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Abstract

Here we study the initial blow-up of the positive solutions of the semi-
linear parabolic equation

ut = ∆u + uq in Ω × (0, T )

with q > 1, for any domain Ω of R
N . We show that Harnack inequality

holds, and prove the following a priori estimate in any domain ̟ ⊂⊂ Ω, (or
̟ = Ω = R

N ):

u(x, t) ≤ C t−1/(q−1) in ̟ × (0, T/2) ,

with C = C(̟, N, q), whenever q < N(N + 2)/(N − 1)2 .

1 Introduction

Let Ω be a domain of R
N ( N ≥ 1), T ∈ (0,+∞], and u ∈ C2,1(Ω × (0, T )) be

a positive solution of equation

ut = ∆u+ uq in Ω × (0, T ) , (1)

where q > 1 is a real number.
The classical blow-up problem concerns the behaviour of u near the point

T , assuming that (0, T ) denotes the maximal time interval of existence, and
T < +∞. In [6], Giga and Kohn proved the estimate

u(x, t) ≤ C(T − t)−1/(q−1) in Ω × (T/2, T ) , (2)

when q < (N + 2)/(N − 2) (or N ≤ 2) and Ω is bounded, convex, or Ω = R
N ,

see [6]. Many further results concern the precise behaviour of u near the blowup
point.

Here we consider the initial blow-up problem. Our purpose is to give an a
priori estimate of the behaviour of u when t tends to 0. In case q < (N + 2)/N,
and Ω is bounded, Moutoussamy and Veron gave in [9] the precise behaviour
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of any solution of 1 with a punctual singularity as initial data: if 0 ∈ Ω and
u ∈ C2,1

[

(Ω × [0, T ])\ {(0, 0)}
]

is a solution of 1 with u(x, 0) = 0 on Ω\ {0} ,
then there exists γ ≥ 0 such that

lim
t→0

max
x∈Ω

|u(x, t) − γ E(x, t)| = 0,

where E(x, t) = (4πt)
−N/2

exp
(

− |x|2 /4t
)

. Furthermore, Baras and Pierre

studied in [3] the removability of data measures, and showed in particular
that any punctual singularity is removable if q ≥ (N + 2)/N. Assuming now
(N + 2)/N < q < (N + 2)/(N − 2), Weissler showed the existence of a very
singular solution of 1 on R

N × (0,+∞) under the form

u(x, t) = t−1/(q−1) ω(y), y = x/
√
t,

where ω is a radially symmetric solution of equation

∆ω +
1

2
y.∇ω +

1

q − 1
ω + ωq = 0,

bounded in R
N , see [11]. These results lead to conjecture an estimate in

t−1/(q−1) when q < (N + 2)/(N − 2) and in t−N/2 when q < (N + 2)/N .
Our main result is a part of this conjecture:

Theorem 1 Let Ω be any domain of RN and u ∈ C2,1(Ω× (0, T )) any positive

solution of 1 . Assume that

1 < q < N(N + 2)/(N − 1)2 (or N = 1). (3)

Then for any domain ̟ ⊂⊂ Ω, (or ̟ = Ω = RN ), there exists a constant

C = C(̟,N, q) > 0 such that

u(x, t) ≤ C t−1/(q−1) in ̟ × (0, T/2) . (4)

If moreover q < (N + 2)/N, then, for any domain ̟ ⊂⊂ Ω, there exists a

constant C = C(̟,N, q, u) > 0 such that

u(x, t) ≤ C t−N/2 in ̟ × (0, T/2) . (5)

In order to obtain such estimates, it is clear that the methods of [6] fail: they
are based on the decreasingness of an energy function, so that it is impossible
to reverse the time. Our proof is based on Bernstein techniques, still used in
the study of the behaviour of the solutions of the elliptic problem in Ω with an
isolated interior singularity x0 :

∆w + wq = 0 in Ω\ {x0} . (6)

