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Abstract : we prove the existence of embedded minimal surfaces of arbitrary
genus g ≥ 3 in any flat 3-torus. In fact we construct a sequence of such surfaces
converging to a planar foliation of the 3-torus. In particular, the area of the
surface can be chosen arbitrarily large.

1 Introduction

Triply periodic minimal surfaces in euclidean space are invariant by three inde-
pendant translations. In the nineteenth century, five embedded triply periodic
minimal surfaces were known to H.A. Schwarz and his school. In 1970, Alan
Schoen described 12 further families of examples. The arguments were com-
pleted by H. Karcher who also proved the existence of many further examples.

If M is a triply periodic minimal surface and Λ is the lattice generated
by its three periods, then M projects to a minimal surface in the flat 3-torus
R3/Λ. Conversely, a (non-flat) minimal surface in R3/Λ lifts to a triply periodic
minimal surface in R3.

A natural question is whether there exists non-flat minimal surfaces in any
flat 3-torus. The examples constructed by H.A. Schwarz, A. Schoen and H.
Karcher are very symmetric by construction, so they only construct examples
in very particular 3-tori. In 1990, W. Meeks made the following conjecture ([6],
conjecture 3.2)

Conjecture 1 (Meeks) For any flat 3-torus R3/Λ and any integer g ≥ 3 there
exist an embedded, orientable minimal surface of genus g in R3/Λ.

A related question asked by H. Karcher is the following ([4], question 4)

Can triply periodic embedded minimal surfaces of arbitrary large genus exist
in a nontrivial way – or does the genus stay bounded if one divides out by all
translational symmetries ?

In this paper we prove that the conjecture is true and answer this question :

Theorem 1 For any flat 3-torus R3/Λ, and for any integer g ≥ 3, there exists
a sequence of orientable, compact, embedded minimal surfaces (Mn)n∈N in R3/Λ
which have genus g. The area of Mn goes to infinity when n → ∞. Moreover,
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Figure 1: A minimal surface of genus 4 in the cubic 3-torus. One of the two
planes is represented with dots for clarity.

if g ≥ 4, the only translation of R3/Λ which leaves Mn invariant is the identity
(so Mn lifts to a triply periodic minimal surface in R3, whose lattice of periods
is precisely Λ).

Here is what is known about this conjecture. It is known that a minimal
surface of genus one in a flat 3-torus must be flat (a plane) and minimal surfaces
of genus two in flat 3-tori do not exist ([6], corollary 3.1). W. Meeks has proved
([6], corollary 10.1) that the conjecture is true in the genus 3 case by using a
min-max argument. Then by taking covers he concluded that the conjecture
holds for arbitrary odd genus g ≥ 3. In other words, if Λ′ is a sub-lattice of Λ, a
genus 3 minimal surface in R3/Λ lifts to an odd genus minimal surface in R3/Λ′.
The case of even genus remained open. Also, these examples do not answer the
question of H. Karcher.

Let us now explain the idea of the construction, which was suggested to the
author by Antonio Ros. Consider a plane in space and its projection in the flat
3-torus R3/Λ. Depending on the plane, the area of the projection may be finite,
or infinite. Choose the plane so that the area is very large. In the quotient,
the plane will wrap around many time, and what we see locally is many parallel
sheets very close to each other. Take another plane parallel to the first one. Our
main result, Theorem 4, allows us to open small catenoidal necks between the
two planes (on both sides), producing an embedded minimal surface in R3/Λ
(see figure 1). Its genus is equal to the number of necks plus one.

It turns out that the placement of the necks is not arbitrary : they must
satisfy a balancing condition which we will explain. One of our tasks in this
paper is to give examples of balanced configurations of necks with arbitrary
number of points.

The proof of the main theorem is in the spirit of recent gluing constructions
[8],[9]. We use the Weierstrass Representation of minimal surfaces in its simplest
form : consider a Riemann surface Σ and three holomorphic 1-forms φ1, φ2, φ3

on Σ. Then

X(z) = Re

∫ z

z0

(φ1, φ2, φ3) mod Λ
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defines a conformal minimal immersion X : Σ → R3/Λ provided the following
conditions are satisfied

∀γ ∈ H1(Σ), Re

∫

γ

(φ1, φ2, φ3) ∈ Λ

φ2
1 + φ2

2 + φ2
3 = 0

|φ1|
2 + |φ2|

2 + |φ3|
2 > 0

The first equation says that X is well defined and the second that it is conformal
hence minimal since it is harmonic. The third one says that X is a regular
immersion.

We define Σ by opening the nodes of a (singular) Riemann surface with
nodes. We define φ1, φ2, φ3 by prescribing their periods. We solve the above
equations using the implicit function theorem.

The main difference with previous constructions is that in [8] we used the
Weierstrass representation in its classical form

X(z) = Re

∫ z

z0

(
1

2
(g−1 − g)dh,

i

2
(g−1 + g)dh, dh)

where dh is a holomorphic 1-form and g is a meromorphic function on Σ (the
Gauss map). Now on a high genus Riemann surface it is more natural to de-
fine holomorphic 1-forms (by prescribing periods) than meromorphic functions
(where we have to face Abel’s theorem). In fact in [8] the Riemann surface Σ and
the Gauss map g were defined at the same time, but that made the construction
a little bit artificial. Also, the construction had some technical complications
in the case where the Gauss map had multiple zeros or poles. It seems more
natural to use φ1, φ2 and φ3 and avoid meromorphic functions completely.

The paper is organized as follows. In section 2 we explain the balancing
condition and state our main theorem. In section 3 we prove the conjecture of
Meeks. In section 4 we give examples of balanced configurations. In particular
we prove the existence of triply periodic minimal surfaces with no symmetries
beside translations. In section 5 we prove our main theorem.

Acknowledgements : This project was initiated when I visited Granada in
2003. It’s a pleasure to thank Antonio Ros for the invitation and for suggest-
ing that the conjecture of Meeks could be solved by desingularising a planar
foliation of the 3-torus. I would also like to thank Laurent Mazet for carefuly
reading the first draft of this paper, finding several mistakes and suggesting
many improvements.

2 Main result

2.1 Simply periodic surfaces

Our main theorem in this paper is an adaptation, to the triply periodic case,
of a construction of simply periodic minimal surfaces with ends asymptotic to
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horizontal planes [8]. This construction may be described as follows.

Consider an infinite number of copies of the plane R2, labeled Pk, k ∈ Z. In
each plane Pk, choose a finite number nk of points pk,i, 1 ≤ i ≤ nk. Identify,
for each (k, i), the point pk,i in Pk with the same point in Pk+1. This creates
an abstract singular 2-manifold with double points (or nodes) which we call
M0. Consider the map X0 : M0 → R3 which sends each point (x, y) ∈ Pk

to the point (x, y, 0). We may think of X0 as a minimal, isometric immersion
of the singular 2-manifold M0 into R3. We want to desingularise this singular
minimal surface, namely : perturb M0 into a regular 2-manifold Mε and X0

into a minimal immersion Xε : Mε → R3. Intuitively, we do this by pushing
slightly the planes away from each other and replace each double point by a
small catenoid.

We assume the following periodicity : there exists an even integer N ≥ 2
and a vector T ∈ R2 such that for all (k, i), pk+N,i = pk,i + T . We construct a
family of minimal surfaces Mε which are periodic with period (T, ε), and have
N ends asymptotic to horizontal planes in the quotient. (Here N must be even
so that the quotient is orientable). We call the collection {pk,i} a simply periodic
configuration. We call pk,i a point at level k of the configuration. Note however
that all points pk,i are in R2. It will be convenient to identify R2 with C and
see each point pk,i as a complex number.

For the construction to work, the configuration must satisfy a balancing con-
dition which we now explain. Let ck = 1/nk. Let ω̃k be the unique meromorphic
1-form on C ∪ {∞} with nk−1 simple poles at pk−1,i with residue ck−1 and nk

simple poles at pk,i with residue −ck. (We assume that for each k, the points
pk,i, pk−1,j are distinct). Let

F̃k,i =
1

2
Respk,i

(
(ω̃k)2

dz
+

(ω̃k+1)
2

dz

)

Explicitely,

ω̃k =

nk−1∑

i=1

ck−1

z − pk−1,i

dz −
nk∑

i=1

ck
z − pk,i

dz

which gives after a straightforward computation

F̃k,i = 2

nk∑

j=1

j 6=i

(ck)2

pk,i − pk,j

−

nk+1∑

j=1

ckck+1

pk,i − pk+1,j

−

nk−1∑

j=1

ckck−1

pk,i − pk−1,j

The analogy with 2-dimensional electrostatic forces suggests that we call F̃k,i a
force. Each point pk,i interacts with the points pk,j at the same level and with
points pk±1,j at the levels below and above it.

Definition 1 A simply periodic configuration is balanced if all forces F̃k,i are

zero. It is non-degenerate if the differential of the map p → F̃ has real co-rank
2, where p and F̃ stand for the collection of pk,i and F̃k,i for 1 ≤ k ≤ N and
1 ≤ i ≤ nk.

