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Abstract

The main objective of this paper is to construct smooth 1-parameter families
of embedded minimal surfaces in euclidean space that are invariant under
a screw motion and are asymptotic to the helicoid. Some of these families
are significant because they generalize the screw motion invariant helicoid
with handles and thus suggest a pathway to the construction of higher genus
helicoids. As a byproduct, we are able to relate limits of minimal surface
families to the zero-sets of Hermite polynomials.



1 Introduction

Among the embedded periodic minimal surfaces in euclidean space the ones
that are invariant under a screw motion (but not under a translation) enjoy
the fame of being most inaccessible.

On the other hand, the (known) screw motion invariant helicoids with
handles ([1, 3]) have a spectacular limit, the genus one helicoid ([12]), and
there is numerical evidence that higher genus helicoids can be obtained as
limits of screw motion invariant helicoids with more handles. This paper
makes the first step beyond numerical evidence towards an existence proof
of a genus g helicoid by proving

Theorem. There exists, for each g ≥ 1 and 0 < t < ǫ, a family H t
g of

embedded periodic minimal surfaces asymptotic to the helicoid; each family
is invariant under vertical screw motions with angle π(1 + t) and translation
π. The quotient surfaces have genus g and two helicoidal ends with winding
number (1 + t)/2.

This will be a consequence of Theorems 1 and 2, stated in the following
section. See also section 3. Heuristically, these surfaces are obtained by
gluing helicoids together.

Let’s begin with a survey of known results about embedded screw-motion
invariant minimal surfaces:

Figure 1: Helicoidal limits of the twisted Karcher-Scherk surfaces.
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The first such family of examples was constructed by Karcher in [4], where
also the logarithmic differential of the Gauss map is introduced to overcome
the difficulty that the Gauss map is not invariant under the screw motion.
By pushing the screw motion parameter to its limits, the surfaces degenerate
into several helicoidal components ([11]), as illustrated in Figure 1. This
suggested to construct the family by gluing two helicoids together. In the
language of this paper, the family is obtained using a (−−)-configuration
(which means that we glue two left handed helicoids).

Historically the next family was derived by Hoffman and Karcher, with
images made by Wohlrab. They deform translation invariant examples of
Fischer and Koch ([9]), and prove the existence and embeddedness using
Plateau methods. The Weierstrass representation of these surfaces was dis-
cussed in an unpublished Diplom thesis ([5]), where the period problem is not
solved, however. Also note that the continuity of the family is not evident
from the Hoffman-Karcher construction. We believe that we reproduce the
strongly twisted versions of these surfaces by using our (−−−) configuration,
but we haven’t proven this.

The third family is related to the genus one helicoid: In ([1, 2]) it is shown
that there is an embedded, translation invariant minimal surface asymptotic
to the helicoid of genus 1 in the quotient. Numerical experiments [3] sug-
gested that this surface should also exist in a screw motion invariant version.
Furthermore, their computer images made it plausible that for increasing
screw motion angle, the family would converge to the genus one helicoid.

This latter surface ([1]) is of comparable importance in the theory as the
Costa surface: It is the first (and so far the only) example of an embedded
minimal surface with a helicoidal end of finite type besides the helicoid itself.

The existence of the family of screw motion invariant helicoids was proven
later ([10, 12]) and then used to show that the genus one helicoid as a limit
of the family for increasing screw motion angle is indeed embedded.

The motivation for our investigations came from a numerical analysis
of the other limit for decreasing screw motion angle. Computer images in-
dicated that the surfaces would degenerate into three helicoids, two right-
handed and one left-handed. This exciting observation suggested that also
this family might be constructed by gluing helicoids together. In this paper,
we will use the (+ − +)-configuration for this particular family.
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Figure 2: Tentative gluing of two helicoids.

To address this gluing problem, we start near a putative limit configura-
tion, where the helicoids to be glued are given by the positions p0

i of their
axes as points in the xy-plane, together with a sign ǫi ∈ {±1} at each point,
indicating whether the helicoid is left- or right-handed.

It turns out hat this approach leads indeed to a minimal surface family
with the desired properties, provided that the points p0

i satisfy an explicit
set of equations, the balance conditions, to be explained in the next section.

We will limit the discussion to the case that all the p0
i lie on the real line,

because this leads to an additional symmetry which makes the construction
much simpler.

From the configuration data, a space of candidate Riemann surfaces on
a fixed topological model surface and Weierstrass data is derived, where the
space parameters include the twist parameter t and certain free parameters
pi near p0

i and ri ≥ 0 that are needed to solve the period problem.
The Weierstrass data are constructed in such a way that as many period

conditions as possible are automatically solved. It turns out that one can
prescribe the height differential uniquely by solving all period conditions,
without any restrictions on the parameters. For the Gauss map, we first
define its logarithmic differential. Here one essentially needs to use all the ri

parameters to make the differential integrable to a Gauss map with the right
multivaluedness and singularities. This is achieved by a first application of
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the implicit function theorem.

Then it remains to solve the period conditions for the first two coordinate
differentials. These are transcendental in general, but can be evaluated ex-
plicitly in the limit case t = 0 and lead there to a set of algebraic equations
(called balance equations) in the configuration data pi. A configuration which
solves these balance equations will be called balanced. To apply the implicit
function theorem again, we need to require an explicit non-degeneracy con-
dition in terms of the pi.

