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ROTATIONALLY SYMMETRIC HYPERSURFACES WITH
PRESCRIBED MEAN CURVATURE

MARIE-FRANCOISE BIDAUT-VERON

Here we study the singular radial solutions of the pre-
scribed mean curvature equation

DΊJ
div . = + f[u) = 0, in RN/{0},

y/l + \Du\2 K J n J

where / is increasing and has the sign of u near infinity. We
prove the local existence of a generalized singular solution
under slight growth assumptions on /. In the physical case
TV = 2 we prove that the curve is asymptotic to the curve
r\f(u)\ = 1. We also study the global behaviour of the solutions.

0. Introduction.

In this paper we consider the question of existence and behaviour of radial

singular solutions of the prescribed mean curvature in WN (N ^ 2) :

(o.i) d i v ( > / i + p ΐ t | 2 ) + / ( ΐ t ) = 0 i n R i V / { 0 } '

with

(0.2) u(x) ->• -oc as | | x | | - > 0 ,

where the function / G C°(R) Π C2(R/{0}) will be assumed throughout to
satisfy the following assumptions:

(0.3) There is a real a ^ 0 such that / is negative and increasing on

(—oo, α), with lim f(u) = — oo.

(0.4) Jim^ £ ( « ) / / > ) = <>.

For radial solutions r — \\x\\ -> u(r), the equation in WN/ {0} reduces to an
ordinary differential equation in (0, -foo) :

(0.5) rι~N ( r^" 1 ^ / V Γ T ^ ) 7 (r) + f{u{r)) = 0,

29
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du
where u' = —- obviously equivalent to

dr

(1 + uz)ό'J> r yl + u2

The linear case f(u) = (N — ϊ)u'is well-known problem of the pendent
liquid drop. Using fixed point methods, Concus and Finn proved in [CF1]
the local existence of a singular solution U under the form

(0.7) U(r) = -1- ^

Recall that U has an asymptotic expansion in powers of r but the formal
Taylor series is divergent.

Using the same way we prove in Appendix A the local existence of a
singular solution u of (0.6) when / is a power:

(0.8) f(u) = \\u\q~lu, with ςr, λ > 0;

these rather tedious calculus lead to a solution U given by

~ ^ ) +c λ r 2 + 1 /«( l + o(r)),

where cλ = (λ/(JV- l))1/q(q{N + 1) + 2)/2(JV-l). Notice that r\f(U(r))\
converges to (N — 1) when r goes to 0, which could be foreseen from (0.6).

Another way for finding singular solutions is to consider the regular prob-
lem: let (wo,n)nGN be any sequence of reals smaller than α, with limn_^+oo wo,n
= —oo; ifun is a solution of (0.6) near the origin such that

(0.10) un(0)=uo^ <(0) = 0,

one has to find the limit behaviour of (un)neN. This method was first inves-
tigated in the linear case when N = 2 by Concus and Finn [CF3] and more
recently by Finn [F5]. The main difficulty is that the size of the existence
domain of un shrinks to 0 as n goes to infinity, because of the occurence of
vertical points near the origin. In fact from the geometrical point of view, we
can extend the notion of (regular or singular) solution of equation (0.6): we
ask more generally for a (72-embedded hypersurface in M.N x R, rotationally
symmetric, whose mean curvature at each point (x,u) is given by —f(u)/N.
As in [CF3] we are led to the parametrical system

(0.11) dU

-J- = -f(u) - (N - \)r~x s in^,

du

fa
- r i

— = cosψ,
^ ds
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where s is the arc-length of a vertical section of the hypersurface, and φ is the
angle between a tangent to the section and the r axis. When φ E (0, π) the
hypersurface can be represented by a function r of u, and (0.11) is equivalent
to

(012) A m °
dr

where r = —-, see [CF3], [APS]. The regular solutions are now represented
anan

by the solutions r(u) of (0.12) on (uo,n?β) such that

(0.13) lim r[u) = 0, lim r{u) = +oo.
U*Uo U-*UQ

When N = 2 and /(u) = w, Concus and Finn proved in [CF3] that some
sequences of regular solutions converge uniformly on any compact of R~ to a
singular solution of (0.12). They used very accurate local comparison meth-
ods with Delaunay surfaces, also called unduloids, which are rotationally
symmetric surfaces with constant mean curvature. A shorter proof in [F5]
shows that moreover the singular solution is locally a function u of r; and it
is asymptotic to the curve u = — 1/r, see Fig. 3.

In Section 1 we give the essential tools for our study, which are energy
functions of the problem. One of them is the energy function for the equation
satisfied by υ!/y/1 + u2, used in the linear case in [B2] and also in [W2].
Two other energy functions are of Pohozaev type. In fact they can be de-
fined in the nonradial case. By integration they lead to Pohozaev relations,
extending the Green's identity given in the linear case and dimension 2 in
[F5].

In Section 2, our main result concerns the existence of singular solutions
for a large class of functions /. We prove the following:

When u ι-> \u\~ι^N~λ^ f{u) is nondecreasing for large \u\, there exists a
singular local generalized solution of (0.1), (0.2) under the form u -» r(u).

To prove this result we use one of the Pohozaev functions and some proper-
ties of unduloids in dimension N; we study those hypersurfaces in Appendix
B, extending some results of [HY].

In Section 3 we study the local behaviour of any singular local solution
of the form u —> r(u). In the physical case N = 2 we prove (under suitable
assumptions on /) that r\f(u)\ converges to 1 when u goes to —oc. Our
proof differs from the proof of [F5] when f{u) — u, since it does not use
unduloids. In the case (0.8) of a power, we give also some estimates on the
angle φ and the difference \f(u)\ — 1/r. They allow us to prove that, if q < 1,
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any singular solution is a function r —> u(r) (as long as u < 0), which means
that it has no vertical point. In dimension TV, we extend a part of those
results, generalizing the estimates of [CF2], [B2] and simplifying the first
proofs.

In Section 4 we suppose that / is increasing from K to M. with /(0) = 0,
and give some global properties of the regular solutions, such as: global
existence, estimate on the incidence angle if the curve crosses the axis u — 0,
estimates on the maximal diameter of the regular drops. This extends among
others the previous results of [CF3], [B2], [F3], [F6].

Acknowledgement. I am very grateful to S. SALAMEH for his contribu-
tion in numerical studies and drawings.

1. Energy functions for regular or singular solutions.

We call regular solution of the parametrical system (0.11) any solution such
that r > 0 for small s > 0, with initial conditions

(1.1) \imφ(s) = 0, limu(s) — u0 < α, limr(.s) = 0.
s—>-0 s—>0 s—>Ό

From [CF3], [APS] we have local existence and uniqueness of such a solution
expressed in terms of r —> u(r). Its satisfies locally sinφ > 0, hence it is also
given by a function u —>> r(u).

Now we call singular solution of (0.11) any solution such that r > 0, φ G
(0, π) for small s > 0, with initial conditions

(1.2) limu(s) = — oo, limrfs) = 0;

in other words we look for a local positive solution u -> r(u) of (0.12) such
that limu_^_oo r(u) = 0.

Several questions follow naturally: does there exist such a solution? What
is its maximal extension? Do we have \ims^oψ(s) = | ? Does the solution
define a function r -> u{r)Ί

To deal about it, we shall use energy functions linked to the system. Some
of them, used for the regular problem, are classical, see [CF3] in the linear
case, and [APS] in the general case. The first one comes from integration

of — sin Ψ : Set
as

(1.3) E{s) = F{u)-

where F(u) = J^ f(t) dt\ then E is nonincreasing, since

(1.4) ^(s) = -(N - l)r~l sin2 φ.
as
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The second one comes from integration of rN~λ— cos^ : let us define
as

(1.5) J(s) = rN~ι sin^ + rNf(u)/N,

then

rJT rN

(1.6) —(*) = — / ( * ) sin^,

therefore J is increasing as long as ψ G (0, π). In fact it is also positive,
which gives an essential estimate for singular solutions as well as for regular
ones:

Proposition 1.1. Any singular (resp. regular) solution r(u) is defined at

least on (—oo,α) (resp. (uo,a)) and satisfies the relation

(1.7) 0 < r | / ( u ) | <Nsinφ.