4



The forces are clearly invariant by translation of all points, so vectors of the
form (v, v, · · · , v), where v ∈ R2, are in the kernel of the differential. The non-
degeneracy condition asks that these are the only ones. The following theorem
is proven in [8]

Theorem 2 Given a balanced, non-degenerate, simply periodic configuration,
there exists a smooth family of embedded simply periodic minimal surfaces Mε,
for ε > 0 small enough, which have period (T, ε). The quotient has genus n− 1,
where n = n1 + · · · + nN is the total number of necks, and has N horizontal
planar ends. Moreover, Mε converges to the singular minimal surface M0 when
ε→ 0.

•

? ?? ?

◦

Figure 2: A simply periodic configuration with N = 2, n1 = 4 and n2 = 1.
Points at level 0, 1 and 2 are represented respectively by a black dot, a star,
and a white dot. The configuration extends periodically.

Figure 3: An element in the corresponding family of minimal surfaces. Com-
puter image made by the author using J. Hoffman MESH software.

The last statement of the theorem should be understood as follows : if we
see Mε as an abstract 2-manifold isometrically embedded in R3 by the canonical
injection Xε : Mε → R3, then the abstract manifold Mε converges to M0 and
Xε converges to X0 on compact subsets of M0 minus the double points.

Remark 1 In the sense of laminations, Mε converges to the lamination of R3

by horizontal planes, with singular set {(pk,i, 0)}. Note however that this limit
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object does not contain enough information to reconstruct Mε. This is why
we prefer to see the limit object M0 as a minimal immersion of a singular 2-
manifold.

Section 2.1 of [8] provides us with an explicit family of balanced configura-
tions, depending on an integer parameter m ≥ 1.

Theorem 3 The following simply periodic configuration is balanced and non-

degenerate : N = 2, n1 = m, n2 = 1, p1,j = cotan

(
jπ

m+ 1

)
, p2,1 = i and

T = 2i (so p0,1 = −i ).

For example, in the casem = 1, we have pk,1 = (k−1)i . The associated minimal
surfaces Mε are the Riemann examples.

The case m = 4 is represented on figure 2. In the particular case of the
configuration given by theorem 3, the corresponding minimal surfaces are hyper-
elliptic, so it is not too hard to write explicitely their Weierstrass representation
and produce computer images, see figure 3.

2.2 Triply periodic surfaces

A natural, and interesting question, is whether we can carry a similar construc-
tion when there is an infinite number of points at each level, namely nk = ∞ for
all k. It is not clear in general what the balancing condition should be, because
if there is an infinite number of points, each force might be a diverging series.

In this paper we answer this question in the case where the points at each
level are arranged in a doubly periodic way, namely they are invariant by two
independant translations with vectors T1 and T2. We assume that modulo T1

and T2, there is a finite number nk of points at level k and we call them pk,i,
1 ≤ i ≤ nk. We see each point pk,i as an element of the torus T = R2/Γ,
where Γ is the 2-dimensional lattice generated by T1 and T2. We assume the
following periodicity : there exists again an even integer N ≥ 2 and a vector
T3 ∈ R2 (which replaces the vector T in the simply periodic case) so that
pk+N,i = pk,i + T3. We call the collection {pk,i} a triply periodic configuration.
We want to construct a family of triply periodic minimal surfaces with periods
(T1, 0), (T2, 0) and (T3, ε).

Forces are defined as in the simply periodic case. Let again ck = 1/nk.
Consider T as the genus one compact Riemann surface C /Γ. Let ωk be the
meromorphic 1-form on T with nk−1 simple poles at pk−1,i with residue ck−1,
nk simple poles at pk,i with residue −ck, and pure imaginary periods. In other
words,

Re

∫ T1

0

ωk = Re

∫ T2

0

ωk = 0.

The meromorphic 1-form ωk exists because the sum of the residues is zero, and
the period condition makes it unique. Define forces as in the simply periodic
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case by

Fk,i =
1

2
Respk,i

(
(ωk)2

dz
+

(ωk+1)
2

dz

)

The main difference with the simply periodic case is that forces cannot be com-
puted as explicitly. They may be written in various ways in term of elliptic
functions. We will do this in section 4.

Definition 2 A triply periodic configuration is balanced if all forces Fk,i are
zero. It is non-degenerate if the differential of the map p → F has real co-rank
2, where p and F are as in definition 1.

The main result of the paper is the following

Theorem 4 Given a balanced, non-degenerate triply periodic configuration, there
exists a smooth family of embedded triply periodic minimal surfaces Mε, for
ε > 0 small enough, which have period (T1, 0), (T2, 0) and (T3, ε). The quotient
has genus n + 1, where n = n1 + · · · + nN . Its area is close to N times the
area of T. Moreover, Mε converges to M0 when ε→ 0, where M0 is a singular
minimal surface defined as in the beginning of section 2.1.

In fact, we construct a family of surfaces depending smoothly on ε, T1, T2 and
T3 (in a neighborhood of the given values). This gives

Corollary 1 Under the same hypothesis, there exists η > 0 such that the fol-
lowing is true : if V1, V2 and V3 are three independant vectors in space such
that |Vi − (Ti, 0)| < η for i = 1, 2, 3, then there exists a triply periodic mini-
mal surface with periods V1, V2, V3, which satisfies the same conclusion as the
theorem.

Hence up to isometries, we construct a 6-dimensional family of surfaces. This
is also the dimension of the space of flat 3-tori.

Proof : Simply consider the rotation with smallest angle which sends V1

and V2 to the horizontal plane. �

3 Proof of the conjecture of Meeks

In section 4 we will prove

Theorem 5 For any g ≥ 3, there exists T1, T2, T3, and a triply periodic,
balanced, non-degenerate configuration with periods T1, T2, T3 which has g − 1
points, so the associated minimal surfaces have genus g.

By corollary 1, if V1, V2 and V3 are three independant vectors in space close to
the horizontal vectors (T1, 0), (T2, 0), (T3, 0), there exists an embedded minimal
surfaces of genus g with periods V1, V2, V3. It turns out that this already gives
minimal surfaces of genus g in arbitrary flat 3-tori, up to scale ! To understand
why, let us first consider an example.
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Assume that T1 = (1, 0), T2 = (0, 1) and T3 = (0, 0). How can we recover
minimal surfaces of genus g in the cubic torus, namely with periods V1 = (1, 0, 0),
V2 = (0, 1, 0), V3 = (0, 0, 1) ?

Consider the following sequence of matrices

An =



n 0 1
1 n 0
0 1 0




Since this matrix has determinant 1, its columns form a basis of the cubic lattice.
On the other hand, when n→ ∞, n−1An converges to the matrix with columns
(T1, 0), (T2, 0) and (T3, 0). By corollary 1, for n large enough, there exists a
minimal surface of genus g and periods the columns of n−1An. Scaling by n
gives a sequence of minimal surfaces Mn in the cubic torus.

In the general case, we need a result which we will prove in the next sec-
tion. Let SL(3,Z) be the group of 3 × 3 matrices with integer coefficients and
determinant one.

Proposition 1 Consider a matrix M ∈ M3(R) such that det(M) = 0. Then
there exists a sequence of matrices An ∈ SL(3,Z) and a sequence of reals λn

such that λnAn → M (so λn → 0).

Using this proposition, we prove theorem 1. Let Λ be an arbitrary lattice in
R3. Let V1, V2, V3 be a basis of Λ. We write [V1 V2 V3] for the matrix whose
columns are V1, V2, V3. Recall that SL(3,Z) acts on bases of Λ as follows : if
A ∈ SL(3,Z), define V ′

1 , V
′
2 , V

′
3 by

[V ′
1 V

′
2 V

′
3 ] = [V1 V2 V3]A

In other words, V ′
j =

∑
i aijVi. Then V ′

1 , V
′
2 , V

′
3 is again a basis of Λ. Indeed,

because A has integer coefficients, the lattice generated by V ′
1 , V ′

2 and V ′
3 is

included in Λ. The converse is true because A is invertible. Let M ∈ M3(R)
be the rank 2 matrix defined by

[
T1 T2 T3

0 0 0

]
= [V1 V2 V3]M

By proposition 1 there exists a sequence An ∈ SL(3,Z) and λn ∈ R such that
λn → 0 and λnAn →M . Define V n

1 , V
n
2 , V

n
3 by

[V n
1 , V

n
2 , V

n
3 ] = λn[V1, V2, V3]An

Then V n
1 , V

n
2 , V

n
3 is a basis of the lattice λnΛ and V n

i → (Ti, 0) when n → ∞,
for i = 1, 2, 3. By corollary 1, for n large enough, there exists an embedded
triply periodic minimal surface of genus g with periods V n

1 , V
n
2 , V

n
3 . Scaling by

1/λn, we have a sequence of embedded minimal surfaces of genus g in R3/Λ
whose area goes to ∞. This proves theorem 1. �
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3.1 On singular matrices

We state a general result which we only use in the case of dimension d = 3.
We use the following notations. Let Md(A) be the set of d × d matrices with
coefficients in A, where A is Z, Q or R. Let Nd(A) be the set of matrices in
Md(A) whose determinant is zero. Let Ad be the set of matrices M ∈ Md(R)
such that there exists a sequence of matrices An ∈ SL(d,Z) and a sequence of
reals λn such that λn → 0 and λnAn →M .

