the results

In this section, we give the a priori estimates for equation 1.1. In fact they
are still available for subharmonic supersolutions of the equation. Their
behaviour is the result of the superposition of the nonlinear effect and the

5



linear one. When ¢ < ¢*, equation 1.7 admits two fundamental solutions
¢17 ¢27 given by

{ (@) = |z, Polz) = |z|™, if ¢< ¢,
Yi(z) = 2|®2 0 (@) = 2TV Lnjal, i e=c, (2.1)

where

{klz_(N_Q_\/E)/27 kQZ_(N—2+\/5>/2<07

D= (N-2)*—4c (2.2)

(in case of equation 1.4, 11 (z) = 1, ¥o(z) = |z[* V). When they do exist,
functions 1, and wug interact. When they have the same blow-up rate at 0,

new logarithmic damping factors appear. Our main result is the following.

Theorem 2.1 Let u € C%(B') be any nonnegative solution of the inequality
0< Au+t c# < ] oul. (2.3)
x
in B
i) If ¢ <c* and 7y # ko, then
u(z) = O(max(|z|", ¥2), (2.4)
it) If ¢ < c* and v =ky, then
u(x) = O(|e[™ [Ln [2[|V177), (2.5)
iii) If ¢ =c* and v = ko, then
u(z) = O(|=|* ™2 | Ln [/ (2.6)
i) If ¢ > c*, then
u(z) = O(a]"). 27

In the case ¢ > 0, this result is based on a local mean value inequality for
the Helmoltz operator.



2.2 Subsolutions of Helmoltz equation

The following representation formula is given in 2.14 in case N = 3, f = 0. We
did not find any reference in the general case, so we give here an elementary
proof. It is inspired by the analogous result of [9] for the operator —A + k2.

Proposition 2.1 Let Q be a domain of RY (N >2) . Let u € C*(Q) , and
f = Au+ k*u with k > 0.

i) Then the following representation formula holds, for any xo €  and any
ball B, = B(xq,p) C §,

Fn(p) u(zo) = ; f(z) [Fn(p) En(|z — xo|) — En(p) Fn(|z — 20)] dz

1
+W s, u(z) do(x), (2.8)
where
- N/2-1
En(r) = \/(;Vli(l()]?[ |—£~z}/)_/1T) (%) Yivja-1(kr), (2.9)
N/2-1
Fx) =T(2) () dwanalio) (2.10)

and J,,Y, are the Bessel and Weber functions of order v.

ii) In particular if f > 0 in Q, then for any € > 0 there exists some § =
d(N,e) > 0 such that for any x¢ € 2, and any p > 0 such that k p < 0,
1+e¢
1Byl /B,
Proof. i) From [8], function Ey is the fundamental solution of Helmoltz

operator A + k2, and Fly is a particular solution of its kernel. In case N = 3,
they have a simple expression:

u(zg) < u(z) dz. (2.11)

Es(r) = —(coskr)/4nr, F3(r) = (sinkr)/kr. (2.12)



In the general case, Fly is regular in 0, with

lim Fy(r) =1, lim 7' Fy(r) = —k*/N, (2.13)

r—0 r—0

by computation from the classical development of .J, in Taylor series

J(r) = (g)”; Sf;gfs@;, (2.14)

see for example [17] (p 56). Let zo € Q and p > 0 such that B, = B(zo, p) C
Qand a € (0, p) . Applying Green’s formula in B,, we first get

Ou vip) u(z)| do(x
[ Pt o = [ 500) Fulo) - FiGo) o) @

Applying again Green’s formula in the annulus €, , = Bp\B_a, we get

/Qa‘p f(z) Ex(|z — x0]) dz = /aB,, [%(w) Ex(p) — Eiv(p) u(x)} do

+Ey(a) /8BQ u do — En(«) /a Au(x) c<l2$‘16)

Now from [§],

lim r" 2By (r) = —1/(N —2)[SY], lim rM T EL(r) =1/ |SVTY.

r—0 r—0 (217)
Hence let a go to 0, we deduce the representation formula
Ju
u(zo) = [ flz) En(lz — xo]) dx +/ Ex(p) u(z) = 5-(x) En(p)| do(x).
By 9B, v (2.18)

Then from 2.15 and 2.18,

Fy(p) u(xo) = . f(@) [Fn(p) En(|z —w0]) = En(p) Fn(|z = wol)] d



(Bl Fy — Ex Fi)(p) / (o) dota). (2.19)

Now the function r —— rN=Y(Ey Fi — E} Fy)(r) is constant, because Ey
and Fy are in the kernel of A + k2. Therefore from 2.13 and 2.17, we have

1
[N

rN"YE)\ Fy — Ex F)(r) = (2.20)

and 2.8 follows.
ii) Assume that f > 0 in . Let dy = do(N) the first zero of the function
Inja—1. If k p < dg, then Fy(p) > 0, and
Fn(p)En(r) — En(p)Fn(r) <0 on [0,p],
because Ey/Fy is nondecreasing, from 2.20. Hence we obtain the inequality

1

F u(ry) < ——
N(p) (0)—‘(9pr o8,

u(z) do(x), if kp<do.
(2.21)

Moreover for any € > 0 there exists some 6 = §(N,e) € (0,dy) such that
Fy(p) > 1/(1+¢) for any p < 6/k, hence 2.11 holds.