Proof. Let us recall the proof of [APS] in the regular case and extend it
to the singular one. Near the origin, J is increasing; let ί — lims_^0 J(s) £
[—oo,+oo). Obviously ί — 0 in the regular case. In the singular case ί is
nonpositive, since f(u) ^ 0. Suppose ί < 0; then \imu-+-00{cosψ)(u)/f(u) =
1, since (cos^) = (N — l)r~ι smφ + f(u)\ and COST/J — F(u)/2 is decreasing
for large \u\, which is impossible. Then ί — 0 and J(s) is positive near 0,
which means that (1.7) is satisfied near 0. Let (—oo,α) (resp. [—uo,a)) its

maximal existence set. If a < α, then r and —— cannot vanish, from (1.5),
as

(1.6); hence liminfr_^ r(u) > 0, and \r\ is bounded by N/r\f{u)\\ then a is
not maximal. Hence a ^ a and (1.7) is true up to a. D

The function E gives also useful properties of the vertical points. The
proofs of [APS] are similar in the singular case:

Proposition 1.2. The extremal points of any singular (resp. regular)
solution r(u) are isolated in (—oo,α] (resp[uo,a\). There is an ΰ0 < 0 such
that any regular solution has more than one extremal point when u0 < u0,
one exactly when u = ΰo and no extremal point when UQ > UQ, if a > ΈQ.
Denoting by (un) the decreasing sequence of the extremal points, finite or
infinite, we have

r(u2n)\f(u2n)\ > N - 1 > r(u2n
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for any maximal point u2n(n = 0 or 1) and any minimal point u2n+ι(n ^ 0).
And the sequences (r(u2n)) and {r(u2n+1)) are decreasing with n.

Remark 1.1. Between two consecutive extremal points the curve crosses
the "basic curve" r — — (N — l)/f(u) exactly one time. It has no inflection
point on the set of u where r\f(u)\ > N — 1, from (1.9).

The third energy function was used in the linear case in [B2] to prove the
global existence of singular solutions, and in [W2] to study the stability of
the regular ones. It is new in the nonlinear case. In fact it is the energy
function for the equation obtained by derivation of (0.6) by respect to r (or
(0.12) by respect to -u); let us denote

(1.8) ξ — cosφ = r

then (0.11), (0.12) imply

(1.9) rξ = rf(1 + r 2) 3 / 2 - -r^- = rf{u) + {N-1)^

Let us define, for any u < α, the function

(1.10) G(u) = r-^ξ2 + ^-^ξ2 - r2f(ι

then

(1.11) G(u) = -(N-n"- ς ς °-"-Λ ς

Notice that G is nonincreasing when ξ ^ 0 and f(u) ^ 0.
The last functions we shall use in our study are Pohozaev type functions:

for any q > 0 and ί ^ 0 we define, for any u < α,

(1.12) φs,g(u)=rN (δ- cosφ

then

(1.13) φs,q(u) = - r , ({N + q + 1) cos2 φ - Nδ{q + 1) cos φ

[q + 1) sinψ v
+ (N -l)q~l + (qf(u) - uf(u))r sinφ)

then φδiQ is nonincreasing when q ^ 1/(N — 1), u —> \u\~qf(u) is nondecreas-

ing, and 0 ^ δ ^ δq, where

(1.14)

Ί , if q^ (N + 2)/{N-2),
o

it not.
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This function is very close to the function

(1.15) φδq{u) = rN (δ - cosφ + F{u) + -^—u^^] ,
V q +1 r )

which gives by differentiation,

rN-l

(1.16) φδq{u) = ——((N + 9 + 1) cos2 φ - Nδ{q + 1) cos φ
[q + 1) sinφ

+ (N — l)q — 1 + N cosφ(uf(u) — (q + ΐ)F(u))).

The function VΊ,(ΛM-2)/(ΛΓ-2)
 w a s used for the study of ground states r —> u(r)

of (0.6) in [NiSl]; and ΦI,(N+2)/(N-2) f° r ground states u -> r(u) of (0.12) in
[APS], because cosφ does not keep a constant sign.

Remark 1.2. Consider more generally the nonradial case of an orientable
C2 hypersurface S in RN+1, given by X(xχ,... , XN, XN+I), governed by the
equation

(1.17) ASX = /(xjv+i)n,

where n is the unit exterior normal to *S, and Δ5 is the Laplace-Beltrami
operator. Suppose that for any u in an interval / C (—00, a) the hyperplane
Hu : XN+I = ^ cuts 5 in an hypersurface Σ u of R^" 1 , enclosing a domain
Ωu of RN, regular enough. Let n be the unit exterior normal to Σu in Hu,
and φ be the angle between S and Hu on Σ w . For any q > 0 and <5 ̂  0, let
us define the function

(1.18) *„(«)

Then we prove in [B3] that, for any

(1.19)

smφ
+ q + l) cos2 V> - N(q + l)δ cos ̂  + (N - l)g - 1)

hence Φ ^ is nondecreasing when q ^ 1/(ΛΓ — 1), u —>> |n| 9 /(n) is nonde-

creasing and δ ^ δq.
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In particular if S has a finite minimum u0 G /, we get by integration
between u0 and u £ I the following Pohozaev relation:

(1.20)

({q + l)δ + uf(u))\ίlu\ - ^—- I X.ncosφdΈu + u ί smψdΈu

- j y (qf(u)-uf(u))dVu,

where Su is the part of S under Hu, and Vu is the domain of ]RiV+1 with
boundary Su U Ωu.

When δ = 0, N = 2 and /(w) = w we find again the Green's identity of
Finn, see [F5].

Remark 1.3. It is interessant to notice that, when (and only when) N — 2
and f(u) = ifc, then, up to a constant, the function G coincides with the
Pohozaev function φOil :

1 1 Γ*OS Ίl)

(1.21) G(u) - (/>o,i(u) + - = ~(™ + s in^) 2 + - ^ - r2 cosφ.

Hence in this case the use of G, or </>0?i, is equivalent to the use of Green's

identity of [F5].

Remark 1.4. Let us mention at least an energy function used in [FLS]:

it is
Γ(s) = r 2 ( i V - 1 } (sin2 φ + 2F{u) cos φ - F2{u)) ,

which is nondecreasing when F(u) ^ 2, since

— (s) = 2(N- l)r2N-3F(u)(cos2 φ - F(u) cos φ + 1).
as

2. Existence results.

First we consider the case where / is a power, given by (0.8), where λ
is a positive parameter. The change of variables u(r) — a~1υ(a,r): where
a — (X/(N — l)) 1 /^" 1 ) reduces the problem to the case where λ = TV — 1.
Using the fixed point method of [CF2] we get the following, see Appendix
A:

Theorem 2.1. For any q > 0, there exists a local solution r —)> U(r) of the
equation

n.tf AT 1 n,1
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such that

(2.2) U(r) =

Remark 2.1. As in [CF2] one can obtain an asymptotic expansion
for U(r) in powers of r near 0, which only contains powers of the form

r2+ι/q+2p(i+i/q) (p £ ftym Notice that U is asymptotic to the curve r -» -r~ιlq

and more precisely 1/r + f(U)/{N - 1) = 1/r - \U\q = 0(r 1 + 2/*). A last U is
locally concave. The question of uniqueness is open. In [B2] we proved the
uniqueness among locally concave functions when q = 1.

The fixed point method gives accurate results but we could not extend it

to more general functions /. Now, following the idea of [F5] we start from

the regular solutions.

Theorem 2.2. Suppose that

(2.3) u -> \u\~ι^N~1^ f{u) is nondecreasing on (—oo,α);

then there exist b < a and a sequence of regular solutions of (0.12) converg-

ing uniformly on any compact set of (—oo, b] to a singular solution of the

equation.