We will provide two classes of non-degenerate balanced configurations.
The first one leads to surfaces generalizing the Karcher-Scherk surfaces, the
second one the screw-motion invariant helicoid. Both classes give rise to new
minimal surface families whose quotient surfaces have arbitrarily large genus.
The two configurations are explicit in the sense that they are given by the
roots of Hermite polynomials. It is a great surprise that limits of minimal
surfaces are related to the roots of classical polynomials.

The work in this paper is inspired by [8] where minimal surfaces are
constructed by gluing catenoids. The new difficulty in this paper is that
the Gauss map is multi-valued, so one more integration step is required.
On the other hand, the symmetries greatly simplify the construction, in
particular our Riemann surfaces are hyperelliptic. The proof of Theorem 1
in the complex case (namely when the points pi are not restricted to be real)
require the full strength of the arguments in [8].

Below are two figures of the minimal surfaces near the degenerate limit.
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Figure 3: One fundamental piece of numerical solutions to the period problem
near the degenerate limit (at t = 0.05) for the (+,-,+,-,+) configuration,
corresponding to H t

2.

Figure 4: One fundamental piece of numerical solutions to the period problem
near the degenerate limit (at t = 0.05) for the (+,-,+,-,+,-,+) configuration,
corresponding to H t

3.

Part of this research was done while both authors were visiting M.S.R.I.
in Berkeley.

We would like to thank David Hoffman for the invitation and many dis-
cussions. We are also grateful to Hermann Karcher and the referee for their
suggestions.

We would also like to thank Jim Hoffman for his help in preparing the
figures 3 and 4. These images were computed with the program MESH
using the explicit Weierstrass data we obtain in this paper. We have to
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stress the difference between these true pictures, and our fake rescaled limit
pictures. The fact that these pictures look right provides some evidence that
the computations in the paper reflect the desired geometry.

2 Main Results

This section states our theorems and introduces the essential notation.
A configuration is given by a finite collection of points p1, · · · , pn on the

real line, with pi < pi+1. Each point pi is assigned a charge εi = ±1.
We define the forces F1, . . . , Fn by

Fi = pi +
∑

j 6=i

εj

pi − pj

.

We say the configuration is balanced if Fi = 0 for all i. We say the configu-
ration is non-degenerate if the n× n matrix ∂Fi/∂pj is invertible. Let

N =
n∑

i=1

εi .

Theorem 1 Assume that we are given a configuration which is balanced and
non-degenerate. Further assume that N 6= 0. Then there exists ǫ > 0 and
a smooth 1-parameter family {Mt}0<t<ǫ of embedded minimal surfaces such
that:

1. the surface Mt is invariant by the vertical screw motion St with angle
2πt about the vertical axis, and translation (0, 0, 2π). The quotient
Mt/St has genus n − 1 and two helicoidal ends with winding number
1 +Nt.

2. In a neighborhood of 1√
t
(pi, 0, 0), the surface Mt converges to a right or

left helicoid of period (0, 0, 2π), depending respectively on wether εi = 1
or εi = −1.

3. Let Mt be the result of rescaling the horizontal part of Mt by
√
t (the

modified surface is not a minimal surface, unless n = 1, in which case
Mt is a helicoid). Then Mt converges (as sets) to the surface M0

defined as follows: consider the multi-valued function

f(z) =

n∑

i=1

εi arg(z − pi) , z ∈ C \ {p1, · · · , pn} .
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M0 is the union of the multi-graph of f , the multi-graph of f + π, and
the vertical lines through all points pi. It is a smooth, complete surface.

This theorem will be proven in section 5. A comment about the different
types of limits we consider might be in order. Usually, a minimal surface has
no preferred position or size in space, it can be moved and scaled (uniformly).
Therefore, when one talks about the (geometric) limit of a family of minimal
surfaces, this refers to some normalization of the position of all the surfaces,
and different normalizations usually give different geometric limits.

If, however, one ignores the metric structure and considers only the con-
formal structures of the underlying Riemann surfaces, the limit object is
frequently an ungeometric noded surface whose components and nodes are
responsible for the different geometric limits one can obtain. This second
type of limit is the one we are pursuing in this paper.

However, the third part of our Theorem 1 indicated that it might be
worthwhile to consider also a third type of limit where one allows for affine
renormalizations of the families in the surfaces. In our case, we obtain limits
that still have all of the topology of the original surfaces but are much simpler
in their formal description. As a drawback we loose minimality, on the other
hand the parameterizations are now given by harmonic functions.
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Figure 5: Rescaled limit surface in the (−,−,−) case.

We will show that non-degenerate balanced configurations exist in the
following two cases:

Theorem 2 Let Hn be the Hermite polynomial of degree n. Then the fol-
lowing two configurations are non-degenerate and balanced:

1. For each n, let pi, i = 1, . . . , n be the zeroes of Hn together with the
charges ǫi = −1.

2. For each n = 2m+ 1, let xi, i = 1, . . . , m+ 1 be the zeroes of Hm+1

together with the charges ǫi = 1 and let yi, i = 1, . . . , m be the zeroes
of Hm together with the charges ǫi = −1. Let {pi} be the union of the
xi and yi.

The two parts of this theorem will be proven in sections 6.4 and 6.5 as
corollaries 2 and 3.
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3 Relation with known examples

In this section, we explain how the family we construct in the (+,−,+) case
is related to the screw motion invariant genus one helicoid, and the (−,−)
case is related to the twisted Karcher-Scherk surfaces.

