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Abstract. Given an integer k ≥ 2, let S(k) be the space of complete embedded singly periodic minimal

surfaces in R3, which in the quotient have genus zero and 2k Scherk-type ends. It is well-known that S(2)

consists of the 1-parameter family of singly periodic Scherk minimal surfaces. We prove that for each

k ≥ 3, there exists a natural one-to-one correspondence between S(k) and the space of convex unitary

nonspecial polygons through the map which assigns to each M ∈ S(k) the polygon whose edges are the

flux vectors at the ends of M (a special polygon is a parallelogram with two sides of length 1 and two sides

of length k − 1). As consequence, S(k) reduces to the saddle towers constructed by Karcher [5].

1 Introduction.

In 1834, Scherk [17] discovered a singly periodic, embedded minimal surface in euclidean
space R3. This surface, known as Scherk’s second surface, has four ends asymptotic
to vertical half planes. Geometrically it may be seen as the desingularization of two
perpendicular vertical planes. In 1988, Karcher [5] proposed a 1-parameter deformation of
Scherk’s second surface, which may be seen as the desingularization of two vertical planes
with an angle θ between them (θ is the parameter). This deformation is now called the
family of Scherk singly periodic minimal surfaces. They all have four ends asymptotic
to vertical half planes (these are called Scherk-type ends) and genus zero in the quotient
R3/T by the shortest orientation-preserving translation T . In the same paper, Karcher
constructed for each integer k ≥ 3 a (2k−3)-parameter family of embedded singly periodic
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minimal surfaces which have 2k Scherk-type ends and genus zero in the quotient by the
period. These surfaces are now called Karcher saddle towers.

The main result of this paper is

Theorem 1 Let M be a properly embedded singly periodic minimal surface in R3 with a
finite number of Scherk-type ends and genus zero in the quotient by the period. Then M

is a singly periodic Scherk surface or a Karcher saddle tower.

An interesting problem is to classify all properly embedded minimal surfaces in flat 3-
manifolds, which have genus zero and finite topology (namely, a finite number of ends).
The above theorem allows us to complete the classification in the case of the flat manifold
R2 × S1 = R3/T . Indeed, by a theorem of Meeks and Rosenberg [11], in this case all ends
must be simultaneously asymptotic to horizontal planes, helicoids or vertical halfplanes
(Scherk-type ends). The first case is impossible when M has genus zero by the maximum
principle for minimal surfaces. In the second case, the only example is the helicoid by a
theorem of Pérez and Ros [13]. Therefore we obtain

Corollary 1 Let M be a non flat properly embedded minimal surface in R2 ×S1. Assume
M has genus zero and finite topology. Then M is a helicoid, a singly periodic Scherk
surface, or a Karcher saddle tower.

The classification of the properly embedded minimal planar domains with finitely many
ends is also complete in the following ambient spaces: In R3, M must be a plane, a catenoid
(Collin [1], López and Ros [7]) or a helicoid (Meeks and Rosenberg [10]). In T2 × R, M

must be a doubly periodic Scherk surface (Lazard-Holly and Meeks [6]). In T3 there are
no examples since M must have genus at least 3 (Meeks [8]). The only case that remains
open is the flat manifold R3/Sθ where Sθ is a screw motion.

The proof of theorem 1 is a modified application of the machinery developed by Meeks,
Pérez and Ros in their characterization of Riemann minimal examples [9]. It is known
[11] that M must have an even number 2k ≥ 4 of ends (this is a simple consequence of
embeddedness). For k ≥ 2, let S(k) be the space of properly embedded singly periodic
minimal surfaces with genus zero and 2k Scherk-type ends. In the case k = 2, it is
elementary to see that S(2) reduces to the family of Scherk singly periodic surfaces. When
k ≥ 3, the goal is to prove that S(k) reduces to the space K(k) of Karcher saddle towers
with 2k ends. The argument is based on modeling S(k) as an analytical subset in a complex
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manifold W(k) of finite dimension (roughly, W(k) consists of all admissible Weierstrass
data for our problem). Then the procedure has three steps:

• Properness: Uniform curvature estimates are proven for a sequence of surfaces in
S(k) provided one has some control on the flux at the ends.

• Openness: Any surface in S(k) \ K(k) may be deformed into another surface in
S(k)\K(k) by perturbing locally the flux at the ends. Together with the properness
property, this implies that if S(k)\K(k) is non empty, then any configuration of flux
may be achieved by surfaces in S(k) \ K(k).

• Local uniqueness: We prove that some particular configuration of fluxes may only
be achieved by surfaces in K(k). This proves that S(k) \ K(k) is empty.

The paper is organized as follows. In Section 2 we recall the necessary background for
our problem. Furthermore, we provide an elementary proof of the case k = 2, we remind
the construction of the Karcher saddle towers and we define the flux map, which is the main
tool to prove our main theorem. In Section 3 we study the space of admissible Weierstrass
data. In Section 4 we prove our main theorem assuming the properness, openness and
local uniqueness statements. Properness is studied in Section 5 and openness in Section 6.
In Sections 7 and 8 we prove local uniqueness in a neighborhood of some limit cases.

2 Preliminaries.

Let M̃ ⊂ R3 be a properly embedded minimal surface invariant by the translation of vector
T = (0, 0, 2π). M̃ induces a properly embedded minimal surface M = M̃/T ⊂ R3/T =
R2 ×S1. Meeks and Rosenberg [11] proved that if M has finite topology, then it has finite
total curvature and so, M is conformally a finitely punctured closed Riemann surface.
Furthermore, M has an even number of ends, all of them simultaneously asymptotic to
nonvertical planes, vertical helicoids or flat vertical annuli. These asymptotic behaviors
are called respectively planar, helicoidal or Scherk-type ends. From now on we assume
that M has genus zero and Scherk-type ends.

For a fixed integer k ≥ 2, we will denote by S(k) the space of properly embedded
singly periodic minimal surfaces which are invariant by the translation T = (0, 0, 2π), with
genus zero in the quotient and 2k Scherk-type ends, modulo translations and rotations
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around the x3-axis. S(k) can be naturally endowed with the uniform topology on compact
sets of R3/T . Any surface M ∈ S(k) is conformally equivalent to the Riemann sphere
C = C ∪ {∞} minus 2k points p1, . . . , p2k that correspond to the ends of M . The Gauss
map (stereographically projected) g of the singly periodic lifting M̃ ⊂ R3 of M descends to
the quotient surface, giving rise to a meromorphic map on M that extends holomorphically
through each puncture (with |g(pj)| = 1 because the ends are asymptotic to flat vertical
annuli). The degree of such an extension g : C → C is given by the Meeks-Rosenberg
formula [11], which in this setting writes

deg(g) = k − 1. (1)

The height differential φ = ∂x3
∂z dz, where x3 is the third coordinate function on M̃ and z

is a local conformal coordinate, also descends to a meromorphic differential on M which
extends through each pj having a simple pole with residue ±i (this comes from the nor-
malization of the period vector to be ±T ). Hence the flux vector Fj at the end pj , defined
as the integral of the inner unit conormal vector to M along the boundary of an end
representative of pj , is given by

Fj = 2πuj, (2)

where uj is a unitary horizontal vector in R3 (in fact, uj is orthogonal to the limit normal
vector at pj). The Divergence Theorem implies that

2k∑

j=1

uj = 0. (3)

For the remainder of the paper, we will use the identification R3 ≡ C × R given by
(a, b, c) ≡ (a + ib, c). Hence, we can write uj = eiθj ∈ S1 = {|z| = 1} ⊂ C with θi ∈ R.

The goal of this paper is to classify all elements in S(k) for each k ≥ 3. Although the
case k = 2 is well-known, we include an elementary proof of the description of S(2) for
the sake of completeness.

Lemma 1 S(2) consists of the 1-parameter family of singly periodic Scherk surfaces.

Proof. Fix M ∈ S(2), with ends p1, p2, p3, p4 cyclically ordered. Using (2) and (3), it is
easy to check that F1 = −F3 and F2 = −F4. This implies that, up to a rotation around
the x3-axis, the values at the ends of the stereographically projected extended Gauss map
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g of M are g(p1) = eiθ, g(p2) = e−iθ , g(p3) = −g(p1) and g(p4) = −g(p2) for certain
θ ∈ (0, π/2). Since equation (1) says that deg(g) = 1, we can parametrize M by its Gauss
map, i.e. M = C \ {±e±iθ} with g(z) = z. As the height differential φ of M has simple
poles at ±e±iθ and simple zeros at 0,∞ (because 0,∞ are finite points of M), we have

φ = c
z dz∏

(z ± e±iθ)
,

where c ∈ C∗ = C−{0}. Finally, as Res pj φ = ±i for each j we deduce that c = 4 sin(2θ),
hence the Weierstrass data (g, φ) represent a singly periodic Scherk minimal surface. 2

For the remainder of the paper we will only deal with 2k-ended surfaces, k ≥ 3. Given
M ∈ S(k) with ends p1, . . . , p2k, there is a natural cyclic ordering on the set of ends so
that the arguments θj of the flux vectors Fj = 2πeiθj satisfy

θ1 ≤ θ2 ≤ · · · ≤ θ2k ≤ θ1 + 2π. (4)

but there is no natural choice for the first end p1. The surface M together with the choice
of the first end p1 is what we will call a marked surface (unless it leads to confusion,
we will keep the notation M for a marked surface). Let S̃(k) be the set of such marked
minimal surfaces, which naturally inherits the uniform topology on compact sets. Since
our surfaces are defined up to rotations about the x3-axis, we can assume that F1 = 1 for
each M ∈ S̃(k).