2.3 Reduction to the radial case

This mean value inequality allows us to extend to the subsolutions of equation
1.7 a well-known property of subharmonic functions, still used in [22] and [5].

Proposition 2.2 Let u € C*(B’) be any nonnegative solution of the inequal-
ity

0< Au+t c# (2.22)

in B', with ¢ € R. Suppose that the mean value w of u satisfies an estimate
of the form

a(r) = O(|Lnr|’r®) asr — 0, (2.23)
for some a,b € R. Then u satisfies the corresponding estimate

w(z) = O(|Ln|z||" |z|*) as 2z — 0. (2.24)



Proof. Let 2y € RY such that 229 € B'. Then B(z, |z0)| /m) C B’ for any
m > 2. Then

0<Au+k*u in B(zo, |zo)| /m), (2.25)
with
k=mvVer)(m—1) |zl (2.26)

From Proposition 2.1 if ¢ > 0, and from the classical mean value inequality
if ¢ <0, there exists 0 = §(N) such that for any p € (0,0/k),

2
u(zo) < —/ u(z) dz. (2.27)
| B(wo, p)] Bl(zo,p)
Choosing m large enough, precisely m > 1+ d~1vct | we deduce that
2 N
u(z) < —— / u(z) de. (2.28)
0| ™ | Bl /B o Jeo)l/m)

Hence denoting C,, = {z € RY |(m — 1) |zo| /m < |z] < (m + 1) |zo| /m },

92 N
u(zg) < # u(zx) dx
|20l Bl e,
omN N [mtblol/m o pmEDlol/m

r ’1ﬂ(r) dr < — u(r) dr,

— N
[zol™ Jm-1)lzol/m ol Jum-viealim " (2.29)

where C' = C(m, N). The result follows by integration. M

2.4 Proof of the estimates

Proof of Theorem 2.1. From Jensen inequality, since ¢ < 1, we observe
that uw also satisfies 2.3. From Proposition 2.2, we are reduced to estimate
. In the sequel, the letter C' denotes some constants which may depend on
u,q,0,N,c , but not on z € B.

10



Step 1: ¢ < ¢* . Let us make the change of variables
a(r) = r*2w(r), (2.30)
which leads to the inequality

0 < wyy + (N — 1+ 2kp) ot < pohall=a)ya, (2.31)
T

for 0 < r < 1. This implies that w is monotonous for » < ry small enough.
Denoting

hy = ka(l—q) = (2+0) = (1 = q)(k2 — ), (2.32)
then 2.31 reduces to
0 S (,,,,Nfl+2k2wr)r S ,,,,N73+2k27h2wq' (233)

If w is bounded, then u(r) < Cr*2 in (0, 1], and 2.4, 2.5, or 2.6 holds. Now
suppose that w is unbounded, then it is necessarily nonincreasing.

i) First case : v < kg (i.e. hy > 0). Integrating over [r,ro], we get from
monotonicity

To
—pNTE2R2 () < C + wi(r) / gN=3+2ka=ha g g (2.34)
where N — 3 + 2ky — hy < —1. This implies
—w,.(r) < Cr " 2i(r), (2.35)
and by a new integration, since hy > 0,

w(r) < C+ wq(r)/ s 2 ds < C rh2wi(r). (2.36)

Then u(r) < C r? by returning to @, and 2.4 follows.

ii) Second case : v > ko (i.e. hy < 0). As above, 2.34 holds . If
N —3+42ky—hs < —1, then 2.35 holds, with hy < 0. Integrating again 2.35, we
deduce that w is bounded, which is a contradiction. If N —3+2ky—hy = —1,
then

—w,(r) < C plhe |Lnr|wi(r) < C r’lfh/qu(r), (2.37)

11



and by a new integration, w is still bounded. Now consider the case N — 3+
2ky — hoy > —1. Then 2.34 implies

—w,(r) < C N2yt (r), (2.38)
Integrating 2.38 gives

w(r) < C+ wq(r)/ st=N=2k2 s, (2.39)

If ¢ # ¢*, then 1 — N — 2ky > —1, w is still bounded. If ¢ = cx, then 2.38
leads to the first estimate

w(r) < C |Lnr|Y*9 (2.40)
By report in 2.33,
(r0,)o(r) < © 77171 | Lng 07D < 0 pm1h12 (2.41)
hence rw,(r) < C, and
w(r) < C |Lnr|, (2.42)

which in turn implies 2.4.

iii) Third case : v = kg (i.e. ho =0). If ¢ # ¢*, then N — 3 + 2ky < —1,
hence 2.35 holds with h = 0, hence 2.40 follows by integration, and 2.5 holds.
If ¢ = ¢*, then 2.34 implies

—w,(r) < Cr~t|Lnr|w?(r) (2.43)
and by integration
w(r) < C [Lnr[/070 (2.44)

and 2.6 holds.

