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Abstract : we construct a properly embedded minimal surface in the flat
product R

2 × S
1 which is quasi-periodic but is not periodic.

1 Introduction

Quasi-periodicity is a popular subject in both mathematics and physics.
Probably the most famous examples are Penrose’s quasi-periodic tiling, and
quasi-periodic cristals.

Recall that a planar tiling T is quasi-periodic if any finite part of the
tiling repeats infinitely many often. In other words, for arbitrary R > 0, the
tiling T countains an infinite number of translation copies of T ∩ B(0, R)
where B(0, R) is the ball of radius R centered at 0.

Of course, for minimal surfaces, it is too much to ask that a part of
the surface repeats exactly, because then by analytic continuation the whole
surface would be periodic. We are thus led to the following definition, which
was suggested to the authors by H. Rosenberg.

Definition 1 A complete minimal surface M in R3 is quasi-periodic if there
exists a diverging sequence of translations (Tn)n∈N, such that Tn(M) converges
smoothly to M on compact subsets of R3.

While writing this paper, the authors discovered that the same notion had
been introduced by Meeks, Perez and Ros in a recent paper [15], altough
they call it translation-periodic.
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Of course a periodic minimal surface is quasi-periodic. A natural, and
open, question is whether there exists quasi-periodic minimal surfaces which
are not periodic. In this paper we answer this question when the ambiant
space is the flat product R2 × S1 instead of R3. The definition of quasi-
periodicity is exactly the same in this case.

Theorem 1 There exists a complete embedded minimal surface in R2 × S1

which is quasi-periodic but is not periodic. This surface has bounded cur-
vature, infinite total curvature, infinite genus, infinitely many ends and two
limit ends.

Let us now explain informally how this surface is constructed. H. Karcher
has constructed a family of doubly periodic minimal surfaces in R3 which
he called the “toroidal halfplane layers” [4]. They were the first complete,
properly embedded, doubly periodic minimal surfaces to be found since H.
Scherk’s classical example. The toroidal halfplane layers have two periods
: a horizontal period T and a vertical period (0, 0, 1). We may identify the
quotient of R3 by the vertical period (0, 0, 1) with R2 × S1. So the toroidal
halfplane layers project to simply periodic minimal surfaces in R2 × S1, with
period T . They have genus zero.

A very succesful heuristic to construct new examples of minimal surfaces
is to start from a simple example, and to complicate it by adding handles.
One can start from a very symmetric example and break the symmetries by
adding handles at suitable places.

Several people have added handles to H. Karcher’s toroidal halfplane
layers. The first one was F. Wei [16]. He was able to add one handle per
fundamental piece in a periodic way. The resulting surfaces have infinite
genus in R2×S1 and are periodic. W. Rossman, E. Thayer and M. Wolgemuth
[13] have added handles in various ways to the toroidal halfplane layers,
still requiring periodicity. Recently, the first author was able to add one
single handle to the toroidal halfplane layers, without requiring horizontal
periodicity. The resulting surfaces in R2 × S1 have genus one and are not
periodic anymore.

In this paper we add an infinite number of handles to the toroidal half-
plane layers, so the resulting surface have infinite genus, but without re-
quiring horizontal periodicity. In fact the placement of the handles will be

2



Figure 1: Left : one of the Karcher’s toroidal halfplane layers. Right : one of
Wei surfaces. A fundamental domain is highlighted for each. Both surfaces
extend periodically vertically and horizontally. The fundamental domains of
these two surfaces are the basic building blocks for the surface we construct:
we assemble them in a quasi periodic, non periodic way. Computer images
made by the authors using J. Hoffman’s MESH software.

prescribed by a sequence of integers (pi)i∈Z. If this sequence if quasi-periodic
but not periodic, the resulting surface will be quasi-periodic but not periodic.

To construct our surface, we follow the main lines of H. Karcher’s con-
jugate Plateau construction. The principle is to first construct a minimal
surface with boundary made of straight edges. Typically this surface is con-
structed by solving a Dirichlet boundary value problem on a polygonal do-
main with piecewise linear boundary data. (The boundary data may take on
infinite values, in which case this is called a Jenkins Serrin type problem.)
Then one considers the conjugate minimal surface which is bounded by pla-
nar geodesics. If the polygonal boundary of the first surface is well chosen,
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the conjugate surface will extend by symmetry to an embedded, complete
minimal surface. Adjusting the lengths of the edges so that this is the case is
called the Period Problem. The difficulty of solving this problem is the main
limitation of the method.

We add one more step to this construction. We first solve a Dirichlet
boundary value problem for the maximal graph equation, with piecewise lin-
ear boundary data. Then we consider the conjugate function, whose graph
is minimal. Then as above we consider the conjugate minimal surface, solve
the Period Problem and extend by symmetry. So there are two consecutive
conjugations, altough of a different nature. The advantage of this approach
is that part of the Period Problem (namely the vertical part) will be auto-
matically solved. More details on maximal surfaces will be given in section
2.

In our case, since we add infinitely many handles in a non-periodic way,
we are faced with an infinite dimensional Period Problem. We begin by
adding a finite number N of handles. We solve the Period Problem using the
Poincaré Miranda Theorem, which is a natural N -dimensional extension of
the intermediate value theorem. Then we let N → ∞.

2 Preliminaries

2.1 Minimal and maximal graphs

Let u be a function on a domain Ω ⊂ R2. The graph of u is a minimal surface
if u satisfies the minimal graph equation

div

(
∇u√

1 + |∇u|2

)
= 0 (1)

This equation is equivalent to the fact that the conjugate 1-form

dΨu =
ux√

1 + |∇u|2
dy − uy√

1 + |∇u|2
dx
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is closed. Locally, dΨu is then the differential of a function Ψu called the
conjugate function. Then v = Ψu is a solution of the maximal graph equation

div

(
∇v√

1 − |∇v|2

)
= 0 (2)

This is called the maximal graph equation because v satisfies (2) if its graph
is a maximal surface in the Lorentzian space L3, namely a space-like surface
which is a critical point for the area functionnal.

Conversely, let v be a solution of (2). Then the conjugate 1-form

dΦv =
vy√

1 − |∇v|2
dx− vx√

1 − |∇v|2
dy

is closed. Hence locally dΦv is the differential of a function u = Φv which
solves the minimal graph equation (1). Moreover up to a constant, ΦΨu

= u.

2.2 The Dirichlet boundary value problem

Let Ω ⊂ R2 be a bounded domain. Let v : Ω → R be a smooth function
satisfying (2). Then |∇v| < 1 hence v is Lipschitz and extends continuously
to ∂Ω, so we can talk about the boundary values of v. (For this to be true,
we need some regularity of the boundary of Ω. All the domains we consider
will have piecewise smooth boundary.)

We need to construct solutions v of the maximal graph equation (2) in Ω,
with precribed boundary values, and with singularities at some prescribed
points inside Ω. For this we use the following theorem, which is a consequence
of Theorem 1 in [5] and Theorem 4.1 in [2] :

Theorem 2 Let Ω ⊂ R2 be a bounded domain. Let S ⊂ Ω be a finite set
(the singular set). Let ϕ : ∂Ω ∪ S → R be a given function such that

∀p, p′ ∈ ∂Ω ∪ S, p 6= p′, |ϕ(p) − ϕ(p′)| ≤ dΩ(p, p′) (3)

where the inequality is strict whenever the segment [p, p′] is not contained in
∂Ω. Then there exists a function v : Ω → R which satisfies the maximal
graph equation (2) in Ω \ S, with boundary data v = ϕ on ∂Ω ∪ S. This
function is smooth in Ω \ S. (Here dΩ is the intrinsic distance of Ω, so if Ω
is convex, it agrees with the euclidean distance.)
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2.3 Some complements on the correspondence v ↔ Φv

Since we obtain solutions v to the Dirichlet problem for (2), we need to
understand the behaviour of the conjugate function Φv near the boundary.
The first result describes the behaviour near the boundary of the domain Ω.

Lemma 1 ([3] and [8]) Let v be a solution of (2) on Ω and T ⊂ ∂Ω be an
open straight segment oriented as ∂Ω. Then

∫
T
dv = |T | if and only if Φv

diverges to +∞ on T .

Now we shall describe the behaviour near a singularity in the domain. Let v
be a solution of (2) on a punctured disk D

∗ (with D = {(x, y) ∈ R
2| x2 +y2 <

r2}). Then the conjugate function u = Φv is not well defined on D∗; actually,
u is multivalued in the sense that when we turn around the origin we need
to add a constant to u: this constant is given by

∫
γ
dΦv where γ generates

π1(D
∗). If this constant vanishes, u is well defined and so extends smoothly

to the whole disk; v then also extends to D and the origin is a removable
singularity for v.