2



In [7], Gidas and Spruck showed the estimate

w(x) ≤ C |x− x0|−2/(q−1) near x0,

when q < (N + 2)/(N − 2), by proving that w satisfies Harnack inequality.
This method has been further explored in [5]. If moreover q < N/(N − 2), the
Harnack property implies the estimate

w(x) ≤ C |x− x0|−(N−2)
, near x0,

which can be obtained more simply, see [10] and [8]. As in [5],[7],[4], we use the
Bochner-Wietzenböck formula in order to obtain suitable estimates on the total
gradient of u. Up to now, our proof is limitated to the case q < N(N +2)/(N −
1)2, but we hope to extend it up to the case q < (N + 2)/(N − 2).

2 Proofs of the results

We write equation 1 under the form

ut = ∆u+Hu in Ω × (0, T ) , (7)

withH = uq−1. As for the elliptic singularity problem, the idea is to give suitable
integral estimates of the coefficient H, that means to obtain a good estimate of
some power of u. In that aim, the crucial step is the estimate of the gradient
term uq−1 |∇u|2 . In [4], using the Böchner-Wietzenböck formula,

1

2
∆
(

|∇v|2
)

= |Hess v|2 + (∇∆v).∇v, (8)

we showed the following.

Lemma 2 Let G be any open set of RN . Then for any function w ∈ C2(G),
any nonnegative ξ ∈ D(G), and any reals d,m such that d 6= m+ 2,

[

2(N −m)d− (N − 1)(m2 + d2)
]

4N

∫

G

ξwm−2 |∇w|4

−N − 1

N

∫

G

ξwm (∆w)2 − [2(N − 1)m+ (N + 2)d]

2N

∫

G

ξwm−1 |∇w|2 ∆w

≤ m+ d

2

∫

G

wm−1 |∇w|2 ∇w.∇ξ +

∫

G

wm∆w∇w.∇ξ +
1

2

∫

G

wm |∇w|2 ∆ξ.

Using this Lemma, we show the essential interior estimate.
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Lemma 3 (Estimate of the gradients) Let u ∈ C2,1(Ω×(0, T )) be a positive

solution of 1, and G be any domain of RN , such that Q = G× (t1, t2) ⊂ Q ⊂
Ω × (0, T ). Assume that 3 holds. Suppose ζ ∈ D(Q) with value in [0, 1] and let

r > 4. Then there exists a constant C = C(N, q, r) > 0 such that

∫ ∫

Q

ζru−2 |∇u|4 +

∫ ∫

Q

ζruq−1 |∇u|2 +

∫ ∫

Q

ζru2
t

≤ C(

∫ ∫

Q

ζr−2uq+1(|∇ζ|2 + |ζt|) + C(

∫ ∫

Q

ζr−4u2(|∆ζ|2 + |∆ζ|2 + ζ2
t )). (9)

Proof. Let us apply Lemma 2 to w = u = u(t, .), with ξ = ζr = ζr(t, .), for
any t ∈ [t1, t2] , with m = 0 and any real d 6= 2:

[

2Nd− (N − 1)d2
]

4N

∫

G

ζru−2 |∇u|4

−N − 1

N

∫

G

ζr (∆u)
2 − (N + 2)d

2N

∫

G

ζru−1 |∇u|2 ∆u

≤ d

2

∫

G

u−1 |∇u|2 ∇u.∇(ζr) +

∫

G

∆u∇u.∇(ζr) +
1

2

∫

G

|∇u|2 ∆(ζr).

Now from 1,

−
∫

G

ζr (∆u)2 = −
∫

G

ζr∆u(ut − uq)

= X +

∫

G

∇u.∇(ζr)ut −
∫

G

uq∇u.∇(ζr) − q

∫

G

ζruq−1 |∇u|2 ,

with

X = X(t) =

∫

G

ζr∇u.∇ut =
df

dt
− P, (10)

where

f = f(t) =
1

2

∫

G

ζr |∇u|2 , P =
1

2

∫

G

(ζr)t |∇u|2 .