Observe that our surfaces in the (+,−,+) case have genus 2 and not 1.
As we shall see, the reason for this is that we construct in fact a branched
double cover of the screw motion invariant genus one helicoid, branched over
the two points ∞1,2 representing the helicoidal ends.

Consider first the second case in Theorem 2, namely n = 2m + 1 with
alternating charges. Since the configuration is symmetric about the origin,
the surfaces Mt have additional symmetries (see the end of section 4) and

in particular are invariant by the screw motion S̃t with angle π(1 + t) and

translation π. Observe that S̃t ◦ S̃t = St. The quotient Mt/S̃t has genus m
(see below) and two helicoidal ends with winding number (1 + t)/2 each.

In particular, in the (+,−,+) case, Mt/S̃t has genus 1, and two ends of
winding number slightly more than 1/2, as t is a small positive number.

Therefore, this surfaces Mt are screw motion invariant genus one helicoids
each, in the same sense as the surfaces constructed by [12]. It is not clear,
however, that our surfaces are the same surfaces. To prove this, one should
show that the genus one helicoid family in [12] degenerates into three heli-
coids. The result would then follow, because our use of the implicit function
theorem implies that the family is unique near the degenerate limit.

Numerical experiments with the Weierstrass data in [1] suggest that this
is indeed the case.

Consider next the (−,−) case (see Figure 1 for an actual minimal surface
in the family, and Figure 6 for the rescaled limit). Again, the configuration
is symmetric about the origin so the surface is invariant by order 2 rotation
about the vertical axis. Composing with St, the surface is invariant by the
screw motion Ŝt with angle π+ 2πt and translation 2π. The quotient Mt/Ŝt

has genus 0 (see below) and 4 helicoidal ends with winding number 1/2 − t

each. We know that Mt/Ŝt is a twisted Karcher-Scherk surface, see [11].
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Figure 6: Rescaled limit surface in the (−,−) case. Compare with Figure 1.

The simplest way to compute the genus of Mt in the above quotients is
to use the following formula from [6], Theorem 4:

C(M) = 2π(χ(M) −W (M)) .

Here M is a minimal surface in the quotient of R3 by a screw motion, C(M)
is the total curvature of M , χ(M) is the Euler characteristic and W (M) is
the sum of the winding numbers of the helicoidal ends.

From this formula, we obtain in any case that the total curvature of Mt/St

is

C(Mt/St) = 2π(2 − 2(n− 1) − 2 − 2(1 +Nt)) = −4π(n+Nt) .

Observe that when t is small, the total curvature is close to −4πn, which is
to be expected since we glue n helicoids together.

In the second case of Theorem 2, C(Mt/S̃t) is half of C(Mt/St). Clearly

this determines the Euler characteristic, hence the genus, of Mt/S̃t. We omit
the details.

In the first case of Theorem 2, Mt/Ŝt and Mt/St have the same total
curvature because Mt/St◦St is a double cover of both. Again this determines

the genus of Mt/Ŝt.
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4 Geometric Model and Weierstrass Repre-

sentation

In this section, we assume that the surface Mt exists, and we derive infor-
mations about its Weierstrass data from its geometrical picture. In the next
sections, we will use this information to define all possible candidates for the
Weierstrass data, and prove existence of the surface Mt.

Figure 7: Rescaled limit surface in the (+,−,+,−,+,−,+) case.

It is quite difficult to draw a helicoid. We represent a helicoid by drawing
two parallel helices which represent its intersection with a vertical cylinder.

In Figure 8, the reader should imagine that there is a small helicoid
inside each cylindrical box (these are not truly cylinders, because the surface
is invariant by a screw motion).
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Figure 8: Geometrical model.

Outside of the cylinders, the quotient Mt/St has two components. Only
one of them is drawn on the picture for clarity. It is bounded by the helices
which are drawn as plain curves. The other component is bounded by the
helices which are drawn with dots. At infinity, each component is asymptotic
to a helicoid.

We now consider the Weierstrass data of the surface. We shall work in
the quotient Mt/St. From the conformal point of view this is a Riemann
surface which we call Σt or just Σ. The Gauss map G and height differential
dh of Mt satisfy G ◦ St = exp(2π

√
−1t)G and S∗

t dh = dh. So dh descends to
the quotient, but G does not. On the other hand, the logarithmic differential
ω = dG/G satisfy S∗

t ω = ω, so ω descends to the quotient. Our strategy
will be to construct first Σ, dh and ω, and then recover the Gauss map by
G = exp(

∫
ω).

Inside each cylinder, the surface is close to a helicoid, so in the quotient,
is conformally an annulus close to C \ {0}. We may call this a helicoidal
neck. Outside of the cylinders, each component is conformally equivalent to
the complex plane minus small disks centered at p1, · · · , pn. So the quotient
Σ = Mt/St is conformally equivalent to two copies of C connected by n small
necks. The compactification Σ of Σ (obtained by adding the point at infinity
in each copy of C ) is a compact Riemann surface of genus n− 1, see Figure
9.
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Figure 9: Topological picture of Σ.

We define the following cycles on Mt. Let Ai, i = 1, · · · , n, be the homol-
ogy class, in the quotientMt/St, of any one of the two helices on the boundary
of the cylindrical box corresponding to pi, oriented so that it climbs up. On
the conformal picture of Σ, Ai is a circle which goes around the neck. Note
that Ai is not a closed curve on Mt. It is only closed in the quotient. We
also define cycles Bi, i ≥ 2, as on Figure 9, so that A2, · · · , An, B2, · · · , B2 is
a homology basis of Σ. The cycles Bi are closed curves on Mt.