Proposition 2
Ad = Nd(R).

Proof : The inclusion ⊂ is clear. For the reverse inclusion, first observe the
following facts.

(i) If M ∈ Ad and P ∈ SL(d,Z) then PM ∈ Ad and MP ∈ Ad.

(ii) If M ∈ Ad and λ ∈ R then λM ∈ Ad.

(iii) Ad is closed.

(iv) Nd(Q) is dense in Nd(R).

By points (iii) and (iv), it suffices to prove that Nd(Q) ⊂ Ad. By point (ii) it
suffices to prove that Nd(Z) ⊂ Ad.

Let M ∈ Md(Z). By standard theory of matrices with integer coefficients,
M may be put into reduced form, namely

M = P



a1

0
. . . 0

ad


Q

where P,Q ∈ SL(d,Z) and a1, · · · ad ∈ Z. Moreover, if r is the rank of M , then
ai = 0 for i > r. Now assume that detM = 0 so ad = 0. By point (i) we only
need to prove that the above diagonal matrix is in Ad. When d = 3, which is
the case we are interested in, simply write



a1 0 0
0 a2 0
0 0 0


 = lim

n→∞

1

n



a1n 1 0
0 a2n 1
1 0 0




The matrix on the right has determinant 1. In the general case, write




a1

. . . 0
0 ad−1

0


 = lim

n→∞

1

n




a1n 1 0

0
. . .

. . .

. . . ad−1n 1
(−1)d+1 0 0




�
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4 Examples

4.1 Preliminary observations

First observe that

Fk,i =
1

2
Respk,i

N∑

`=1

(ω`)
2

dz

because ω` has no pole at pk,i if ` 6= k, k+1. Hence by the residue theorem, the
forces sum up to zero :

N∑

k=1

nk∑

i=1

Fk,i = 0

Also we have

Fk,i =
1

4
Respk,i

(ωk − ωk+1)
2

dz

To see this, observe that

(ωk + ωk+1)
2 + (ωk − ωk+1)

2 = 2((ωk)2 + (ωk+1)
2)

and ωk + ωk+1 has no pole at pk,i as the residues cancel.

4.2 Simplest configurations

Proposition 3 Take N = 2, n1 = n2 = 1. Consider a 2-dimensional lattice
Γ = ZT1 + ZT2 and let T = C /Γ. Consider some a ∈ T such that 0, a and −a
are distinct points in T. The following triply periodic configuration is balanced :
p1,1 = 0, p2,1 = a, T3 = 2a (so p0,1 = −a). The corresponding minimal surfaces
have genus 3.

We will study non-degeneracy of this configuration in section 4.3.3. Observe
that if we replace a by a+ T/2 where T ∈ {T1, T2, T1 + T2}, we get three other
balanced configurations which have the same period T3 modulo Γ.

Proof : The configuration is balanced by symmetry. Indeed, the meromor-
phic 1-form ω1 − ω2 has three simple poles at 0, ±a, with respective residues
−2 and 1. Let σ(z) = −z. Then σ∗(ω1 − ω2) has the same poles as ω1 − ω2

with the same residues, so their difference is a holomorphic 1-form on C /Γ with
imaginary periods, so they are equal. In other words, the function (ω1 −ω2)/dz
is an odd function. Hence its square is an even function, so it has no residue at
zero, so F1,1 = 0. Since the forces sum up to zero, F2,1 = 0, so the configuration
is balanced. �

4.3 Balanced configurations using Weierstrass ζ function

In this section we compute explicitly the forces in term of Weierstrass ζ func-
tion. This has several applications : first it may be used to compute the forces
numerically and find numerical examples of balanced configurations. It will
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also give us an electrostatic interpretation of the forces. Finally, we use it to
prove the existence of balanced, non-degenerate triply periodic configurations,
as perturbations of simply periodic configurations.

4.3.1 Forces in term of Weierstrass ζ function

Given a lattice Γ = ZT1 + ZT2 in the complex plane, the Weierstrass ζ and ℘
functions are defined by

ζ(z) =
1

z
+
∑

w∈Γ

w 6=0

(
1

z − w
+

1

w
+

z

w2

)

℘(z) =
1

z2
+
∑

w∈Γ

w 6=0

(
1

(z − w)2
−

1

w2

)

We refer the reader to Ahlfors [1] for standard properties of these functions.
The function ζ is odd, its derivative is −℘ and it is quasi-periodic, namely for
i = 1, 2

ζ(z + Ti) = ζ(z) + ηi with ηi = 2ζ(Ti/2)

It has a simple pole at each point of the lattice Γ with residue 1. Hence we may
write

ωk =




nk−1∑

j=1

ck−1ζ(z − pk−1,j) −
nk∑

j=1

ckζ(z − pk,j) + λk


 dz

where λk is some constant. Indeed, the right term is well defined on T = C /Γ
because the sum of the residues is zero, so the quasi-periodicities of ζ cancel, and
two meromorphic 1-forms which have the same principal part differ by a holo-
morphic 1-form, so a constant times dz. The constant λk is determined by the
condition that the periods of ωk are imaginary. A straightforward computation
gives

Fk,i =

nk∑

j=1

j 6=i

2(ck)2ζ(pk,i − pk,j) −
∑

±

nk±1∑

j=1

ckck±1ζ(pk,i − pk±1,j) + (λk+1 − λk)ck

Here the sum on ± means that there are two terms, one for the + sign and
one for the − sign. Let us now compute λk . First observe that in our formula
for ωk, we have chosen a representative in C for each point pk,i. The constant
λk depends on the choice of representatives. Let γ1 and γ2 be the standard
generators of the homology of T (in other words, the homology class of the path
from 0 to T1 and 0 to T2). Given two points a, b in C , I claim that for i = 1, 2,

∫

γi

ζ(z − a)dz − ζ(z − b)dz ≡ −ηi(a− b) [2πi ]

Indeed, the integrant is a well defined meromorphic 1-form on T with two simple
poles of residue ±1, so its periods are well defined mod 2πi . The formula clearly

11



holds when a = b, and using the quasi-periodicity of the function ζ, both sides
have the same derivative with respect to a, so the claim is true. Using this
formula with a = pk−1,j or a = pk,j , and b = z0 where z0 is some fixed point,
we obtain for i = 1, 2 (the z0 terms cancel because the sum of the residues is
zero)

Re

∫

γi

ωk = Re


−ηi




nk−1∑

j=1

ck−1pk−1,j −
nk∑

j=1

ckpk,j


+ λkTi




Let us define the center of mass µk of the points at level k by

µk =

nk∑

j=1

ckpk,j

Let (xk , yk) ∈ R2 be the coordinates of µk in the basis T1, T2. Recall that η1

and η2 satisfy the Legendre relation ([1], page 274)

η1T2 − η2T1 = 2πi

This gives for i = 1, 2

Re

∫

γi

ωk = Re ((−η1(xk−1 − xk) − η2(yk−1 − yk) + λk)Ti)

Hence
λk = η1(xk−1 − xk) + η2(yk−1 − yk)

4.3.2 Electrostatic interpretation of the forces

Assume that 2µk = µk−1+µk+1 for all k. This means that µk+1−µk is constant,
so the centers of mass µk are regularly spaced. Then λk+1 = λk. Using the
definition of the ζ function as a series, and after a tedious computation, we
obtain the following formula for the force :

Fk,i =

nk∑

j=1

j 6=i

2(ck)2

pk,i − pk,j

−
∑

±

nk±1∑

j=1

ckck±1

pk,i − pk±1,j

+
∑

w∈Γ

w 6=0




nk∑

j=1

2(ck)2

pk,i − pk,j − w
−
∑

±

nk±1∑

j=1

ckck±1

pk,i − pk±1,j − w




This formula may be interpreted as follows : this is the same formula as the
force F̃k,i in the simply periodic case, except that there is an infinite number of
terms : pk,i interacts with all the other points p`,j +w, except itself, namely for
(`, j, w) = (k, i, 0). This provides an electrostatic interpretation of the force.

Remark 2 It is not hard to see that the sum in the last formula converges,
as written, if and only if the configuration satisfies 2µk = µk−1 + µk+1. This
makes our hypothesis natural if we are to give an electrostatic interpretation of
the forces.

12



4.3.3 The genus 3 case

We now return to the case N = 2, n1 = n2 = 1 which gives genus 3 surfaces.
We may assume by translating the configuration that p0,1 + p2,1 = 0. Writing
p1,1 = xT1 + yT2 we obtain

F1,1 = −ζ(xT1 + yT2 − T3/2) − ζ(xT1 + yT2 + T3/2) + 2xη1 + 2yη2

When x = y = 0, which is the configuration we considered in section 4.2, we
have F1,1 = 0 so the configuration is balanced, and using that the derivative of
ζ is −℘,

∂F1,1

∂x
= 2℘(T3/2)T1 + 2η1 ,

∂F1,1

∂y
= 2℘(T3/2)T2 + 2η2

Given T1 and T2, for generic values of T3, the differential of F1,1 with respect
to (x, y) has real rank 2 so the configuration is non-degenerate. But there is a
real one dimensional family of values of T3 for which the differential has rank
one so the configuration is degenerate.