Hence we deduce

a

∫

G

ζru−2 |∇u|4 + b

∫

G

ζruq−1 |∇u|2 (11)

≤ −N − 1

N
X +

(N + 2)d

2N
Y +

1

N
Z − 1

N
V +

d

2
W +

1

2
R,

where

a =

[

2Nd− (N − 1)d2
]

4N
, b =

[(N + 2)d− 2(N − 1)q]

2N
,

Y =

∫

G

ζru−1 |∇u|2 ut, Z =

∫

G

ut∇(ζr).∇u,
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V =

∫

G

uq∇(ζr).∇u, W =

∫

G

u−1 |∇u|2 ∇(ζr).∇u, R =

∫

G

∆(ζr) |∇u|2 .

If N ≥ 2, since q < N(N + 2)/(N − 1)2, we can chose d such that

2(N − 1)q

N + 2
< d <

2N

N − 1
.

Then for any N ≥ 1 we have a > 0 and b > 0, which allows to get an estimate
of the crucial term

∫

G ζ
ruq−1 |∇u|2 . Now we bound some of the right-hand side

terms of 11 with Hölder inequality. For any ε ∈ (0, 1) , there exists C(ε) > 0
such that

V ≤ ε

∫

G

ζruq−1 |∇u|2 + C(ε)

∫

G

ζr−2uq+1 |∇ζ|2 ; (12)

W ≤ ε

∫

G

ζru−2 |∇u|4 + C(ε)

∫

G

ζr−4u2 |∇ζ|4 ; (13)

R ≤ r(r − 1)

∫

G

ζr−2 |∇ζ|2 |∇u|2 + r

∫

G

ζr−1∆ζ |∇u|2 (14)

≤ ε

∫

G

ζru−2 |∇u|4 + C(ε)

∫

G

ζr−4u2 |∇ζ|4 + C(ε)

∫

G

ζr−2u2 |∆ζ|2 .

On another part, multiplying equation 1 by ζrut and integrating over G, we
find from 10

∫

G

ζru2
t = −X +

dg

dt
− Z − S = P − Z − S +

d(g − f)

dt
, (15)

where

g = g(t) =
1

q + 1

∫

G

ζruq+1, S =
1

q + 1

∫

G

(ζr)tu
q+1.

And we can bound P and Z by

P =
r

2

∫

G

ζr−1ζt |∇u|2 ≤ ε2
∫

G

ζru−2 |∇u|4 + C(ε2)

∫

G

ζr−2u2ζ2
t ; (16)

Z = r

∫

G

utζ
r−1∇ζ.∇u ≤ 1

2

∫

G

ζru2
t +

r

2

∫

G

ζr−2 |∇ζ|2 |∇u|2 (17)

≤ 1

2

∫

G

ζru2
t + ε2

∫

G

ζru−2 |∇u|4 + C(ε2)

∫

G

ζr−4u2 |∇ζ|4 .

Substituting 16 and 17 into 15, we see that

1

2

∫

G

ζru2
t ≤ d(g − f)

dt
+ 2ε2

∫

G

ζru−2 |∇u|4

+ C(ε2)

∫

G

ζr−2ζ2
t +

r

q + 1

∫

G

ζr−1uq+1 |ζt| .
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At last

Y =

∫

G

ζru−1 |∇u|2 ut ≤ ε

∫

G

ζru−2 |∇u|4 +
1

4ε

∫

G

ζru2
t (18)

≤ 1

2ε

d(g − f)

dt
+ ε

∫

G

ζru−2 |∇u|4

+
C(ε2)

2ε

∫

G

ζr−2ζ2
t +

2r

(q + 1)ε

∫

G

ζr−1uq+1 |ζt| .

Substituting 10,16,18,17,12,13 and 14 into 11, and assuming that ζ takes its
value in [0, 1] , we find with new constants C(ε),

(a− ε)

∫

G

ζru−2 |∇u|4 + (b − ε)

∫

G

ζruq−1 |∇u|2

≤ −N − 1

N

dg

dt
+ C(ε)

d(g − f)

dt
+ C(ε)

∫

G

ζr−2uq+1(|∇ζ|2 + |ζt|)

+ C(ε)

∫

G

ζr−4u2(|∆ζ|2 + |∇ζ|4 + ζ2
t ).