Because Ai climbs up, we must require that

Re

∫

Ai

dh = 2π .

Since the inside of the cylindrical box is close to a helicoid, the variation
of arg(G) along the helix Ai is close to ±2π + t, depending on whether the
helicoid is a right or left helicoid, which is determined by εi. It should also
be equal to 2πt modulo 2π because the endpoints of Ai are identified by the
screw motion St. So we require

∫

Ai

dG/G = 2π
√
−1(εi + t) .

D


D


D


D


D
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Figure 10: Symmetries of the surface
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Finally we describe the symmetries of the surface. We shall construct a
minimal surface with the following symmetries ( see Figure 10):

Let Dk be the horizontal line defined as the image of the Ox axis by
(St)

k/4 (namely, the screw motion with angle 2πtk/4 and vertical translation
2πk/4). For even k ∈ Z, Dk is a symmetry line of Mt, which means that it
lies on the surface and the surface is invariant by rotation of order 2 around
this line. For odd k ∈ Z, Dk is a symmetry axis of Mt, which means that
it is perpendicular to the surface and the surface is invariant by rotation of
order 2 around this line.

This translates to the following symmetries of the Weierstrass data of Mt.
Let ρk be the rotation of order 2 around the line Dk. Then

ρ∗kdh = −dh , G ◦ ρk = −eπ
√
−1ktG , ρ∗kω = ω , for even k ∈ Z

ρ∗kdh = −dh , G ◦ ρk =
eπ

√
−1kt

G
, ρ∗kω = −ω , for odd k ∈ Z

In the quotient Σ = Mt/St, for k even, the rotations ρk all correspond to
the same transformation which we call σ. It is a antiholomorphic involution
of Σ. For k odd, the rotations ρk all correspond to the same transformation
which we call ρ. It is a holomorphic involution of Σ. The quotient Σ/ρ has
genus zero, so Σ is a hyperelliptic Riemann surface. The Weierstrass data in
the quotient has the symmetries

σ∗dh = −dh , σ∗ω = ω , ρ∗dh = −dh , ρ∗ω = −ω .

In case the configuration is symmetric about the origin, the vertical axis is
a symmetry line of the surface if n is odd, and a symmetry axis if n is even.
We will, however, not use this symmetry in the construction, because it does
not help very much.

5 Proof of Main Theorem 1

5.1 The Riemann Surface

Let Σ be the hyperelliptic Riemann surface defined by the algebraic equation

w2 = P (z) where P (z) =

n∏

i=1

((z − pi)
2 + r2

i ) (1)
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Here p1, · · · , pn are real parameters in a neighborhood of the given config-
uration, and r1, · · · , rn are positive real numbers in a neighborhood of 0.
Together with the screw motion parameter t which will enter the game with
the Weierstrass representation, these are all the parameters of the construc-
tion.

It is clear that we get isomorphic surfaces by translating the pi and by
scaling the pi and ri. This additional freedom does count as parameters and
will be removed later on.

We may view Σ as the set of (z, w) ∈ C
2 satisfying the above equation.

We may also view it as the Riemann surface obtained by analytic continuation
of the function

√
P (z). A model for the later is given by the standard “cut

and glue” construction: consider two copies of the complex plane, labeled C 1

and C 2. For each i ≤ n, cut C 1 and C 2 along the segment [pi −
√
−1ri, pi +√

−1ri]. Glue C 1 and C 2 along the cut in the usual way. This is the model
we will consider most of the time. The genus of Σ is n− 1.

The Riemann surface Σ has all the desired symmetries:

1. Let ρ : Σ → Σ be the holomorphic involution which exchanges the point
z ∈ C 1 with the same point z ∈ C 2 (this is the usual involution of a
hyperelliptic Riemann surface). The fixed points of ρ are pi ±

√
−1ri,

i = 1, · · · , n.

2. Let σ : Σ → Σ be the anti-holomorphic involution defined by z 7→ z in
C 1 and C 2. The fixed points of σ are the real points of C 1 and C 2.

The two real axes in C 1 and C 2 are visible on the surface in euclidean
space as horizontal straight lines, and the involution σ just rotates around
these lines by 180◦. In our figures, these lines appear as lines in the paper
plane.

The vertical slits on the imaginary axes in C 1 and C 2 correspond to
the vertical coordinate axis in space, and the the other four half-infinite
components on the imaginary axes away from the slits fit together to form
horizontal lines on the surface and half way between the other two lines
mentioned before. The latter are in are figures perpendicular to the paper
plane.

The involution ρ can be seen as a 180◦ rotation around horizontal lines
in space that cut the second (‘imaginary’) type of lines perpendicularly and
do not lie on the surface.
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5.1.1 Choice of Cycles

We compactify Σ by adding the points at infinity in C 1 and C 2, which we
label ∞1 and ∞2. We now define the cycles Ai and Bi in our model for Σ.

Fix some small ǫ > 0. Let Ai, i = 1, · · · , n be the circle C(pi, ǫ) in C 1,
oriented with the counter-clockwise orientation if εi = 1 and the clockwise
orientation if εi = −1. Ai is homologous to the circle C(pi, ǫ) in C 2 with the
opposite orientation.

A Ai-1 i

Figure 11: Definition of the cycles Ai−1 and Ai in the case εi−1 = εi = +1.
The vertical segments represent the cuts passing through pi−1 and pi.