Step 2 : ¢ > c¢*. Here no change of variable of the form w(r) = rfw(r)
(¢ € R) can lead to a monotonous function. Therefore we set

u(r)=r"Y(t), t=—Lnr, (2.45)

12



that is Y'(¢) = U(t), where U is given in 1.9 . Then Y satisfies

0<Yu+(N-2+279)Y;+(y(v+ N —-2)+ )Y <Y,
(2.46)

from Jensen inequality. From Young inequality, it implies, for any € > 0,

Y+ (N=2-29)Y, 4+ (y(y+ N =2) 4 c—¢e)Y <079,
(2.47)

Now we can apply 5.1 with A= N —-2—2v,and B=7(y+ N —2)+c—¢c =

A%/4+ c—c* —e > 0 for € small enough. Then Y is bounded, and 2.7 holds,
which completes the proof. B

3 Anisotropic solutions
Here we study the structure of the solutions of equation on SV1
Agv-1w 4+ dw — |w|*w =0, (3.1)

for any A > 0, which governs the existence of anisotropic solutions of 1.1: to
each solution w of 3.1 corresponds a solution of equation 1.1, given by

u(z) = u(|z],0) = |z|" w(8), 0e SN (3.2)
if
A=v(y+N-=2)+ec. (3.3)

The set E) of the solutions of equation 3.1 always contains the three constant
solutions 0 and +\/(@=1)

3.1 Non-existence results

First we give the extremal values of A for the existence of possibly noncon-
stant solutions. The first result is elementary, but the second one is far from
being evident.

13



Theorem 3.1 i) If A < N — 1, then equation 3.1 admits no nonconstant
solution.

ii) If \(1 — q) < N — 1, then it admits no positive nonconstant solution.

Proof. i) Let w € E), and denote by @ its average on S¥~1. Then following
techniques of [19] , [20],

Agy1(w —3) + Mw —3) — (Jw]*  w — 8] @) =0, (3.4)

hence

A/SMW 9= /Sm (VW =) + (v ' w - [@" " @) (w — )]

> / (V= (-2 + (o] w — @ @) (w — @)]
SNt (3.5)

since N — 1 is the first nonzero eigenvalue of —Agn-1. If A < N —1, it implies
w=uw.

ii) Here we use the proof of analogous result of [3](Theorem 6.1) in case
of the equation with the other sign :

Agv-1w —dw+w? =0 on SV with ¢ > 1. (3.6)

The idea, which comes from Bernstein methods, is to get an estimate of

|Vw|2. Since w > 0, we can apply the Bochner-Weitzenbock formula on
SNfl’

1
§ASN_1(|VU|2) = |Hess v|°+ < VAgn-10, Vo > + (N = 2) [V
(3.7)

to the function v = w'™¥, and multiply it by the function w®, where y and
§ are two real parameters, with 4 # 1. Then we integrate over SV~ and
integrate by parts several times as in [3]. After computations, using the
inequality |Hess v|* > 5 (Agn-1v)? and returning to the function w, we
derive the following inequality :

Ch / W | V|t + Cz/ Wi |V + C’g/ w ¥ |Vuw|)* <0,
SN-1 SN-1 SN-1 (38)

14



where

_ N2 s L
1 N +1
N -2 N +1
Cg_N—z—A[N_l—Q(N_l)(S] (3.11)
Now we take § = 2(N — 2)q/(N + 1), so that
Cy =0, C3=(N-=-2)[1-X1—-¢q)/(N=1)] >0
(3.12)

because A\(1 —¢q) < N — 1. And we can choose y # 1 such that C; > 0 .
Indeed the discriminant of the trinomial relative to y is positive, since ¢ < 1.
Then |[Vw|=0o0n SV 1. m

3.2 Positive solutions

Now we prove the existence of positive solutions for an infinite set of values
of A. Denote by (u;);en the sequence of eigenvalues of —Agnv-1 on SV~
given by p; = j(j + N —2).

Theorem 3.2 For any j > 1, equation 3.1 admits a continuum of positive
solutions for any X in a small neighborhood of \; = p;/(1 — q).

Proof. We look for bifurcation branches emanating from the constant
solution wy = AY@=1_ In order to avoid the question of multiplicity of the
eigenvalues of —Agn-1, we consider solutions w which are axially symmetric
by respect to some diameter, that means they depend only on some polar
angle ¢ € (0, 7). Then the equation reduces to

Lw(¢) = sin®* N ¢ (sinV 2 ¢ wy)y = w? — dw on (0,7).
(3.13)

15



Now (I — L)_1 is a compact self-adjoint operator in the weighted space

L2((0. 7)) = {w e D/((0,7))

/ﬂwQ(qﬁ) sinV 2 ¢ do < +oo} .
0 (3.14)

And — L and —Agn-1 have the same eigenvalues (see [2],[3]), and each eigenspace
of —L is one-dimensional. Setting w = wg + v, we write 3.13 under the form

_ N BN VICE) g _ (_H Najg-1) __H
) = ot = (G gt ]

where ;1 = (1—¢)A. Now the local bifurcation theorem applies to the function
f in a neighborhood of (y,0) in R x X, with

X = {v € C*([(0,7)]) | vg(0) = vg(7) = 0} . (3.16)

Hence a branch of bifurcation emanates from this point. B
As a consequence, solving equation 3.3 by respect to v, we get the follow-

ing for equation 1.4.