In the case
∫
γ
dΦv 6= 0, the graph of the multivalued function u has then

the shape of a half-helicoid. On the boundary of the cylinder D×R the graph
is bounded by a helix-like looking curve. It is bounded by a vertical straight
line above the origin.

In fact in the paper, we are always in the case where v is positive and
vanishes at the origin. This first implies that

∫
γ
dΦv 6= 0. Besides, Theorem

4.2 in [8] proves that the graph of u is bounded by a vertical straight line
above the origin.

2.4 Convergence of sequences of solutions

We shall study many times the convergence or the divergence of sequences
of solutions to (2). In this subsection, we expose some results that we will
use. Actually, these results were developped by the first author in [6, 8] for
solutions of (1); the correspondence u ↔ Ψu and v ↔ Φv translates them
to solutions of (2). Here the convergence that we shall consider is the Ck

convergence on compact subsets of the domain for every k.
So let us consider a sequence (vn)n∈N of solutions to (2) which are defined

on a domain Ω. We first notice that since each vn is Lipschitz continuous
there exists a subsequence of (vn− vn(q)) (where q ∈ Ω is a fixed point) that
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converges to a lipschitz function v on Ω; but the convergence is only C0 and
v is a priori not a solution to (2). However, since we have convergence on Ω,
we can talk about the boundary value of the limit.

To study the smooth convergence, we first define the convergence domain
of the sequence by

B((vn)n∈N) = {p ∈ Ω | sup
n

{|∇vn|(p)} < 1}

B((vn)n∈N) is an open subset of Ω and on each component Ω′ of it, there
is a subsequence of (vn − vn(q))n∈N converging Ck on compact subsets of Ω′

to a solution v of (2), where q is some fixed point in Ω′. We notice that all
solutions of (2) that we shall consider are bounded by 1; thus we do not need
to use the vertical translation by vn(q) to ensure the convergence. Besides
Ω\B((vn)n∈N) is the union of straigt lines ∪iLi, where each Li is a component
of the intersection of a straight line with Ω. The Li are called divergence lines
of the sequence (vn)n∈N since supn{|∇vn|(p)} = 1 for p ∈ Li; more precisely
we have

Lemma 2 Let p be a point in a divergence line L, then a subsequence of
(∇vn(p))n∈N converges to one of the two unit generating vectors of L.

Besides, if T is a segment in L, it holds
∫
T
dvn → ±|T | for a subsequence.

To ensure the convergence of a subsequence of (vn)n∈N on Ω it then suffices
to prove there are no divergence line. The above lemma is one tool in that
direction. The following one is another.

Lemma 3 Let us assume that one part of the boundary of Ω is a segment
[a, b]. If for every n |vn(a) − vn(b)| = |ab|, then no divergence line can end
in the interior of [a, b].

Actually in this paper, the solutions are not defined on the same domain
Ω: we have in fact a sequence of domains (Ωn)n∈N and each solution vn is
defined on Ωn. So to make sense to the above definition we need to introduce
the limit domain Ω∞:

Ω∞ =
⋃

p∈N

Int

(
⋂

k≥p

Ωk

)

A point is then in Ω∞ if a neighborhood of this point is included in all Ωk for
k great enough. With this definition, we have anew the convergence domain
and the divergence lines by replacing Ω by Ω∞.
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We notice that when (Ωn)n∈N is an increasing sequence, Ω∞ is simply the
union of all the Ωn. In this paper, the sequence Ωn is often Ω \ Sn where
Sn is a locally finite set of points. If (Sn) converges on compact subsets to a
locally finite subset S∞ then Ω∞ = D \ S∞.

3 The fundamental piece

3.1 The Dirichlet boundary value problem

In this section we solve a Dirichlet boundary value problem for the maximal
graph equation (2) in an infinite strip. The solution v will have singularities at
some prescribed points. The position of these singularities are the parameters
of our construction. (Each singularity is responsible for one handle of the
minimal surface we are constructing. In later sections, we will adjust these
parameters so that the Period Problem is solved.)

Fix some ` > 0 and let Ω be the strip R × (−`, `). Let us define the
boundary data ϕ on ∂Ω as follows : for k ∈ Z, let a+

k = (k, `) and a−k =
(k,−`). Define ϕ on the segment [a±2k−1, a

±
2k+1] by ϕ(p) = |p− a±2k|. In other

words ϕ is piecewise affine on ∂Ω, with value 0 at a±2k and 1 at a±2k+1 (see
figure 2).

Let S be a closed, discrete subset of the horizontal line y = 0. It will be
convenient to identify the x-axis with R and see S as a subset of R. When
S is finite, we write S = {q1, · · · , qN} and assume that q1 < q2 < · · · < qN .
When S is infinite, we may write S = {qi : i ∈ I}, with qi < qi+1, where I is
either N, −N or Z, depending on whether S is bounded from below, bounded
from above, or neither. Finally, we define ϕ = 0 on S.

Proposition 1 Let Ω and S be as above. Assume that

∀q ∈ S, ∀k ∈ Z, |q − a+
2k+1| > 1. (4)

Then there exists a function v on Ω which solves (2) in Ω \S, with boundary
data v = ϕ on ∂Ω∪S. Moreover, 0 ≤ v ≤ 1 in Ω. The function v is unique.

We call the function v the solution to the Dirichlet problem in Ω \ S. When
needed, we will write v = v[S].
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a+

2k

a−
2k+1

a−
2k

a+

2k+1

qi qi+1

Ω

0 1 0 1 0

0 0

0 1 0 1 0

Figure 2: the Dirichlet boundary value problem.

Remark 1 The condition (4) is automatically satisfied when ` > 1. We are
however mostly interested in the case ` < 1, as this is the only case where we
know how to solve the Period Problem.

Proof of the proposition : for n ∈ N∗, consider the box Ωn = (−2n, 2n) ×
(−`, `). We first solve the Dirichlet problem on Ωn and then let n→ ∞. Let
Sn = S ∩ Ωn. Define ϕn on ∂Ωn ∪ Sn by ϕn = ϕ on the horizontal edges
[−2n, 2n] × {±`}, ϕn = 0 on the vertical edges {±2n} × [−`, `], and ϕn = 0
on the singular set Sn.

Claim 1 The function ϕn on ∂Ωn∪Sn satisfies the condition (3) of theorem
2.

Proof : consider p, p′ ∈ ∂Ωn ∪ Sn, p 6= p′.

• If p and p′ are both on the line y = `, then clearly |ϕn(p) − ϕn(p
′)| ≤

|p− p′|.

• If p and p′ are on ∂Ωn, let p̃ and p̃′ be the projections of p and p′ on
the line y = `. Then

|ϕn(p) − ϕn(p
′)| = |ϕn(p̃) − ϕn(p̃

′)| ≤ |p̃− p̃′| ≤ |p− p′|.
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Moreover, if the segment [p, p′] is not horizontal, the last inequality is
strict. If the segment [p, p′] is horizontal, and is not included in ∂Ωn,
then p and p′ are both on the vertical edges, so |ϕn(p)− ϕn(p

′)| = 0 <
|p− p′| as required.

• If p is on ∂Ωn and p′ = q ∈ S : if p is on a vertical edge, then
ϕn(p) = ϕn(q) = 0. If p is on the segment [a+

2k, a
+
2k+1], we have

|ϕn(p)−ϕn(q)| = |p−a+
2k| = 1−|p−a+

2k+1| ≤ 1+|q−p|−|q−a+
2k+1| < |p−q|

where we have used the triangle inequality and the hypothesis of propo-
sition 1. The case where p is on the segment [a+

2k−1, a
+
2k] is similar, and

the case where p is on the line y = −` follows by symmetry of ϕn.

• If p, p′ are both in S, then ϕn(p) = ϕn(p
′) = 0.