Proof. For any u0 < α, denote by r(.,u0) the regular solution starting from

u0. Let b < a — 1 such that |/(6 + 1)| > l/2\/2, and let d < b. We are going

to prove as in [F5] that

(2.4)There exist ε > 0 and A < d such that inf r(u,u0) > ε.

Suppose it is false. Then for any sequence εn -» 0 there are un G [rf, 6], uOjn —>

-co, such that rn = r (2nJ^o,n) — m^[d,b] r(u,uo^n) ^ εn. From (0.4)we can

take d large enough such that f{u)/f2(u) < 1 /(l + y/2) on (—oo,rf) and

|/(d) | > 2, and take ε0 < min (l/2, (N - l)/3y/2\f(d - 1)|) . Then we claim

that

(2.5)

There is a n n G [rf — 1,6 + 1] such that r n = r ( ϋ n , ̂ 0,n) ^ εn and r n

is a minimal point of the curve r(., uOin).

Indeed either rn is a minimal point, or un = 6 and r(6, uo,n) < 0, or 2 n = d

and r(cί, iλo,n) > 0. When un — b (resp. S n = d) there exists a un G [6,6 4- εn]

with r n = r(nn,w0,n) < rn and r n = f(un,uOin) G (-1,0] (resp. wn G
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[d:d — εn] with rn < rn and rn E [0,1)), since r remains positive. When
un = 6, we get r n / ( l + r 2 ) 3 / 2 ^ 2|/(ιzn)| > 0, from (0.12). Then for u-un > 0
small enough, we get again r / ( l + r 2 ) 3 / 2 ^ 2|/(ι*n)|, and this is true as long as
r is negative, since 1/(̂ )1 < | / ( ^ n ) | a n d r2 is decreasing. By integration we
deduce that r/y/l + f2 + l/\/2 ^ 2\f(b+l)\(u — un), hence there is a minimal
point in [6,6 + 1]. When ϋn = d we get again rn > 0, and for u — un < 0
small enough we have r/(l + r 2) 3/ 2 ^ 3|/(un)| — |/(w)|; and this is true as
long as r is positive and 1/(̂ )1 = 3|/(nn)|. By integration we deduce that

(2.6) l/y/2-r/ x/ΪTT2 ^ F(un) - F(u) + 3\f(un)\(un - u)

Z{Z\f(un)\-\f{u)\){un-u).

Then there is a minimal point in [d— 1, <i] : if not, taking u = un — l/\f(un)\ in
(2.6), we would have l/>/2 ^ 3- |/(u) |/ |/(u n ) | ; but l/ |/(u) | = l / | / ( « n ) | ( l -
(f/f2)(ξn)) with £„ € (u,un), hence \jyβ ^ 2 - 1/V2, which is false. Then
(2.5) is proved.

Now we use for r(.,uo,n) the Pohozaev function φ = ΦO,I/(N-I) defined in
(1.12) by

(2.7) φ(u) = r^ f-cosV> + ̂ -j^uf{u) + (N- l)u^-^\

from (2.3) </> is decreasing with it and

By integration we get

(2.9) N Γ rN-ιC^-du ^ \ψ(un)\ = 0 (ε^"1) ,
JUOn smψ

since un remains in [d — 1,6 + 1]. On the other hand we can also choose ε0

such that ε0 < (N - l)/|/(d - 1 - NMy/2)\, where M is defined in App.
B, Lemma B.2. From Lemma B.2, there is an unduloid Ωfcn, with extremal
points (i4n)rn), (vn,σn), with υn < un,σn > rn and curvature \f(vn)\/N. As
in [F5] it lies below the curve r(.,τzo,n) w i ^h an angle θ G (f,VO f o r anY
r e (rn,σn); then

^ / r^"11 cos φ\ dr

rN'x\ cosθ\ dr.

s m t/ 7

fn N'1
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But the last integral is bounded below by a positive constant; indeed from
Lemma B.I, the sequence (vn) is bounded, hence we can extract a sub-
sequence (vu) of limit v. From Lemma B.2, we have limA;̂  = 1, limσ^ =
N/\f(υ)\ > 0; then the curves Ωku tend to a lower quarter circle with center
(0,?;) and radius N/\f(υ)\. Hence we get (2.4) by contradiction.

Now from (1.7) we have, for any (u^u0) E [d, b] x ( — oo,yl],

(2.10) vT+7^<iV/r |/(«) |<ΛΓ/ε|/(6) | ,

hence

(2.11) sup \r(u,uo)\ < +oo.
[d,b]x(-oo,Λ]

From equation (0.12) it is the same for the higher derivatives. Then for any
sequence of regular solutions of (0.12), with initial data uo^n —> —oo, there
is a subsequence converging uniformly on any compact set of (—00,6] to a
positive function u —> r(u): solution of (0.12) on (—00, 6]. Moreover, going
to the limit in (1.7) for regular solutions, we get 0 < r(u)\f(u)\ ^ Nsinψ,
hence limu_>_oo r(u) — 0 and u —)• r(u) is singular solution of (0.11). From
Proposition 1.1, it can be extended to ( — 00, α) and satisfies (1.7) on the
whole interval. D

Remark 2.2. The assumption (2.3) is linked to the Pohozaev function

φ\ it means that / does not increase too slowly at infinity. It is satisfied in

particular by any function / such that x (-)• |/(—x)\ is convex for large x > 0.

When f(u) — \u\q~λu, it reduces to the condition q ^ l/(iV — 1). Comparing

with the result of Theorem 2.1, we conjecture that (2.3) is not needed.

Remark 2.3. The method of comparison with an unduloid such Ωfc>n,

defined implicitely, was used in [F5] and also in [I] to study the bounds of

the radius r(0) when N — 2 and f(u) = \u\q~ιu with q > 1.

3. Local behaviour of the singular solutions.

Here we look at the behaviour near —00 of any singular solution u —> r{u).
Either it is decreasing near —00, hence it defines a function r —> u(r). Or
the sequence of extremal points is infinite, and r(u) crosses the basic curve
r = — (JV — I)/f(u) infinitely many times.

Our best results concern the case N = 2. At first, under simple assump-
tions on /, we prove that the curve is asymptotic to the basis curve:

Theorem 3.1. Suppose that N = 2, and f satisfies

(3.1) f/feL'i-oca) and Jrn^ (////) («) = 0.
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Then any singular solution satisfies

(3.2) lim r(u)f(u) = - 1 ,
u—y — o o

(3.3) lim r(u) = 0 f that is lim ψ(u)

Proof. Here we use the energy function defined in (1.10) for any singular
solution r(u) : let

(3.4) G(u) = r 2 — + — - r2f(u)ξ,

where ξ = cosφ; then, since TV = 2,

(3.5) (u) = -2r/(«) - ra/(«)ί.

From Proposition 1.1 and assumption (3.1) the function u —)• r2f(u)ξ is

integrable on (—oo,α). Set

(3.6) r2f(w)ξdw;

then the function H = G 4- VF is nonincreasing; it is bounded near — oo;

indeed from (1.7), (1.9) we have

(3.7) rξ(u) = r/(u) ^ 3 ;

moreover r 2 / ( u ) | ^ 2f(u)/f2(u), hence from (0.4)

(3.8) lim r2f{u) = 0.

Then if has a finite limit £/2 at —oo, and from (3.6), (3.8), we get

(3.9) lim (r2ξ2 +ξ2)=e>0.

Suppose first that £ is positive. Let b < a and

(3.10)
Jb

u dw

r(w)
< 0 for any u < 6;

then, from (1.7), N\v[u)\ ^ F(u) - F(6), and lim^^.oo υ(w) = -oo. Taking

v as a new variable, (3.9) becomes

(3.11)
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If ξ keeps a constant sign, then limί;_>_oo ξ — dty/l and limv_>_oo — = 0;
dv

since r = £/>/l — £2 then there is a c > 0 such that | r(u) | > c for large
\u\] this is impossible since limu_^_oor = 0. Then ξ is necessarily oscillating
near infinity and it least period in v goes to 2π. Let (un) be the decreasing
sequence of the zeros of ξ less than b : we can suppose that r2n — r(u2n) is
a maximal point, hence r 2 n | /(^2n) | > 1 a n d r2n+i is a minimal point with
r2n+ι\f(u2n+ι)\ < 1.