Corollary 3.1 For any integer j > max(2 + o,—N — o), and for any q in
a small neighborhood of

g =1-(2+0)/ [+ (N—-2)j - (N-2)2+0)],
(3.17)

equation 1.4 admits anisotropic positive solutions of the form 3.2 in RN\ {0} .

3.3 Changing sign solutions

Now we prove the existence of changing sign solutions of equation 3.1 for any
A > N — 1, which vanish on an equator of S¥~!. Let (e, es,..,en) be the
canonical basis in RY | and (SV~1)* = S¥-1 0 (RY-! x RT).

Theorem 3.3 For any A\ > N — 1, equation 3.1 admits nontrivial changing
sign solutions, which vanish on the equator, and are nonnegative on the half
sphere (SN1)* nonpositive on the complementary, and axially symmetric
by respect to ey .

16



Proof. We consider the following problem of minimization with constraints
in the space V = H}((SV1)T):

m = inf J(w) = inf / (IVw|® = Mw?), (3.18)
(SN-1)+

wWEN weX

where ¥ = {w eV ‘f(sN_l)Jr \w\qH = 1}. Let (pn)n>1 be the sequence of
eigenvalues of —Agnv-1 in V. Then p; = N — 1 < X by hypothesis. First
observe that m < 0: denoting by ¢; the first positive eigenvector such that
le1llz2((sv-1)+) = 1, and setting 11 = <f(SN*1)+ 1|7~ V/@HD) then ¢, € X
and J( t1p1) = t3(p1 — A) < 0. Let k > 1 such that p, < X\ < pgy1, and
denote by Ej the eigenspace relative to p; and by Ej, its othogonal space in
V. Consider a minimizing sequence (w,,), such that J(w,) < 0. Then

Wy = Uy + UL, v, € By, v, € Ep, (3.19)
and

J(wy) = f(5N71)+(|VUn‘2 — Av; + L[(5N71)+(|VU;|2 - Av?)
2 2
> —(A = p1) [lvallz2sn-1y4) + (1 = A/ prta) HVU;"L”L?((SN*)‘F(&QO)

Suppose that (w,) is unbounded in V' . Then (v,) is unbounded in the finite
dimensional space Ej, , since J(w,) < 0. After extraction, we can assume
that [|v, |z, — +oo. Let

Un =vn/ lvallp, . Yo =00/ llvnllg, - (3.21)
Then |[ya| 5, =1, and y;, is bounded in V' from 3.20. After extraction, (yy)
converges to some y € Ej, with |lyl|; = 1, and (y;,) converges to some y'
weakly in V' and strongly in L7t [SN=1)T]. But (y, + y,,) converges to 0
in L7 [(SNV1)F], since w, € . Then y +y' =0, and y = ' = 0, since
y' € E;. Hence we arrive to a contradiction. Therefore (w,) is bounded in
V. After extraction it converges weakly to some w € V. Clearly m is finite
and J(w) = J(jw|) = m. And w = |m|”®? |w| is a nonnegative solution
of equation 3.1 on (SV~1)* which vanishes on the equator. By reflection,
it gives a solution of the equation in whole S¥~!, which in fact belongs to
C?(SN~1). Now the same proof applies in the subspace of V of the axially
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symmetric functions by respect to ey, and gives the existence of an axially
symmetric solution. W

Remark 3.1 Here also the solution constructed only depends on the polar
angle with ey. In such a way we have proved the existence of a solution w
of equation 3.13 in space X , nonnegative on [0, 7/2), with w(m — ¢) = w(¢)
on [0, ].

Corollary 3.2 If1 > ¢ > min[(N+1+0)/(N —1),—1— 0], then equa-
tion 1.4 admits anisotropic solutions of the form 3.2 in R¥\ {0}, positive in
an half-space and negative in the other one.

Remark 3.2. In the same way, following the idea of [13], we can construct
solutions of 3.1, which change of sign on more general sets. Let GG be any finite
subgroup of O(N) generated by reflections through hyperplanes containing
0, and S be a fundamental domain for G. Let p;(S) be the first eigenvalue
of —Agn-1 in H}(S). Then if X > p;(S), we can construct a solution of 3.1
in H}(S), and then extend it by reflections to whole SV~

3.4 Nonnegative solutions with possible zeros

For some values of A\, we find explicit solutions of 3.13 with double zeros, so
we can exhibit some nonnegative anisotropic solutions of 1.1 with a nonempty
set of zeros.

i) Solutions vanishing on a half axis.
If

W G G NP S (3.22)

then equation 3.13 admits a solution w, positive on [0, 7), with w(m) =0 :

(1-¢)?
N—1—(N-3)q (

() = (2C cos® g)l/“@, with C' =
3.23)

Consequently, when ¢ = o, associated to A by 1.2 and 3.3, equation 1.1
admits a nonnegative solution with a zero set which is an half axis, given by

] 1/(1—q)

u(z) = |C 2| (|| + z2) : (3.24)
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which vanishes on {tey |t < 0} and is positive on the complementary part.