2

By theorem 2, there exists a solution vn of the maximal graph equation
(2) on Ωn \ Sn with boundary data ϕn. Since vn extends continously to
the compact set Ωn, vn is bounded. By the maximum principle for the
maximal graph equation, vn reaches its maximum and its minimum at a
boundary point or a singular point, so 0 ≤ vn ≤ 1 in Ωn. Consider now the
sequence (vn)n. Let L be a divergence line. Let T ⊂ L be a segment, then
lim
∫
T
dvn = ±|T |. Since vn is bounded, this implies that L has finite length

so L is a segment connecting two points p and p′ on ∂Ω ∪ S. Then

|ϕ(p) − ϕ(p′)| = |
∫ p′

p

dvn| → |p− p′| ⇒ |ϕ(p) − ϕ(p′)| = |p− p′|

which contradicts claim 1 since L ⊂ Ω. Hence there are no divergence lines,
so passing to a subsequence, (vn)n converges on compact subsets of Ω to a
function v, which is a solution of (2) in Ω\S with boundary data ϕ on ∂Ω∪S.
Uniqueness follows from Theorem 2 in [9]. 2

3.2 The minimal graph

In this subsection and the following one, we assume that S = {q1, · · · , qN}
with q1 < · · · < qN . Let v be the solution of the Dirichlet problem on Ω \ S,
given by proposition 1. Let Ω+ be the strip R × (0, `). Since Ω+ is simply
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connected and v is smooth in Ω+, the conjugate function u is well defined
(up to a constant) in Ω+. The graph of u is a minimal surface. In this section
we describe geometrically its boundary.

By uniqueness, v satisfies v(x,−y) = v(x, y) in Ω. Hence on the x-axis,
away from the singular points q1, · · · , qN , we have vy = 0. From the definition
of Φv, this gives ux = 0. Hence u is locally constant on the x-axis minus the
singular points, with a finite number of jumps at the points q1, · · · , qN . On
the line y = `, u goes to +∞ on the segments (a+

2k−1, a
+
2k) and to −∞ on the

segments (a+
2k, a

+
2k+1), k ∈ Z.

Let M be the graph of u on the strip Ω+. The minimal surface M is
bounded by vertical lines Ak above the points a+

k , k ∈ Z, by N vertical
segments Bi above the points qi, i = 1, · · · , N , by N − 1 horizontal segments
Ci above the segments (qi, qi+1), i = 1, · · · , N−1 and by two horizontal half-
lines C0 and CN above (−∞, q1) and (qN ,+∞) (see figure 3). The heights of
the horizontal pieces C0, · · · , CN are unknown.

Ω+
a+

2k
a+

2k+1

qi qi+1

+∞−∞+∞−∞

Figure 3: the minimal graph

3.3 The conjugate minimal surface

Let M∗ be the conjugate minimal surface to M . The third coordinate of
M∗ (seen as an immersion of the strip Ω+) is the function v, so M ∗ lies in
the slab 0 ≤ z ≤ 1. Let A∗

k, B
∗
i and C∗

i denote the corresponding conjugate
curves on M∗ (see figure 4). Then the A∗

k, k ∈ Z, and B∗
i , i = 1, · · · , N , are

horizontal geodesics. From the boundary values of v, A∗
2k and B∗

i lie in the
plane z = 0, while A∗

2k+1 lies in the plane z = 1. Each C∗
i , i = 0, · · · , N is
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a geodesic contained in a vertical plane parallel to the plane x = 0. There
is no reason however that all C∗

i are in the same vertical plane : this is the
Period Problem, which we will consider in the next section.

in plane z = 0

in plane z = 1

in vertical plane

A∗
2k

A∗
2k+1

Fi

C∗
i

B∗
i

Figure 4: the conjugate minimal surface, Period Problem not solved

Remark 2 The function u is the solution of a Jenkins Serrin type problem
on the strip Ω+. One possible way to construct M would be to directly solve
this Jenkins Serrin problem, with the jumps of u at each point qi as param-
eters. Then we would have to adjust these parameters to guarantee that the
conjugate curves B∗

i all lie in the plane z = 0. This means another Period
Problem to solve. It is automatically solved in our maximal graph approach.

4 The Period Problem

In this section, we first formulate the Period Problem in general. Then we
solve it provided that ` < 1 and there is a finite number of singularities
q1, · · · , qN , which are not too close from each other. Our solution to the
Period Problem is based on the Poincaré Miranda theorem :

Theorem 3 (Poincaré Miranda) Let F = (F1, · · · , FN) be a continous
map from [0, 1]N to RN . Write x = (x1, · · · , xN ). Assume that for each i,
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Fi(x) is negative on the face xi = 0, while Fi(x) is positive on the face xi = 1.
Then there exists x0 ∈ [0, 1]N such that F (x0) = 0.

4.1 Formulation of the Period Problem

Let Ω and S be as in proposition 1, and let v be the solution of the Dirichlet
problem in Ω\S. Let u be the conjugate function of v andX∗ = (X∗

1 , X
∗
2 , X

∗
3 )

be the conjugate minimal surface to the graph of u. Both u and X∗ are
only locally well defined, but their differentials are well defined in Ω \ S.
Explicitely, dX∗ is given by

dX∗
1 =

uxuydx+ (1 + (uy)
2)dy√

1 + |∇u|2
(5)

dX∗
2 =

−(1 + (ux)
2)dx− uxuydy√

1 + |∇u|2
(6)

dX∗
3 = dv

The Period problem asks that X∗ is well defined in Ω \ S. This is equivalent
to
∫
γ
dX∗ = 0, where γ is a small circle around any point of the singular set

S.

Proposition 2 X∗
2 and X∗

3 are well defined in Ω \ S.

Proof : this is clear forX∗
3 . ForX∗

2 , we use the following symmetry argument.
Let τ(x, y) = (x,−y). By uniqueness and symmetry of the boundary data,
v ◦ τ = v. Hence τ ∗dv = dv, so vx ◦ τ = vx and vy ◦ τ = −vy. This gives
ux ◦ τ = −ux and uy ◦ τ = uy. Hence using (6), τ ∗dX∗

2 = dX∗
2 . Let γ

be a small circle around a singularity q ∈ S. Since τ(γ) is homologous to
−γ, this gives

∫
γ
dX∗

2 = 0, so X∗
2 is well defined in Ω \ S. This also gives

τ ∗dX∗
1 = −dX∗

1 , so X∗
1 is locally constant on the x-axis. 2

By proposition 2, we only have to worry about the periods of dX∗
1 .

From now on, we assume that S = {q1, · · · , qN} is finite. Let γi be a
small circle around the point qi and let

Fi(q1, · · · , qN ) =

∫

γi

dX∗
1 .
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The Period Problem asks that Fi = 0 for 1 ≤ i ≤ N . Note that by symmetry,
Fi is equal to twice the integral of dX∗

1 on a half circle from qi + ε to qi − ε,
so Fi = 0 means that the curves C∗

i and C∗
i−1 are in the same vertical plane

as required (see figure 4).

4.2 Continuity of the periods

To apply the Poincaré Miranda theorem, we need the continuity of the peri-
ods with respect to the parameters.

Proposition 3 The periods Fi depend continuously on (q1, · · · , qN).

Proof : consider an admissible value (q1, · · · , qN) of the parameters (namely,
all qj satisfy equation (4)). Consider a sequence (qn1 , · · · , qnN) converging to
(q1, · · · , qN). Let Sn = {qn1 , · · · , qnN} and S = {q1, · · · , qN}. Let vn and v
be the solutions of the Dirichlet problem in Ω \ Sn and Ω \ S, respectively.
Assume the sequence (vn)n has a divergence line. Then arguing as in the
proof of proposition 1, L has finite length so is a segment connecting two
points of ∂Ω \ S, which contradicts in the same way the fact that the points
qj satisfy (4). Hence there are no divergence lines, so a subsequence of (vn)n
converges on compact subsets of Ω to a solution to the Dirichlet problem on
Ω \ S. By uniqueness of the solution to this problem, the whole sequence
(vn)n converges to v on compact subsets of Ω, and converges smoothly to
v on compact subsets of Ω \ S. This implies that dun converges to du and
dX∗

1,n converges to dX∗
1 on compact subsets of Ω\S. Integrating on γi which

encloses qni for big n, we obtain that Fi(q
n
1 , · · · , qnN) → Fi(q1, · · · , qN). 2

4.3 Local property of the period

From now on we assume that ` < 1. Let us define for the rest of the paper

η = 1 −
√

1 − `2.

In this section, we prove that some properties of the period Fi(q1, · · · , qN)
depends only on the position of qi if the other qj are not too close from qi.

Let us denote by ΩL the box (−L, L) × (−`, `) and consider q ∈ (−η, η)
and a finite set of points S in (−2,−2 + η) ∪ (2 − η, 2). Let v be a solution
of the maximal graph equation (2) on Ω2\({q} ∪ S), with boundary value
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v = φ on (−2, 2) × {−`, `}, v(q) = 0 and v(S) = 0. The boundary value of
v on the vertical edges is free, although we require 0 ≤ v ≤ 1. Let us study
the divergence lines of a sequence of such solutions v.

Lemma 4 For every n ∈ N, let qn, Sn and vn be as above. We assume that
lim qn = q exists. Then

• if q ∈ (−η, η), there is no divergence line in Ω1 \ {q}.