Remark 3 Using the above formula, we find numerically that there are other
balanced configurations which are not as symmetric as the one we discussed in
section 4.2. This confirms the already suspected fact that the space of genus 3
minimal surfaces in a 3-torus is quite intricate. We will not discuss the subject
any further, as we are mainly interested in higher genus surfaces.

4.3.4 Triply periodic perturbation of a simply periodic configuration

In this section we start with a balanced, non-degenerate simply periodic config-
uration {pk,i} with period T (which cannot be zero, see proposition 2.4 in [8]).
Consider two independant vectors T1 and T2, let Γ be the lattice generated by
T1, T2, and let T3 = T . Given a real t 6= 0, we may consider the triply periodic
configuration with periods T1/t, T2/t and T3, whose points are pk,i mod Γ/t.
This configuration is of course not balanced anymore, so our goal is to perturb
it into a balanced triply periodic configuration for t small enough. We write
Fk,i(t) for the forces of the configuration pk,i mod Γ/t and ζ(z,Γ/t) for the ζ
function associated to the lattice Γ/t. Using the definition of the function ζ we
have

ζ(z,Γ/t) = tζ(tz,Γ)

lim
t→0

ζ(z,Γ/t) =
1

z

and the limit is uniform with respect to z in compact subsets of C . Also
ηi(Γ/t) = tηi(Γ), which gives λk(t) = O(t2). It follows from our formula in
section 4.3.1 that

lim
t→0

Fk,i(t) = F̃k,i

where F̃k,i is the force associated to the simply periodic configuration pk,i. More-
over, Fk,i(t) extends real analytically to t = 0. The intuitive idea behind this

13
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Figure 4: A numerically computed triply periodic configuration with N = 2,
n1 = 4 and n2 = 1, obtained by perturbation of the simply periodic configura-
tion of figure 2.

formula, from the point of view of our electrostatic interpretation in section
4.3.2, is that when t→ 0, T1/t and T2/t go to infinity, so pk,i does not interact
anymore with the points p`,j + w/t, w 6= 0.

Theorem 6 Let {p0
k,i} be a balanced, non-degenerate, simply periodic configu-

ration with period T3. Fix some lattice Γ = ZT1 + ZT2. Then for t close to 0,
there exists analytic functions pk,i(t), such that pk,i(0) = p0

k,i and for t 6= 0, the
triply periodic configuration {pk,i(t) mod Γ/t} is balanced and non-degenerate.

Theorem 5 follows as a corollary of this theorem and theorem 3.
Proof : This is a quite straightforward application of the implicit function

theorem. We fix p1,1 = p0
1,1 : this normalizes the translation invariance of the

balancing condition. Let p be the collection of all variables pk,i, 1 ≤ k ≤ N ,
1 ≤ i ≤ nk except p1,1, and let F(t,p) be the collection of the forces Fk,i(t)
for 1 ≤ k ≤ N , 1 ≤ i ≤ nk except F1,1(t). Then F is a real analytic map,
F(0,p0) = 0 and the partial differential of F with respect to p at (0,p0) is an
isomorphism. By the implicit function theorem, for t close to 0, there exists p(t)
such that F(t,p(t)) = 0. If t 6= 0, the associated triply periodic configuration
pk,i(t) mod Γ/t has all its forces zero except maybe F1,1(t). Since the sum of
the forces is zero, F1,1(t) is also zero. Hence the configuration pk,i(t) mod Γ/t
is balanced. It is also non-degenerate for t small enough by continuity. �

Remark 4 In the simply periodic case, the force F̃k,i is a complex analytic
function of the variables p`,j, so non-degeneracy is equivalent to the fact that

the complex matrix of partial derivatives ∂F̃k,i/∂p`,j has complex co-rank 1,
which can be checked by computing a determinant.

In the triply periodic case, the force Fk,i is only real analytic because of
the period normalization. For this reason, non-degeneracy is much harder to
deal with in this case. This makes the above theorem particularly valuable since
non-degeneracy comes for free.

14



4.4 Surfaces with no symmetries

In the introduction of [3], D. Hoffman asked the following question (question 2)

Does there exist a triply periodic embedded minimal surface with no symme-
tries other than translations ?

We give a positive answer to this question. First observe that for generic
lattices Λ, the only symmetries of the torus R3/Λ are translations : x 7→ x+ v
and symmetries about a point : x 7→ −x+ v. This means that in a generic flat
3-torus, we do not have to worry about planar symmetries since they are just
impossible. Now consider the simply periodic configuration represented in figure
5. This configuration is obtained by combining two configurations of theorem 3,
one with m = 2 and one with m = 3 scaled by 8/9 (the scale is chosen so that
the forces at the points with nk = 1 cancel). It is proven in [8], proposition 2.3,
that configurations obtained this way are balanced and non-degenerate. The
only symmetry of this configuration is the symmetry about the Ox2 axis. Using
theorem 5 to perturb this configuration into a triply periodic configuration, and
arguing as in section 3, we have proven the existence, in any 3-torus R3/Λ, of
a minimal surface whose only possible symmetry, if any, is a planar symmetry.
Hence in a generic 3-torus, the surface will have no symmetry.

•

??

◦

∗∗∗

�

Figure 5: A simply periodic configuration with N = 4, n1 = 2, n2 = 1, n3 = 3
and n4 = 1.

4.5 Balanced configurations using Weierstrass ℘ function

In this section we briefly explain how balanced configurations may be computed
by solving purely algebraic (i.e. polynomial) equations. However, it does not
seem possible to study non-degeneracy along these lines, so we won’t go into
very much details.

Consider for example the case where N = 2, n1 = 2m is even and n2 = 1
(which gives genus 2m + 2). We assume that the configuration is symmetric
about the origin, namely p1,i+m = −p1,i for 1 ≤ i ≤ m, p2,1 = T3/2 so p0,1 =
−T3/2. Then we can compute the forces in term of the Weierstrass ℘ function
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as follows : to simplify the notations let us write pi = p1,i. Then

ω1 − ω2 =
−2

n1

m∑

i=1

℘′dz

℘− ℘(pi)
+

℘′dz

℘− ℘(T3/2)

Indeed, the right side has the right poles and residues and has imaginary periods.
An easy computation gives

Respi

(
℘′

℘− ℘(pi)

)2

=
℘′′(pi)

℘′(pi)

Recalling that (℘′)2 = 4℘3−g2℘−g3, where g2 and g3 are the modular invariants
of C /Γ ([1] page 276), we obtain after elementary computations

F1,i =
℘′(pi)

n2
1


 6℘2(pi) − g2/2

4℘3(pi) − g2℘(pi) − g3
+
∑

j 6=i

2

℘(pi) − ℘(pj)
−

n1

℘(pi) − ℘(T3/2)




By symmetry we have F1,i+m = −F1,i and F2,1 = 0, so we have to solve the
m equations F1,1 = 0, · · · , F1,m = 0. These are purely algebraic equations in
the unknowns Xi = ℘(pi). For example, in the case m = 1, T3 = 0, g2 = 4
and g3 = 0 (this is a square torus), we obtain the equation ℘2(p1) = 1/3. For
modest values of m, the above system is easy to solve using for example Maple.
This is how the configuration in figure 4 was computed.

5 Proof of Theorem 4

5.1 The initial Riemann surface with nodes Σ0

For each k = 1, · · · , N , consider some complex parameter τk such that Im(τk) 6=
0. Let Tk be the genus one compact Riemann surface C /(Z + Zτk).

For each k = 1, · · · , N and each i = 1, · · · , nk, consider a pair of points
(ak,i, bk,i) such that (ak,i, bk,i) ∈ Tk×Tk+1 if k < N , and (aN,i, bN,i) ∈ TN ×T1.
(Here we assume that in each Tk, the points ak,i, bk−1,j are distinct.)

Consider the disjoint union T1∪· · ·∪TN . Identify, for each pair of points, ak,i

with bk,i to create a node (or double point). This creates a singular Riemann
surface with nodes which we call Σ0. It depends on the complex parameters τk,
ak,i, bk,i.

5.2 Opening nodes

Following Fay [2] and Masur [5] we define a (regular) Riemann surface Σ by
“opening nodes”.

Consider the local complex coordinates vk,i = z − ak,i in a neighborhood of
ak,i in Tk, and wk,i = z − bk,i in a neighborhood of bk,i in Tk+1. Here, and in
what follows, TN+1 should always be understood as T1.
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b2,1

a2,1

1,1b b1,2 b1,3

a1,1 a1,2 a1,3

T

T1

2

Figure 6: Left : definition of Σt in the case N = 2, n1 = 3, n2 = 1. Right :
topological model of Σt. The top circle is identified with the bottom one.