In case of equation 1.4, it corresponds to the case 0 = ¢ = —1 of the equation
—Au+ |z u? =0 (3.25)

. . . 1/(1-q)
which admits the solution u(x [ (|z| + xn)] in whole R, or to

the case 0 = ¢’ = (N — 2)q — (N 1) of the equation deduced by Kelvin
transform.

ii) Solutions vanishing on an half space.
If

A:X:—(N—2+i) (3.26)

then equation 3.13 admits a solution &w;, which only vanishes at 7/2,

~ ~ 1 — )2
ZL\)]_ (¢) = (Cl COS2 ¢)1/(1—q)7 with Cl = ﬁ, (327)
and also the solution

~y J @), ifeel0,m/2)

“(0) = { 0, if o € [7/2,7]. (3.28)
which presents a dead core on [7/2, 7], and of course w{ ((b) wh (7r qb) It
also admits a solution Wy, positive on (0, 7), with Wy (0 ) Wy(m) =

—~ A . 92 1/(1—q) . ~ o (1 - q)
Wa(¢p) = (Cy—1sin® @) , with Cy_; = N1 .
3)9%.29)

Consequently, when o = 7, associated to :\\, equation 1.1 admits nonnegative
solutions with an half space, an hyperplane or an azis as a zero set, given by

Y

] 1/(1-a)
(3.30)

] 1/(1-q)

(o) = [Cilalfa2] T, @) =[O e ()

2} 1/(1-q)

a(2) = |Ca [al” (@1, 72, s 20 1) (3.31)
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In case of equation 1.4, up to a Kelvin transform, it corresponds to the simple
case 0 = 0 = 0 of the equation

—Au+u?=0. (3.32)

Here these solutions can be obtained elementarily, noticing that this equation
admits the solutions

R TA 511/ (1=q) A (1—q)?
(@) = [Ckl(@r, 72, 1) B T I

for k=1,2,..,N.
iii) Comments.

We conjecture that the value \ coincides with the first appearance of solutions
of equation 3.13 in X with a nonempty range of zeros, and that for any A > A,
there exists at least a solution vanishing on an interval [a), 7]. A numerical

approach also suggests that it is unique if and only if A € [X,X) , and then

the function A\ — a, is decreasing . Such solutions would give solutions of
equation 1.1 with a cone as a zero set.

This conjecture is true in dimension 2 (see [5]), where one can give a
complete description of the solutions of equation 3.1, because it becomes
autonomous . Recall that if N = 2, the function

Tan(0) = { [a,\ cos2((1 _ q)\/x¢/2) 1/(1—q), if |¢| € [O,ﬂ'/(l — q)\/X)
0, if not. (3.34)

where  Cy = 2/A(1 + ¢), is a solution of equation 3.1 on S as soon as
A > X =1/(1—q)2. The lack of uniqueness occurs when A > X = 4/(1—q)?,
because of the possible superposition of translated of W, ), and this since its
least period becomes less than .

3.5 The case ¢ > c¢" and ¢ = ¢*

In this case many other anisotropic solutions appear. The value ¢ = ¢* €
(0,1), which supposes 0 + 2 € ((2 — N)/2,0), corresponds to the case

v =—(N—2)/2, (3.35)
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where equation 1.10 takes the form
Uy + Agv1U + (¢ — U — U7 U = 0. (3.36)

with c—c* > 0. It is the delicate case of an equation without term in Uy, hence
with conservation of the energy, and with nontrivial constant solutions. Here
also the situation has to be compared with the case of the equation with the
other sign , see [3], and [16]:

Au+ ¢ # + |z ju|" P u =0, with ¢ =¢* > 1, (3.37)
T

when ¢ < ¢* and o + 2 > 0,which leads to the equation in the cylinder
Uy + AgnrU — (¢t = )U +|U|" U = 0. (3.38)

In addition to the stationary solutions still described above, equation 3.36
admits also solutions independent of @ € SV~ that means solutions of equa-
tion

Uy + (c—cU = U1 U =0, (3.39)

on [0, +00) . Those solutions (which include the solutions of 3.1 in dimension
2) are completly described in [5]. In particular, for any 7 > 7/(1—q)+/c — ¢*,
equation 3.39 admits the nonnegative solution U, (t) = Wy .. (t — 7), which
has compact support [7—7/(1 —¢q)vc—c*, T+7m/(1—q)v/e—c*,]. And
the possible superposition of such solutions gives the existence of radial so-
lutions of equation 1.1 which vanish on a union of disjoint rings.

Moreover, as in [3], equation 3.36 can also admit elliptic waves as solu-
tions, of the form U(t,0) = w(e* ), where A is a skew-symmetric matrix
of dimension N. Following the proof of Theorems 3.2 and 3.3 one can show
the existence of positive or changing sign waves.

Remark 3.3 In dimension 2, when ¢ +2 = 0 and ¢ > 0, we find in the same
way solutions of the form U(t,0) = w(0 + at) (o € R). It reduces to the
equation

(1+a®) wg+cw— | w=0 (3.40)

on S!, of the same form as 3.1 and 3.39. Thus we can also construct elliptic
waves with dead cores: U(t,0) = Wy, [(9 +at)/+/(1+ oﬂ)] , whenever ¢ >
(1+a?)/(1-q)
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4 Convergence properties

4.1 Statement of the results

In this paragraph we give the precise behaviour of the nonnegative solutions
of equation 1.1. It depends on the position of ¢ by respect to some critical

values depending on o. Let us denote, in case ¢ < c*,
o+2

ky 7
(‘hence go = (N +0)/(N —2) if ¢ =0), and

@ =1-

whenever ¢ # 0. Observe that k1 > ky and

{7>/€2¢>Q<Q2>
v>k <= cl¢g—q)<0 or(c=0and oc+2>0),
and
04+2>0=¢<q and (¢<gq if ¢>0).
In case ¢ > ¢*, we define

¢ =(N+2+20)/(N—2).