Let U(k) be the set of marked convex 2k-gons in C with edges of unit length. By
marked we mean that for each polygon we choose a vertex. To avoid translations and
rotations, we normalize so that the points z = 0 and z = 1 are consecutive vertices of each
element in U(k) and the chosen vertex is 0. We will identify U(k) with the space

{
u = (u1, . . .u2k) = (1, eiθ2, · · · , eiθ2k) ∈ (S1)2k | equations (3) and (4) hold

}
,

so that a list u corresponds to the marked polygon Pu of consecutive vertices Z1 = 0,
Zj = Zj−1 + eiθj for j = 1, . . . , 2k. U(k) can be seen as a subset of the space V(k) of
unitary 2k-gons, not necessarily convex or embedded. V(k) has a natural structure of real
analytic manifold of dimension 2k − 3 (with the angles at consecutive vertices as local
parameters). Since polygons in U(k) are convex but not necessarily strictly convex, U(k)
is a closed subset of V(k). Clearly that U(k) is connected, and its boundary consists of
those convex 2k-gons with at least one edge of length 2 (viewed as two consecutive edges).

5



Definition 1 An element u ∈ U(k) is said to be a special polygon if there exist v, w ∈ S1

so that two edges of Pu are equal to ±v and all other edges are equal to ±w. In other
words, Pu is a (possibly degenerated) parallelogram with two edges of length 1 and two
edges of length k − 1, these last ones considered as k − 1 consecutive unitary edges of Pu.
We will denote by U0(k) the subset of special polygons. The limit case v = ±w represents
a parallelogram that degenerates in the segment with end points 0, k. We will call u0(k)
this degenerate parallelogram.

Definition 2 With the notation above, we define the flux map F : S̃(k) → U(k) as
M ∈ S̃(k) 7→ F (M) = u, where u = (u1, . . . , u2k) is defined by (2). Since the uj

are the flux vectors at the ends of M (up to 1
2π ), F is clearly continuous. A marked

surface M ∈ S̃(k) is called special if its flux polygon F (M) is special. We will denote by
S̃0(k) = F−1(U0(k)) to the space of special marked surfaces.

Remark 1 A simple consequence of the maximum principle for minimal surfaces insures
that F−1(u0(k)) = Ø.

2.1 Karcher saddle towers.

We now recall how to construct a surface M ∈ S̃(k) from a given nonspecial 2k-gon (for
details, see Karcher [5]). Given u ∈ U(k) \ U0(k), a theorem by Jenkins-Serrin [4] insures
that there exists a minimal graph Gu with boundary values alternately +∞ and −∞ on
the sides of the polygon Pu (which we see inside the plane {z = 0} ⊂ R3). Since Gu is
bounded by vertical lines over the vertices of Pu, the conjugate surface G∗

u of Gu is bounded
by horizontal arcs which lie alternately in two horizontal planes. G∗

u can be extended by
reflection in such horizontal arcs to a surface Mu ∈ S(k) called a Karcher saddle tower,
whose flux polygon is u. Since U(k) has 2k − 3 freedom parameters, we deduce that the
Karcher saddle towers come in a (2k − 3)-parameter family K(k) of examples.

Since each surface Mu ∈ K(k) has genus zero and admits a reflective symmetry RΠ

across a horizontal plane Π such that the set of fixed points of RΠ coincides with Mu∩Π,
Theorem 1 in Cośın and Ros [2] insures that the only bounded Jacobi functions on Mu

are linear functions of its Gauss map. This condition and an Implicit Function Theorem
argument (see for instance Pérez and Ros [14]) imply that K(k) is open in S(k). By
construction, K(k) is also closed in S(k). The continuous dependence on the 2k-gon u

of the Jenkins-Serrin graph Gu gives that the map u ∈ U(k) \ U0(k) 7→ Mu ∈ S̃(k) is
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continuous. Since U(k) \ U0(k) is connected, we deduce that K(k) forms a component of
S(k). Similarly as with other spaces of surfaces, K̃(k) will stand for the space of marked
Karcher saddle towers, which is open and closed in S̃(k).

Remark 2 The hypothesis of the Jenkins-Serrin theorem is as follows: for each strict sub-
polygon Q of Pu (which means that the vertices of Q form a strict subset of those of Pu),
the perimeter of Q must be strictly larger than twice the number of edges of Q∩Pu marked
with +∞ (resp. −∞). While this hypothesis is satisfied by any polygon in U(k) \ U0(k),
it fails to be true for special polygons: simply consider any sub-rhombus of an u ∈ U0(k)
(we thank Barbara Nelli for pointing out this fact to us).

Another consequence of the continuity of the map u ∈ U(k) \ U0(k) 7→ Mu ∈ S̃(k) is
that we can state equivalently Lemma 1 by saying that F : S̃(2) → U(2) \ {u0(2)} is a
homeomorphism. Our main theorem now states as follows.

Theorem 2 Assume k ≥ 3. Then S(k) = K(k) and the map F : S̃(k) → U(k) \ U0(k) is
a homeomorphism, whose inverse map is u 7→ Mu (in particular, S̃0(k) = Ø).

Since each Karcher saddle tower Mu is obtained by symmetrization of the conjugate graph
G∗

u across the horizontal planes containing ∂G∗
u, we obtain directly the following corollary.

Corollary 2 Any properly embedded singly periodic minimal surface with genus zero and
Scherk-type ends has an horizontal plane of symmetry.

3 The space of Weierstrass representations.

Let M ∈ S̃(k) be an embedded marked surface with ends p1, . . . , p2k, flux polygon F (M) =
u = (u1, . . . , u2k), complex Gauss map g and height differential φ. The limit normal values
are g(pj) = ±iuj , 1 ≤ j ≤ 2k. Since M is embedded, the normal vector always points to
the same component of (R3/T ) \M , hence we may assume without loss of generality that

g(pj) = (−1)j+1iuj , (5)

and thus the flux at the end pj is given in terms of (g, φ) by

Fj = 2πuj = −2πg(pj) Res pjφ = 2π(−1)jiuj Res pjφ,
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which yields
Res pjφ = (−1)ji, 1 ≤ j ≤ 2k. (6)

Let W(k) be the set of lists (g, p1, . . . , p2k) where g is a degree k−1 meromorphic function
on C and p1, . . . , p2k ∈ C∗ are 2k distinct points. Elements in W(k) will be simply denoted
by g. By using Hurwitz schemes, one can naturally endow W(k) with a structure of a
complex analytic manifold of dimension 4k− 4 (the symmetric polynomials on the 2k− 4
branch values of each g ∈ W(k) together with the 2k points pj ∈ C∗ give a local chart for
W(k)). Given an element g ∈ W(k), we define the height differential φ associated to g as
the unique meromorphic 1-form on C with polar divisor

(φ)∞ =
2k∏

j=1

pj ,

whose residues are given by equation (6). Let M(k) be the set of elements g ∈ W(k) such
that (g, φ) is the Weierstrass pair of a complete immersed minimal surface in R3/T with
Scherk-type ends, or equivalently

M(k) = {g ∈ W(k) | (φ)0 = (g)0(g)∞ and |g(pj)| = 1, 1 ≤ j ≤ 2k}
= {g ∈ W(k) | (φ)0 = (g)0(g)∞ and |Res pj(gφ)| = 1, 1 ≤ j ≤ 2k}.

(Here (h)0, (h)∞ denote the zero and polar divisors of a meromorphic function or differ-
ential on C). We can see the set of marked embedded surfaces S̃(k) as a subset of M(k).
Note that that S̃(k) is not open in M(k) (because the directions of the ends is not fixed;
compare with the situation in Meeks-Pérez-Ros [9] or Pérez-Rodŕıguez-Traizet [12]).

Remark 3 Essentially what we do in the paper is prove that the only elements of M(k)
which give embedded surfaces are the Karcher saddle towers. We will do this using a rather
elaborate machinery developed in previous papers [9]. As elements of M(k) are defined by
simple algebraic equations, one may wonder if there is a purely algebraic proof (following,
for example, the method in Wei [19]). So let us explain why a purely computational proof
can not succeed.

We have used embeddedness to obtain algebraic restrictions on the Weierstrass data
(such as equation (5) above). However, there are examples of singly periodic minimal
surfaces with Scherk-type ends and genus zero which satisfy all conditions we have written
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so far and yet are not embedded. Here is one example:

g =
z4 − 4iz2 + 3
z4 + 4iz2 + 3

, φ =
(z4 − 4iz2 + 3)(z4 + 4iz2 + 3)i dz

(z2 + 3)(z2 − 3)(z2 + 1)(z2 − 1)z
.

This example has 10 ends. The value of the complex Gauss map at the ends 0,∞ is 1,
while the ends at ±1,±i,±

√
3,±i

√
3 have Gauss map ±i. This is an example of a special

surface, and it is not embedded. Hence embeddedness must be used in a rather strong way,
which is hard to perform in a purely computational proof.