Let Bi, i ≥ 2, be the composition of the following curves: The segment
from pi + ǫ to pi−1 − ǫ, the half circle z = pi−1 − ǫ exp(−

√
−1εi−1θ) with

θ ∈ [0, π], the segment from pi−1 + ǫ to pi − ǫ, and the half circle z =
pi + ǫ exp(

√
−1εiθ) with θ ∈ [0, π].

B
i


Figure 12: Definition of the cycle Bi in the case εi−1 = εi = +1. The segment
drawn with dots lies in C 2 because the path crosses the cuts.

The intersection numbers satisfy Ai · Bi = εi and Ai−1 · Bi = −εi−1.
The matrix (Ai · Bj), i, j ≥ 2 is invertible in SL(n − 1,Z). It follows that
{A2, · · · , An, B2, · · · , Bn} is a homology basis of Σ, and holomorphic 1-forms
on Σ are uniquely defined by prescribing their periods along A2, · · · , An.
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5.2 The Height Differential

5.2.1 Definition of dh

In order to have helicoidal ends, dh needs simple poles at ∞1 and ∞2 with
pure imaginary residues, see [6].

By the residue theorem in C 1 and C 2 we have

−
n∑

i=1

εi

∫

Ai

dh = 2π
√
−1 Res ∞1

dh = −2π
√
−1 Res ∞2

dh (2)

It is a standard fact in Riemann surface theory that one can prescribe the
poles, the residues, and periods along the cycles A2, . . . , An, with the only
condition that the sum of the residues be zero. In our case, because of
(2), this is the same as prescribing the periods along all cycles A1, · · · , An.
Consequently,

Definition 1 We define dh on Σ as the unique meromorphic 1-form with
two simple poles at ∞1 and ∞2, normalized by the period condition

∀i ≥ 1,

∫

Ai

dh = 2π .

From (2), the residues of dh at ∞1 and ∞2 are then given by

Res ∞1
dh = −Res ∞2

dh =
√
−1

n∑

i=1

εi = N
√
−1 .

To prove that dh has the required symmetries, observe that σ(Ai) = −Ai,
hence ∫

Ai

σ∗dh =

∫

σ(Ai)

dh = −
∫

Ai

dh = −
∫

Ai

dh .

Consequently, the meromorphic forms σ∗dh and −dh have the same poles,
A-periods and residues, so they are equal. In the same way, ρ(Ai) = −Ai

implies that ρ∗dh = −dh.

5.2.2 B-Periods of dh

Observe that Bi − σ(Bi) is homologous to Ai −Ai−1. From σ∗dh = −dh we
obtain ∫

Bi

dh+ dh =

∫

Bi

dh−
∫

σ(Bi)

dh =

∫

Ai

dh−
∫

Ai−1

dh = 0 .
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Hence Re
∫

Bi
dh = 0.

5.3 Explicit Formula for dh

In this section we obtain an explicit formula for dh. This will only be used to
prove Lemma 1 in the next section. It is well known that on the genus n− 1
hyperelliptic surface Σ, a basis for holomorphic 1-forms is given by zjdz/w
for 0 ≤ j ≤ n− 2. Here w is defined by the algebraic equation (1).

We fix the sign of w as follows. In a neighborhood of ∞1 and ∞2 we have
w2 ≃ z2n. We ask that w ≃ zn in a neighborhood of ∞1, and consequently,
w ≃ −zn in a neighborhood of ∞2. Then zn−1dz/w has two simple poles at
∞1 and ∞2 with respective residues −1 and +1.

From this we can write explicitly

dh = −N
√
−1

zn−1dz

w
+

n−2∑

j=0

αj
zjdz

w
(3)

The coefficients α0, · · · , αn−2 are determined by solving the linear equations
∫

Ai

dh = 2π 2 ≤ i ≤ n .

The matrix of this linear system is

Mij =

∫

Ai

zjdz

w
, 2 ≤ i ≤ n, 0 ≤ j ≤ n− 2 .

5.3.1 Limit of dh

Recall that Σ, hence dh, are only defined when all ri are nonzero. We will
later need the limit of dh when all ri → 0.

Lemma 1 When all ri go to 0, dh converges uniformly on compact subsets
of C 1 \ {p1, · · · , pn}, to the meromorphic 1-form dh1 defined by

dh1 =
n∑

i=1

−
√
−1εi dz

z − pi

.

Moreover, dh (restricted to any compact subset of C 1−{p1, . . . , pn}) extends
analytically to ri = 0, (meaning that it extends to an analytic function of all
parameters.) A similar statement also holds on C 2.
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Proof: This kind of convergence result is proven in a more general setup in
[8] using results by Fay and Masur from algebraic geometry. In our case, we
can give a very elementary proof using the formula of the previous section.
When all ri → 0, we have in C 1

lim
ri→0

w =

n∏

k=1

(z − pk) ,

so

lim
ri→0

Mij =

∫

Ai

zjdz∏
(z − pk)

= 2π
√
−1

pj
i∏

k 6=i(pi − pk)
.

The limit matrix is invertible. This implies that the coefficients αj extend
analytically to ri = 0, so dh converges to a meromorphic differential dh1 with
simple poles at p1, · · · , pn and ∞1. By continuity

Res pi
dh1 =

εi

2π
√
−1

∫

Ai

dh1 = −
√
−1εi .

Now a meromorphic 1-form with simple poles on C ∪{∞} is uniquely deter-
mined by its poles and residues. This proves the lemma. Q.E.D.