• if q = η, the only divergence lines in Ω1 \ {η} are [η, a−1 ] and [η, a+
1 ].

Proof: The two segments [η, a+
1 ] and [η, a−1 ] have length one. Since vn(qn) = 0

and vn(a
+
1 ) = 1 = vn(a

−
1 ), both segments are divergence lines for (vn)n∈N in

the second case.
Let us now prove that there is no other divergence line in Ω1 for both

cases. Since 0 ≤ vn ≤ 1 every divergence line is a segment of length at most
one. Hence a divergence line L which intersects Ω1 must have an end-point
in Ω1. Because of lemma 3 these end-points needs to be a±0 , a±−1, a

±
1 or

q. Let us assume that a+
0 is one end-point of L. The distance from a+

0 to
Ω2 \Ω1 is one, hence the other end-point is in Ω1. It can not be a−0 or q since
vn(a

+
0 ) = vn(a

−
0 ) = lim vn(q). It is not a−±1 since the distance from a+

0 to these

points is
√

1 + 4`2 > 1. Then a+
0 is not an end point of L; by symmetry, this

is also true for a−0 . Let us assume that a+
−1 is an end-point of L then the other

end-point is either q or a−1 but the distance from a+
−1 to these two points is

strictly larger than one since q ∈ (−η, η]; then a+
−1 is not an end point for L.

By symmetry, this is also true for a−−1 and a±1 unless q = η and L = [η, a±1 ]
which is the case we studied first. Then we can assume that q is an end-point
of L and the other one is in Ω2 \ Ω1. By lemma 3, if L is not horizontal,
the second end-point is on the vertical edges of Ω2 but the distance from q
to these edges is larger than 2 − η > 1. So L is horizontal; we assume, for
example, that L is on the left of q. Since the length of L is less than 1, the
other end-point of L needs to be in the interior of Ω2 and Sn ∩ (2− η, 2] 6= ∅.
Let sn = minSn ∩ (2− η, 2]. We assume that (sn) converges to s in [2− η, 2],
then L is the segment [q, s]. We have vn(sn) = 0. Since L is a divergence line
|L| = lim |vn(q)− vn(s)| = lim |vn(qn)− vn(sn)| = 0 this gives a contradiction
and the lemma is proved. 2

Let v be a solution of the maximal graph equation (2) on Ω2\({q} ∪
S) as above, besides we assume now the symmetry v(x, y) = v(x,−y). In
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applications, v will be the restriction of some v[q1, . . . , qn] to a box around
one qi. Let γ be a small circle around q then we define the period F (v) by∫
γ
dX∗

1 where dX∗
1 is given by equation (5) with u the conjugate function to

v. We then have some control on the behaviour of the period.

Proposition 4 There exists η0 ∈ (0, η) which depends only on ` such that
for any solution v of the above Dirichlet problem on Ω2\({q} ∪ S) we have:

• if η0 ≤ q < η, F (v) ≥ 1.

• if −η < q ≤ −η0, F (v) ≤ −1.

Proof : Let σ(x, y) = −(x, y) and v be a solution of the above Dirichlet
problem on Ω2\({q}∪S) then v′ = v◦σ is a solution of this Dirichlet problem
on Ω2\({−q} ∪ −S). From the definition of du = dΦv and du′ = dΦv′ ,
we obtain σ∗du = du′. From equation (5), we get σ∗dX∗

1 = −dX∗
1
′ where

dX∗
1 and dX∗

1
′ are respectively associated to v and v′. Since σ preserves

orientation, integrating on a small circle around q gives F (v) = −F (v ′).
Thus the second item of the proposition is a consequence of the first one.

If the first item is wrong there exists a sequence qn → η and for each n a
set Sn and a solution vn of the above Dirichlet problem on Ω2 \ ({qn} ∪ Sn)
such that F (vn) < 1. Let us prove that, actually, limF (vn) = ∞.

By lemma 4 the two segments L+ = [η, a+
1 ] and L− = [η, a−1 ] are diver-

gence lines for (vn)n∈N. On L+, (∇vn)n∈N converges to
−−→
ηa+

1 = (
√

1 − `2, `).
Let Ω− be the connected component of Ω1\(L+ ∪ L−) containing the origin.
Because of lemma 4, Ω− is included in the convergence domain of (vn)n∈N

Then we can assume that the sequence (vn)n∈N converges on Ω− to a
solution v which takes on the boundary the value φ on ∂Ω ∩ Ω− and |p− η|
for p ∈ L+ ∪ L−. For every n, let un be the conjugate function Φvn

which is
defined on Ω−\[qn, η]. The limit domain of (Ω−\[qn, η])n∈N is Ω− and (un)n∈N

converges to u = Φv. Because of the boundary value of v, u takes the value
+∞ along L+. We are interested in what happens near the middle point
((1 + η)/2, `/2) of L+. Because of Lemma 1 in [3] we have :

uy√
1 + |∇u|2

(
1 + η

2
, y) −→ −

√
1 − `2 (7)

when y → `/2 with y > `/2. Lemma 1 in [3] implies also that:

uy(
1 + η

2
, y) ≤ − C

|y − `/2| , (C > 0) (8)
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for y > `/2 near `/2.
Let us consider the following path Γ: it is the union of the segment

[((1 + η)/2, 0), ((1 + η)/2, 3`/4)] with a curve Γ3 in Ω− ∩ {y > 0} that joins
((1 + η)/2, 3`/4) to (0, 0). For t ∈ (`/2, 3`/4), let Γ1(t) be the segment
[((1 + η)/2, 0), ((1 + η)/2, t)] and Γ2(t) be the segment [((1 + η)/2, t), ((1 +
η)/2, 3`/4)].

Γ3

Γ2(t)

Γ1(t)

a+

−1
a+

0
a+

1

a−1a−0a−−1

η0

L+

L−
Ω−

Figure 5:

Because of the symmetry vn(x, y) = vn(x − y), for large n, the period
F (vn) is given by 2

∫
Γ
dX∗

1 ,n where dX∗
1 ,n is associated to un. Because of

Equation (5),
∫
Γ1(t)

dX∗
1 ,n ≥ 0. Hence

F (vn) ≥ 2

∫

Γ2(t)∪Γ3

dX∗
1 ,n (9)

Since the convergence un → u is smooth on compact subsets of Ω−,
∫

Γ2(t)∪Γ3

dX∗
1 ,n −→

∫

Γ2(t)∪Γ3

dX∗
1 (10)

with dX∗
1 associated to u. By (7) and (8), we have

∫

Γ2(t)

dX∗
1 −−−→

t→ `

2

+
+∞ (11)

Equations (9), (10) and (11) imply that limF (vn) = +∞. The lemma is
proved. 2
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4.4 Solution of the Period Problem

In this section, we go back to the N -dimensional Period Problem. Consider
N integers p1 < · · · < pN (these will specify “where” we want to put the
handles). Recall that ` < 1 and η = 1 −

√
1 − `2 and that lemma 4 gives us

a number η0 < η. Equation (4) means that each singular point qi must be
at distance less than η from an even integer. We require that |qi − 2pi| < η
for i = 1, · · · , N . The next proposition solves the Period Problem with this
setting.

Proposition 5 For any N and for any choice of p1, · · · , pN satisfying p1 <
p2 < · · · < pN , there exists (q1, · · · , qN) satisfying |qi − 2pi| < η0 and
Fi(q1, · · · , qN) = 0 for i = 1, · · · , N .

Proof : Consider any p1, · · · , pN such that p1 < · · · < pN . Consider any
value of the parameters (q1, · · · , qN ) in the cubic box defined by qi ∈ [2pi −
η0, 2pi + η0]. Consider some i, 1 ≤ i ≤ N . Translating by −2pi, proposition
4 tells us that if qi = 2pi + η0, Fi(q1, · · · , qN) ≥ 1 while if qi = 2pi − η0,
Fi(q1, . . . , qN) ≤ −1. The result then follows from the Poincaré Miranda
theorem since Fi depends continuously in the qj. 2

Remark 3 We do not know if the solution to the Period Problem is unique.
Since we do not know how to compute derivatives of the periods with respect
to the parameters, its seems hard to obtain uniqueness.

5 Finite genus

Proposition 5 implies the following

Corollary 1 For each N ≥ 1, there exists a complete, properly embedded
minimal surface in R2 × S1 which has genus N , infinite total curvature, in-
finitely many ends, and two limit ends.