From (1.7), (3.10) we have

(3.12)

υ(«n) - υ(«n +i) = /
^lίn + 1

this implies the estimate

1 /"""

^ - / I/H
^ ^^n + 1

1
^ « |/(«n)|(«n ~ «n+l);

(3.13) un - un+1 5Ξ
5τr

for large n.

Since l//(i/n +i)-l//(ίin) = {un+1-un)f(Xn)/f2(λn) for some λn G
we get, from (0.4) and (3.13),

lim f(un+1)/f(un) = 1;
i—y+oo

(3.14)

hence for large n,

(3.15)

Now the function

(3.16)

is in Lι{—oc, α), since i ϊ decreases to a finite limit. Let us look at its integral

between u2n+ι and u2n; let wn E (^2n+i7^2n) be the unique intersection

point with the basis curve: r(wn)\f(wn)\ — 1. From (1.9), ξ is decreasing on

[wn,u2n], and from (3.7), (3.9), Kmξ2(wn) = i(l - i/A) E [3^/4,3/4]. Then

ξn = ξ{wn) E (vί/2, ^7/8) for large n. Now r|/(w)| ^ 1 on [w2n,u2n\] then

(3.17) > fU2n rf(u) — du

di
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From (3.9) we have on [ξn/2,ξn]

ξ2/f2(u) ^r2ξ2Sl7φ(>-eύt,

for large n; hence there is an ηn G [^2n+i,^2n] such that

(3.18)

=
f(ηn)
\f(ηn)

from (3.13), (3.15). Let us prove that the series Σ \ ι (̂ 2n ~ 2̂71+2) is

divergent: let τn (resp. σn) be a maximal (resp. minimal) point of / on

]' Then there is a ζn E [τn,<7n] such that

then from (3.13), (3.15),

f(σn) - f(rn)\ //(CO S 10π

from (3.1) we get | / K ) - / ( τ n ) | ̂  f(ζn)/2 ^ /(τn)/2, then /(r?n) ^ /(rn)/2,
and

(3.19) / j ^ L ( U 2 n _ U 2 n + 2 ) ^ Γ

Hence the series is divergent, since / / | / | is not integrable at —oo. By con-

tradiction we deduce that

(3.20)

lim Gίu) = lim (r2ξ2 + ξ2) = lim ((r/(u) + sinί/')2 + cos2 V) = 0.

Then we get (3.2) and (3.3). D

Remark 3.1. Assumptions (0.4), (3.1) are satisfied in particular by f(u) —
—e'u' for any positive A:, by the powers f(u) = \u\q~1u for any q > 0, by
f[u) = — log(l 4- |ί/|), etc . . . similar assumptions were introduced in [A].
When / satisfies (0.3), (0.4) and is convex or concave, then the assumption
f IP G Lι{—oo,α) is equivalent to: / 2 / / 3 G i x (—oo,α), since

(3.21) Γ (f/f2)(t)dt=(f/f2)(u)+2 Γ (f2/f)(t)dt;
J — oo J— oo
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and then (/// 2 ) ' = f/f - 2/2//3 G L\-oo,a).

Remark 3.2. Under the assumptions of Theorem 3.1, we have obtained

(3.20). By integration we get from (3.4), (3.5) the following relation on

(-oo,α) :

(3.22)

ς — r j\U) \ -t- fi / rj\τ) . -- a τ — r J \u) ~ z / r J vrJs a τ

J —oo V -L ζ J— oo

Sr*f2(u)+2 Γ r2\f(t)
J -co '

Hence with (3.2) we deduce the estimates

(3.23)

|ξ| = | c o S 1 / Ί ^ (2

(3.24)

dt.

( / ru \ l/2\

(f/f) («) + y/2 (y ^ (///2) (ί) dίj J (1 + °(1))
When / is convex for large \u\ (which means that x —> | / ( — x ) | is concave
for large x > 0) we deduce from (3.22) that

(3.25) max (\ξ\, \rf(u) - 1|) g

When / is a power we can give more accurate estimates and prove that, in
case of convexity, the singular curves u -* r(u) cannot admit a vertical point
on (—oc,α); in the linear case we find again the result of [F5] by another
method.

T h e o r e m 3.2. Suppose N = 2 and f(u) — l ^ " 1 ^ for any real u. Then:
(i) // 0 < q 5ί 1, any singular curve can be expressed as a function

r —>• u(r) as long as u ^ 0.
(ii) For any q > 0, the singular curves u —>• r(u) satisfies the following

estimates near — oo, uΛ/ι c = \q — l\y/q/8(q + 1) :

(3-26) - ^ Γ ί 1 + °(!)) ^ cos V ^ ^ j ^ ( l + o(l)),

(3.27) \\u q -

Proof. When q = 1, then VF = 0, G is nonincreasing from 0, hence non-
positive. From (3.4) we have ξ(u) ^ 0 for any u G (—oo, α). If ξ(ΰ) = 0
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for some u < 0, then ξ(u) = 0, G{u) — 0 and G Ξ O O Π (—00,14); that

means that Γ Ξ O and rf(u) + 1 = 0 on (—00, ΰ) , which is impossible. Hence

ξ(u) = r(u) > 0 and the curve can be represented as a function r —» ?/(r) as

long as ix < 0.

Now consider any q > 0. Let ε > 0; from (3.2), (3.22) we have for large

\u\

(3.28) rψ + (ζ -
u pi

1)2 + T^Γ Γ TΓ\1 -f- ε j-00 \t\
dt

Γ
J —

|9+2
dt.

Prom Holder inequality we deduce that, for any a > 0,

(3.29) r2ξ2+ (ξ-qr2\u\q~1)2 + (-^--q\q-l\a(l+ε)\f y- .

taking a =
\q-l\(l+ε)2

(or any a > 0 if q = 1) we get

M-)" +

hence the estimate (3.26); and

\rξ\ = r\u \i —

+

1

8(9 + 1 ) / |« |« + 1

but y/T=φ-l = 0(l/|u|2<«+1)), hence (3.27).
Suppose now that q < 1. From (3.5), if there is any u < 0 such that

G(n) = 0, then at this point

(3.30) ξ /y/1 - ξ2 = -{1 ~ q)r/ 2\u\ <0,

and if \u\ is large enough, ξ = —1-9 (1 4- o(l)). This is impossible from
| |

the estimate (3.26), since c < (1 - ?)/2. Then for large \u\, G is decreasing,
negative, and ξ is positive from (3.4). In fact G is decreasing and negative
on (—oo,α), since it is decreasing as long as ξ > 0 and nonnegative when
ξ = 0. Then <̂  is also positive on (—oo, a) and the curve can be expressed in
terms of a function of r on this interval. D
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We cannot extend our previous results to the case N > 2, because the

derivative of the function G defined in (1.10) contains the new term

— (N — 2)rξξ2 / Λ/1 — ξ2 which has the sign of ξ and is not necessarily inte-

grable. However, we can give precisely the behaviour of those of the singular

solutions which have no vertical point near — oo; we prove also that when /

is convex (for example / is a power less than one), such a solution has no

vertical point whenever u < a :

Theorem 3.3. Suppose that N ^ 2 and f satisfies

(3.31)

Then:
(i) Any radial local solution r —> u(r) of (0.1), (0.2) satisfies

\κj.%jΔι\ 1 1 1 1 1 / I \ Li I I 1 V _L I ,

(3.33) limιx'(r) = +oo.