Notice that ¢ = ¢o = gx when ¢ = ¢*.

In the noncritical cases, we obtain the following.

(4.1)

(4.2)

Theorem 4.1 Let u € C*(B') be any nonnegative solution of equation 1.1

i B

i) Assume ¢ < c*, and ¢(¢q —q1) <0 orc=0< 0+ 2 (hence q < q2). Then

lirr(l) 2| "2 u(z) = Cy > 0.
If C5 =0, then

lim 2| " u(z) = Cy > 0.
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If Cy =0, then
u(z) = O(|z[") (4.8)

and the limit set in C?( SN=1) of r=7u(r,.) as r goes to 0 is contained in the
set of solutions of equation

Agv-1iw+ (Y(y+ N —2) + c)w —w? = 0. (4.9)

If moreover lim .Y (supy,—,, u(x)) = 0 for some sequence 1, — 0, then u = 0
near the origin.

ii) Assume ¢ < c*, and c(q—q1) >0 orc=0> 0+ 2, and q < go. Then

lim |z| ™ u(z) = Cy, >0, oru=0 near the origin. (4.10)

x—0

iii) Assume ¢ < ¢* and q > qo. Then 4.8 holds, and the behaviour is as above.
iv) Assume ¢ > cx and q # q*. Then 4.8 still holds, and the behaviour is as
above.

Now we study the critical cases, except the case ¢ > c¢*, ¢ = ¢q*.
Theorem 4.2 Let u € C*(B') be any nonnegative solution of equation 1.1
in B
i) Assume ¢ < ¢* , and q = qa. Then

lim 2|72 |Ln |2|| 7Y w(z) = (1 = ) /VD)Y =D, or u =0 near 0.
(4.11)

ii) Assume ¢ < ¢, and q =q1, c#0, orc =0 =0+ 2. Then 4.10 still
holds.

iii) Assume ¢ = c*and q < q*. Then
lim 2| N2 L ||| u(z) = Cy > 0; (4.12a)
if Cy =0, then

lim 2| N2y (2) = ¢y > 0. (4.13)
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if C1 =0, then 4.8 still holds, and the behaviour is as above.

iv) Assume ¢ = c*and q = q*. Then

N-2)/2 2/(1 (1-4q)° o
lin(1)|:1:|( D2 Lo ||| w(z) = <2 . ) , or u =0 near 0.
o (1+4q) (4.14)

v) Assume ¢ = c*and q > q*. Then 4.8 holds, and the behaviour is as above.

4.2 Proofs
Proof of Theorem 4.1.

i) Here ¢ < ¢* and 7 > ky > ky, hence |z|™ > |z|* > |z|” for |2| < 1.
From 2.4 we get u(z) = O(|z|*). Then we define

u(z) = |z|=2W(t,0), t=—Lnr, 0 SN (4.15)
so that W satisfies the equation
Wis — (N — 24 2kp) W, + Agn 1 W — "t W7 =0, (4.16)
where
ha=Fke(1—¢q)—(2+4+0)=(1-q)(ka—1) <O, (4.17)

still defined in 2.32 (observe that the changes of variable 2.30 and 4.15 are
linked by w(r) = W(t)). Then from [6] (Proposition 4.1), there exists some
Cs > 0 such that [|[W(t,.) = Caf|gogn-1y) = O(e~2t) for some &, > 0, hence
4.6 holds. Suppose Cy; = 0. For any € > 0, there exists t. > 0 such that
W (¢, )llcoggn-1y < € on [te, +00) . Then the function

t— W€<t> =+ ||W(0, ')HCO(SN*U €(k2ik1)t (418)
is a supersolution of 4.16 , hence from the maximum principle W (t,.) < W.(t)

on [1,%.], hence on [1,+00), for any ¢ > 0, so that u(x) = O(|z|*). In that
case, we define

u(z) = |2V (t,0). (4.19)
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Then V satisfies

Vie + (N — 24 2k)V, + Agv 1V — Mt V1 =0, (4.20)
where

hh=k(l—q)—2+0)=(1—-q)(ks—7)<0. (4.21)

From [6] (Proposition 4.1), since N — 2+ 2k; > 0, there is some C; > 0 such
that [[V(Z,.) — Cillcognv-1y + [[Ve(ts )l coggv-1) = O(eM?) | and 4.7 holds. Now
assume C = 0. Here we cannot conclude as above by using a supersolution,
but we argue similarly to Theorem2.1 by estimating the mean value V(t),
which satisfies