Definition 3 The flux map F : W(k) → C2k is given by

F (g) = ( Res p1(gφ), . . . , Res p2k
(gφ)) ,

which is clearly holomorphic. Given u ∈ U(k), let Mu(k) = F−1(u)∩M(k) and S̃u(k) =
F−1(u)∩ S̃(k) (note that F−1(u) is not necessarily contained in M(k), since φ might not
satisfy the regularity condition of the induced metric: (φ)0 = (g)0(g)∞)

Lemma 2 Given u ∈ U(k), the subset S̃u(k) is open and closed in Mu(k).

Proof. Closeness follows since a limit of embedded surfaces is itself embedded. Any em-
bedded surface in S̃u(k) admits a regular neighborhood of constant positive radius (this
is a consequence of the maximum principle if u is in the interior of U(k), and of the max-
imum principle at infinity if u ∈ ∂U(k), see Ros [16] for a similar argument). From here
the desired openness is standard. 2

We will need later the following property.

Lemma 3 Compact analytic subvarieties of W(k) are finite sets.

Proof. (Inspired in Meeks-Pérez-Ros [9]). We may assume after composition with Möbius
transformations that for any element g ∈ W(k) we have p1 = ∞, p2 = 0, p3 = 1. Then any
element in W(k) has k − 1 zeros and k − 1 poles in C∗ − {1}. Consider the elementary
symmetric functions σ1, . . . , σk−1 of the zeros, which are holomorphic functions on W . Let
A be a compact analytic subvariety of W(k). As σj(A) is a compact analytic subvariety
of C, σj(A) is finite. Since this works for any j, we deduce that there are only a finite
number of possibilities in C∗ − {1} for zeros of elements of A. In the same way, there
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are only a finite number of possibilities for poles of elements of A. Finally, the function
g ∈ W(k) 7→ g(p1) is holomorphic, so again there are only a finite number of possibilities
for g(p1), g ∈ A. As any g ∈ W is locally determined by its zeros, poles and its value in
C∗ at one point, this proves that A is discrete. As A is compact, it must be finite. 2

3.1 The ligature map.

The ligature map L will be a holomorphic mapping from W(k) to C4k−4 that expresses
when an element g ∈ W(k) lies in M(k). To define L we cannot simply consider the value
of φ/dz at the zeros and poles of g, because g might have multiple zeros and in this case
these zeros do not depend analytically on g. We may again assume by normalization that
p1 = ∞, p2 = 0 and p3 = 1 and consequently write

g = λ
P1(z)
P2(z)

, φ = i
P3(z)∏

j≥2(z − pj)
dz,

where P1, P2 and P3 are unitary polynomials of respective degrees k− 1, k− 1 and 2k− 2
(this last degree comes from the fact that φ must have a simple pole at ∞; the factor i

in front of P3∏
j≥2(z−pj)

dz comes from the equation Res ∞φ = −i, which follows from (6)).
Note that the polynomials P1, P2, P3 depend analytically on g. On the other hand, the
regularity condition (φ)0 = (g)0(g)∞ is equivalent to P1P2 = P3, or also to

Remainder
(

P3

P1P2

)
= 0.

As the above remainder of the euclidean division of P3 by P1P2 is a complex polynomial
of degree less than 2k− 2, we can see it as a tuple in C2k−2 by considering its coefficients.

Definition 4 The ligature map L : W(k) → C4k−4 is the holomorphic map

g ∈ W(k) 7→ L(g) = (Remainder(P3/(P1P2)), Res p3(gφ), . . . , Res p2k
(gφ)) .

We only consider the above residues for 3 ≤ j ≤ 2k since the equations to solve (expressing
when g ∈ W(k) lies in M(k)) are not independent. Indeed, by the Residue Theorem

∑

zeros of g

Res (g−1φ) +
2k∑

j=1

Res pj(g
−1φ) = 0,
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∑

poles of g

Res (gφ) +
2k∑

j=1

Res pj(gφ) = 0.

Also observe that

Res pj(g
−1φ) =

(−1)ji

g(pj)
=

−1
Res pjgφ

.

Thus if L(g) = (0, (2k−2). . . , 0, u3, . . . , u2k) with u = (u1, . . . , uk) ∈ U(k), then we obtain
a system of two equations for ( Res p1(gφ), Res p2(gφ)), whose two solutions are (u1, u2)
and (u2, u1). Hence Mu(k) is a union of components of the subset of W(k) defined by
L(g) = (0, u3, . . . , u2k). Since L is holomorphic, we deduce the following lemma.

Lemma 4 Given u ∈ U(k), Mu(k) is a complex analytic subvariety of W(k).

4 Proof of Theorem 2.

The proof of Theorem 2 is by induction on k ≥ 3. Suppose that the theorem holds for
any k′ < k, and we will prove it for k (note that the theorem holds for k = 2). We
will assume the following three propositions, to be proven in further sections. Recall that
S̃0(k) = F−1(U0(k)) is the set of special surfaces with 2k ends.

Proposition 1 (Properness)

(i) The flux map F : S̃(k) \ S̃0(k) → U(k) \ U0(k) is proper.
(ii) The flux map F : S̃0(k) → U0(k) is proper.

Proposition 2 (Openness) The flux map F : S̃(k) → U(k) is open.

Proposition 3 (Local uniqueness) There exists a point u∗ ∈ U0(k) and ε > 0 such
that if u ∈ U(k) satisfies ‖u− u∗‖ < ε, then F−1(u) ⊂ K̃(k).

Assuming these results, we now prove Theorem 2. We first check that S̃0(k) is empty. By
Proposition 2 and an elementary topological argument, the flux map F : S̃0(k) → U0(k)
is open. The same map is proper by point (ii) of Proposition 1. Hence the image by F of
any component of S̃0(k) is an entire component of U0(k). Note that U0(k) is not connected
but in any component of U0(k) there is a degenerate polygon which reduces to a segment.
By the maximum principle (see Remark 1), such a polygon cannot lie in the image of F .
Therefore S̃0(k) = Ø.
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Figure 1: The angles αj , βj at the vertex Zj between uj−1 and uj .

Then by Proposition 2 and elementary topology, the flux map F : S̃(k) → U(k)\U0(k)
is open. By point (i) of Proposition 1, it is also proper. Hence the image by F of any
component of S̃(k) is all of U(k) \ U0(k) (which is connected). By Proposition 3, any
component of S̃(k) must contain some Karcher saddle towers. Since the set of saddle
towers K̃(k) form a component of S̃(k), we deduce that S̃(k) = K̃(k). Now the remaining
assertions in the statement of Theorem 2 follow easily.

Remark 4 Although we did not use the hypothesis of induction in the last paragraph, the
proof of Proposition 1 needs Theorem 2 to be true for any k′ < k.

5 Properness.

Along this section, {Mn}n ⊂ S̃(k) will denote a sequence of marked surfaces whose asso-
ciated flux polygons un = F (Mn) converge as n → ∞ to a polygon u∞ ∈ U(k). The goal
of this section is to understand the limit of (a subsequence of) {Mn}n.

5.1 Preliminaries on convex polygons.

We need an elementary fact about convex unitary polygons. Given u = (1, u2, . . . , u2k) ∈
U(k) and j ∈ 1, . . . , 2k, let αj be the angle between uj−1 and uj (here we convine u0 = u2k).
Thus βj = π − αj is the inner angle of the polygon Pu ⊂ C associated to u at the vertex
between the edges

∑j−1
i=1 uk and

∑j
i=1 uj of Pu, see Figure 1.

Lemma 5 Given u ∈ U(k) and j = 1 . . . , 2k, it holds αj + αj+1 ≤ π, with equality for
some j if and only if u ∈ U0(k).
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Proof. Fix j = 1, . . .2k. We divide the polygon Pu in two edges and two chains of consec-
utive edges in the following way.

• We will call L1 to the edge of Pu whose extreme points are the vertices Zj−1, Zj of
Pu with respective inner angles βj−1, βj.

• Starting at Zj−1, let L′
1, L

′
2, . . . , L

′
k−1 be a chain of k− 1 consecutive edges of Pu, so

that L1 ∩ L′
1 = {Zj−1} and each couple L′

h, L′
h+1 share a common end point.

• Similarly, let L′′
1, L

′′
2, . . . , L

′′
k−1 be a chain of k − 1 consecutive edges of Pu starting

at Zj , such that L1 ∩ L′′
1 = {Zj}.

• We will call Lk to the remaining edge of Pu, so that the two above chains are joined
in Pu at their respective end points by L1 and Lk .

Let Ω ⊂ C be the closed halfstrip bounded by L1, the halfline starting at Zj−1 that
contains L′

1 and its parallel halfline starting at Zj . Lemma 5 can be equivalently stated
as follows.

Assertion 1 If Pu ⊂ Ω, then u ∈ U0(k).

Proof of Assertion 1. Firstly note that for k = 2 the assertion is trivial, so assume k > 2.
We divide the convex hull of Pu into k − 1 parallelograms Q1, . . . , Qk−1 so that

(A) Q1 is bounded by L1, L
′
1, L

′′
1 and L′′

1 − L1.

(B) Q2 is constructed as Q1 exchanging L1 by L2 = L′′
1 − L′

1, L′
1 by L′

2 and L′′
1 by L′′

2.

(C) Qh is constructed inductively from Qh−1 as in item (B).