(ii) When f(u) ^ 0 on (—oc,α), i/ can 6e extended as a function of r on

whole (0,r(a)), and satisfies on this interval the estimates

(3.34) 0 < ξ - cosφ < 2r2f(u)/(N - 1),

(3.35)

(iii) When f(u) = (N — l)\u\q ιu (q > 0), then u satisfies near the origin

the estimates

(3.36) 0 < ξ ^ {2q + c+)r{q+ι^q(l + o ( l ) ) ,

(3.37)

where c+ = (q - ΐ)+yJq/S(q + 1).

Proof. 1st step. By hypothesis the singular solution is a function r —>• u(r)

near 0, which means that ξ(u) > 0 near —oo. Consider the function G defined

in (1.10) by

from (1.11) we get

(3-38)
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Prom (3.31) we can define the function

(3.39) V(u)= Γ r2(fY(w)ξdw;
J -oo v '

and the function K = G — V is nonincreasing, and bounded near — oo :

from (1.7) (1.9) we have \rξ(u)\ ^ 2N — 1 and linv^.oo r2f(u) — 0, since

r2f(u) ^ Nf(u)/f2(u). Then K has a finite limit £/2 at —oo; hence defining

υ by (3.10), we get, as in (3.11),

(3.40) lim (r2ξ2 + (N - l)ξ2) = lim ( (^λ + (N - l)ξ2) = L

av
Since ξ > 0 near —oo, we have lim^^.oo ξ = J&/(N — 1) and li

0; if ί Φ 0 then ίi ;(r) = Λ/1 — ί2/^ has a finite limit, which is impossible
since u is singular. Hence ί — 0 and we get (3.33), (3.34) from (1.9).

2nd step. Suppose f(u) ^ 0 on (—oo,α). From Proposition 1.1 the curve
can be extended as a function r of u on (—oo,α). Here the function G is
decreasing near — oo, with limu_>_oo G(u) — 0. It remains decreasing and
negative and ξ remains positive on (—oo, α), as at the end of the proof of
Theorem 3.2. We get (3.34) from (1.11), and also

+ N-l) 2(N-1)'

hence
N-l rf(u)

d
now ξ = ——Λ/1 — ξ2, then, from the convexity of /,

dr

hence (3.35).

3rd step. Suppose f(u) = (N - l^u^u (q > 0). Let ε > 0. Prom (1.10),
(1.11) and (3.22) we extend (3.28) under the form

(3.41)

J V - 1
hdt

url? + Ml - 1)+(1 + ε) f dt,
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hence we get (3.36) (3.37) as in Theorem 3.2. D

Remark 3.3. As in the linear case the estimates (3.36), (3.37) have to be
compared to the very accurate estimates concerning the singular solution U
constructed in Theorem 2.1: from (2.1) it satisfies

(3.42)

ξ = cosφ =

and

(3.43) \U\q - 1/r - -

where m = {{3N + l)q2 + (N + h)q + 2)/2(iV - 1) and μ = q(q(N + 1) +

4. Some global properties.

Here we give a global existence result extending those of [CF3], [B2], [APS]:
we shall suppose that a = 0 in (0.3), more precisely that

(4.1) / is increasing on R from — oo to +oo, with /(0) = 0.

The assumption (2.3) can be written under the form

(4.2) J{u) Ξ> (N - l)uf(u), for any u < 0,

a slightly weaker assumption on / (whenever /(0) = 0) is

(4.3) (N - l)uf(u) ^ NF(u), for any u < 0.

Theorem 4.1. (i) Under the assumptions (0.4), (4.1), each regular or sin-
gular solution of the parametrical system (0.11) can be uniquely extended as
a function u —>> r(u) up to a real ΰ^.0.

(ii) Ifu = 0, then limu_>0 ^(u) — +° ° and limw-̂ >o ϊ(u) = -hoo.
(iii) Ifu > 0, then F(u) < 2, r = limu_^r(?i) is finite and limu^.o ^(u) =

+oo.
Let Γx = r(0) δe Λ̂e intersection point with the r axis, and ψι — ψ(0) be

the incidental angle. When φx E [π/2,π), Λ̂e cwr̂  e Λαs α unique minimal
point u e (0, ΰ). WTien ^i ^ (0,τr/2), ίΛe curί β can δe expressed as a function
r -+ i4(r) on [ri, +oc), wiίft limr_>+oo ix(r) = l im r ^ + o o τx'(r) = 0.

(iv) Assumption (4.3) implies φι < π/2.
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(v) Moreover, when f satisfies

(4.4) qf(u)^uf(u), for any u < 0, where q>l/(N — 1),

then φι can be estimated by

(4.5) cos Vi > 2((N + q + 1)((N - l)q - l))1/2/N(q + 1).

Proof, (i) From Proposition 1.1 each solution is defined as a function r(u) at
least on (—oo,0); now (0.12), equivalent to (0.11) as long as s'mφ > 0, can
be written as a system

(4.6)

(r(u),/>(«)) = (p, (N - 1)(1 +P

2)/r + /(«)(1 + pψ*) = H(«, (r,p)),

where H is continuous in u and C1 in (r,p) o n l x ((0,+oo) x R); then
the solution has a unique extension to a maximal interval with upperbound
u ^ 0. From (1.3) (1.4), F(ύ) — cosφ decreases to a finite limit when u goes
to % hence F(τz) is bounded and ΰ is finite; then cos^ has a limit, r2 has a
limit λ G [0, +oo]. In fact λ is infinite, because of the maximality.

(ii) Suppose ΰ = 0. When iz E (-1,0), we know that J{u) > J ( - l ) >
0 from (1.5) to (1.7); hence rN~ι > J ( - l ) ( l + r2) and l i m ^ r = +oo,

liπitt^o r = +oo, liπir^+oo -r- = 1 and limu_^.s = +CXD.

_ dr _
(iii) Suppose now u > 0. For any u G [0, ί/) we have φ G (0, π), since

J(0) > J ( - l ) > 0. Then

(4.7) F{ΰ) -ε< F(0) - cos φx < 1,

hence ε = 1, liπv.^ ^ = 0, F(n) < 2 and lim^^^r = +oo. If li

+oo, then lim^_^̂  (j/j) (u) = (f/f)(u), and J is bounded, which is impos-

sible. Then f = limn^^r is finite. On [0,n) the curve u -> r(u) can only

have one minimal point 2, from (1.9); it is the case when φx G [τr/2,π).

Now consider the case φx < π/2. Then for any s ^ sλ = s(0), the para-

metrical curve cannot have vertical points, since

(4.8) — cos φ < F(ύ) — cos φ ^ — cos φι < 0,

and the curve can be expressed as a function r -> u(r) with r ^ ri, since

0 < cos^i < —- < 1. Now (0.6), equivalent to (0.11), can be written as*a
as

system

(4.9)

(«'(r), w'(r)) - (w, -(N - 1)(1 + u;2)/r + /(«)(! + y;2)3/2) = K(r, («, ω)),
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where K G C 1 ((0, +00) x (K* x R ) ) . The solution has a unique extension
to a maximal interval [rι,r2) where u remains positive. First suppose that
r 2 = +00; f is the unique extremum of u on [r l 5 +oo), then u decreases
to a nonnegative limit λ, and F(u) — cosφ has also a finite limit; hence
limr_>+oo cosφ = l iπv^+ooi^r) = 0, lim r_>+ o ou" = —/(A) from (0.6), and

ds
limr_>+oo u(r) = 0; at last limr_>+oo s = +00 since — > 1, and the para-

dr
metrical curve is completely described. Now suppose that r 2 is finite; then
^(^2) = 0 and φ2 = φ(r2) satisfies \φ2\ < φ\ from (4.8); if φ2 — 0, then

rN~λv!'/Λ/1 + u2) (r) = 0, which is

impossible from (0.5). Near this point, (0.11) is equivalent to (0.12); then
from (4.6) we have local existence and uniqueness, and the curve can locally
be expressed in terms of r —> u(r), since u'{r2) Φ 0. As above, it has a unique
extension to a maximal interval [r2^r3) where u remains negative. By in-
duction, either u has a unique extension to [r^+oo) with a finite number
of zeros rx < r 2 < < rk and limr_)>+oo u(r) = limr_++oo u'{r) = 0; or we
can construct an infinite increasing sequence (r n ) n > x such that u(rn) = 0,
sign u(r) = (-1) 7 1" 1 on ( r n , r n + 1 ) , and \φn\ = \φ{rn)\ > \φn+1\ > 0. If
l imr n = +00 then the curve is completely described for s ^ s1 ? by the func-
tion r —)> u(r) on [r l 5 +00). If l imr n = R is finite, u has a finite limit, since u'
is bounded from (4.8); then limr^Ru = 0, cos^ has also a limit from (1.3)
(1.4); then limr_+Ru' — 0, since v!(rn)uf(rn+1) < 0; and the function u = 0
is an extension of the solution on [i?,+00); it is the unique extension from
(1.3) (1.4). The curve is again completely described on [si,+oo).