Consider, for each k = 1, · · · , N and each i = 1, · · · , nk, some complex
parameter tk,i close to 0. Let t ∈ C

n be the collection of these parameters.

Remove the disks |vk,i| <
√
|tk,i| and |wk,i| <

√
|tk,i|. Identify pairs of points

on the boundary of these disks with the rule

vk,iwk,i = tk,i

This identifies the two circles, with a Dehn twist of angle equal to the argu-
ment of tk,i, and defines a (possibly noded) Riemann surface Σt which depends
holomorphically on t (as well as on the other parameters τk, ak,i, bk,i).

When all the tk,i are nonzero, Σt is a genuine compact Riemann surface
(without nodes). From the topological point of view, its genus g is easily seen
to be equal to n+ 1, where n is the total number of nodes.

When tk,i = 0, this construction identifies the point ak,i with bk,i and Σt has
a node. In particular when t = 0, Σt is the noded Riemann surface we started
from.

5.3 Regular differentials

In this section, we explain all the tools we need to solve our problem. Follow-
ing Masur [5], we extend the notions of holomorphic 1-form and holomorphic
quadratic differential to the case of Riemann surfaces with nodes. Consider a
Riemann surface with nodes Σ where we see each node as a pair of points (a, b)
which have been identified.

Definition 3 ([5]) A regular q-differential ω on Σ is a form of type (q, 0) which
is holomorphic outside the nodes and which, for each pair of points (a, b) which
are identified to create a node, has two poles of order ≤ q at a and b. Moreover,
the residues of ω at a and b must be opposite if q is odd and equal if q is even.

Here the residue of ω at some point p is the coefficient of dzq/zq in the expression
of ω in term of a local coordinate z such that z(p) = 0.
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When Σ has no nodes, a regular q-differential is just a holomorphic q-
differential. We are only interested in the cases q = 1 and q = 2 which cor-
respond respectively to holomorphic 1-forms and holomorphic quadratic differ-
entials.

We write Ωq(Σ) for the space of regular q-differentials on Σ. The space
Ω1(Σ) has dimension g and Ω2(Σ) has dimension 3g − 3, where g is the genus
of Σ (provided g ≥ 2).

Moreover, these spaces depend holomorphically on parameters, in the follow-
ing sense : proposition 4.1 of Masur [5] says that there exists a basis ω1,t, · · · , ωg,t

of Ω1(Σt), which “depend holomorphically” on t in a neighborhood of 0. This
is fundamental for the construction we have in mind, since we will apply the
implicit function theorem at t = 0.

For our purpose, it will be enough to know that for any δ > 0, the restriction
of ωj,t to the domain Ωδ defined by ∀k, ∀i, |vk,i| > δ, |wk,i| > δ, depends
holomorphically on (z, t), z ∈ Ωδ and t in a neighborhood of 0. This makes
sense because the domain Ωδ is independant of t provided t < δ2. There is a
deeper way of expressing that ωt depends holomorphically on t [5], but we will
not need it.

The isomorphism between Ω1(Σt) and C g can be made explicit by computing
periods as follows. Let Ak, Bk be the standard generators of the homology of
the torus Tk, namely Ak is the straight path from 0 to 1 and Bk from 0 to τk.
(Here we assume that Ak and Bk stay away from the nodes, taking different
representatives of their homology class if necessary.) We write C(ak,i) for the
circle |z − ak,i| = ε in Tk , where ε is some fixed small positive number, and
C(bk,i) for the circle |z − bk,i| = ε in Tk+1. The circle C(ak,i) is homologous in
Σt to the circle −C(bk,i).

Again, when k = N , TN+1 should be understood as T1. More generally,
we adopt the following cyclic convention : Tk+N = Tk, and in the same way,
ak+N,i = ak,i, bk+N,i = bk,i.

Lemma 1 The map ω → (

∫

Ak

ω

︸ ︷︷ ︸
1≤k≤N

,

∫

C(ak,i)

ω

︸ ︷︷ ︸
1≤k≤N

2−δk,1≤i≤nk

) is an isomorphism from Ω1(Σt)

to C
g.

In other words, we may define a regular 1-differential on Σt by prescribing its
periods on all indicated cycles. The condition 2−δk,1 ≤ i reads as i ≥ 2 if k 6= 1
and i ≥ 1 if k = 1. The total number of cycles is equal to the genus of Σt.

Proof : One way to prove the lemma is to observe that the indicated set
of cycles is the set of A-curves of a canonical homology basis. Here is another
argument, which illustrates the use of Riemann surfaces with nodes, and will
also work for the next lemma. We check that the statement is true in the case
of the noded Riemann surface Σ0. By continuity, the statement will be true
provided t is small enough, which is a weaker statement but enough for our
needs.
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We prove that the map is injective. Let ω be a regular 1-form on Σ0. In Tk,
ω has simple poles at ak,i and bk−1,i, and the residue of ω at bk−1,i is minus its
residue at ak−1,i. By the residue theorem in Tk

nk∑

i=1

Resak,i
ω = −

nk−1∑

i=1

Resbk−1,i
ω =

nk−1∑

i=1

Resak−1,i
ω

so this sum is independant of k. When ω is in the kernel of the map of the
lemma, this implies that all residues of ω are zero, so ω is in fact holomorphic
on each Tk, and has vanishing Ak-period, so ω = 0. �

Concerning regular quadratic differentials, proposition 5.1 of Masur [5] says
that there exists a basis ψ1,t, · · · , ψ3g−3,t of Ω2(Σt), which depends holomorphi-
cally on t.

Lemma 2 For t close to 0, the map

ψ → L(ψ) = (

∫

Ak

ψ

dz︸ ︷︷ ︸
1≤k≤N

,

∫

C(ak,i)

(z − ak,i)ψ

dz
︸ ︷︷ ︸

1≤k≤N

1≤i≤nk

,

∫

C(ak,i)

ψ

dz
︸ ︷︷ ︸

1≤k≤N

2−δk,1≤i≤nk

,

∫

C(bk,i)

ψ

dz
︸ ︷︷ ︸

1≤k≤N

1+δk,N≤i≤nk

)

is an isomorphism from Ω2(Σt) to C 3g−3.

In this lemma, dz stands for the standard holomorphic 1-form on each Tk, so
dz is not globally defined on Σt, which is why integrating ψ/dz on C(ak,i) and
C(bk,i) gives independant results.

Proof : As in the previous lemma, it suffices to prove that the map is
injective when t = 0. Consider an element ψ in the kernel. Recall that a regular
quadratic differential on the noded Riemann surface Σ0 has at most double
poles at the nodes. The second summand of the map tells us that ψ has at
most simple poles at all ak,i, hence at all bk,i (recall the definition of a regular
quadratic differential). The third and fourth summands tell us that the only
points where ψ might have poles are ak,1 for 2 ≤ k ≤ N and bN,1. This means
that ψ has at most one simple pole in each Tk . Applying the residue theorem
to the holomorphic 1-form ψ/dz in Tk , we conclude that ψ has no poles at all
so ψ is holomorphic in each Tk. The first summand gives ψ = 0. �

Let us now return to regular 1-forms. Let ωt be a regular 1-form on Σt

defined by prescribing periods (independant of t) on cycles as in lemma 1. We
need to compute the derivative of ωt with respect to the parameters tk,i at t = 0.

Lemma 3 The derivative ∂ωt/∂tk,i at t = 0 is a meromorphic 1-form on Σ0

which has double poles at ak,i and bk,i, is otherwise holomorphic, and has van-
ishing periods on all cycles of lemma 1. The principal part at the poles are

dz

(z − ak,i)2
−1

2πi

∫

C(bk,i)

ω0

z − bk,i

at ak,i

dz

(z − bk,i)2
−1

2πi

∫

C(ak,i)

ω0

z − ak,i

at bk,i
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Note that these conditions (principal parts + periods) determine a unique mero-
morphic 1-form.

Proof : First recall that when we say that ωt depends holomorphically on
t, we only mean that its restriction to Ωδ depends holomorphically on (z, t). So
the statement of the lemma is that the restriction to Ωδ of the derivative of ωt

agrees with the indicated meromorphic 1-form.
To simplify the notations, write t = tk,i, v = vk,i and w = wk,i. Let us write

the Laurent series of ωt in the annular region δ < |v| < ε

ωt =
∑

n∈Z

cn(t)vndv

where

cn(t) =
1

2πi

∫

|v|=ε

ωt

vn+1

Hence
∂ωt

∂t
=
∑

n∈Z

∂cn(t)

∂t
vndv

The above series converges uniformly in the region δ < |v| < ε, so the series
for n ≥ 0 converges uniformly in the disk |v| < ε and defines a holomorphic
function. To compute the derivative of the coefficient cn for n < 0, first observe
that c−1 is constant so its derivative is zero, and for n ≤ −2 and t 6= 0

cn(t) =
−1

2πi

∫

|w|=ε

ωt

wn+1

tn+1

∂cn(t)

∂t
=
n+ 1

2πi

∫

|w|=ε

ωt

wn+1

tn+2
−

1

2πi

∫

|w|=ε

(
∂ωt

∂t

)
wn+1

tn+1

Now ωt and its derivative are both uniformly bounded on the circle |w| = ε, so
if we let t → 0, we see that for n ≤ −3, the derivative of cn(t) at t = 0 is zero,
and for n = −2,

∂c−2

∂t
(0) =

−1

2πi

∫

|w|=ε

ω0w
−1

This proves that the derivative of ωt with respect to tk,i has a double pole at
ak,i with the indicated principal part. Entirely similar computations give that
the derivative of ωt has a double pole at bk,i and no poles at the other nodes. �

We need one more result to compute the integral of ωt on a path from the
point ak,i + ε to the point bk,i + ε, which goes through the neck.