Proof : consider integers p1 < · · · < pN . Let (q1, · · · , qN) be the solution
to the Period Problem given by proposition 5. Let v = v[q1, · · · , qN ], u =
u[q1, · · · , qN ] and X∗ = X∗[q1, · · · , qN ]. Then X∗ is well defined in Ω \
{q1, · · · , qN}. To see that the image of X∗ is embedded we argue as follows.
Let M be the graph of u on the strip Ω+ = R×(0, `) and M ∗ be the conjugate
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minimal surface to M , so M ∗ = X∗(Ω+). Since Ω+ is convex, M ∗ is a graph
over a planar domain by the Theorem of R. Krust, so is embedded.

Since the Period Problem is solved, all segments (qi, qi+1), i = 1, · · · , N−
1, as well as the half lines (−∞, q1) and (qN ,+∞), are mapped onto geodesics
in the vertical plane x = 0 (after a suitable translation). Consider now some
(x, y) ∈ Ω+ such that x 6= qi for all i. From the formula (5) we see that∫ (x,y)

(x,0)
dX∗

1 > 0. Hence the point X∗(x, y) lies in x > 0. By continuity this is

true for all points of Ω+, so M∗ is an embedded minimal surface in x > 0,
0 < z < 1. Extending by symmetry with respect to the plane x = 0 and
the horizontal planes at integer heights we obtain an embedded, periodic
minimal surface in R

3 with period T = (0, 0, 2). The quotient by this period
is an embedded minimal surface MN in R2 × S1 of genus N (now and in
the following, we identify S1 with R/2Z). We will see in section 7 that it
has bounded curvature. By a theorem of Meeks - Rosenberg, theorem 2.1 in
[11], a complete embedded minimal surface in R3 with bounded curvature is
properly embedded. Hence MN is properly embedded. 2

In the following, when (q1, · · · , qN ) is given by proposition 5, the as-
sociated minimal surface given by the above corollary will be denoted by
M[q1, . . . , qN ]. This surface is normalized so that the conjugate to the point
(−1, 0, u(−1, 0)) is the point (0, 0, v(−1, 0)).

in vertical plane

in plane z = 1

in plane z = 0

Figure 6: the conjugate surface, Period Problem solved

19



Remark 4 In proposition 5, if the singularity set S is empty, the period
problem is solved. Then a surface M[∅] of genus zero exists; in fact this
surface is a Karcher’s toroidal halfplane layer.

6 Infinite genus

In this section, we consider the case where we have an infinite number of
singularities.

Proposition 6 Let ` and η0 be as in proposition 5. Consider a strictly
increasing sequence of integers (pi)i∈Z. Then there exists a sequence (qi)i∈Z,
such that |qi − 2pi| ≤ η0, which solves the Period Problem Fj(qi : i ∈ Z) = 0
for all j ∈ Z.

Proof : consider some n ∈ N. We apply proposition 5 with N = 2n + 1 and
the N integers p−n, · · · , pn, and we obtain N real numbers q−n,n, · · · , qn,n
such that |qi,n − 2pi| ≤ η0 for all |i| ≤ n, and Fj(qi,n : |i| ≤ n) = 0 for all
|j| ≤ n. Using a diagonal process, we can find a subsequence (which we
will still denote by n) such that ∀i ∈ Z, qi = limn→∞ qi,n exists. The limit
domain of (Ω \ {qi,n : |i| ≤ n})n∈N is Ω \ {qi : i ∈ Z}. Let vn = v[qi,n : |i| ≤ n]
and v∞ = v[qi : i ∈ Z]. Arguing as usual, the sequence (vn)n∈N has no
divergence line, so up to a subsequence, it converges on compact subsets of
Ω to a solution v of the Dirichlet problem on Ω\{qi : i ∈ Z}. By uniqueness,
v = v∞. Then dX∗

1 [qi,n : |i| ≤ n] converges to dX∗
1 [qi : i ∈ Z] on compact

subsets of Ω \ {qi : i ∈ Z}. Integrating on γj gives

Fj(qi : i ∈ Z) = lim
n→∞

Fj(qi,n : |i| ≤ n) = 0

2

In the following when a sequence (pi)i∈Z satisfies the hypotheses of the
above proposition and (qi)i∈Z is a sequence such that |qi − 2pi| ≤ η0 for all
i ∈ Z and Fj(qi : i ∈ Z) = 0 for all j ∈ Z, we shall say that (qi)i∈Z solves the
Period Problem for the data (pi)i∈Z.

Corollary 2 For any strictly increasing sequence of integers (pi)i∈Z, there
exists a properly embedded minimal surface M in R

2 × S
1 which has infi-

nite genus, infinite total curvature, infinitely many ends, and two limit ends.
Moreover, if the sequence (pi+1 − pi)i∈Z is not periodic, then M is not peri-
odic.
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Proof : same as proof of corollary 1. 2

As above when (qi)i∈Z solves the Period Problem for the data (pi)i∈Z, the
associated surface is denoted by M[qi : i ∈ Z] and is normalized as in the
finite genus case.

Using the notations of proposition 6 proof, we define MN = M[qi,N :
−N ≤ i ≤ N ] and M = M[qi : i ∈ Z].

Proposition 7 A subsequence of (MN)N converges smoothly on compact
subsets of R2 × S1 to M.

Proof : since a subsequence of (vn)n converges to v, the result seems to be
obvious. This is not immediate for the following reason : the convergence of
the conjugate functions (un)n to u only holds on compact subsets of Ω \ {qi :
i ∈ Z}. In particular, this convergence does not tell us anything for the
graph of u above the singular points and the vertices a+

k , k ∈ Z. Since
these correspond to the horizontal symmetry curves on the conjugate minimal
surface, we see that the convergence of (vn)n to v is not enough to conclude.

One way around this difficulty is as follows : we will see in the next section
that the curvature of MN is bounded by a constant independant of N . By
the Regular Neighborhood Theorem, or “Rolling Lemma” (firstly proven by
A. Ros [12], Lemma 4, for properly embedded minimal surfaces in R

3 with
finite total curvature, and generalized to properly embedded minimal surfaces
with bounded curvature by Meeks and Rosenberg [11], Theorem 5.3), each
MN has an embedded tubular neighborhood of radius 1/

√
c. In particular,

we have local area bounds, namely the area of MN inside a ball of radius
1/
√
c is bounded by some constant. By standard results, a subsequence of

(MN)N converges smoothly on compact subsets of R2×S1 to a limit minimal
surface M∞. Since (vn)n converges to v, the limit M∞ needs to be M. 2

Here is another result in the same spirit, which will be usefull in sec-
tion 8. For every n ∈ N, let (pi,n)i∈Z be a sequence as in Proposition 6,
namely (pi,n)i∈Z is a strictly increasing sequence of integers. Let (qi,n)i∈Z be
a sequence that solves the Period Problem for the data (pi,n)i∈Z.

Proposition 8 Let (pi,n)i∈Z and (qi,n)i∈Z be defined as above. Let us assume
that for every i ∈ Z, limn pi,n = pi,∞ and limn qi,n = qi,∞. Then (qi,∞)i∈Z

solves the Period Problem for the data (pi,∞)i∈Z and (M[qi,n : i ∈ Z])n∈N

converges smoothly on compact subsets of R2 × S1 to M[qi,∞ : i ∈ Z].
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Proof : Let vn be v[qi,n : i ∈ Z]. First we notice that the convergence
of (qi,n)n∈Z implies the convergence of (pi,n)n ∈ Z. Since, for all i and n, we
have pi+1,n − pi,n ≥ 1 and |qi,n− 2pi,n| ≤ η0, we obtain pi+1,∞ − pi,∞ ≥ 1 and
|qi,∞ − 2pi,∞| ≤ η0.

Since all the (qi,n)n∈N converge, the limit domain of (Ω\{qi,n : i ∈ Z})n∈N

is Ω\{qi,∞ : i ∈ Z}. As in the preceding, the sequences (vn)n∈N has no
divergence line and converges to a solution v∞ of the Dirichlet problem on
the limit domain Ω\{qi,∞ : i ∈ Z}. By uniqueness, v∞ = v[qi,∞ : i ∈ Z]. As
in the proof of Proposition 6,

Fj(qi,∞ : i ∈ Z) = lim
n→∞

Fj(qi,n : i ∈ Z) = 0

Then (qi,∞)i∈Z solves the Period Problem.
Now as in the proof of Proposition 7, since the curvature of the surfaces

M[qi,n : i ∈ Z] is uniformly bounded (see Proposition 10), the sequence
(M[qi,n : i ∈ Z])n∈N converges smoothly on compact subsets of R2 × S1 to a
limit minimal surface M∞. Since (vn)n∈N converges to v[qi,∞ : i ∈ Z], the
surfaces M∞ needs to be M[qi,∞ : i ∈ Z]. 2

7 Bounded curvature

In this section we prove that the curvature of the surfaces M given by corol-
laries 1 and 2 are bounded by a constant C depending only on `. Actually,
because of proposition 7, it suffices to prove it in the finite genus case.