Then there exists constant C = C(N, q, r) > 0 and two real constants Ci =
Ci(N, q, r) such that

∫

G

ζru−2 |∇u|4 +

∫

G

ζruq−1 |∇u|2

≤ C1
dg

dt
+ C2

df

dt
+ C(

∫

G

ζr−2uq+1(|∇ζ|2 + |ζt|)

+ C(

∫

G

ζr−4u2(|∆ζ|2 + |∆ζ|2 + ζ2
t )).

Integrating this relation between t1 and t2, and observing that f(ti) = g(ti) = 0

because ζ ∈ D(Q), we deduce the estimate of the terms
∫ ∫

Q ζ
ru−2 |∇u|4 and

∫ ∫

Q
ζruq−1 |∇u|2 . Then the estimate of

∫ ∫

Q
ζru2

t holds from 15, and 9 holds.

Now the estimate of uq−1 |∇u|2 implies an interior estimate of u2q.

Lemma 4 (Estimate of the power) Under the assumptions of Lemma 3 with

r > 4q/(q − 1), there exists a constant C = C(N, q, r) > 0 such that

∫ ∫

Q

ζru2q ≤ C

∫ ∫

Q

ζr−4q/(q−1)(|∇ζ|2 + |∆ζ| + |ζt|)2q/(q−1). (19)

Proof. Multiplying equation 1 by ζruq, we obtain

∫

G

ζru2q =
dg

dt
− S + V + q

∫ ∫

Q

ζruq−1 |∇u|2 ,
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hence from 9, with a new constant C = C(N, q, r),
∫ ∫

Q

ζru2q ≤ C

∫ ∫

Q

ζr−2uq+1(|∇ζ|2 + |ζt|)

+ C

∫ ∫

Q

ζr−4u2(|∆ζ|2 + |∆ζ|2 + ζ2
t ).

Now 19 follows from Hölder inequality.

The estimate of the power in turn implies Harnack inequality.

Lemma 5 Under the assumptions of Theorem 1, u satisfies a parabolic Harnack

inequality inside Ω × (0, T ) : there is a constant C = C(N, q) > 0 such that for

any t ∈ (0, T ) and any ball B(x, 3ρ) ⊂ Ω, with
[

t− 9ρ2, t+ 9ρ2
]

⊂ (0, T ) ,

max
B(x,ρ)×[t−8ρ2, t−7ρ2]

u ≤ C min
B(x,ρ)×[t−ρ2, t]

u. (20)

Proof. Let 0 < t < T and x ∈ Ω and ρ > 0 such that B(x, 5ρ) ⊂ Ω and
(

t− 10ρ2, t+ 10ρ2
)

⊂ (0, T ) . Let us apply Lemma 3 with G = B(x, 4ρ), t1 =
t−10ρ2, t2 = t+10ρ2, and chose some r > 4q/(q−1). We take ζ(x, t) = ϕ(x)ψ(t),
with ϕ ∈ D(G) , ψ ∈ D [(t1, t2)] with value in [0, 1] and ϕ ≡ 1 on B(x, 3ρ), ψ ≡ 1

on
[

t− 9ρ2, t+ 9ρ2
]

and |∆ϕ|+ |∇ϕ|2 + |ψt| ≤ C(N)ρ−2. Then from we get the
estimate

∫ ∫

B(x,3ρ)×[t−9ρ2, t+9ρ2]

Hs ≤ C ρN+2−2s, (21)

where s = 2q/(q − 1) > (N + 2)/2, since q < (N + 2)/(N − 2). From Aronson
and Serrin [2], this implies the Harnack inequality 20.

Now we can reach the final result.