Note that all the subpolygons Qi contain two edges of Pu, except Q1 and Qk−1 which have
three. Using that Q1 has three unitary edges and lies in Ω, an elementary trigonometry
argument shows that |L2| ≤ 1 (here |L2| means length), with equality if and only if
L′′

1 ⊂ ∂Ω. In particular, we can assume |L2| < 1 and argue by contradiction (otherwise Q1

is a rhombus so we eliminate Q1 from Pu and argue with the remaining polygon). Since
|L2| < 1, the edges L′

1, L
′′
1 extend to bigger segments which form the boundary of a triangle

T1, and Pu ⊂ T1 by convexity. Now consider the second subpolygon Q2. The situation is
similar to the one for L1 (here we use that the corresponding triangle T2 lies inside T1),
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with the only difference that the basis L2 of Q2 is not unitary but |L2| < 1. We claim that
still |L3| < 1 holds true: For this, enlarge L2 to have length 1 keeping the same L′

2 and
exchange L′′

2 by a translated copy of it. Clearly the length of the new L3 is bigger than
the length of the former L3 (otherwise we contradict convexity for Q2). But the enlarged
subpolygon Q2 lies in the situation of the first case with respect to the halfstrip between
L′

2 and L2 + L′
2, hence the new L3 has length less than or equal to 1, and so the former

L3 satisfies |L3| < 1. Repeating the process, we arrive at |Lh| < 1 for all h. But the last
Lh is Lk ⊂ Pu, which is unitary, a contradiction. 2

Remark 5 Clearly Lemma 5 does not hold for convex unitary polygons with an odd num-
ber of vertices.

5.2 Area, flux and curvature estimates.

As usual, we denote by M̃ the lift to R3 of a surface M ⊂ R3/T , by B(x, R) the open
ball centered at x ∈ R3 with radius R > 0, by C(R) ⊂ R3/T the solid vertical cylinder
of radius R and axis RT modded out by T , and by KΣ the Gauss curvature function of a
surface Σ ⊂ R3.

Lemma 6 Given M ∈ M(k), the area of M̃ ∩ B(R) is less than kπR2 for any R > 0.

Proof. Since M̃ is asymptotic to 2k vertical halfplanes, the limit of Area(M̃∩B(R))
R2 when

R → ∞ is kπ. Now the result follows from the monotonicity formula. 2

The fact that the genus of our surfaces is zero allows us to control the flux of vertical
sections of our sequence {Mn}n ⊂ S̃(k) with {un = F (Mn)}n → u∞ ∈ U(k).

Lemma 7 There exist a ∈ S1 and ε > 0 depending only on u∞, such that for any flat
vertical annulus Π ⊂ R3/T , n ∈ N and any component γn of Mn ∩ Π,

|Flux(γn) ± 2πa| ≥ ε. (7)

Proof. Fix a flat vertical annulus Π ⊂ R3/T and a component γn of Mn∩Π. Since Mn has
genus zero, γn separates Mn in two components. Hence the flux of Mn along γn is equal to
the sum of the fluxes at some of the ends of Mn. In particular, Flux(γn) is horizontal (we
will see it in C) and for n fixed there are only a finite number of values in C for Flux(γn),
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that only depend on un. Now the existence of a ∈ S1 and ε > 0 verifying (7) follows from
the fact that {un}n converges to u∞ as n → ∞. 2

Let gn be the Gauss map of Mn (stereographically projected from the north pole).

Lemma 8 Let a ∈ S1 be the unit complex number given by Lemma 7. Then, there exists
δ > 0 depending only on u∞ such that for all n ∈ N and pn ∈ Mn such that gn(pn) = ia,

sup
∣∣K(Mn−pn)∩C(10)

∣∣ ≥ δ.

Proof. By contradiction, if sup
∣∣K(Mn−pn)∩C(10)

∣∣ converges to zero as n → ∞ then {Mn −
pn)∩C(10)}n converges uniformly to the flat vertical annulus Π1 with normal ia. Now take
a flat vertical annulus Π perpendicular to Π1. Then, the flux of Mn along Mn ∩ Π = γn

converges to ±2πa as n → ∞, which contradicts Lemma 7. 2

5.3 Weak limits.

We now prove that {Mn}n converges in some weak sense to a finite number of limit minimal
surfaces. This ought to be true in a quite general setup, although we will give a proof
enough for our setting.

Let a ∈ S1 be given by Lemma 7. For each n ∈ N let p1,n, . . . , pk−1,n ∈ Mn the
points such that gn(pj,n) = ia for 1 ≤ j ≤ k − 1 (counting with multiplicity). Let
p̃1,n, . . . , p̃k−1,n ∈ M̃n be their corresponding liftings to a fundamental domain of M̃n.
Fix j = 1, . . . , k − 1. Since the degree of gn is fixed k − 1, given R > 0 there exists
c1 > 0 such that the absolute total curvature of (M̃n − p̃j,n) ∩ B(R) is not greater than
c1 for all n ∈ N. Furthermore, Lemma 6 implies that there exists c2 > 0 such that
Area

(
(M̃n − p̃j,n)∩ B(R)

)
≤ c2 for all n ∈ N. In this situation, a standard result (see

e.g. Theorem 4.40 in [15]) insures that there exists a discrete set Xj ⊂ R3 and a properly
embedded minimal surface M̃j,∞ ⊂ R3 such that up to a subsequence, {M̃n − p̃j,n}n

converges with finite multiplicity in R3 −Xj to M̃j,∞. Furthermore, for each point p ∈ Xj

and µ > 0, it holds

lim sup
k

∫

(M̃n−p̃j,n)∩B(p,µ)
|Kn| ≥ 4π. (8)

We now distinguish two possibilities, depending whether M̃j,∞ is flat or not.
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I. If M̃j,∞ is not flat, then by a standard argument (see e.g. Section 4 of [15]) the
multiplicity of the convergence of {M̃n−p̃j,n}n to M̃j,∞ is one and Xj = Ø. Since each
M̃j,n is T -periodic, the same holds for M̃j,∞. The quotient surface Mj,∞ = M̃j,∞/T

is a planar domain since all the Mn have genus zero, and its absolute total curvature
is at most 4π(k−1). Therefore all ends of Mj,∞ are simultaneously planar, helicoidal
or Scherk-type by a theorem of Meeks and Rosenberg [11]. As Mj,∞ is an embedded
nonflat planar domain, the maximum principle implies that Mj,∞ does have planar
ends. If the ends of Mj,∞ are helicoidal, then it is a helicoid (Pérez and Ros [13]).
As T is vertical, such a helicoid must be also vertical. Otherwise, Mj,∞ has genus
zero and at most 2k Scherk-type ends.

II. If M̃j,∞ is flat, then Xj 6= Ø by Lemma 8. The proof of Theorem 4.40 in [15] implies
that there exists a sequence of real numbers λn → +∞ such that λn(M̃n − p̃j,n)
converges to a properly embedded nonflat minimal surface M̂j,∞. Since the Mn are
planar domains, M̂j,∞ must have genus zero and so, it is a catenoid (López and
Ros [7]). As the neck of M̂j,∞ is a closed curve with nonzero period, it must be the
uniform limit of closed curves with nonzero flux in the Mn (rescaled by λn). As all
of such curves on Mn have horizontal flux, M̂j,∞ is a horizontal catenoid.

Lemma 9 In the situation above, suppose that Mj,∞ is a limit surface of the type I. Then,
none of the ends of Mj,∞ has limit normal vector ia.

Proof. If the ends of Mj,∞ are helicoidal, then the Lemma is trivial. Arguing by contra-
diction, suppose that Mj,∞ has Scherk-type ends (which must be vertical because M̃j,∞

is T -invariant), one of which has limit normal vector ia. Thus we can find a flat vertical
annulus Π ⊂ R3/T orthogonal to a such that the flux of Mj,∞ along a certain component
γj,∞ of Mj,∞ ∩ Π is ±2πa. γj,∞ is the uniform limit of components γn of Mn ∩ Π, which
therefore have flux converging to ±2πa, a contradiction with Lemma 7. 2

We now need to get rid of duplicate limits.

Lemma 10 In the situation of Lemma 9, let dj be the degree of the Gauss map on
Mj,∞ (thus dj ≤ k − 1). Then, there are another dj − 1 points q1,n(j), . . . , qdj−1(j) ∈
{p̃1,n, . . . , p̃k−1,n} \ {p̃j,n} such that for every h = 1 . . . , dj − 1, a translation of M̃j,∞ is
also the limit of {M̃n − qh,n(j)}n as n → ∞.
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Proof. By Lemma 9, there exists a compact region C ⊂ R3/T such that for n large, gn

takes the value ia at dj points in C counting multiplicity (one of these points is the origin).
The remaining di−1 points correspond to other points q1,n, . . . , qdj−1 ∈ {p̃1,n, . . . , p̃k−1,n}\
{p̃j,n}, and clearly {M̃n − qh,n}n converges to M̃j,∞ (up to a translation) as n → ∞. 2

For the remainder of this section, we forget about the repeated limits as n → ∞ of the
Mn − qh,n(j) in Lemma 10, since they are the same as Mj,∞. Let r be the number of limit
surfaces that remain. After reindexing, we obtain that for each j = 1, . . . , r the sequence
{Mn−pj,n}n converges (up to possibly blowing-up) to Mj,∞ which is either singly periodic
or a horizontal catenoid. By counting the number of times where the Gauss map takes
the value ia we deduce that the degrees of the Gauss maps of all the Mj,∞ add up to
k − 1. Furthermore, there exist r disjoint metric balls Bj,n in R3/T such that Mn ∩ Bj,n

traps all the interesting geometry of the limit Mj,∞, and the total curvature of Mn ∩Bj,n

is arbitrarily close to the total curvature of Mj,∞. In particular, the total curvature of
Mn \ (B1,n ∪ . . .∪ Br,n) is arbitrarily small.