7.1 Size of the handles

Let v be the solution of the Dirichlet problem on Ω\{q1, · · · , qN}. The multi-
valuation of its conjugate function u around the singularity qi is

∫
γi

du. This
is equal to twice the length of the vertical segment Bi, which is equal to the
length of the geodesic B∗

i . So the multi-valuation of u may be understood as
the “size” of the handle. In this section we give a uniform lower bound for
this multi-valuation, which prevents the handles from getting too small.

We use the notation ΩL = (−L, L) × (−`, `).
Proposition 9 Consider some ` < 1 and some η0 < η. There exists κ > 0
(depending on ` and η0) such that the following is true : Let q ∈ (−η0, η0)
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and S ⊂ (−2,−2 + η) ∪ (2 − η, 2). Let v be a solution of the maximal graph
equation (2) in Ω2 \ ({q}∪S) with boundary value ϕ on [−2, 2]×{−`, `} and
0 at {q}∪ S. As in lemma 4 the boundary value on the vertical edges is free,
but we require v to be between 0 and 1. Let u be the conjugate function of v.

Let γ be a small circle around q. Then
∣∣∣
∫
γ
du
∣∣∣ ≥ κ.

Proof : assume by contradiction that the proposition is not true. Then there
exists sequences (qn)n and (Sn)n and a sequence (vn)n such that

∫
γ
dun → 0.

Passing to a subsequence, qn converges to some q ∈ [−η0, η0] ⊂ (−η, η).
By lemma 4, the sequence (vn)n, restricted to Ω1 \ {q}, does not have any
divergence line, so passing to a subsequence, it converges to a solution v on
Ω1. Then the conjugate differential dun of vn converges on compact subsets
of Ω1 \ {q} to the conjugate differential du of v. This implies that

∫
γ
du = 0,

so u is in fact well defined in Ω1 \ {q}. Since it satisfies the minimal graph
equation, the point q is a removable singularity, so u extends smoothly to q.
But then v itself also extends smoothly to q. Since v(q) = 0 and 0 ≤ v ≤ 1,
the maximum principle for maximal surfaces gives us that v = 0 in Ω1; this
contradicts v = ϕ on the boundary. 2

7.2 Gradient estimates

Recall that the graph of u is bounded by a vertical segment above each
singularity qi. Along this segment, the normal is horizontal. The following
lemma ensures that the normal remains close to the horizontal on the disk
D(qi, δ), where δ is a number we can control in function of the length of the
vertical segment.

Lemma 5 For any C > 0, for any κ > 0, there exists δ > 0 such that the
following is true : let v be any solution of the maximal graph equation (2) on
the punctured disk D(0, 1)\{0} with a singularity at the origin. Assume that
v(0) = 0 and 0 ≤ v ≤ 1. Let du be the conjugate differential of v. Assume
that |

∫
γ
du| ≥ κ. Then |∇u| ≥ C in D(0, δ) \ {0}.

Proof : assume by contradiction that the lemma is false. Then there exists
C > 0, κ > 0, and sequences (vn)n, (pn)n, such that vn is a solution of (2)
in D(0, 1) \ {0}, pn → 0,

∫
γ
dun ≥ κ and |∇un(pn)| ≤ C. Let λn = |pn|. Let

ṽn(p) = vn(λnp)/λn (so the graph of ṽn is the graph of vn scaled by 1/λn).
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Let p̃n = pn/λn; by rotation we may assume that p̃n = (1, 0). Then ṽn solves
(2) in the punctured disk of radius 1/λn. This domain converges to the plane
punctured at the origin.

Let us study the convergence of the sequence (ṽn)n. If there are no di-
vergence lines, then the sequence (ṽn)n converges on compact subsets of the
punctured plane to a solution ṽ. Then the conjugate differentials dũn con-
verge to dũ = dΦev. However,

∣∣∣∣
∫

γ

dũn

∣∣∣∣ =
1

λn

∣∣∣∣
∫

γ

dun

∣∣∣∣ ≥
κ

λn
→ ∞

so
∫
γ
dũ = ∞, which is absurd. So there must be divergence lines.

Observe that

|∇ṽn(1, 0)| = |∇ṽn(p̃n)| = |∇vn(pn)| =
|∇un(pn)|√

1 + |∇un(pn)|2
≤ C√

1 + C2
< 1.

Hence the point (1, 0) is in the convergence domain of the sequence ṽn. Let
U be the component of the convergence domain containing the point (1, 0).
Since ṽn ≥ 0, a divergence line cannot extend infinitely in both directions, so
must be a half-line ending at the origin. If there are at least two divergence
lines then U is a sector defined in polar coordinates by 0 < r < ∞, α1 <
θ < α2. The conjugate functions ũn are well defined in U and converge to
ũ. Then ũ takes the values ±∞ on the half-lines θ = α1 and θ = α2. Since
ṽ(0) = 0 and ṽ ≥ 0, ũ takes the values +∞ on θ = α1 and −∞ on θ = α2.
It is proven in [7], proposition 2, that this Jenkins Serrin problem has no
solution.

If there is only one divergence line, then U is a sector of angle 2π defined in
polar coordinates by 0 < r <∞, α < θ < α+2π. Then ũ solves the following
Jenkins Serrin problem : u = +∞ on the half-line θ = α (approaching this
line with θ > α) and u = −∞ on θ = α+ 2π (approaching with θ < α+ 2π.
It is proven in [7], proposition 4, that this Jenkins Serrin problem has no
solution. This contradiction proves the lemma. 2

The following lemma provides a similar estimate in a neighborhood of the
boundary points a+

k , k ∈ Z. It is proven in [10], lemma 6.
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Lemma 6 Given C > 0, there exists δ > 0 such that the following is true :
let u be a solution of the minimal graph equation (1) in the half disk D(0, 1)∩
{y > 0}, with boundary values +∞ on the segment (0, 1) × {0} and −∞ on
the segment (−1, 0)×{0}. Let v be the conjugate function of u. Assume that
v(0) = 0 and v ≥ 0. Then |∇u| ≥ C in D(0, δ) ∩ {y > 0}.

7.3 Curvature estimate

Let M be a minimal surface given by corollary 1.

Proposition 10 There exists a constant C (depending only on `) such that
the Gauss curvature K of the surface M is bounded by C.

Proof : since M ∗ and M are locally isometric, it suffices to bound the cur-
vature of M . The proof is based on stability arguments. In what follows, all
constants involved only depend on `.

Recall that M is the graph of u on Ω+ = R × (0, `). Let q1, · · · , qN be
given by proposition 5. By proposition 9, there exists κ such that |

∫
γi

du| ≥ κ
for i = 1, · · · , N . We apply lemma 5 with C = 100 and obtain a δ1 < ` such
that |∇u| ≥ 100 in D(qi, δ1), i = 1, · · · , N . We apply lemma 6 with again
C = 100 and obtain a δ2 < ` such that |∇u| ≥ 100 in D(a+

k , δ2), k ∈ Z.
We take δ = min{δ1, δ2}. Fix some i = 1, · · · , N . Let U be the graph of
u above the half disk D(qi, δ) ∩ Ω+. Since |∇u| ≥ 100, the Gauss image of
U is included in the spherical domain S2 ∩ {|z| ≤ 1/100}. The boundary
of U consists of a vertical segment, two horizontal segments and a helix-
like looking curve which is a graph on S1(qi, δ) ∩ Ω+. Completing by all
symmetries, we obtain a minimal surface Σ which is bounded by two helix-
like looking curves, and which is complete in the cylinder D(qi, δ) × R. The
surface Σ is of course not a graph anymore. However its Gauss image is still
included in S2 ∩ {|z| < 1/100}. As the spherical area of this domain is less
than 2π, Σ is stable by the theorem of Barbosa Do Carmo [1]. Consider now
a point (x, y) ∈ D(qi, δ/2) and let p = (x, y, u(x, y)) be the corresponding
point on M . Since p ∈ Σ is at distance more than δ/2 from the boundary
of Σ, the theorem of Schoen [14] ensures that the Gauss curvature at p is
bounded by c/(δ/2)2 for some universal constant c. The same argument gives
the same estimate for the Gauss curvature when (x, y) ∈ D(a+

k , δ/2), k ∈ Z.
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Assume now that (x, y) ∈ Ω+ is at distance more than δ/2 from all
points qi and all points a+

k . Let again p = (x, y, u(x, y)). If y > δ/4, then the
distance of p to the boundary of M is greater than δ/4 (because u = ±∞ on
the top edges). Since M is a graph, it is stable, so the Gauss curvature at p
is bounded by c/(δ/4)2.