(iv) Here we suppose (4.3) and prove that φx < τr/2. If φx ^ φ/2 then
there is a unique maximal point u < 0 on the curve such that r(u) < 0 on
(δ,0) (if φι = | , then 0 is a minimal point). Let r — r(δ); integrating (0.6)
between any r E [Vi,r] and f, we get from (1.7)

(4.10)

pjv-i _rN-isinφ = J'p»-i\f(u)\dp < |/(n)| (rN -rN)/N

<?N-1-\f(u)\rN/N,

which implies

(4.11) |/(u) | < Nr'1 sinψ, Vr G [n,?].

Then from (1.3) (1.4),

(4.12) - F{u) ̂  F(0) - cos^i - F{u)

= -{N - 1) Γ ^ ^ du < -{N - l)uf(u)/N,
J u T
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which gives a contradiction. Then φι < π/2.

(v) Suppose that (4.4) holds. Consider the Pohozaev function φδqiq defined
by (1.12) (1.13); it is nonincreasing whenever u < 0, and its derivative is
nonidentically zero. We have φδq,q(u0) = 0 for the regular solution starting
at u0] and, from (1.7), \im.snpu_¥_oo φδq^q(u) ^ \imu^^oor

N(δ — cos^) = 0
for any singular solution. Then φδq,q(0) < 0, which means c o s ^ > δq, that
is (4.5). " D

Remark 4.1. As a consequence of Theorems 3.3 and 4.1, when f(u) =
l^- 1 ?/ with 9 ^ 1 , the singular solution r —» U(r) constructed in Theorem
2.1 has a unique extension as a function of r on whole (0, +oo), see Fig. 1,
2. The question is opened when q > 1.

Remark 4.2. When / satisfies (4.4) with a q ^ (N + 2)/{N - 2), then
for any singular or regular solution we have u = 0 : the curve cannot cross
the axis u — 0. Indeed, at it was proved in [APS] for the regular case,
considering Φ\Λ(N+2)/(N-2) as above, we would get cosψi > 1 when crossing
the axis, which is impossible; see also [B3] for nonradial solutions.

In the general case, the problem is to determine if u is oscillating or not
is still opened, even for a power. Let us recall what we know up to now:
Suppose f(u) = Iwl9"1^ (q ^ 1/(JV — 1)). From [PuS], either the solution
is oscillating, with an amplitude of the order of r -

2 ( Λ Γ - 1 )/(^+ 3 ) 5 O r keeps an
constant sign, and u — 0(r~ 2/^~^), v! — Q{r"^q+1^^q"1^) at +oo. Since
lim r_> + o o u'(r) — 0, equation (0.1) appears as a small perturbation of the
equation

(4.13) Δu + \u\q-λu = 0;

and in fact we can prove that the behaviour near infinity is the same for the
two equations: when u keeps a constant sign, either there is a c > 0 such
that lim^+oo rN~2u(r) = c, or

lim r2/{q~ι)u(r) = - (2{N - (N - 2)q)/(q - l)2)ι/{q~ι)

r—ϊ-\-oo

(which implies q > N/(N - 2), see [B3]).
When q ^ N/(N—2) (or N = 2) the curve necessarily oscillates around the

axis u = 0, see [NiSl]. However from (4.5) when JV ^ 3 and q — N/(N — 2)
the incidental angle is quite small: ψι < 9.6° when N = 3,4, and less for
larger N.

When N/(N - 2) < q < (N + 2)/(N - 2) the question is opened. Numeri-
cally it seems that all the curves cross the axis, see Fig. 6, 8. But if it is the
case, the angle ψι is very small from (4.5): ψι < 3.9° when N — 3, q — 4,
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ψι < 1.8° when N = 3, q — 4, 5; and ψι goes to zero when q increases to

Serrin [S2] noticed that regular solutions with \uo\ small enough must
oscillate: indeed their slope is small and (0.1) is again a perturbation of
(4.10), which has no ground state in this range. We can give a more precise
result:

P r o p o s i t i o n 4.1. Let f(u) = \u\q'ιu with N/{N-2) <q< (N+2)/{N-2).

Then any regular solution of (0.11) is oscillating for large r, whenever

(4.14) K Γ 1 S (q + 1)(N + 2 - (TV - 2)q)/(N + q + 1).

Proof. Consider the function φ1^q defined in (1.12):

then, from (1.13),

b (c o s ψ -
Now from (1.3)(1.4), for any u > u0, F(u) - cos^ < F(u0) - 1. Then (4.14)
implies that cos^ > ((N — l)q—l)/(N+q+l)] diΏdφ1,q is increasing whenever
u < 0. Suppose that u keeps a constant sign; then u(r) = 0 (r~2^q~1^) and
smφ = 0 ( r - ^ + 1 ) / ^ - ^ ) at +oo, hence φhq{u) = 0 (Γ(("-2)g-(ΛH-2))/(,-i)) .
Then lim^^o φιiq(u) = 0, and φι,q{uo) — 0, which is impossible. D

Remark 4.3. The next question is to determine what happens when
f(u) = M ^ u , with 0 < q < l/(N - 1). Since 1/(N - 1) ^ 1 the singular
solution U has no vertical point, hence φι < π/2. On the contrary for regular
solutions we can see numerically that ψ1 can be greater or lower than π/2,
depending on the initial data u0, or on the value of g, see Fig. 1.

To end this paragraph we give some results about the maximal diameter
of the regular curves, and other related questions, which extend [CF3], [F3],
[F6]. From Proposition 1.2, the maximal diameter is twice the radius ra of
the first maximal point ua under the axis u = 0 (whenever it exists, that is
when UQ < ΰ0). For simplification we only consider the case of a power.

Proposition 4.2. Let f(u) — l^l9"1^, where q > 0. Then
(i) There is a uniform bound for the diameter ra of all the regular solu-

tions.
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(ii) On the interval ί — ί q(N — I ) 2 \/2N — 1 j , 0 ) any regular so-

lution can have at most one maximal point and one minimal point.
(iii) When q > 1/(N — 1) then more precisely

(4.15) ra < N/ (δq(q

where δq is given in (1.14). Moreover, on the interval

any regular solution can have at most one minimal point.

Proof. First suppose that q > 1/(N — 1). Consider the function φδqiQ defined

in (1.12). It is negative and decreasing. Then at the point ua we have, from

(1-7),

δq + K\q+1/(q + 1) < N\ua\/(q + l)r β

hence ra is uniformly bounded by N/(δq(q + l ) ) 9 / ( g + 1 ' . More precisely, there
is a unique inflexion point rσ — r{uσ) on the curve, such that uσ E [ua,0)
and cosV'σ ^ 0. At this point, we have r α | u σ | g = (N — l)smφσ from (1.9)
and φsqΛ{uσ) < 0; then

δq + I cosi/v| + \uσ\
q+1/(q + 1) < N\uσ\ sinψσ/(q + l)rσ

hence

(4.16) δq(q + 1)(N - 1) < \uσ\*+1

then above uσ any regular solution can have at most a minimal point; more-
over ra < N/\ua\

q, hence we get (4.15).
Now consider the general case. Here we follow the proof of [CF3]. Since

ra\f(ua)\ > N — 1 and r(uQ)\f(u0)\ = 0, there is a unique point r 7 = r(uΊ)
on the curve, such that uΊ G {uo^ua)^ rΊ\f(uΊ)\ = N — 1, and sinφ > 0
on (uΊ,ua); then on this interval r\f(u)\>N — l, and there is no inflexion
point, from (1.9), hence ψ > rφΊ. Consider the positive increasing function J
defined in (1.5): we have J(uΊ) > 0, and consequently

(4.17) sinV>7 > (N -1)/N.