5.4 The Gauss Map

5.4.1 Definition of the Logarithmic Differential

Recall that we shall first define the logarithmic differential ω = dG/G, and
then recover the Gauss map, as a multi-valued function, by G = exp(

∫
ω).

We decide to orient the surface we want to construct so that the Gauss
map is infinite at the end ∞1. From formula (3) dh has n − 1 zeroes
q1, · · · , qn−1 in C 1 (see below for a discussion of multiple zeroes). At these
zeroes, the Gauss map needs a simple pole, so ω = dG/G needs a simple pole
with residue −1. From the symmetry ρ∗dh = −dh, we see that q1, · · · , qn−1,
viewed as points in C 2, are the zeroes of dh in C 2. At these zeroes, the
Gauss map needs a simple zero, so ω needs a simple pole with residue +1.
This motivates

Definition 2 We define the logarithmic differential ω as the unique mero-
morphic 1-form on Σ with simple poles at q1, · · · , qn−1 in C 1 (resp. C 2) with
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residue −1 (resp. +1) and two simple poles at ∞1, ∞2, normalized by the
period condition

∀i ≥ 1,

∫

Ai

ω = 2π
√
−1(εi + t) .

From the residue theorem in C 1, we have

−
n∑

i=1

εi

∫

Ai

ω = 2π
√
−1

(
Res ∞1

ω +
n−1∑

i=1

Res qi
ω

)

which determines the residues at infinity

Res ∞1
ω = n− 1 −

n∑

i=1

(ε2
i + tεi) = −1 − tN = −Res ∞2

ω .

Note that q1, · · · , qn−1 depend on dh hence on all parameters p1, . . . , pn,
r1, . . . , rn. In case dh has multiple zeroes, the residues of ω should add
up. Note that the multiple zeroes of dh do not depend analytically on the
parameters. However, ω is a symmetric function of the zeroes, so may be
expressed in function of the elementary symmetric functions of the zeroes,
which are analytic functions of the parameters. So ω depends analytically
on all parameters.

It is straightforward to check that ω has the desired symmetries σ∗ω = ω
and ρ∗ω = −ω.

5.4.2 Limit of the Logarithmic Differential

Similarly as for dh, we have

Lemma 2 When all ri → 0, ω converges on compact subsets of C 1\{p1, · · · , pn,
q1, · · · , qn−1} to the meromorphic 1-form ω1 on C 1 given by

ω1 =
n∑

i=1

(1 + tεi)dz

z − pi
−

n−1∑

i=1

dz

z − qi
.

Proof: This is proven as Lemma 1. The explicit formula for ω is

ω = (1 + tN)
zn−1dz

w
+

n−2∑

j=0

βj
zjdz

w
−

n−1∑

i=1

w(qi) dz

(z − qi)w
(4)

where the βj are determined by solving a linear system of equations com-
ing from the prescribed A-periods. Q.E.D.
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5.4.3 B-Periods of ω

In this section we will use the implicit function theorem to find a 1-parameter
family of values for the ri such that all B-periods of ω are zero modulo
2π

√
−1. This condition on ω is required because ω = dG/G, and we desire

G to be single-valued along the B-curves. More precisely:

Proposition 1 For r1 small enough, there exists unique r2, · · · , rn, depend-
ing continuously on r1 and smoothly on p1, · · · , pn and t, such that

∀i ≥ 2,

∫

Bi

ω = 0 mod2π
√
−1 .

Proof: The imaginary part of
∫

Bi
ω may be computed using the symmetries:

from σ∗ω = ω, we have
∫

Bi

ω −
∫

Bi

ω =

∫

Bi

ω −
∫

Bi

σ∗ω = εi

∫

Ai

ω − εi−1

∫

Ai−1

ω + residues of ω

= 2π
√
−1εi(1 + tεi) − 2π

√
−1εi−1(1 + tεi−1) mod 2π

√
−1

= 0 mod 2π
√
−1

Hence Im
∫

Bi
ω = 0 mod2π. Note that we may have to perturb the curve

Bi to avoid possible poles of ω on the real axes, which is why there might be
residues in the first line of the computation.

To compute the real part, we need the following lemma:

Lemma 3 Fix some base point z0 in C 1. Then
∫ pi

z0

ω = (1 + tεi) log ri + f(p1, · · · , pn, r1, · · · , rn, t) .

where f is an analytic functions of its arguments, the variables r1, · · · , rn

being in a neighborhood of 0 and p1, · · · , pn in a neighborhood of the given
configuration. (It is understood that the path of integration avoids all other
cuts and all poles of ω).

We postpone the proof of the lemma until the proof of the proposition is
complete.

Using the symmetry ρ∗ω = −ω, Lemma 3 implies that
∫

Bi

ω = 2(1 + tεi) log ri − 2(1 + tεi−1) log ri−1 + f(p1, · · · , pn, r1, · · · , rn, t)
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for some analytic function f . We define the renormalized period of ω as

Fi =
1

log ri
Re

∫

Bi

ω .

We need to solve the equation Fi = 0, 2 ≤ i ≤ n. The function Fi extends
continuously to ri = 0, but not smoothly (not even C1). To solve this
problem, write

ri = exp

(−si

τ 2

)
with s1 = 1 and si > 0 .