Lemma 4 The difference

∫ bk,i+ε

ak,i+ε

ωt − (log tk,i)
1

2πi

∫

C(ak,i)

ωt

is a well defined analytic function of tk,i which extends analytically to tk,i = 0.
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A1,1

B1,2
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A2

A1,2 A1,3

B

Figure 7: Homology basis (genus 5)

This lemma is proven in [9], section 3.6, lemma 1, using a Laurent series to
estimate ωt on the neck as in the proof of the previous lemma. Observe that
the logarithm is not well defined because tk,i is a complex number, nor is the
left integral because there is no canonical way to choose the integration path,
but the multi-valuations cancel.

5.4 The Weierstrass data

5.4.1 Homology basis

Let Ak,i be the homology class of the circle C(ak,i) (positively oriented) in Tk.
For 1 ≤ k ≤ N and 2 ≤ i ≤ nk, let Bk,i be a cycle as on figure 7, which intersects
only Ak,1 and Ak,i, with respective intersection numbers −1 and +1. Let B be
a cycle as on figure 7, which intersects all circles Ak,1 with intersection numbers
+1. Then the following set of cycles forms a homology basis of Σt : A1,1, B,
Ak,i, Bk,i for 1 ≤ k ≤ N , 2 ≤ i ≤ nk, and Ak, Bk for 1 ≤ k ≤ N . (Observe
that if we replace B1,i by B1,i + B, then we have a canonical homology basis,
namely each A-cycle intersects precisely one B-cycle with intersection number
1, and all other intersection numbers are zero).

5.4.2 The period problem

Without loss of generality we may assume that T1 = (1, 0). We need to define
three regular 1-forms φ1, φ2, φ3 on Σt such that Re

∫
(φ1, φ2, φ3) on each cycle

of the homology basis belongs to the lattice Λ generated by (T1, 0), (T2, 0) and
(T3, ε). From the geometric picture of the surface we want to construct, we
know in fact exactly what each period should be, namely

Re

∫

Ak,i

(φ1, φ2, φ3) = 0
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Re

∫

Bk,i

(φ1, φ2, φ3) = 0

Re

∫

Ak

(φ1, φ2, φ3) = (T1, 0) = (1, 0, 0)

Re

∫

Bk

(φ1, φ2, φ3) = (T2, 0)

Re

∫

B

(φ1, φ2, φ3) = (T3, ε)

The period problem for the A-curves will be automatically solved by definition
of φ1, φ2, φ3. The period problem for the B-curves is a system of equations we
will have to solve. It is not necessary to solve the last equation Re

∫
B
φ3 = ε,

we will use it to define ε.

5.4.3 Definition of φ1, φ2, φ3

Using lemma 1, we define three regular 1-forms φ1, φ2 and φ̃3 by prescribing
the following periods :
∫

C(ak,i)

(φ1, φ2, φ̃3) = 2πi (αk,i;1 , αk,i;2 , αk,i;3) (1 ≤ k ≤ N, 2−δk,1 ≤ i ≤ nk)

∫

Ak

(φ1, φ2, φ̃3) = (1 + iαk;1 , iαk;2 , i αk;3) (1 ≤ k ≤ N)

All the α numbers in the right hand side are real parameters. The reason for the
2πi factor is that we will interpret the parameters αk,i;` as residues. We define

φ3 = xφ̃3, where x is a real number in a neighborhood of 0. When x = 0, φ3 = 0
so the surface will be locally a flat horizontal plane : this is the limit case. When
x 6= 0, we want to adjust the other parameters, so that the period problem is
solved and φ2

1 +φ2
2 +φ2

3 = 0. We will do this using the implicit function theorem
at x = 0. We will prove regularity and embeddedness in section 5.8.

Note that we do not prescribe the periods of φ1, φ2, φ̃3 on the circles
C(a2,1), · · · , C(aN,1). It will be convenient to define

(αk,1;1 , αk,1;2 , αk,1;3) =
1

2πi

∫

C(ak,1)

(φ1, φ2, φ̃3) (2 ≤ k ≤ N)

These can be expressed as functions of the other parameters :

αk,1;` =

n1∑

i=1

α1,i;` −
nk∑

i=2

αk,i;` (1)

To see this, let ω be a holomorphic 1-form on Σt. Using Cauchy theorem in the
domain of Tk bounded by the circles C(ak,i) and C(bk−1,i), we have

nk∑

i=1

∫

C(ak,i)

ω = −

nk−1∑

i=1

∫

C(bk−1,i)

ω =

nk−1∑

i=1

∫

C(ak−1,i)

ω =

n1∑

i=1

∫

C(a1,i)

ω (2)
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5.4.4 Parameters count

Let us count the number of parameters we have. Let n = n1 + · · · + nN be the
number of necks. We have the conformal parameters ak,i, bk,i, tk,i and τk, for a
total of 3n+N complex parameters. We have the period parameters αk,i;`, αk;`,
for a total of 3(n −N + 1) + 3N = 3(n+ 1) real parameters. Finally we have
the real parameter x. If we see each complex parameter as two real parameters,
this gives us a total of 9n+ 2N + 4 real parameters.

Let us now count the number of equations we have to solve. We have the
conformality equation φ2

1 +φ2
2 +φ2

3 = 0, which amounts to 3g− 3 = 3n complex
equations. We have the period conditions on the cycles Bk,i, Bk and B, for a
total of 3(n − N) + 3N + 2 = 3n + 2 real equations. This gives us a total of
9n+ 2 real equations.

So we see that we have 2N + 2 too many parameters, a lot more than
expected. This is because the parameters are not independant and we can
normalise the value of some of them. Indeed, if we multiply all parameters αk,i;3

and αk;3 by some λ and divide x by λ, we do not change the Weierstrass data,
so we may impose one condition on these parameters. Also, if we translate
all points ak,i and bk−1,j in Tk by some fixed amount, we get an isomorphic
Riemann surface Σt, so we may fix the value of one point in each Tk . So
we have one real and N complex normalisations, for a total of 2N + 1 real
normalisations.

Taking this into account, we have one more parameter than equation, so we
expect to construct a one parameter family of minimal surfaces.

5.5 The conformality equations

Let Q = φ2
1 + φ2

2 + φ2
3. This is a regular quadratic differential on Σt. To ensure

that Q = 0 we will solve the system L(Q) = 0, where L is the linear operator
defined in lemma 2. We start with the first three equations. We will solve the
last one in section 5.7.

Proposition 4 For x close to 0, there exists (locally unique) values of the pa-
rameters αk;1, αk;2, αk,i;1, αk,i;2, tk,i (for all possible values of the indices k, i)
such that the following equations are satisfied :

∫

Ak

Q

dz
= 0 (1 ≤ k ≤ N)

∫

C(ak,i)

(z − ak,i)Q

dz
= 0 (1 ≤ k ≤ N , 1 ≤ i ≤ nk)

∫

C(ak,i)

Q

dz
= 0 (1 ≤ k ≤ N , 2 − δk,1 ≤ i ≤ nk)

These values depend real analytically on X = x2 (and on all other parameters
ak,i, bk,i, τk, αk,i;3 and αk;3 as well). Moreover, at the point x = 0, we have

tk,i = 0 ,
∂tk,i

∂X
=

(αk,i;3)
2

4
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αk;1 = 0 , αk;2 = (−1)k , αk,i;1 = αk,i;2 = 0

and for i ≥ 2 − δk,1,

∂

∂X
(αk,i;1 + (−1)kiαk,i;2) =

−1

2
Resak,i

(φ̃3)
2

dz

Note that when the parameters have theses values, x 6= 0 implies tk,i(x) 6= 0
(for x small enough, provided αk,i;3 6= 0) so Σt(x) is a Riemann surface without
nodes.