Note that for j = 1, . . . , r fixed, the Gauss map at each end representative of Mj,∞

is close to a constant that depends on the end. For n large, let Ω be a component of
Mn \ (B1,n ∪ . . . ∪ Br,n). By the open mapping theorem, the Gauss map gn of Mn has
to be close to a constant c(Ω) on Ω (otherwise gn(Ω) would cover almost all the sphere).
Hence Ω is an extremely flat graph over a certain plane. Now let Ω be a noncompact
component of Mn \ (B1,n ∪ . . .∪Br,n). Since the ends of Mn have horizontal limit normal
vector, we have |c(Ω)| = 1. As the Gauss map of a helicoid in R3/T is vertical at its
ends, we deduce that for any ball Bj0 ,n such that ∂Bj0,n ∩ ∂Ω 6= Ø, the associated limit
surface Mj0 ,∞ is either a horizontal catenoid or a properly embedded planar domain with
vertical Scherk-type ends. Therefore for any component Ω′ of Mn \ (B1,n ∪ . . . ∪ Br,n)
with ∂Bj0,n ∩ ∂Ω′ 6= Ø, it holds |c(Ω′)| = 1. We now repeat inductively this process
exchanging Ω by Ω′, to conclude finally that all the limit surfaces Mj,∞ are horizontal
catenoids or properly embedded minimal planar domains with vertical Scherk-type ends.
We now summarize what we have proven in the following statement.

Proposition 4 There exists a collection M1,∞, . . . , Mr,∞ of minimal surfaces and r se-
quences of homotheties {hj,n}n satisfying

1. Each Mj,n is a horizontal catenoid or a properly embedded minimal surface of genus
zero in R3/T with at most 2k Scherk-type ends.
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Figure 2: Left: A weak limit configuration with 3 limit surfaces (M1,∞ is a catenoid,
M2,∞ a Scherk surface and M3,∞ a surface of genus zero with six Scherk-type ends) and
11 connection pieces (3 of them being compact). Right: See Lemma 11.

2.
∫
Mn

|KMn | =
∑n

j=1

∫
Mj,∞

|KMj,∞ |, for each n ∈ N.

3. If Mj,∞ is a catenoid, then the sequence of scaling factors of hn blows-up and
{hj,n(Mn)}n converges smoothly to Mj,∞ in R3.

4. If Mj,∞ has Scherk-type ends, then each hn is a translation and {hj,n(Mn)}n con-
verges smoothly to Mj,∞ in R3/T .

5. For R, n large, there exist r disjoint metric balls Bj,n ⊂ R3/T such that hj,n(Bj,n)
is either the ball B(0, R) ⊂ R3 (when Mj,∞ is a catenoid) or the metric ball of
radius R centered at the origin in R3/T (when Mj,∞ has Scherk-type ends), and Mn

decomposes as

Mn = (Mn ∩ B1,n) ∪ . . .∪ (Mn ∩ Br,n) ∪ Ω1,n ∪ . . .∪ Ωm,n.

Furthermore, each Ωh,n is a graph over a domain in a flat vertical annulus Π ⊂ R3/T .

In the sequel, we will call connection piece to each of the domains Ωh,n. Note that a
connection piece could be compact (if it does not contains ends of Mn), see Figure 2 left.

5.4 Strong compactness.

In this section we shall prove that if u∞ ∈ U(k) \ U0(k), then the collection of limit
surfaces in Proposition 4 reduces to a single surface in S̃(k) (this is usually referred in
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literature as strong compactness of the original sequence {Mn}n ⊂ S̃(k)), and obtain
further information for the noncompact case, i.e. u∞ ∈ U0(k).

Assume that r ≥ 2 (we use the notation in Proposition 4). Consider two limit surfaces
M ′ = Mj1 ,∞ and M ′′ = Mj2 ,∞ which are attached in Mn by a compact connection piece
Ω. We label the ends of M ′ as p′j and those of M ′′ as p′′j , in such a way that the ends
p′2 and p′′2 are attached along Ω. Let u′

j and u′′
j be the corresponding flux vectors. As

in Subsection 5.1, α′
j be the angle between u′

j−1 and u′
j , and define α′′

j analogously with
u′′

j−1, u
′′
j , see Figure 2 right.

Lemma 11 In the above situation, α′
2 + α′′

3 ≥ π and α′′
2 + α′

3 ≥ π.

Proof. By contradiction, suppose α′
2 + α′′

3 < π. If both connection pieces that glue to
p′1, p

′′
3 are noncompact, then these connection pieces are graphs over flat vertical halfplanes

(quotiented by T ) hence they intersect, which contradicts that Mn is embedded. Hence
at least one of the connection pieces Ω′, say that which glues to p′1, is compact. So p′1 is
attached along Ω′ to an end of another weak limit M ′′′ and we repeat the discussion with
the same p′′3 by exchanging p′1 by a suitable end of M ′′′. After a finite chain of compact
connection pieces and weak limits, either p′1 and p′′3 glue to different ends of Mn, or they
glue each other through an almost horizontal compact arc Γ that only intersects the closure
of Ω at the end points of Γ. In the first case we find a contradiction as above, while in
the second case we join Γ with a suitable almost horizontal arc Γ′ ⊂ Ω, so that Γ ∪ Γ′

is a closed curve in Mn. Since the metric balls Bj,n in Proposition 4 all have bounded
radius and for n sufficiently large the length of the parts of Γ∪Γ′ in the connection pieces
is as large as we desire, we deduce that for n large the flux of Mn along Γ ∪ Γ′ is not
horizontal, which contradicts that such a flux vector is a sum of fluxes at the ends of Mn.
Thus α′

2 + α′′
3 ≥ π, and similarly α′′

2 + α′
3 ≥ π. 2

We continue analyzing the case r ≥ 2. With the notation above, suppose that
M ′, M ′′ have Scherk-type ends. By Lemma 5 applied to the corresponding polygon fluxes
F (M ′), F (M ′′), it holds α′

2 + α′
3 ≤ π and α′′

2 + α′′
3 ≤ π. Adding this inequalities and

using Lemma 11 we conclude that α′
2 + α′

3 = α′′
2 + α′′

3 = π, so Lemma 5 gives that
F (M ′) ∈ U0(k′), F (M ′′) ∈ U0(k′′), where k′, k′′ are half of the number of ends of M ′, M ′′

respectively. Furthermore, F (M ′) and F (M ′′) have parallel sides. Thus all the fluxes at
ends of M ′ are ±2πu′ except two of them which are ±2πv (here u, v are distinct points
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in S1), and similarly with M ′′. Note that the connection piece Ω between M ′ and M ′′ is
attached to ends with flux ±2πv of M ′, M ′′ (otherwise we produce again a closed curve a
Mn with nonhorizontal flux vector).

Another consequence of these arguments is that all remaining weak limits Mj,∞ other
that M ′, M ′′ have necessarily Scherk-type ends, so we can repeat the arguments in the
last paragraph to obtain that u∞ = limF (Mn) belongs to U0(k). Now we can deduce the
main result of this section. Recall that u0(k) is the degenerated special polygon all whose
edges are parallel (namely, the segment with endpoints 0, k).

Proposition 5 Let {Mn}n ⊂ S̃(k) with {F (Mn) = un}n → u∞.

(A) if u∞ 6∈ U0(k), then after passing to a subsequence, {Mn}n converges to a single
marked surface M∞ ∈ S̃(k) \ S̃0(k).

(B) If u∞ ∈ U0(k) \ {u0(k)}, then after passing to a subsequence either {Mn}n converges
to a single marked surface M∞ ∈ S̃0(k), or all weak limit surfaces Mj,∞ are special
surfaces with less than 2k ends.

(C) If u∞ = u0(k), then after passing to a subsequence either {Mn}n converges to a single
marked surface, or all limit surfaces are horizontal catenoids.

We finish this section by proving Proposition 1. Item (i) of this proposition is precisely
point (A) of Proposition 5. To prove item (ii), consider a sequence of special surfaces
{Mn}n ⊂ S̃0(k) with {F (Mn) = un}n → u∞ ∈ U0(k).

If u∞ ∈ U0(k) \ {u0(k)}, then Proposition 5-(B) asserts that either the Mn converge
to a single marked surface M∞ ∈ S̃0(k) (which is what we want to prove), or all weak
limit surfaces M1,∞, . . . , Mr,∞ of the sequence {Mn}n are special surfaces with less than
2k ends. By induction hypothesis, Theorem 2 holds for any k′ < k, so we have S̃0(k′) = Ø
for each k′ < k unless k′ = 2, hence M1,∞, . . . , Mr,∞ are singly periodic Scherk minimal
surfaces. These weak limits are in fact the same Scherk surface, because u∞ ∈ U0(k). We
will call this limit configuration with k − 1 copies of a singly periodic Scherk surface a
Scherk limit (note there exists a 1-parameter family of Scherk limits). In Section 7 we will
study each Scherk limit, proving in particular that a sequence of special surfaces cannot
converge to a Scherk limit, so this case does not happen.