But on (uΊ,ua) the curve lies under the "basis curve", hence at the crossing

point, tgφΊ < \u7\
q+1/q{N - 1). Then from (4.17),

(4.18) q(N - I ) 2 /y/2N - 1 < |u 7 | * + 1 ,
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and (ii) follows. Moreover r 7 — (JV - l ) / | ^ 7 | g , then

(4.19) r 7 < RNtq =

Moreover from (1.5)(1.6),

J{ua) — J{uΊ) + q I ——\u\q~1tg/ψdr,

JrΊ N

but J(ua) = ^ " 1 - ^ | ^ α | V Λ Γ < ra~λlNi a n d ^ ^ > ^ ^ 7 O n (ra^Ί)', t h e n

from (4.17),
1 ίTa

J. J r-v
on this interval, we have N — 1 < r\u\q < iV, hence from (4.19)

V^ Z U J r α = CN,q y a -^N.q J 5

where c ^ = g(ΛΓ - l)2~ι/q/(N + l/q)y/2N - 1 when g ^ 1, and cN,q =
g(iV - l^N^yiN + l/q)y/2N - 1 when q < 1. And (4.20) implies an
uniform bound for rα . D

Remark 4.4. From (4.15) we establish that for large g, the maximal

diameter of the curves is small, which could be foreseen numerically, see Fig.

4, 5, 7.

Appendix A. The fixed point theorem.

Proof of Theorem 2.1. It is the direct generalization of the proof of [CFl].

Let

(1) c = {q{N + 1) + 2)/2(ΛΓ - 1), and k = 2 + l/q.

We write equation (2.1) as a system of unknown (?i,?;, α 0 , «i) :

(2)

ju(r) = -r-γli + (c + ao(r))rk,

\υ(r) = ρ-iΓ-<9+1>/« + k(c + ai(r))rk-\

(3)

(aι{r) = ao(r) + k'ιra'0(r),

\v'(r) = -(N - 1) (luίrJI'-^ίrJίl + t;2(r))3/2 + r-^(r)(l + v2{r))) .
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We write it under the form

(4)

ίαri(r) = ao(r) + ra'Q(r)/k,

\r-β ( rfc( r^αo(Γ))')' + γr~ka0(r) = F(r),

where we choose

(5) j

and F is given in function of a0, en by

(6) F(r) = (k - l)q-ιr-k - k{k - l)crk~2 + (β - ί)(β -

+ Λ(2/3 - k)a1{r)rk-2+γa0{r)r-k

-(N-l)

where u, v are defined by (2). Now introduce the kernel of equation (3): set

a = (tto,Q!i). Then the system takes the form

(7) α = T(α) = (T 0 (α),T 1 (α)),

where

(8) T0(α) = r 1 ^ Γ rβ¥{τ) sin - ^ — (r1-* - r1"*) dr,
7o K — 1

( 9 )

T i ί α ) = (1 - ^A-^Toία) + k-χτι-0-k Γ τβF(τ) cos -r^-rir1-" - r1^) dr.
Jo k — 1

Let σ E (0,2(k - 1)) be fixed. For any M > 0 and any R E (0,1] we set

(10) JBAf>Λ = {α = (θo,αi)eC70([0,Λ],R2) | |α | |

= max |r~σα0(^)l + max laArM < M .

We are going to prove that for any M > 0, there is an R = β(M) such that

T is a strict contraction of BM,R(M)

Notice first that for R(M) small enough, ?/(r) is negative for any a G

BM,R(M) Then let us compute

(11)
F(r) = (Jfc - lJρ-V"* - A(Λ - l)cr*-2 + (β - ί)(β - k)ao(r)rk-2

+ k(2β - k)ai(r)rk~2 + γao(r)r-k + r2~3kH
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where

(12)

H(α,t) = (N-

with

-pt)q(l + mt + s2t2f/2 -

(13) p — c + a0, m = q(2kc + q + 2ka,ι), s — qk(c

Then we develop H up to the order 3 in £ and obtain

(14)

H (α, =(N- l)q^{m/2 - qp - a

+ (N - l)<Γ3(s2 + 3m2/4 -

mt + s 2 ί 2 ),

- l)p2 - 2ms)

where, for R(M) small enough, for any α E BM,R(M) and r € [0, i2(M)],

(15) |Q(α(r),r)
dQ

dαr

{α(r),r)
dQ

dα.x

(α(r),r) ύ C{M),

<93H
and C(M) depends only on M; (15) comes from suitable estimates of

———-, ———-. When using (14) in (11), with our choice of parameters 7, c

and /?, the coefficients of r~k,a$r~k, a\rk~2 vanish, so that we get

(16)

F(r) = \rk~'2 + P(a(r))rk~2 + Q(a(r),r)r3k~4,

where

(17)

λ = -k(k - l )c + (iV - l)(3g/4 + (A: - 3)c - β ρ - ^ c 2 + (q - l)q~2c2)/2,

(18)

(19)

= μα0 - 3(iV (N -

μ = (β-k){β- l) + (N-l)g-

Now we can estimate the right terms of (8) (9). For any function φ on
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(0, +00) we set

(20)

S(φ)(r) = jΓ φ(τ) sin -j^L. (τi-* _ ri-*) d τ ,

(21)

C(φ)(r) = Γ φ(τ) cos ^ ( T 1 - * - r1-*) dr,
JO AC — 1

and get for any real p > —k the relations

(22) C ( r " ) = 7 " 1 ( p + Λ)S(r'+ f c-1),

(23) S (r>) = 7"1 (/> + fc) - 7"2(P + 2fc - l)(p + fe)S (

They imply the estimates

(24) S (r") = 1-
1

r"
+k + 0 {r

p+zk'2),

(25) C (r") = 7 - 2 ( p + k)rp+2k~ι + 0 (r"+ 4 ί :-3) .

Then

2( f c- 1 ) + 0

moreover from (10) and (15) we deduce the following estimates, with new
constants C(M) :

|S {P{a)rβ+k-2)\ + |C (P(α)r 0 + *- 2 ) | ^ C{M)rβ+k~1+σ,

|S (

Then for any a € BMtR(M),

(26) | |T(α)| | S C(Af) (ϋ(M) 2 ( < : - 1 ) - σ + R{M)k~ι + R{M)σ) ,

hence T applies BM^M^ into itself for R(M) small enough. Then we esti-
mate ||T(α) — T(δ)| | for any a,a € BMtR(My Prom (10) and (15) we get

|S ((α0 - α o ) ^ + t - 2 ) | + |C ((α0 -

|S ((αoα: - αoα 1)r^+*- 2)| + |C ((

^C(M)rβ+k~1+σ\\a-a\\,

|S ((α2 - S 2 ) r ^ - 2 ) | + |C ((α2 - α2

|S ((Q(a, r) - Q(a,r))r^+3fc-4)| + |C ((Q(a, r) - Q(a,
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hence

(27) | |T(α) - T(α)| | ^ C(M) {R{M)k-χ + R{MY) \\a - S||,

and T is a strict contraction of BM^M) for R(M) small enough. Conse-
quently it has a unique fixed point a. From (6) (8), α 0 = T0(α) is in fact in
C°°([0,i?(M)]), so that the function

(28) U{r) = -r" 1/* + (c + α o (r))r 2 + 1 ^,

where c is given by (1), is a solution in (0,i?(M)] of equation (2.1), which

ends the proof. D

Remark. With (16) we get the third term in the expansion of U (and the

others, as in [CF1]):

(29) U(r) = -r~1/q + cr2+1/q + Xj-2r4+3/q(l + o(r)),

where 7, λ are given by (5), (17).