Recall that we have fixed a small r1 > 0 which determines τ as a small
number near 0. Then

Fi = −2si(1 + tεi) + 2si−1(1 + tεi−1) + τ 2f(p1, · · · , pn, s2, · · · , sn, τ)

for some other smooth function f . Thus Fi, as a function of τ , s2, · · · , sn and
all other parameters, extends smoothly to τ = 0, with

Fi|τ=0 = −2si(1 + tεi) + 2si−1(1 + tεi−1) .

Solving Fi = 0 when τ = 0 determines s2, · · · , sn. The partial differential
of (F2, · · · ,Fn) with respect to (s2, · · · , sn) is an isomorphism. We conclude
using the implicit function theorem. Q.E.D.

Important note. The real parameter τ introduced in the proof will serve
as an auxiliary family parameter from now on. We will later determine t as
a function of τ . Also observe that we have normalized the situation so that
s1 = 1.

Proof: (of the lemma) This kind of result is proved in a more general
setup in [8]. Here is a simple proof using the explicit formula (4) for ω.

Fix some small ǫ > 0. The integral from z0 to pi + ǫ is an analytic
function of all parameters because the path from z0 to pi + ǫ may be chosen
inside a compact subset where Lemma 2 applies. Note that the integral of ω
depends on the homotopy class of the path of integration, but the integrals
on two different paths differ by some

∫
Aj
ω or 2π

√
−1 Resω. So changing the

homotopy class amounts to change the function f .
In a neighborhood of pi, we may write, by formula (4)

ω =
f(u) du√
u2 + r2

where u = z − pi and r = ri ,
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where f is a holomorphic function on |u| < ε, depending analytically on all
parameters. Then we make the change of variable

v =
√
u2 + r2 + u ⇒ dv

v
=

du√
u2 + r2

, u =
v2 − r2

2v
.

This gives

ω = F

(
v,
r2

v

)
dv

v

for some holomorphic function F . We then expand

F (x, y) =
∑

n,m≥0

cnmx
nym ,

where the coefficients cnm depend analytically on all parameters. This gives

ω =
∑

n,m≥0

cnmv
n−m−1r2mdv

∫

Ai

ω = 2π
√
−1εi

∑

n≥0

cnnr
2n

∫ pi

z=pi+ǫ

ω =

∫ r

v=
√

ǫ2+r2+ǫ

∑
cnmv

n−m−1r2mdv

=
∑

n≥0

cnnr
2n log

r√
ǫ2 + r2 + ǫ

+
∑

n 6=m

cnm

n−m

(
rn+m − r2m(

√
ǫ2 + r2 + ǫ)n−m

)

=
εi

2π
√
−1

∫

Ai

log r + analytic terms .

This proves the lemma. Q.E.D.

5.4.4 Normalization of the Gauss Map

We fix a base point z0 ∈ C 1, such that z0 is real and z0 < p1.
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Definition 3 Let

G(z) = Λ
√
−1 exp

(∫ z

z0

ω

)
, z ∈ Σ ,

where the real constant Λ is chosen so that |G| = 1 at the point p1 +
√
−1r1

of Σ (which is a fixed point of ρ). This defines a multi-valued meromorphic
function G on Σ. It has the following multivaluation: if γ is any cycle on Σ,
then analytic continuation of G along γ multiplies its value by exp(2π

√
−1kt)

where k ∈ Z is defined by Re
∫

γ
dh = 2πk.

It is straightforward to check that the Gauss map has all the desired
symmetries. The constant Λ depends on all parameters. Using Lemma 3, we
have

1 = |G(p1 +
√
−1r1)| = Λ exp( Re

∫ p1+
√
−1r1

z0

ω)

= Λ exp((1 + tε1) log r1 + analytic)

which gives the estimate

Λ =
O(1)

r1+tε1

1

(5)

where O(1) means a bounded analytic function of the parameters whose
inverse is also bounded.

5.4.5 Limit of the Gauss Map

Using Lemma 2 we obtain:

Lemma 4 On compact subsets of C 1 \ {p1, · · · , pn, q1, · · · , qn−1} we have

G ∼ Λ
√
−1

G1(z)

G1(z0)
when τ → 0

where

G1(z) =

∏n
i=1(z − pi)

1+tεi

∏n−1
i=1 (z − qi)

.
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Note that both G and G1 are multi-valued, but they have the same multi-
valuation, so the above statement makes sense (provided we consider the
analytic continuation of G and G1 along the same path).

When t = 0, both G and G1 are single-valued. Also in this case G1 has
the same zeroes and poles as the function dz/dh1 (where dh1 is the limit of
dh) so they are proportional. This gives (comparing the values at z0)

G ∼ c0Λ
dz

dh1
where c0 =

n∑

i=1

εi

z0 − pi
.

5.5 The Period Problem

Let

µ =
1

2

(
G−1dh−Gdh

)
= dx1 + i dx2.

Note that µ is multi-valued so its integral on a closed curve is not homol-
ogy invariant.

Let Ci, i ≥ 2 be the composition of the following paths in C 1: the half
circle z = pi + ǫ exp(

√
−1εiθ) with θ ∈ [0, π], the segment from pi − ǫ to

pi−1 + ǫ, the circle z = pi + ǫ exp(−
√
−1εi−1θ) with θ ∈ [0, 2π], the segment

from pi−1 + ǫ to pi − ǫ, and the half circle z = pi − ǫ exp(
√
−1εiθ) with

θ ∈ [0, π]. The point is that Ci is homologous to Ai − Ai−1.

C
i


Figure 13: Definition of the cycle Ci in the case εi−1 = εi = 1. The vertical
segments represent the cuts passing through pi−1 and pi.