Proof of Theorem 1 Let t < T/2 and ρ2 = t/10. From 20 and 21 we get

u(x, t) ≤ C ρ−2s/(q−1)s = C t−1/(q−1),

for any x with B(x, 3ρ) ⊂ Ω . This implies in particular that 4 holds for any
domain ̟ ⊂⊂ Ω (or ̟ = Ω = R

N).
On another part u ∈ L∞

(

(0, T/2) ;L1
loc(Ω)

)

. Indeed consider any domains
̟ ⊂⊂ ̟′ ⊂⊂ Ω. Following the proof of [9], let λ̟′ be the first eigenvalue and
Φ̟′ be the first positive eigenfunction of −∆ with Dirichlet conditions on ∂̟′,
with

∫

̟′
Φ̟′ = 1, and set X(t) =

∫

̟′
u(., t)Φ̟′ . Since ut − ∆u ≥ 0, we find

that d(e−λ
̟

′ tX(t))/dt ≥ 0, as ∂Φ̟′ < 0. Hence X(t) is bounded on (0, T/2),
and

∫

̟

u(., t) ≤ C

∫

̟′

u(., T/2), (22)

where now the constant C depends also on u, hence u ∈ L∞
(

(0, T/2) ;L1(̟)
)

.
From [2], this implies 5 . Let us recall the simple proof: under the assumption
3, the Harnack inequality also implies that

u(x, t) ≤ Cρ−N

∫

B(x,2ρ)

u(., t). (23)
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Hence from 23, for any x ∈ ̟ and t small enough,

u(x, t) ≤ Cρ−N ≤ Ct−N/2

and 5 holds . If q < (N +2)/N, the estimate 5 is better than 4, unless Ω = R
N .

Remark Recall that the Harnack inequalities proved by Aronson and Serrin
are obtained by the well-known Moser technique. As for the interior singularity
problem 6, one can give a shorter proof of estimate 5 in case q < (N + 2)/N,
which does not uses Lemmas 1 to 3. As above, for any domains ̟ ⊂⊂ ̟′ ⊂⊂ Ω,
we have u ∈ L∞

(

(0, T/2) ;L1(̟)
)

. Moreover u ∈ Lq ((0, T/2) ;Lq(̟)) , since
for any t < T/2 ,

∫ ∫

̟×[t,T/2]

uq ≤ C

∫ ∫

̟′×[t,T/2]

uqΦ̟′ ≤ C

(

X(T/2) + λ̟′

∫ T/2

0

X

)

.

Now we write equation 1 under the form

ut = ∆u + f. (24)

Taking t < T/2 and ρ2 = t, we apply an L∞ estimate due to Andreucci, Herrero
and Velazquez, see [1], which is also based on Moser technique: for any solution
of equation 24, and any σ > (N + 2)/2, there is a constant C = C(N, q, r) > 0
such that for any x with B(x, 2ρ) ⊂ Ω,

sup
B(x,ρ)×[t/2,t]

u(x, t) ≤ C
1

|B(x, 3ρ/2) × [t/4, t]|

∫ ∫

B(x,3ρ/2)×[t/4,t]

u

+C

(

∫ ∫

B(x,3ρ/2)×[t/4,t]

fσ

)ν/σ

×
(

∫ ∫

B(x,3ρ/2)×[t/4,t]

uq

)(1−ν)/q

,

where ν = (N + 2)σ/ [(N + 2)σ + q(2σ − (N + 2)] . Now taking f = uq with
q < (N + 2)/N, one can choose σ ∈ [(N + 2)/2, q/(q − 1)] . By an iterative
argument it follows that

sup
B(x,ρ)×[t/2,t]

u(x, t) ≤ C
1

|B(x, 3ρ/2) × [t/4, t]|

∫ ∫

B(x,3ρ/2)×[t/4,t]

u

+ C

(

∫ ∫

B(x,3ρ/2)×[t/4,t]

uq

)2/(N+2−Nq)

;

see [1]. In particular, it implies that for any x ∈ ̟, and t small enough,

u(x, t) ≤ C
(

ρ−N + 1
)

≤ C t−N/2,

which again proves 5.
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