Appendix B. Unduloids in dimension TV.

The unduloids are rotationally invariant surfaces of constant positive mean
curvature ί/*, without any double points and periodic in u. Hence they are
given by the periodic solutions u —»• r(u) of the equation

By integration we get

rN-l

(2) -WT~ - HrN = A,
l + r2

where necessarily 0 < A < (TV - l ) " - 1 ^ 1 - " /NN. Set

(3) A = ^ ^ ^

where k G (0,1). Denote by τ/> the angle between a tangent to the curve and

the r axis, hence cosψ — r Iy/l + f2. Then from (1) (2), it is easy to verify

that k is the maximal value of | cos -0| on a periodic loop, attained at the

point r = ̂ /l-k2(N - ΐ)/NH.
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k.
Let T — T(H, k) be the smallest period of the unduloid Ωk with parameter

u

u ,
α

α

4
I

1

1
1

1 v

K
1

1

1
J
1
1
\
t

r r

J \
y \

/ 1
1

1

i

^ ^ 1
\ I k near 1

M
1

u

uα

k near 0

Then from (2) the curve is symmetric by respect to u — u + T/2 where u
is any extremal point, and T is given explicitely in terms of an hyperelliptic
integral:

/

rβ / o \ -1/2

[(Hr + Arι-N) - l) dr,
where rajrβ are two extremal points, the two solutions of the equation Hr +
Arι~N = 1. In order to study the period function T we use another way:
when N = 2 any unduloid is the curve traced by the focal point of an ellipse
when it is rolled on the ϊ/-axis. Hsiang and Yu extended this classical result
to the dimension N in [HY]: for any unduloid Ω there exists unique polar
coordinate graph Γ, θ -» p = /(#), such that Ω is the trace of the origin by
rolling Γ on the u-axis. Then Γ is a periodic curve of period r, T is equal to
the arc length of Γ between θ = 0 and θ — r, and the extremals of r and p
are the same. From [HY], Theorem 3, there is a β > N2{H/(N - 1))2~2/N

such that

^Λ =β(w-H)2/N -w2,
aw J

where w = l/r.
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Then we get

= 2 Γ (i - /ry/ J V~2(i - HPy2'NY1/2 dp.

But pa = r α , p/3 = r^ are the solutions of the equation p2~2/N(l — Hp)2/N =
β~λ, hence β = A~2j/N, and we get a second formula for T :

(6) T = 2 f"

Now we can prove the following lemma, which extends the results of [F5] to
any dimension N :

Lemma B l . The period function of an unduloid Ωk with curvature H and
parameter k is given by

(7) T(H,K) = I(k)/H,

where I is a continuous positive function on [0,1].

Proof. For any k G (0,1), we make the change of variables r = (N — 1)(1 +
t)/NH in formula (6), and get (7), with

~1/2

where

(9) K(t) = (1 + t) 2 ~ 2 / 7 V (l - (TV - l ) t) 2 / 7 V ,

and ta(k),tβ(k) are the two solutions of the equation K(t) — 1 — A;2, with
- 1 < tα(Λ) < 0 < ^(fc) < 1/(N - 1).

Now the two functions ta,tβ are differentiable in (0,1), and we can write,
as in [BB],

ί & - «•««> ί1 - ί^f
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Then / is a continuous function on (0, 1), obviously positive. We have to
prove that / has positive limits at 0 and 1. Let for any q G (0,1),

(11)

then W is nonnegative. When N = 2, W(q) = 2\J\ — q2 and we find again

the result of [CF3], [F5]: I{k) = 2E(k), where E{k) = / 0

π / 2 Vl - k2 sin2ωdω;

and / is decreasing from π to 2 on [0, 1]. Now look at the case N >

2 : we get easily limq^0 q~λtβ(q) = —limq_+0 q~ιta(q) = 1/yjN — 1, hence

l im^o W(q) = 2/y/N - 1. Now we have l i m ^ i ta(q) = - 1 , limg_>i tβ(q) =

1/(N - 1), then ]imq^1(l/K'(tβ(q))) = 0 since N > 2. We get

- 1),

hence l i m ^ ! W(q) = 0. The function W is bounded on (0, 1) and we can

apply the Lebesgue theorem, since (1 — r 2 ) " 1 / 2 is integrable. We obtain

= 2 and l i m ^ 0 I(k) = π/VN - 1. D

R e m a r k . From (5), Hsiang and Yu had given in [H, Y] an upper bound
for T, which means that I(k) ^ 2(π + 1). Here we prove that / has also a
positive lower bound in (0, 1). Incidentally one could expect the form (7)

N - 1 NH
of function T, since the change of variables r(u) — s(υ), υ = — — - u

JS H iV — 1
reduces equation (1) into the equation of an unduloid of curvature N — 1 :

(1 + (ds/dυ)ψ2 s y/1 + (ds/dv - rr n

hence T(H, k) = ^-^T(N -l,k).

In the following lemma we construct an unduloid of comparison in dimen-

sion JV, whose curvature is given implicitely, as in [P5], [I] when N = 2.

L e m m a B2. Let b < a,va < β and ra be small enough: such that

(12)
0 < ra < (N - 1) / | / (υa - NM/ 2\f(b)\), where M - max I(k).

G [ 0 1 J

Then there exists an unduloid Ωfc with consecutive extremal points ( w α , r j ,

(v/3,Γ/3), with Vβ < vα, Γ/3 > r α and curvature \f(vβ)\/N. Its parameter k is

given by the relation

(13) k2 = 1 - ϋΓ(-l + r e | /( u / 3 ) |/(iV - 1)),
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where K is defined in (9).

Proof. If Ωfc exists, its period is given by

(14) T(k) = 2(va - υβ) = NI(k)/\f(v0)\.

For any k E [0,1] there is a unique v(k) < υa such that

(15) 2(va-v(k)) = NI(k)/\f(v(k))\.

Indeed the continuous function v —ϊ y{υ) = 2(va — v) + NI(k)/f(v) is de-
creasing from (0.3), and \\rav^^ooy{v) — +oc and y(va) < 0. Moreover
v(k) > υa-NI(k)/2\f(b)\- then from (12), ta = -l + rQ\f(υ(k)\/(N-l) < 0.
Consequently ra is a minimal point of Ωk if and only if K(ta) = 1 — k2. Let
us define for any k E [0,1],

(16) θ(k) = (1- K(ra\f(υ(k))\/(N - 1) - 1))1/2

Then from Lemma Bl, Θ takes [0,1] continuously into itself, and has a fixed

point &, and ΩΓ satisfies Lemma B2. D
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N = 2.OO

Q = O.1O

U<O> = -16.0

thick width = singular solution

nσrnal width = non singular solution

Figure 1.

N = 2.OO

Q = O.3O

U<O> = -8.OO

thick width = singular solution

nornal width = non singular solution

Figure 2.
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N = 2.OO

q = 2.OO

U<0> = -5.OO

thick width =

nornal width =

singular solution

non singular solutic

Figure 3.

N = 2.OO

Q = 1.OO

U<0> = -8.OO

thick width = singular solution

nornal width = non singular solutic

Figure 4.
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R= l.OO

N = 3.OO

Q = 3.10

U<0> = -3.OO

thick width = singular solution

πomal width = non singular solution

Figure 5.

N = 3.OO

α = 3.10

U<0> = -3.OO

thick width = singular solution

nor rial width = non singular solution

Figure 6.
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N = 3.OO

q = 4.OO

U(O> = -3.OO

thick width = singular solution

norMal width = non singular solution

Figure 7.

N = 3.OO

d = 4.OO

U<0> = -3.OO

thick width = singular solution

nornal uidth = non singular solution

Figure 8.
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