Finally assume that u∞ = u0(k). By Proposition 5-(C), either Mn converges to a
single marked surface M∞ ∈ S̃0(k) and we are done, or after a blow-up {Mn}n converges
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to k−1 copies of the same horizontal catenoid, a configuration that we will call the catenoid
limit. In Section 8 we will see that a sequence of special surfaces cannot converge to the
catenoid limit, so this case is also impossible. This completes the proof of Proposition 1.

6 Openness.

In this section we will prove Proposition 2. Since openness is a local property, it suffices
to see that given M ∈ S̃(k) there exists an open neighborhood V of M in S̃(k) such
that F |V : V → U(k) is an open map. Fix M ∈ S̃(k). Consider the associated element
g in W(k) and flux polygon u = F (M) ∈ U(k). Clearly g ∈ S̃u(k). By Lemma 2 and
Lemma 4, S̃u(k) is an analytic subvariety of W(k). By the properness Proposition 1, S̃u(k)
is compact, hence it is finite by Lemma 3. Thus there exists an open set Ω ⊂ W(k) such
that g ∈ Ω and L−1(L(g)) = {g}. Since L is holomorphic between complex manifolds of
the same dimension, the open mapping theorem for finite maps (see [3] page 667) implies
there exists an open set Ω1 ⊂ Ω containing g such that L|Ω1 is open. Now Proposition 2
follows directly using the relationship between L and F .

7 Uniqueness around any Scherk limit.

In this section we will study surfaces close to the Scherk limits. We will conclude from
this study two facts: First, that a sequence of special surfaces cannot converge to a Scherk
limit, which was used in the proof of Proposition 1. Second, that all surfaces close to a
Scherk limit must be Karcher saddle towers, which will be used to prove Proposition 3.

Recall that a Scherk limit is a configuration of k− 1 copies of the same singly periodic
Scherk minimal surface. In Section 2 we normalized the space U(k) of convex unitary
polygons to have their first component equals 1. In what follows we will change slightly
this normalization, which does not affects to the arguments but simplifies the notation.
After rotation and suitable choice of the first end for Mn, we may assume that the limit
of {F (Mn)}n is u∞ = (α, (k−1). . . , α, 1,−α, (k−1). . . ,−α,−1) where α ∈ S1 − {±1} and the ends
p1, . . . , p2k are labeled as indicated in Figure 3. A little thought of how the normal vector
behaves when gluing consecutive copies of the Scherk surface, shows that if we fix the
normal map g to be i at the end p2k, then it alternates the values ±i in consecutive annular
connection pieces between copies of the Scherk surface, finishing at g(pk) = (−1)k+1i.

21



Figure 3: A Scherk limit configuration, with the ends and the corresponding fluxes uj .

7.1 Weierstrass data.

A model for an element in W(k) close to the Scherk limit is as follows. Fix u =
(u1, . . . , u2k) ∈ C2k close to u∞ (we do not require the components of u either to be uni-
tary or to satisfy equation (3)). Consider k − 1 copies C1, . . . , Ck−1 of C. For 1 < j < k,
consider complex numbers aj 6= bj close to (−1)j+1i. Glue Cj−1 with Cj along a cut from
aj to bj in the usual way, so that the chain of k − 1 copies of C yields a compact surface
Σ of genus zero. On Σ we consider the meromorphic function g defined as g = z in each
Cj . Then g has degree k − 1 and its branch values are aj , bj, 1 < j < k. This function
g together with the ordered collection of points p1, . . . , p2k ∈ Σ given below determine an
element of W(k).

• For 1 ≤ j < k, pj and p2k−j are the unique points in Cj that satisfy g(pj) = pj =
(−1)j+1iuj , g(p2k−j) = p2k−j = (−1)j+1iu2k−j (compare with equation (5)). Note
that since u is close to u∞ and α 6= ±1, we deduce that pj , p2k−j are far from the
neck between Cj−1 and Cj .

• pk lies in Ck−1 and p2k in C1, are determined by g(pk) = pk = (−1)k+1iuk, g(p2k) =
p2k = −iu2k. Again pk is far from the neck between Ck−2 and Ck−1, and p2k is far
from the neck between C1 and C2, see Figure 4.

Hence we have defined an element g ∈ W(k) from the 4k − 4 complex parameters
aj , bj, uh. Since the roles of aj and bj are symmetric, the right parameters to consider if
we want to parametrize the space of g ∈ W(k) around the Scherk limit are the uh together
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Figure 4: Parametrizing the Gauss map g for the particular case u ∈ U(k) close to u∞.
The points pj , p2k−j ∈ {|z| = 1} are respectively close to α,−α in each copy of C.

with the elementary symmetric functions of aj , bj. Let

xj =
aj + bj

2
, yj = ajbj , 1 < j < k.

We also exchange the variable yj by ζj = yj −x2
j for 1 < j < k (the map (xj , yj) 7→ (xj , ζj)

is a diffeomorphism). Next we introduce some notation. Given ε > 0, let

x∞ = (−i, i, . . . , (−1)ki), 0 = (0 . . . , 0) ∈ Ck−2,

D(x∞, ε) = {x ∈ Ck−2 | ‖x− x∞‖ < ε},
D(0, ε) = {ζ ∈ Ck−2 | ‖ζ‖ < ε},
D(u∞, ε) = {u ∈ C2k | ‖u− u∞‖ < ε},
A = {ζ ∈ D(0, ε) | ζj = 0 for some j}.

Since ζj = −1
4(aj − bj)2, the equation ζj = 0 means that aj = bj is a node, so A expresses

when Σ pinches into a Riemann surface with nodes. It is easy to show that the map
Θ : D(x∞, ε)× (D(0, ε) \ A)×D(u∞, ε) → W(k) defined by Θ(x, ζ,u) = g is a local chart
for W(k). Given (x, ζ,u) ∈ D(x∞, ε) × (D(0, ε) \ A) × D(u∞, ε), we call φ to the height
differential associated to g = Θ(x, ζ,u) (see Section 3).

7.2 The equations.

Next we study the regularity of the induced metric by the pair (g, φ). Let 0j ,∞j be the
points of Σ given by z = 0 and z = ∞ in Cj . The equations we have to solve are φ = 0
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at 0j and ∞j for 1 ≤ j < k (if which case φ clearly has necessarily simple zeros at 0j ,∞j

because φ has 2k poles in Σ). These equations can be equivalently written as

Res 0j(g
−1φ) = 0, Res ∞j (gφ) = 0, 1 ≤ j < k.

As was explained in Subsection 3.1, we may forget two of these equations by the residue
theorem, so we will only solve these equations for 1 < j < k.

We saw in Section 3 that the period problem at the ends writes as |g(pj)| = 1 or
equivalently |Res pj(gφ)| = 1 for 1 ≤ j ≤ 2k (these equalities are automatically satisfied
when the components of u lie in S1 rather than only in C).

Our next goal is to study the behavior of both g, φ and the equations we have to solve
when ζ ∈ A. In this case, Σ decomposes into a number of spheres between 2 and k − 1,
g produces nonconstant meromorphic maps on them whose degrees add up to k − 1 and
the values of these meromorphic maps at the node points are ±i.

7.3 Holomorphic extension of φ.

Given (x, ζ,u) ∈ D(x∞, ε) × (D(0, ε) \ A) × D(u∞, ε), let γj be a small circle enclosing
the points aj , bj in Cj , with the positive orientation. By the Residue Theorem, we have

1
2πi

∫

γj

φ = Res p2k
φ +

j−1∑

`=1

( Res p`
φ + Res p2k−`

φ) = (−1)j+1i. (9)

When aj = bj , the Riemann surface Σ has a node at aj . In this case the definition of φ

must be changed as follows. For each double point aj = bj , we ask that φ has a simple
pole at the point aj ∈ Cj with residue (−1)j+1i (this comes from equation (9)), and it has
a simple pole at the point aj ∈ Cj−1 with opposite residue.

Proposition 6 φ depends holomorphically on all parameters (x, ζ,u) ∈ D(x∞, ε)×D(0, ε)×
D(u∞, ε) (including those tuples with ζ ∈ A). By this we mean that if z ∈ Cj is away
from the cuts and poles, then φ(z)/dz depends holomorphically on (x, ζ,u).

Proof. This result is standard; see e.g. Section 3.4 of [18] for Riemann surfaces with nodes
and arbitrary genus. 2

Corollary 3 For 1 ≤ j < k, the maps (x, ζ,u) ∈ D(x∞, ε) × D(0, ε) × D(u∞, ε) 7→
Res 0j(g

−1φ), Res ∞j (gφ), Res pj(gφ) are holomorphic.
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7.4 The modified ligature map.

Let L̃ : D(x∞, ε)× D(0, ε)× D(u∞, ε) → C4k−4 be the map defined by

L̃ =


Res 0j(g

−1φ)︸ ︷︷ ︸
1<j<k

, Res ∞j (gφ)︸ ︷︷ ︸
1<j<k

, Res pj(gφ)︸ ︷︷ ︸
1≤j≤2k


 .

Corollary 3 implies that L̃ is holomorphic. A straightforward computation gives that
L̃(x∞, 0,u∞) = (0, 0,u∞) ∈ (Ck−2)2 × C2k.

Lemma 12 With the notation above, the Jacobian (2k − 4)-matrix

∂
(
Res 0j(g

−1φ), Res ∞j (gφ)
)

∂(x, ζ)

∣∣∣∣∣
(x,ζ,u)=(x∞,0,u∞)

is regular.