It remains to understand the case 0 < y < δ/4. There exists i such that
qi < x < qi+1 (with the convention that q0 = −∞ and qN+1 = +∞). Consider
the box (qi, qi+1) × (−δ/2, δ/2). As this is a simply connected domain of Ω,
u is well defined on it. Let V be the graph of u on this box. The distance of
p = (x, y, u(x, y)) to the boundary of V is greater than δ/4. Since V is stable,
we conclude again that the Gauss curvature at p is bounded by c/(δ/4)2. 2

8 Quasi-periodicity

In this section, we prove that if the sequence (pi − pi−1)i∈Z is quasi-periodic
but not periodic, then we can find a solution (qi)i∈Z to the Period Problem
such that the associated minimal surface M[qi : i ∈ Z] is quasi-periodic but
not periodic in R2 × S1.

8.1 Preliminaries

First we need to fix some notation. In the following, an element of RZ will be
denoted as a function: x ∈ RZ denotes the sequence (x(i))i∈Z. We consider
on RZ the topology of the pointwise convergence i.e. the sequence (xn)n∈N

converges to x∞ if for every i : limn x
n(i) = x∞(i).

We notice that, for every A ∈ R+, the subset [−A,A]Z ⊂ RZ is compact.
Besides, on [−A,A]Z, the pointwise convergence is metrizable : if x, y ∈
[−A,A]Z, we define a distance by d(x, y) =

∑

i∈Z

1

2|i|
|x(i) − y(i)|.

Let ϕ : N → N be a function. In the following we say that ϕ is an
extraction if ϕ is strictly increasing. The group Z acts on the set RZ by shift
: if x ∈ RZ and n ∈ Z, we denote by n ·x the sequence (x(n+ i))i∈Z. Then if
ϕ is an extraction and x ∈ R

Z, we define the sequence ϕ · x = (ϕ(n) · x)n∈N

in RZ. We have the following definitions.
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Definition 2 Let x be in RZ, this sequence is said to be quasi-periodic if
there exists an extraction ϕ such that the sequence ϕ · x converges pointwise
to x (namely, for all i, limn x(i+ ϕ(n)) = xi).

Let x ∈ RZ be an increasing sequence, we say that x has quasi-periodic
gaps if the sequence (x(i) − x(i− 1))i∈Z is quasi-periodic.

Let us give two examples :

1. let α be an irrational number, let x(i) = [αi] be the integer part of
αi and let g(i) = x(i) − x(i − 1). Then the sequence (g(i))i∈Z is
quasi-periodic and is not periodic. Moreover, for any extraction ϕ,
if limn→∞ϕ(n) · g exists, then it is not periodic.

2. (the counting sequence) consider the infinite word on the alphabet
{0, · · · , 9} formed by writing in order all natural integers :

0123456789101112131415161718192021 · · · .

For i ≥ 1, let x(i) be the ith digit in this word. For i ≤ 0, let x(i) = 0.
The sequence (xi)i∈Z is quasi-periodic but not periodic. However, if ϕ
is an extraction, the limit of ϕ(n) · x can very well be periodic (in fact
it can be any sequence of integers between 0 and 9).

8.2 Why are we not done yet ?

Let us assume that the sequence (p(i))i∈Z has quasi-periodic gaps, and let
(qi)i∈Z be a sequence that solves the Period Problem for the data (p(i))i∈Z.
We expect the surface M[q(i) : i ∈ Z] to be quasi-periodic, but unfortunately
we cannot prove that. What we can prove is that there exists a sequence of
translations Tn such that Tn(M[q(i) : i ∈ Z]) converges to M[q′(i) : i ∈ Z],
where (q′(i))i∈Z is another solution to the Period Problem for the same data
(p(i))i∈Z. Since we do not know whether the Period Problem has a unique
solution, we cannot ensure that q′(i) = q(i). (If the reader knows that the
solution to the Period Problem is unique, he may omit what follows. He
should also inform the authors).

Our strategy is to prove, using Zorn’s lemma, that amongst all the so-
lutions (qi)i∈Z to the Period Problem, at least one of them yields a quasi-
periodic minimal surface.
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8.3 Quasi-periodic surfaces

Let us consider ` and η0 as in Proposition 5.
Let us now explain how we shall construct a quasi-periodic minimal sur-

face. Let p = (p(i))i∈Z be a strictly increasing sequence with quasi-periodic
gaps. In the following, we always assume that p(0) = 0. The sequence
g = (p(i)−p(i−1))i∈Z is quasi-periodic, we then denote by A the non-empty
set of all extractions ϕ : N → N such that lim

n→∞
ϕ(n) · g = g.

Let us fix a sequence q = (q(i))i∈Z that solves the Period Problem for the
data (p(i))i∈Z. The problem consists in building from q a sequence (q′(i))i∈Z

that solve the Period Problem for the data (p(i))i∈Z and such that M[q′(i) :
i ∈ Z] is quasi-periodic.

Let us denote by r the sequence q − 2p : r(i) = q(i) − 2p(i) for all
i ∈ Z. Let ϕ be in A; ϕ · r is a sequence of elements of [−η0, η0]

Z. This set
is compact so there exists a subsequence of (ϕ(n) · r)n∈N that converges in
[−η0, η0]

Z. Thus there exists an extraction ψ : N → N such that (ϕ ◦ ψ) · r
converges. We notice that, since ϕ ∈ A, ϕ ◦ ψ ∈ A. The following result
decribes such a situation.

Proposition 11 With the above notation, let ϕ ∈ A such that lim
n→∞

ϕ(n)·r =

r′. Then 2p + r′ = (2p(i) + r′(i))i∈Z solves the Period Problem for the data
(p(i))i∈Z.

Proof : For every n ∈ N, let us define the sequence qn by qn(i) = q(i +
ϕ(n)) − 2p(ϕ(n)) for all i ∈ Z. We also define pn by pn(i) = p(i + ϕ(n)) −
p(ϕ(n)) for all i ∈ Z.

Claim 2 We have lim pn = p and lim qn = 2p+ r′.

Proof : Let us fix i ∈ Z then, if i ≥ 1:

pn(i) = p(i+ ϕ(n)) − p(ϕ(n)) =

i+ϕ(n)∑

l=1+ϕ(n)

p(l) − p(l − 1) =

i+ϕ(n)∑

l=1+ϕ(n)

g(l)

=
i∑

l=1

ϕ(n) · g(l)
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Since limn→∞ ϕ(n) · g = g, the right-hand term converges to

i∑

l=1

g(l) =

p(i). When i < 1 we have:

pn(i) = p(i+ ϕ(n))− p(ϕ(n)) =

ϕ(n)∑

l=i+ϕ(n)+1

p(l− 1)− p(l) = −
0∑

l=i+1

ϕ(n) · g(l)

The right-hand term converges again to p(i). Then lim pn = p.
We have qn(i) = r(i+ϕ(n))+2p(i+ϕ(n))−2p(ϕ(n)) = ϕ(n)·r(i)+2pn(i)

for all i ∈ Z. Since limn→∞ϕ(n) · r = r′, lim qn = 2p+ r. 2

By definition of qn, the uniqueness of the solution to the Dirichlet problem
implies that we have

v[qn(i) : i ∈ Z](x, y) = v[q(i) : i ∈ Z](x + 2p(ϕ(n)), y) (12)

This implies that (qn(i))i∈Z solves the Period Problem : Fj(q
n(i) : i ∈ Z) = 0

for every j ∈ Z.
Then by Proposition 8 and Claim 2, 2p+ r′ solves the Period problem for

the data (p(i))i∈Z. 2

Proposition 6 does not give us the uniqueness of the sequence (q(i))i∈Z

that solves the Period Problem for the data (p(i))i∈Z, so, as we said in the
preceding subsection, we cannot ensure that the sequences r and r′ are equal.
Such an affirmation would be interesting because of the following proposition.

Proposition 12 With the above notations, if there exists ϕ ∈ A such that
lim
n→∞

ϕ(n) · r = r, the surface M[q(i) : i ∈ Z] is quasi-periodic.

Proof : We use the notations of the proof of Proposition 11. We have
the sequences qn, pn. Now Claim 2 says us that lim qn = q. Let us recall
that when (a(i))i∈Z solves the Period problem, the surface M[a(i) : i ∈ Z] is
normalized such that the conjugate to the point in the graph above (−1, 0)
is the point (0, 0, v(−1, 0)) where v = v[a(i) : i ∈ Z].