0 S (6_(N_2+2k1)t Vt)t S 8(—(N—2+2k‘1)+h1)t Vq’ (422)

with limy o V() = 0, lim;_, o, Vi(t) = 0. Moreover V is nonincreasing for
large t. Integrating from ¢ to T > ¢, and passing to the limit because V;(t) =
O(eM?) and N —2+ 2k, —hy > 0, we deduce that —V,(t) < e* V() . A new
integration between ¢ and 400 gives V (t) < e V(t), since lim;_ o V (t) =
0. Then @(r) = O(rf+~/0=0) = O(r7), and 4.8 follows from Lemma 2.2.
The precise behaviour of the solution is given by Theorem 5.1.

ii) Here ¢ < ¢* and ky > v > ky, hence |z|™ > |z|” > |z/*. Then
4.6 follows as above. In case U5 = 0, we get similarly 4.7, which implies in
particular 4.8. Hence from 5.1, the limit set of the solution U(¢, #) is contained
in the set I'(U) of solutions of equation 4.9. But here

Y+ N =2)+c=(y—k)(y— k) <0, (4.23)
which implies I'(U) = {0} . Then U has a compact support, hence v = 0 near
the origin, from Theorem 5.1.

iii) Here ¢ < ¢* and ky > v, hence |z|” > |#|* . Then 4.8 follows from 2.4,
and the precise behaviour from Theorem 5.1.
iv) Here ¢ > c*and 4.8 follows from 2.7. We conclude as above. B

Proof of Theorem 4.2.

i) In that case, ¢ < ¢* and v = ko , hence u(x) = O(|x|l€2 |Ln |x||1/(1*q))
from 2.5. Then we define

u(z) = |2* |Ln|e|[V070 Z(t,0), (4.24)
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and Z satisfies

2 1 D
)Zt—i—ASN_lZ—i——((\/_—i— 1 vz —z9 =0,

Zn + (\/5 + (1—q)t t l—q (1—gq)?t (4.25)

where D # 0. Then Theorem 5.2 applies and gives 4.11.

ii) Here ¢ < ¢* and k3 = 7 > ky. The proof given in Theorem 4.1,ii), is
still available, with now (y — k1)(y — k2) = 0, and the 4.10 again follows.

iii) Here ¢ = ¢*, hence k; = ks = (2 — N)/2, and ¢ < ¢*. From 4.3, that

means v > ki, and |z|” < |2|*2  Then u(z) = O( |z|*™"*|Ln |z||) from
2.4. Let us define

w(z) = |z|® N2 | Lo |z|| H(t, 6). (4.26)

Then
Hy + % Hy + Agn o H — 7 1e™HY = 0, (4.27)

where
m = (1—q)(ki —7) <0. (4.28)

Then Hy + Agv-1H = O(t™'), hence ||H(t,.) —F(t)”co(sN_l) = O(t™1/?),

from a slight variant of [6] (Proposition 4.1), see [12]. But from 4.27, (t*H,); =
O(e™*/2) at infinity, hence H has a finite limit Cy > 0, and 4.12a holds. If
Cs = 0, we define

u(e) = |a|* M2 K (t,0), (4.29)
and obtain
Ky + Agv1 K — ™K =0. (4.30)

That implies 0 < Ky < eMK" < Ce™/? | because K (t) = ~o(t). We deduce
easily that K has a finite limit C; > 0, and [|K(t,.) _K(chO(stl) =

O(t'/?) as above, hence 4.13 follows. If Cy = 0, then the nonincreasing
function ¢ > K "K,(t) + m~'e™ tends necessarily to 0, because K 7is
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bounded; hence it is nonnegative. Consequently, K (t) = O(e™/1=9) hence
u(r) = O(r") and 4.8 holds from 2.2.

iv) Here ¢ = ¢*, and ¢ = ¢*. Then u(z) = O( |z|* ™2 |Ln|z|[**~9)
from 2.6. Hence we set

u(@) = |2|® M2 | Ln 2] |Y79 Lt 0), (4.31)
and derive
4 1 .2(1
Lut 2 ptAgant AT ey
(1 - Q)t t (1 - Q> (4.32)

Applying 5.2, we deduce 4.14.
iv) Here ¢ = ¢*, and ¢ > ¢*. Then the result follows directly from 2.4. ®

5 Appendix: sublinear equations in a cylin-
der

Here we give some general convergences properties for solutions of elliptic
equations in a infinite cylinder.

Lemma 5.1 Lety € C*([0,+00)) be nonnegative, and satisfying an inequal-
ity

yu(t) + Ay (t) + By(t) < M (5.1)

in [0, 4+00) , with given reals A, B;M (M >0). fA>0and B >0, or A<0
and B — A%/4 > 0, then y is bounded .