Proof. We start with the partial derivatives of Res 0h
(g−1φ), Res ∞h

(gφ) with respect to
the xj variables. Then we can fix all the ζh as zero for 1 < h < k, which means that Σ
consists of copies C1, . . . , Ck−1 of C joined by k − 2 nodes so that the node between Cj−1

and Cj is placed at xj = aj = bj ∼ (−1)j+1i (here xj must be thought as a variable) and
the remaining nodes are all placed as ±i. For h 6= j − 1, j fixed, the corresponding height
differential φ in Ch does not depend on xj , hence

∂ Res 0h
(g−1φ)

∂xj
(x∞, 0,u∞) =

∂ Res 0h
(g−1φ)

∂xj
(x∞, 0,u∞) = 0.

Concerning ∂
∂xj

∣∣∣
(x∞ ,0,u∞)

Res 0j(g
−1φ), the holomorphic extension of φ let us write

φ = (−1)ji

(
1

z − pj
+

1
z − p2k−j

− 1
z − xj

− 1
z − x∞,j+1

)
on Cj ,

where x∞,j+1 = (−1)ji (when j = k − 1, we should replace x∞,j+1 by pk = (−1)k+1i in
the above formula). This gives

Res 0j(g
−1φ) = (−1)ji

(
1
xj

+
1

x∞,j+1

)
, Res ∞j (gφ) = (−1)ji(xj + x∞,j+1),
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hence
∂ Res 0j(g

−1φ)
∂xj

(x∞, 0,u∞) =
∂ Res ∞j (gφ)

∂xj
(x∞, 0,u∞) = (−1)ji.

Analogously,

∂ Res 0j(g
−1φ)

∂xj+1
(x∞, 0,u∞) =

∂ Res ∞j (gφ)
∂xj+1

(x∞, 0,u∞) = (−1)ji.

We now compute partial derivatives with respect to ζj , so we fix all the xh as the corre-
sponding component x∞,h of x∞, ζh = 0 for all h 6= j and think of ζj as a variable close
to zero. This means that all Σ decomposes in k − 2 spheres joined by nodes, k − 3 of
which correspond to single copies of Ch (that we will call simple spheres) h 6= j − 1, j, and
just one sphere correspond to the copies Cj−1, Cj (called a double sphere). On any single
sphere, neither g nor φ depend on ζj hence

∂ Res 0h
(g−1φ)

∂ζj
(x∞, 0,u∞) =

∂ Res ∞h
(gφ)

∂ζj
(x∞, 0,u∞) = 0, h 6= j − 1, j.

The remaining double sphere can be parametrized as

S = {(z, w) ∈ (C)2 | w2 = (z − aj)(z − bj) = (z − x∞,j)2 + ζj}.

The square root w =
√

(z − x∞,j)2 + ζj is well-defined on S, and we fix the sign of
this square root as follows. Away from the cut we have w2 ∼ (z − x∞,j)2. We ask that
w ∼ z−x∞,j in Cj , and consequently z ∼ −(z−x∞,j) in Cj−1. Clearly g writes g(z, w) = z

on S, and an elementary argument using poles and residues leads to

φ = 2(−1)ji

(
w(pj)

z − z(pj)
+

w(p2k−j)
z − z(p2k−j)

− w(x∞,j+1)
z − x∞,j+1

)
dz

w
.

This gives

Res 0j(g
−1φ) =

2(−1)ji

w(0)

(
w(pj)
−z(pj)

+
w(p2k−j)
−z(p2k−j)

+
w(x∞,j+1)

x∞,j+1

)
,

Res ∞j (gφ) = 2(−1)ji
(
− w(pj) − w(p2k−j) + w(x∞,j+1)

)
.

The same formulae with opposite signs hold for the residues at 0j−1 and ∞j−1, because
of the valuation of the square root. Using that x∞,j+1 = (−1)ji and z(pj) = (−1)j+1iα

one easily computes

∂ Res 0j(g
−1φ)

∂ζj
(x∞, 0,u∞) =

5 − α2

2(α2 − 1)
,

∂ Res ∞j(gφ)
∂ζj

(x∞, 0,u∞) =
3 + α2

2(α2 − 1)
,
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and the corresponding partial derivatives of the residues at 0j−1 and ∞j−1 only differ from
the above ones in a sign. Now the regularity of the Jacobian matrix in Lemma 12 follows
directly. 2

Proposition 7 Let {Mn}n ⊂ S̃(k) be a sequence converging weakly to a Scherk limit.
Then Mn ∈ K̃(k) for n large enough.

Proof. Without loss of generality we can assume that the fluxes un = F (Mn) converge
to u∞ = (α, (k−1). . . , α, 1,−α, (k−1). . . ,−α,−1) with α ∈ S1 − {±1}. Since {Mn}n converges
weakly to the Scherk limit associated to this angle α, we deduce that for n large enough,
the element gn ∈ W(k) that corresponds to Mn can be represented by gn = Θ(xn, ζn,un)
for certain (xn, ζn) ∈ D(x∞, ε) × (D(0, ε)− A) (with the same notation of this Section).
Furthermore (xn, ζn) → (x∞, 0) as n → ∞.

By Lemma 12 and the Implicit Function Theorem, there exists ε′ > 0 small such that
for any u ∈ D(u∞, ε′) there exists a unique pair (x(u), ζ(u)) ∈ D(x∞, ε′) × D(0, ε′) so
that L̃(x(u), ζ(u),u) = (0, 0,u). Note that we do not know if some components of ζ(u)
vanish, so the Riemann surface associated to (x(u), ζ(u),u) might have nodes. But this
proves that for any u ∈ D(u∞, ε′), there is (locally) at most one marked minimal surface
M(u) ∈ S̃(k) with F (M(u)) = u. On the other hand, for u ∈ U(k) \ U0(k) there exists
exactly one Karcher saddle tower Mu ∈ K̃(k) with F (Mu) = u. Hence if un = F (Mn) lies
in U(k) \ U0(k) for n large enough, then Proposition 7 clearly holds.

It only remains to analyze the case that after passing to a subsequence, un ∈ U0(k) for
all n. In this case, we can write un = (αn, (k−1). . . , αn, 1,−αn, (k−1). . . ,−αn,−1) with αn → α

as n → ∞. If we take ζj = 0 and xj(n) = (−1)j+1αn for all j, then the previous
computations in this section give that L̃(xn, 0,un) = (0, 0,un) for all n, where xn =
(x2(n), . . . , xk−1(n)). Geometrically this tuple (xn, 0,un) also represents a Scherk limit,
with k−1 Scherk surfaces whose fluxes at the ends are ±1, ±αn. In particular, (xn, 0,un)
does not represent a marked surface in S̃(k), hence locally there are not marked surfaces
with flux equal to un, a contradiction. 2

We finish this section by proving Proposition 3. Note that this proposition was not
used to prove that S̃0(k) is empty, so we may assume that this has already been proven
(see section 4). Choose an element u∗ ∈ U0(k) \ {u0(k)}. If Proposition 3 does not hold,
then there exists a sequence {Mn}n ⊂ S̃(k) \ K̃(k) such that {un = F (Mn)}n → u∗. By
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Proposition 5 (B) and since S̃0(k) is empty, {Mn}n converges weakly to a Scherk limit.
But this contradicts Proposition 7.

8 Uniqueness around the catenoid limit.

In this section we will study special surfaces close to the catenoid limit and conclude that
a sequence of special surfaces cannot converge to the catenoid limit if k ≥ 3. This was
needed in the proof of Proposition 1.

Geometrically, the catenoid limit is the limit behavior of the Scherk limit when α → 1,
with α as in Section 7. If we follow the line of arguments of that section, what goes wrong
is that when α → 1, the poles of φ converge to the nodes, and this is bad to control the
limit of φ. For this reason, the geometric setup in this section if quite different from the
previous sections. We consider only special surfaces. We rotate the surface so that all ends
but two are horizontal. We call the remaining two ends the top and bottom ends. Now φ

has only two poles at the top and bottom ends, and no poles at the horizontal ends. We
scale the surface so that the vertical part of the flux on any horizontal section is, up to
sign, equal to 2π. We are now in a situation very similar to Section 7 of [12] and we will
follow the same arguments there up to some minor modifications.

8.1 Weierstrass data.

We now write a model for the Weierstrass data of a special surface close to the catenoidal
limit in the above geometrical setup. Consider k − 1 copies C1, . . . , Ck−1 of the Riemann
sphere C, and distinct complex numbers aj , bj, 1 < j < k, in a punctured neighborhood
of 0 if j is odd and of ∞ if j is even. Glue Cj−1 with Cj along the cut from aj to bj in the
usual way. This produces a Riemann surface Σ of genus 0 together with a meromorphic
function g : Σ → C defined by g = z in each Cj . Its branch values are aj , bj for 1 < j < k.

The horizontal ends are at the 2(k − 1) points of Σ where g = 0 or g = ∞. We call 0j

and ∞j the points 0 and ∞ in Cj . The bottom and top ends are respectively some points
in C1 and Ck−1. We may orient the surface so that the Gauss map at the bottom end is
some nonzero complex number α close to 0 (so the bottom end is the point z = α in C1).
If k is odd, the Gauss map at the top end is some nonzero complex number β close to 0.
If k is even, the Gauss map at the top end is of the form 1/β with β ∈ C − {0}, β close
to 0 (see Figure 5). A priori, we do not impose any relation between α and β. Of course,
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Figure 5: Left: A special surface M close to the catenoid limit in the case k = 4, with the
value of the Gauss map at the ends. Right: The Riemann surface corresponding to M ,
with the ends and the branch points of the Gauss map.

both complex numbers are related by flux arguments. We will expose this connection in
Subsection 8.2.