As above, (12) is true. So our normalization for the surfaces M implies
that M[qn(i) : i ∈ Z] is the image of M[q(i) : i ∈ Z] by an horizontal
tranlation Tn. The vector of the translation is (0,−X∗

2 (2p(ϕ(n))− 1)) where
X∗

2 is X∗
2 [q(i) : i ∈ Z].
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Then by Proposition 8 and Claim 2, the sequence of minimal surfaces
(M[qn(i) : i ∈ Z])n∈N = (Tn(M[q(i) : i ∈ Z]))n∈N converges to M[q(i) : i ∈
Z] smoothly on compact subsets of R2×S1. Since M[q(i) : i ∈ Z] is properly
embedded, lim |X∗

2 (2p(ϕ(n))−1)| = ∞ ; thus (Tn)n∈N is a diverging sequence
of translations. This proves that M[q(i) : i ∈ Z] is quasi-periodic. 2

By using a proposition that will be proved in the next subsection we then
can prove our main theorem.

Theorem 4 Let (p(i))i∈Z be a sequence with quasi-periodic gaps that satisfies
the hypotheses of Proposition 6. Then there exists a sequence (q(i))i∈Z which
solves the Period Problem for the data (p(i))i∈Z and such that M[q(i) : i ∈ Z]
is quasi-periodic. Moreover if (p(i + 1) − p(i))i∈Z is not periodic, M[q(i) :
i ∈ Z] is not periodic.

Proof : By Proposition 6, there exists a sequence (q(i))i∈Z that solves the
Period Problem for the data (p(i))i∈Z.

The sequence (g(i))i∈Z = (p(i)− p(i− 1))i∈Z is quasi-periodic so we have
the set A. Let r denotes the sequence q − 2p, we recall that r ∈ [−η0, η0]

Z.
By Proposistion 13, there exists ϕ and ψ ∈ A such that

limϕ · r = r′ (13)

limψ · r′ = r′ (14)

By Proposition 11, equation (13) implies that the sequence 2p+ r′ solves
the Period Problem for the data (p(i))i∈Z. Equation (14) gives us by Propo-
sition 12 that M[2p(i) + r′(i) : i ∈ Z] is quasi-periodic. 2

8.4 A dynamical result

Let X be a topological space with a countable basis. In the following, we shall
denote by (Vn(x))n∈N a countable decreasing basis of open neighborhoods of
x ∈ X. Let F : X → X be a continuous map. Let g be in X. We assume
that there exists an extraction ϕ such that limn F

ϕ(n)(g) = g. As above we
denote by A the set of extractions ϕ such that limn F

ϕ(n)(g) = g. The aim
of this section is to prove the following proposition.

Proposition 13 Let K be a compact subset of X such that F (K) ⊂ K. Let
x be in K. Then there exists two extractions ϕ ∈ A and ψ ∈ A such that
limn F

ϕ(n)(x) = x′ and limn F
ψ(n)(x′) = x′.
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In the proof of Theorem 4, we use this result with X = RZ with its
pointwise convergence topology, K is [−η0, η0]

Z, F is the shift map and g is
the quasi-periodic sequence g.

Before proving the above proposition, let us fix some notations. Let x be
as in the proposition and ϕ ∈ A; the sequence F ϕ(n)(x) is a sequence in K
which is compact. Thus there exists a subsequence that converges. As said
above this implies that there exists an extraction ψ such that F ϕ(ψ(n))(x)
converges. We notice that ϕ ◦ ψ ∈ A. Hence we define:

Asymp(x) = {y ∈ K | ∃ϕ ∈ A, y = lim
n
F ϕ(n)(x)}

We know that Asymp(x) is non-empty. In fact Proposition 13 consists
in proving that there exists x′ ∈ Asymp(x) such that x′ ∈ Asymp(x′). Then
Proposition 13 is a consequence of the following three lemmae.

Lemma 7 Let x ∈ K, Asymp(x) is a closed subset of K.

Proof : Let (yk)k∈N be a sequence in Asymp(x) that converges to y ∈ K.
For each k, we choose ϕk ∈ A such that yk = limn F

ϕk(n)(x). We are going
to construct by induction ψ ∈ A such that y = limn F

ψ(n)(x).
Let n be in N∗, we assume that ψ(q) is constructed for q < n such that

for every q < n:

F ψ(q)(g) ∈ Vq(g), F ψ(q)(x) ∈ Vq(y)

Since lim yk = y, there exists k0 such that yk0 ∈ Vn(y); hence Vn(y) is an
open neighborhood of yk0. Since ϕk0 ∈ A, there exists q0 such that ϕk0(q0) >
ψ(n− 1) and

F ϕk0
(q0)(g) ∈ Vn(g), F ϕk0

(q0)(x) ∈ Vn(y)

Then if we take ψ(n) = ϕk0(q0) we get:

F ψ(n)(g) ∈ Vn(g) (15)

F ψ(n)(x) ∈ Vn(y) (16)

This finishes our construction.
Equation (15) implies that ψ ∈ A and (16) implies that limn F

ψ(n)(x) = y
thus y ∈ Asymp(x). 2
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Lemma 8 Let x ∈ K, let y be in Asymp(x); then Asymp(y) ⊂ Asymp(x).

Proof : Let z be in Asymp(y). Let ϕ and ψ ∈ A such that limn F
ϕ(n)(x) =

y and limn F
ψ(n)(y) = z. Let us build by induction χ ∈ A such that

limn F
χ(n)(x) = z.

Let n be in N∗, we assume that χ(q) is constructed for q < n such that
for every q < n:

F χ(q)(g) ∈ Vq(g), F χ(q)(x) ∈ Vq(z)

Since limn F
ψ(n)(y) = z, there exists k0 such that:

F ψ(k0)(g) ∈ Vn(g), F ψ(k0)(y) ∈ Vn(z)

Then (F ψ(k0))−1
(
Vn(g)

)
is an open neigborhood of g and (F ψ(k0))−1

(
Vn(z)

)

is an open neighborhood of y. Since limn F
ϕ(n)(x) = y, there exists l0 such

that ψ(k0) + ϕ(l0) > χ(n− 1) and

F ϕ(l0)(g) ∈ (F ψ(k0))−1
(
Vn(g)

)
F ϕ(l0)(x) ∈ (F ψ(k0))−1

(
Vn(z)

)

Hence if we take χ(n) = ψ(k0) + ϕ(l0), we have:

F χ(n)(g) ∈ Vn(g) (17)

F χ(n)(x) ∈ Vn(z) (18)

This finishes our construction.
Equation (17) implies that χ is in A and (18) gives us that limn F

χ(n)(x) =
z, hence z ∈ Asymp(x). 2

Lemma 9 Let K be a compact set and T : K → P(K) a map such that:

1. for all x ∈ K, T (x) is closed and non-empty.

2. for all x ∈ K and all y ∈ T (x), T (y) ⊂ T (x).

Let x ∈ K, then there exists y ∈ T (x) such that y ∈ T (y).
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Proposition 13 is then a consequence of this lemma with T = Asymp.
Proof of Lemma 9 : The proof of this lemma is given by Zorn’s Lemma.

Let x be in K, we denote by B the set {T (y), y ∈ T (x)}. B is ordered by
the inclusion. Let (Ti)i∈I be a totally ordered family of B. Let us define
T∞ =

⋂
i∈I Ti. If T∞ is empty, since each Ti is closed and K is compact there

exists a finite subset I0 ⊂ I such that
⋂
i∈I0

Ti = ∅. Since (Ti)i∈I0 is totally
ordered there exists i0 ∈ I0 such that Ti0 =

⋂
i∈I0

Ti, but Ti0 is non-empty
thus T∞ 6= ∅.

Let y be in T∞, then y ∈ Ti for all i ∈ I. This implies by the second
hypothesis that y ∈ T (x) and T (y) ∈ B. Besides T (y) ⊂ Ti for all i ∈ I; then
T (y) ⊂ T∞. We obtain that T (y) is an under-bound for the family (Ti)i∈I .

We have proved that every totally ordered family admits an under-bound.
Hence, by Zorn’s Lemma, there exists an element Tm ∈ B which is minimal for
the inclusion. Let y be in Tm (we recall that all elements of B are non-empty
subsets of K). We have y ∈ T (x) by the second hypothesis then T (y) ∈ B
and T (y) ⊂ Tm. Since Tm is minimal in B, T (y) = Tm and y ∈ T (y). 2
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