Proof : We use the implicit function theorem. First assume that x = 0,
tk,i = 0, αk,i;1 = αk,i;2 = 0 (all indices k, i). Then φ3 = 0 and φ1, φ2 are
holomorphic 1-forms on Tk , so they are entirely determined by their period on
Ak, namely

φ1 = (1 + iαk;1)dz , φ2 = iαk;2dz

φ2
1 + φ2

2 + φ2
3 = (1 + 2iαk;1 − α2

k;1 − α2
k;2)dz

2

Hence we need αk;1 = 0 and αk;2 = ±1. The choice ±1 is determined by the
orientation of the surface : φ1 = dz, φ2 = i dz gives the Weierstrass representa-
tion of a horizontal plane with normal (0, 0,−1) while φ1 = dz, φ2 = −i dz gives
a horizontal plane with the opposite normal. Hence from the geometry of the
surface we want to construct, the sign should alternate between consecutive Tk.
We choose αk;2 = (−1)k, which means that in Tk, the normal will point down
for k even and up for k odd. Then φ1 = dz, φ2 = (−1)ki dz in Tk and Q = 0 so
all equations are satisfied. We now compute the derivatives with respect to all
parameters, except x, at this point. Let p be any of the parameters and γ be
any cycle, then

∂

∂p

∫

γ

Q

dz
=

∫

γ

2φ1

dz

∂φ1

∂p
+

2φ2

dz

∂φ2

∂p
=

∫

γ

2
∂φ1

∂p
+2(−1)ki

∂φ2

∂p
= 2

∂

∂p

∫

γ

φ1+(−1)kiφ2

This gives (recall the definition of these forms)

∂

∂αk,i;1

∫

C(ak,i)

Q

dz
= 4πi ,

∂

∂αk,i;2

∫

C(ak,i)

Q

dz
= −4π(−1)k

∂

∂αk;1

∫

Ak

Q

dz
= 2i ,

∂

∂αk;2

∫

Ak

Q

dz
= −2(−1)k

and all other partial derivatives of these functions are zero. By lemma 3, the
derivatives of φ1 and φ2 with respect to the parameter tk,i have a double pole
at ak,i. Since φ1 = dz and φ2 = (−1)k+1i dz in Tk+1, their principal parts at
ak,i are respectively −dz/(z − ak,i)

2 and (−1)ki dz/(z − ak,i)
2. This gives

∂

∂tk,i

∫

C(ak,i)

(z − ak,i)Q

dz
=

∫

C(ak,i)

(z − ak,i)

(
2φ1

dz

∂φ1

∂tk,i

+
2φ2

dz

∂φ2

∂tk,i

)
= −8πi

The derivative of this function with respect to any of the other parameters is
zero (because the derivatives of φ1 and φ2 have at most simple poles).
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The first statement of the proposition now follows from the implicit function
theorem. Note that the map is only real analytic because all the α parameters
are real. Since (φ3)

2 = X(φ̃3)
2, with X = x2, we have

∂

∂X

∫

C(ak,i)

Q

dz
=

∫

C(ak,i)

(φ̃3)
2

dz
= 2πi Resak,i

(φ̃3)
2

dz

∂

∂X

∫

C(ak,i)

(z − ak,i)Q

dz
=

∫

C(ak,i)

(z − ak,i)(φ̃3)
2

dz
= 2πi (αk,i;3)

2

This gives the indicated derivatives of αk,i;1, αk,i;2 and tk,i with respect to X .
�

5.6 The period problem

5.6.1 Solution of the Period problem for φ3

Proposition 5 Assume the parameters tk,i are given as functions of x by propo-
sition 4. Then for x close to 0, there exists (locally unique) values of the pa-
rameters αk;3, αk,i;3 (all indices) such that the following equations are satisfied

Re

∫

Bk

φ̃3 = 0 (1 ≤ k ≤ N)

Re

∫

Bk,i

φ̃3 = 0 (1 ≤ k ≤ N , 2 ≤ i ≤ nk)

n1∑

i=1

α1,i;3 = −1

Moreover, when x = 0, we have αk,i;3 = −ck where ck = 1/nk. Finally, for
x 6= 0 close to 0, we have

Re

∫

B

φ̃3 ∼ − log(x2)(c1 + · · · + cN) (3)

The third equation is a normalization, see section 5.4.4. The reason for the
minus sign is that given the geometric picture of the surface we want to construct
and the orientation of Ak,i, we expect that the flux of each cycle Ak,i points
downward, so the imaginary part of the period of φ3 is negative.

Proof : First observe that φ̃3 depends linearly on the parameters αk,i;3

and αk;3, so we have to solve linear equations : no need to use the implicit

function theorem here ! The period of φ̃3 on the cycle Bk depends analytically
on x because we can choose a representative of Bk which stays away from the
nodes. We represent Bk,i by the composition of the following paths :

1. a path from ak,1+ε to ak,i+ε in Tk, (depending continuously on parameters
and avoiding nodes),
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2. a path from vk,i = ε to wk,i = ε (going through the neck),

3. a path from bk,i + ε to bk,1 + ε in Tk+1,

4. a path from wk,1 = ε to vk,1 = ε.

The integral of φ̃3 on the first and third paths depends analytically on x. We
use lemma 4 to estimate the integral on the second and fourth paths. This gives

Re

∫

Bk,i

φ̃3 = Re(αk,i;3 log tk,i − αk,1;3 log tk,1) + analytic

and in the same way,

Re

∫

B

φ̃3 =
N∑

k=1

Re(αk,1;3 log tk,i) + analytic

By proposition 4, tk,i '
1
4 (xαk,i;3)

2. We assume that all the numbers αk,i;3 are
non zero. This gives

Re

∫

Bk,i

φ̃3 = (αk,i;3 − αk,1;3) log(x2) + analytic

Hence the function (log(x2))−1Re
∫

Bk,i
φ̃3 extends continuously to x = 0

with value αk,i;3 −αk,1;3. Proposition 5 boils down to the following statement :

Claim 1 When x = 0, the following linear map is an isomorphism

( αk,i;3︸ ︷︷ ︸
1≤k≤N

2−δk,1≤i≤nk

, αk;3︸︷︷︸
1≤k≤N

) 7→ (αk,i;3 − αk,1;3︸ ︷︷ ︸
1≤k≤N
2≤i≤nk

, Re

∫

Bk

φ̃3

︸ ︷︷ ︸
1≤k≤N

,

n1∑

i=1

α1,i;3)

Proof : The domain and target spaces have the same dimension. Using equa-
tion (1), it is straightforward to check that the kernel is zero. �

Remark 5 The function 1/ log(x2) does not extend to a smooth function at 0,
so the solutions to our equations are not smooth functions of x. To deal with
this problem, we write x = exp(−1/ξ2), which extends to a smooth function at
ξ = 0. Then 1/ log(x2) = − 1

2ξ
2, so our equations and their solutions depend

smoothly on the auxiliary variable ξ in a neighborhood of 0. Note however that
we (sadly) leave the realm of analytic functions, but there seems to be no way
to avoid this !

5.6.2 Solution of the period problem for φ1 and φ2

For ` = 1, 2, 3, write T` = (T`;1, T`,2, 0).
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Proposition 6 Assume the parameters tk,i, αk;` and αk,i;` (` = 1, 2, 3) are
given as functions of x by propositions 4 and 5. For x close to 0, there exists
(locally unique) values of the parameters τk and bk,i (all indices) such that the
following equations are satisfied

Re

∫

Bk

φ` = T2;` (1 ≤ k ≤ N , ` = 1, 2)

Re

∫

Bk,i

φ` = 0 (1 ≤ k ≤ N , 2 ≤ i ≤ nk , ` = 1, 2)

Re

∫

B

φ` = T3;` (` = 1, 2)

Moreover, when x = 0, we have τk = T2 if k is odd and τk = T2 if k is even,
bk,i = ak,i if 1 ≤ k ≤ N − 1, and bN,i = aN,i − T3.

Proof : We first solve the equations when x = 0 and then conclude using the
implicit function theorem. When x = 0, we have φ1 = dz and φ2 = (−1)ki dz
in Tk. Hence

T2;1 = Re

∫

Bk

φ1 = Re

∫ τk

0

dz = Re(τk)

T2;2 = Re

∫

Bk

φ2 = Re

∫ τk

0

(−1)ki dz = (−1)k+1Im(τk)

This determines τk. Then

0 = Re

∫

Bk,i

φ1 = Re

(∫ ak,i

ak,1

dz +

∫ bk,1

bk,i

dz

)
= Re(ak,i − ak,1 + bk,1 − bk,i)

0 = Re

∫

Bk,i

φ2 = Re

(∫ ak,i

ak,1

(−1)ki dz +

∫ bk,1

bk,i

(−1)k+1i dz

)

= (−1)k+1Im(ak,i − ak,1 − bk,1 + bk,i)

This gives

ak,i − ak,1 = bk,i − bk,1 (1 ≤ k ≤ N , 2 ≤ i ≤ nk) (4)

As explained in section 5.4.4, we may normalise translation by fixing one point
in each Tk . For k = 1, · · · , N − 1, we fix the value of bk,1 in Tk+1 by asking
that bk,1 = ak,1. This normalizes translation in T2, · · · , TN . (We will normalise
translation in T1 later). Equation (4) gives bk,i = ak,i for 1 ≤ k ≤ N − 1.
Computations entirely similar to the previous ones give

T3;1 = Re

∫

B

φ1 = Re

(∫ a1,1

bN,1

dz +

N−1∑

k=1

∫ ak+1,1

bk,1

dz

)
= Re(aN,1 − bN,1)
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T3;2 = Re

∫

B

φ2 = Im(−aN,1 − bN,1)

This gives bN,1 = aN,1 − T3. Equation (4) gives bN,i = aN,i − T3.
To apply the implicit function theorem, we need to study the smoothness of

the above functions. The integrals on the cycles Bk are clearly analytic functions
of x. By proposition 4, the periods of φ1 and φ2 on the circlesC(ak,i), namely the
parameters αk,i;1 and αk,i;2, are of order x2. By lemma 4, their periods on the
cycles Bk,i are analytic functions plus terms of order x2 log tk,i = O(x2 log(x2)).
This extends to a smooth function of the auxiliary parameter ξ at ξ = 0, see
remark 5. Hence the periods are smooth functions of ξ and the other parameters.
The partial differential with respect to the parameters bk,i and τk is clearly an
isomorphism. The proposition then follows from the implicit function theorem
at ξ = 0. �

5.7 The balancing condition

It remains to solve the last equation in lemma 2.