The height differential φ is defined as the unique meromorphic 1-form on Σ with simple
poles at the bottom and top ends, and respective residues 1 and −1. Let Γj be the unit
circle in Cj with the positive orientation if j is odd and the negative orientation if j is
even. All these curves represent the same homology class in Σ and

∫
Γj

φ = 2πi.
Note that the roles of aj and bj, 1 < j < k are symmetric, so the right parameters are

their elementary symmetric functions: we introduce the parameters

xj =
1
2
(aj + bj), yj = ajbj if j is odd

xj =
1
2

(
1
aj

+
1
bj

)
, yj =

1
ajbj

if j is even

so all parameters α, β, xj , yj , 1 < j < k, are close to 0. As usual we write x =
(x2, . . . , xk−1) and y = (y2, . . . , yk−1).

8.2 The equations.

The period problem reduces to impose that the period at each end is the same up to sign.
This means that there exists λ ∈ C such that at each end,

Res (g−1φ) + Res (gφ) = ±λ.
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The period is then T = ±π(Imλ,−Reλ, 0). We also know that the signs ± alternate at
consecutive ends. This gives the following system of equations:





1
α

+ α = λ

1
β

+ β =

{
λ (k odd)
−λ (k even)

Res 0j

(
g−1φ

)
= (−1)jλ 1 ≤ j ≤ k − 1

Res ∞j (gφ) = (−1)jλ 1 ≤ j ≤ k − 1.

(10)

Using the Residue Theorem, these equations imply that∫

Γj

gφ =
∫

Γ1

gφ = 2πi Res α (gφ) = 2πiα,

∫

Γj

g−1φ =
∫

Γ1

g−1φ = 2πi
(
Res α

(
g−1φ

)
+ Res 01

(
g−1φ

))
= 2πi

(
1
α
− λ

)
= −2πiα.

Note that
∫
Γj

g−1φ is conjugate to
∫
Γj

gφ which means that Γj is a closed curve on the
surface, as expected. For 1 ≤ j < k let

Aj =





1
2πi

∫

Γj

g−1φ (j odd),

1
2πi

∫

Γj

gφ (j even).

For 1 < j < k let

Bj =

{
Res 0j−1

(
g−1φ

)
· Res 0j

(
g−1φ

)
(j odd),

Res ∞j−1 (gφ) · Res ∞j (gφ) (j even).

Then equation (10) implies




β =

{
α (k odd)
−α (k even)

For all 1 ≤ j ≤ k − 2, Aj =

{
−α (j odd)
α (j even)

For all 1 < j < k, Bj =

{
−λ

2
(j odd)

−λ2 (j even)
with λ =

1
α

+ α.

(11)

In fact, the system of equations (10) is equivalent to (11), but we will not need that since
we want to prove a non-existence result. Note that (11) is a system of 2(k − 1) complex
equations in the 2(k − 1) variables α, β, aj , bj , 1 < j < k. The goal is to prove that for
α 6= 0 close to 0, the system (11) has no solutions representing a special surface.
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8.3 Holomorphic extension of φ.

When aj = bj for some j, the definition of g gives a Riemann surface with a node between
Cj−1 and Cj . In this case, φ needs two more simple poles at z = aj in Cj and in Cj−1.
The residues at these poles are determined by

∫
Γj

φ = 2πi. Then as in Section 7 we have

Proposition 8 φ depends holomorphically on (α, β,x,y) in a neighborhood of (0, 0, 0,0).

Proof. Same as Proposition 6. 2

Proposition 9 For 1 ≤ j ≤ k − 2, the function Aj extends as a holomorphic function of
(α, β,x,y) in a neighborhood of (0, 0, 0, 0). The same holds with the function B̃j = yjBj

for 1 < j < k.

Proof. The first point is a consequence of the previous proposition, since the curve Γj

stays in the limit Riemann surface minus its nodes. The second point does not follow from
a similar argument because the points 0j−1, 0j (resp. ∞j−1,∞j) collapse into node points.
Instead, we need to control the rate at which the residues in the definition of Bj blow-up.
The reader can find this estimate in the proof of Proposition 10 in [12]. 2

Remark 6 Res 0j(g
−1φ) is a multi-valued function of the parameters. The reason for this

is that the points 0j and 0j−1 are close to the branch points aj , bj. When the parameters aj

and bj vary, the cut from aj to bj may cross 0, in which case 0j and 0j−1 exchange sheets
so do not depend continuously on the parameters as points on the Riemann surface. On the
other hand, the unordered pair {0j−1, 0j} depends continuously on the parameters, which
is why the symmetric functions of the residues at 0j−1 and 0j are well-defined functions.
This is the main reason why we introduced the functions Bj. See also remark 9 in [12].

8.4 Partial derivatives.

Proposition 10 For each j = 2, . . . , k − 1, it holds

Aj−1(0, 0, 0, 0) = 0, B̃j(0, 0, 0, 0) = −1,
∂Aj−1

∂xj
(0, 0, 0, 0) = 1.

All remaining partial derivatives of the Ai with respect to xj, yj are zero. We will not
need the partial derivatives of the B̃i.
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Proof. By Proposition 9, for j fixed we can compute either the value of Aj−1, B̃j or that
of their partial derivatives with respect to xj , yj by assuming α = β = 0 and xh = yh = 0
for all h 6= j. The associated Riemann surface has k − 3 nodes which disconnect it into
k − 2 genus zero components. In each component, the height differential has two simple
poles with residue ±1. These poles are either nodes or the top end or the bottom end.

On k − 3 of these components (which we call simple spheres) the height differential
φ is dz/z. The remaining component S corresponds to Cj−1 glued with Cj (we call it a
double sphere).

First consider the case j odd. Then S can be parametrized by {(z, w) ∈ C2 | w2 =
(z − a)(z − b)} where a + b = 2xj , ab = yj , so that w =

√
(z − a)(z − b) is well-defined

on S. We fix the sign of the square root by asking that w ∼ z in Cj and w ∼ −z in Cj−1.
Now φ has simple poles at ∞j−1 and ∞j with respective residues 1 and −1. As

Res ∞j

dz

w
= Res ∞

dz

z
√

1 − 2xj/z + yj/z2
= −1,

we conclude that φ = dz/w. Thus

Aj = Aj(xj , yj) =
1

2πi

∫

Γj

dz

zw
= −Res ∞j

dz

zw
= 0,

Aj−1(xj, yj) =
1

2πi

∫

Γj−1

zdz

w
= Res ∞j−1

z dz

−z
√

1 − 2xj/z + yj/z2
= xj .

Concerning B̃j , we write

Res 0j

(
g−1φ

)
=

1
√

yj
, Res 0j−1 (gφ) =

−1
√

yj
.

The computations in the case j even are similar with the following modifications

w =

√(
1
z
− 1

a

) (
1
z
− 1

b

)
, φ =

−dz

z2w
,

Aj(xj, yj) =
1

2πi

∫

Γj

−dz

zw
= Res 0j

dz

zw
= 0,

Aj−1(xj , yj) =
1

2πi

∫

Γj−1

−dz

z3w
= Res 0j−1

−dz

−z2
√

1 − 2xjz + yjz2
= xj ,

which finishes the proof of the proposition. 2
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8.5 Inverse Function Theorem.

Note that 1/Bj = yj/B̃j . Since B̃j(0, 0, 0, 0) = −1, the function 1/Bj extends holomor-
phically to a neighborhood of (0, 0, 0,0). Moreover

∂B−1
j

∂xi
(0, 0, 0, 0) = 0,

∂B−1
j

∂yi
(0, 0, 0,0) = −δij .

Define
Θ(α, β,x,y) =

(
α, β, A1, . . . , Ak−2,

1
B2

, . . . ,
1

Bk−1

)
.

Then Θ is holomorphic in a neighborhood of (0, 0, 0, 0) and its Jacobian matrix at (0, 0, 0, 0)
is invertible. By the Inverse Function Theorem, Θ is a biholomorphism from a neighbor-
hood of (0, 0, 0,0) onto its image. Hence for t ∈ C close to 0, there exists a unique
(α, β,x,y) close to (0, 0, 0, 0) such that α = t and β, Aj , Bj have the values given by the
system (11).

We now remark that (11) has an obvious solution: For t ∈ C − {0} take

α = t, β =

{
t (k odd)
−t (k even)

aj = bj =





t (j odd)

−1
t

(j even)

The corresponding Riemann surface has k− 2 nodes which disconnect it into k− 1 simple
spheres. On each sphere Cj we have

g = z, φ =
dz

z − t
− dz

z +
1
t

.

This is the Weierstrass representation of a singly periodic Scherk minimal surface. It is
straightforward to check (and geometrically clear) that equation (11) is satisfied. Geomet-
rically, this solution is a Scherk limit, namely a configuration of k − 1 Scherk surfaces. It
is not a true minimal surface (unless, of course, k = 2). By uniqueness we conclude that
(11) has no other solutions (α, β,x,y) around (0, 0, 0, 0), which means that there are no
special surfaces close to the catenoid limit if k ≥ 3.

Joaqúın Pérez at jperez@ugr.es
Martin Traizet at traizet@univ-tours.fr
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