Proof. i) Case A > 0, B > 0. The result is clear when y is nonincreasing
for large t . If it is nondecreasing for large ¢, the energy function

E=y+By*—2My (5.2)

is nonincreasing, hence again y is bounded. Suppose that y is not monotonous
near infinity, and unbounded. Then there exist some sequences (s,), (t,),
tending to +oo, such that s, < t, < s,.1, 5, is a minimal point of y, t, is
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a maximal point, y is nondecreasing on [s,,t,]|, and limy(¢,) = +00. Then
y(s,) < M/B. But E(t,) < E(s,), hence y(t,) is bounded, contradiction.

ii) Case A <0, B—A2?/4 > 0. Let d = B—A%/4. The function z = e*/2y
satisfies the inequality

2u(t) + d 2(t) < M % < M, (5.3)

hence z is bounded from the first case. But zy(t) < M et/ 2 hence the
function ¢ — z,(t)+2M e4/?/| Al is decreasing to a limit which is necessarily
0. Then the function ¢ + z(t) — 4M e?*/2/A? is increasing to a limit which
is necessarily 0 from 5.3. The conclusion follows. W

Theorem 5.1 Let Y € C?([0,+00) x SV~1) be any nonnegative bounded
solution of equation

Yo+ AY,+Agn1Y +BY —Y7=0 (5.4)
in [0, +00) x SN with given reals A, B € R, with A # 0, and q € (0,1).
i) Then the limit set
ry)=Uve) (5.5)
>0 7>t
is a connected compact subset of the set

Ef ={we C*HSV Y w() >0, Agvaiw+Bw—w!= 0}.
(5.6)

i) If moreover 0 € I'(Y'), then Y (t,.) = 0 for large t.

Proof. i) Here we adapt the proofs of [10], [3] for the superlinear case g > 1
to the sublinear one . Since ¢ < 1, from Schauder estimates, Y is uniformly
bounded in C?4([T, T + 1] x SN=1), uniformly in T on [1, +00) . Multiplying
5.4 by Y; and integrating over [1,7] x SN¥~1 it follows that Y; is bounded
in L?([1,+o0] x S¥71), since A # 0. In order to estimate Y}, , we cannot
derivate 5.4 by respect to ¢, but we multiply 5.4 by Y and integrate again
over [1,T] x SN=1:

S S Vit d6 dt = = [[ona(3 Y7 + B YY;)df]
[ o s (BY2 + (Y9 — Agv1Y) Vi) dO dt. (5.7)

T
1
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The last term is majorated by [[ov_1(Y? — Agn-1Y) Y)) d@]lT, by regular-
ization and integrations by part, hence Y}; is bounded in L?([1, +-00] x S¥=1).
Then we conclude as in [3].

i) If 0 € T'(Y), we first deduce that I'(Y) = {0} as in [3] (Theorem 3.2),
hence

tim [ (¢,.)llcogsv-r) = 0. (53)

t——+o0

Then from Hélder inequality, since ¢ < 1, there exists some T" > 0 such that
Y is a subsolution of equation

1
_Ztt — A Zt — AsN—IZ + §Zq = 0 (59)
on [T, +o00] x SN~1. Now the function
Zix =K [(T+1-t)*09 (5.10)
is a supersolution of this equation for K < Ky = Ky(A, ¢) small enough, with
compact support. Choosing 7" large enough so that ||Y(¢, ')HCO(SN—l) < Ky,
it comes Y < Zg, in [T, +oo] x S¥~1 from 5.8 and the maximum principle,
hence the conclusion. W

The following theorem is used in the logarithmic cases in equation 1.1. We
just give the outline of the proof, because it is quite similar to [6] (Corollary
42).

Theorem 5.2 Let Y € C?([0,+00) x SN~1) be any nonnegative bounded
solution of equation

1 B
%(&+fnﬂwwzo

A
nﬁw&+7%n+AM4Y+
(5.11)

in [0, +00) x SN where g € (0,1), Ay, Ay, By, By € R, with By > 0, and
Ay >0,n=1,0r Ay =0, n = 2. Then Y(t,.) converges in C?*(SN71) to
Bi/(q_l) or to 0. In the last case, Y (t,.) =0 for large t.

Proof. First we prove as above that Y is bounded in C%9([T, T + 1] x SN¥~1),
uniformly in 7" on [1,400). Then we write 5.11 under the form

Yo+ A Y+ AgnvaY + 90 =0, (5.12)
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where [[o(L, )| co(gv-1) = O(t™'). Arguying as in [6] (Proposition 4.1), it
follows that

|Y,.)-Y =0, (5.13)

Dl sy
see [6], but we cannot conclude directly to the convergence. From 5.12, Y
satisfies

A 1
Ytt+(A1+72)Yt+ (B,Y = YH =4 (5.14)

where by computation [[¢(t,.)]|gosn-1) = O(t='79/2). Then we follow the
proof of [6] (Corollary 4.2), in case A; > 0,n = 1, or [5] (Proposition 1.3), in
the delicate case A; = 0,n = 2, and get the convergence of Y to Bl/ @) o
to 0. From 5.13 it implies the convergence of Y (¢,.) in C?(SV~1). In case of
limit zero, there exists some T" > 0 such that Y is a subsolution of equation
Ay 1

_Ztt - (Al + _) Zt AsN IZ + EZ‘I — 0 (515)
on [T, +oo] x SN=11If A} > 0, n = 1, choosing T' > max(1,2|As| /A;), the
function

T = K (TY? +1 —¢/%))2/0-9 (5.16)

is a supersolution of this equation on [T, +-00] x S¥~1 as soon as K < K| =
Ki(q) enough. If A; =0, n =2, a supersolution is given by

Zix = K [(Ln((T +1)/1))*]"2 (5.17)

for K < Ky = K3(q, A3) small enough. We conclude to the compacity of the
support as in Theorem 5.1. W
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