Proposition 7 Assume the parameters tk,i, αk;1, αk;2, αk,i;1 and αk,i;2 are
given as analytic functions of X = x2 by proposition 4. Let

fk,i =
1

2πi

∫

C(bk,i)

Q

dz
(1 ≤ k ≤ N , 1 + δk,N ≤ i ≤ nk)

Then f̃k,i = x−2fk,i extends analytically to x = 0 and its value at x = 0 is

f̃k,i(0) = Rk,i if 1 ≤ k ≤ N , 2 − δk,1 ≤ i ≤ nk

f̃k,1(0) = Rk,1 +

k−1∑

`=1

n∑̀

i=1

ϕk−`(R`,i) if 2 ≤ k ≤ N − 1

where ϕ(z) = z denotes conjugation in C and

Rk,i = ϕ

(
Resak,i

(φ̃3)
2

dz

)
+ Resbk,i

(φ̃3)
2

dz

Proof : If f(z) is an analytical function of z such that f(0) = 0 then f(z)/z
extends analytically to z = 0 with value f ′(0). So all we have to do is to compute
the derivative of fk,i with respect to X at X = 0. We have

∂fk,i

∂αk,i;1
= −2 ,

∂fk,i

∂αk,i;2
= 2(−1)ki

and the derivatives of fk,i with respect to the other parameters (except X) are
zero. Hence, by the chain rule,

∂fk,i

∂X
= −2

∂αk,i;1

∂X
+ 2(−1)ki

∂αk,i;2

∂X
+ Resbk,i

(φ̃3)
2

dz
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When 2 − δk,1 ≤ i ≤ nk, using the last formula in proposition 4, this gives
∂fk,i/∂X = Rk,i. To compute the derivative of fk,1 for 2 ≤ k ≤ N − 1, we use
equation (1) to obtain (the α terms cancel)

nk∑

i=1

∂fk,i

∂X
−

nk−1∑

i=1

ϕ

(
∂fk−1,i

∂X

)
=

nk∑

i=1

Resbk,i

(φ̃3)
2

dz
−

nk−1∑

i=1

ϕ

(
Resbk−1,i

(φ̃3)
2

dz

)

=

nk∑

i=1

Resbk,i

(φ̃3)
2

dz
+

nk∑

i=1

ϕ

(
Resak,i

(φ̃3)
2

dz

)

=

nk∑

i=1

Rk,i

In the second line, we have used the residue theorem in Tk. The result follows
by induction on k. �

Assume the parameters tk,i, αk;`, αk,i;` (` = 1, 2, 3) and bk,i are given as
functions of x and the remaining parameters (namely ak,i) by proposition 4, 5
and 6.

Proposition 8 For x small enough, there exists (locally unique) values of the

parameters ak,i such that f̃k,i = 0 for 1 ≤ k ≤ N , 1 + δk,N ≤ i ≤ nk.

This determines the value of all parameters as functions of x so that the period
problem is solved and φ2

1 + φ2
2 + φ2

3 = 0. The solution depends smoothly on the
auxiliary parameter ξ (see remark 5). We also still have T1, T2 and T3 as free
parameters. The solution depends smoothly on these parameters.

Proof : First assume that x = 0. Given the value of τk found in proposition
6, we have Tk = ϕk+1(T) where T = C /Γ and ϕ(z) = z. Let

ak,i = ϕk+1(pk,i)

where pk,i is the given configuration. Then from proposition 6, bk,i = ϕk(pk,i)
for 1 ≤ k ≤ N − 1 and bN,i = pN,i − T3 = p0,i. It follows that

φ̃3 =

{
ωk in Tk if k odd
ϕ∗ωk in Tk if k even

where ωk is the meromorphic 1-form on T defined in section 2.2. (Indeed, these
forms are holomorphic and have the same poles and residues, and both have
imaginary periods). This implies that

Rk,i = 2ϕk(Fk,i)

where Fk,i is the force defined in the section 2.2. Hence since the configuration

is balanced, we have f̃k,i = 0. We may normalise translation in T1 by fixing
the position of p1,1. Then since the configuration is non-degenerate, it follows

from elementary linear algebra that the partial differential of (f̃k,i : 1 ≤ k ≤
N , 1 + δk,N ≤ i ≤ nk) with respect to (p`,j : 1 ≤ k ≤ N , 1 + δk,1 ≤ i ≤ nk)
at x = 0 is an (R linear) isomorphism. The conclusion follows by the implicit
function theorem again. �
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5.8 Embeddedness

At this point, we have constructed a one parameter family of conformal, minimal
immersions from Σt(x) to R3/Λx, x in a neighborhood of 0, where Λx is the
lattice generated by the periods (T1, 0), (T2, 0), (T3, ε(x)) and by equation (3)
in proposition 5,

ε(x) ' −x2 log(x2)(c1 + · · · + cN )

Here we assume that x > 0, as changing x into −x only changes the sign of
the third coordinate. We need to prove that the immersion is regular (free of
branch points) and an embedding. Given a small δ > 0, let Ωk,δ be the set of
points in Tk which are at distance greater than δ from the points ak,i and bk−1,i

(all indices i), and Ωδ = Ω1,δ ∪ · · · ∪ ΩN,δ.
The immersion is regular if |φ1|2 + |φ2|2 + |φ3|2 > 0. It is straightforward

to check that this is true on Ωδ because we know explicitly the limits of these
forms on this domain. The problem is to prove that this holds on the necks.
We prove that φ3 has no zeroes on the necks. The zeros of φ3 are the same as
the zeros of φ̃3. When x = 0, φ̃3 has nk + nk−1 poles in Tk, so it has nk + nk−1

zeros, which lie in Ωk,δ provided δ is small enough. By continuity, for x close to

0, φ̃3 has nk + nk−1 zeros in Ωk,δ . This gives a total of 2n zeros in Ωδ, where

n = n1 + · · · + nN . But if x 6= 0, φ̃3 is a holomorphic 1-form on a compact
Riemann surface of genus g = n + 1 so it has 2g − 2 = 2n zeros. This means
that φ̃3 has no further zeros and proves that the surface is regular.

We now prove embeddedness. Let Xx = (X1
x, X

2
x, X

3
x) be the immersion

given by the Weierstrass representation we have constructed, and let X̃x =
(X1

x, X
2
x, x

−1X3
x). We will prove that the image of X̃x is embedded, and compute

explicitely its limit (after suitable vertical translation) when x → 0.
First observe that on each domain Ωk,δ , the Gauss map converges to (0, 0,−1)

if k is even and (0, 0, 1) if k is odd, hence its image is locally a graph. Then for
z ∈ Ωk,δ we have, up to translation,

lim
x→0

X1
x(z) + iX2

x(z) = Re

∫ z

dz + i Re

∫ z

(−1)ki dz = ϕk+1(z)

where as before ϕ(z) = z, and

lim
x→0

X̃3
x(z) = Re

∫ z

(ϕk+1)∗ωk = fk(ϕk+1(z))

where fk(z) = Re

∫ z

ωk. This is a well defined function of z ∈ T because the

residues of ωk are real. It has logarithmic singularities at the poles of ωk. Hence
the image X̃x(Ωδ) converges (up to translation) when x → 0 to the graph of
fk on T minus disks of radius δ around the singularities. So it is included in a
slab whose width is bounded by some constant C(δ). By our computation in
section 5.6.1, the distance between consecutive slabs has order O(log(x2)), so
these slabs are disjoint for x small enough.
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It remains to understand the behavior of X̃x on the necks. There exists
c > 0 such that for each k, the horizontal sections x3 = c (resp. x3 = −c) of the
graph of fk consists of nk (resp. nk−1) disjoint convex curves. Hence for x small
enough, we may find numbers δ+k and δ−k (depending on x), with δ−k < δ+k <
δ−k+1, such that the intersection of the surface with the slab δ−k < x3 < δ+k is
bounded by convex horizontal curves, and is a graph, and the intersection with
the slab δ+k < x3 < δ−k+1 consists of nk annuli, each bounded by two horizontal
convex curves. By a theorem of Schiffman [7], a minimal annulus bounded by
two horizontal convex curves is fibered by horizontal convex curves. It follows
that the surface is embedded. This concludes the proof of Theorem 4.
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