The curves Bi and Ci are meant to be closed curves on Mt, because in our
topological model of the surface (see Figure 9), the Ci encircle two helicoidal
necks in such an orientation so that they stay on one sheet.

Therefore, we have to require:

∀i ≥ 2,

∫

Bi

µ = 0,

∫

Ci

µ = 0 (6)
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This is the period problem. Note that multiplying G by eiθ multiplies µ
by the same number, so does not change the fact that the periods are zero.
Therefore we may assume that the argument of G is π/2 at the starting point
of Bi and Ci, namely at the point pi + ǫ.

Also, the Gauss map is single valued on the curves Bi and Ci. So the
period problem above is homology invariant — the periods are not homology
invariant but the fact that they vanish is invariant.

The following proposition shows that (6) is the only equation we have to
solve:

Proposition 2 Assume that equation (6) is satisfied. Then there exists
a screw motion St with angle 2πt and translation part (0, 0, 2π) such that
Re
∫ z

z0

φ is well defined modulo St, where φ = (φ1, φ2, φ3) are the three com-
ponents of the Weierstrass formula.

Proof: If γ is an element of the fundamental group π1(Σ, z0), then analytic
continuation of the Gauss map along γ multiplies its value by exp(2π

√
−1kt)

where k ∈ Z is defined by Re
∫

γ
dh = 2πk. So if δ is a path starting at z0,

we have ∫

γ∗δ
µ =

∫

γ

µ+ exp(2π
√
−1kt)

∫

δ

µ ,

where ∗ denotes composition of paths. Now let Âi, B̂i be elements of π1(Σ, z0)
homologous to Ai and Bi. From (6) we have

0 =

∫

bAi∗ bA−1

i−1

µ =

∫

bAi

µ−
∫

bAi−1

µ .

Let ξ =
∫

bAi
µ, independant of i. We have

∫

bAi∗δ
µ = ξ + exp(2π

√
−1t)

∫

δ

µ = Rt

(∫

δ

µ

)

∫

bBi∗δ
µ =

∫

δ

µ ,

where Rt is the rotation Rt(z) = ξ + exp(2π
√
−1t)z. Since the fundamental

group π1(Σ, z0) is generated by Â1, · · · , Ân, B̂2, · · · , B̂n, we obtain by induc-
tion ∫

γ∗δ
µ = Rk

t

(∫

δ

µ

)
, Re

∫

γ∗δ
dh = 2πk + Re

∫

δ

dh .

Let St be the screw motion with rotation part Rt and translation part
(0, 0, 2π). The proposition follows. Q.E.D.
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5.5.1 Reduction of the period problem

Using the symmetries we prove:

Proposition 3 The periods satisfy, for each i ≥ 2,

Re

∫

Ci

µ = 0 (7)

Im

∫

Bi

µ =
1

2
Im

∫

Ci

µ (8)

Re

(
eπ

√
−1t/2

∫

Bi

µ

)
= 0 (9)

Consequently, the period problem is equivalent to (provided t < 1)

Im

∫

Ci

µ = 0 (10)

Proof: Recall that G is single-valued on Bi and Ci and we assumed that
arg(G) = π/2 at the point pi + ǫ which is fixed by σ. From σ∗ω = ω we
obtain σ∗G = −G. An easy computation gives σ∗µ = µ. Since σ(Ci) = −Ci,

∫

Ci

µ =

∫

σ(Ci)

σ∗µ = −
∫

Ci

µ

which proves (7). Since σ(Bi)
−1 ∗Bi is homotopic to Ci,

∫

Bi

µ−
∫

Bi

µ =

∫

Ci

µ

which proves (8) (and also (7) again). To prove (9), we use the symmetry ρ.
The Gauss map satisfies ρ∗G = eπ

√
−1t/G. An elementary computation gives

ρ∗µ = eπ
√
−1tµ. Since ρ(Bi) is homologous to −Bi this gives

∫

Bi

µ = −eπ
√
−1t

∫

Bi

µ

from which we obtain (9). Q.E.D.
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5.5.2 Solution of the period problem

To solve the period problem we compute the asymptotics of
∫

Ci
µ when τ → 0.

We will later fix the dependence of t in function of τ . Here we only need that
t will be a smooth function of τ and t = 0 when τ = 0. We first compute,
using Lemmas 1 and 4,

lim
τ→0

Λ

∫

Ci

G−1dh =

∫

Ci

1

c0

dh2
1

dz
=

2π
√
−1

c0

(
εi Res pi

dh2
1 − εi−1 Res pi−1

dh2
1

)

Res pi
dh2

1 = Res pi

(
n∑

j=1

−
√
−1εj

z − pj

)2

= −Res pi

(
1

(z − pi)2
+

2

z − pi

∑

j 6=i

εiεj

z − pj
+
∑

j,k 6=i

εjεk

(z − pj)(z − pk)

)

= −2
∑

j 6=i

εiεj

pi − pj
.

To compute the limit of Λ
∫

Ci
Gdh, we want to use a path homologous to

Ci. The problem is that the integrand is multi-valued so the integral is
not homology invariant. We solve this problem as follows. Let ψ(z) =
(z− pi)

−tεi(z− pi−1)
−tεi−1 . The function ψG is single-valued on Ai and Ai−1.

Since Ci is homologous to Ai −Ai−1, we have
∫

Ci

ψGdh =

∫

Ai

ψGdh−
∫

Ai−1

ψGdh .

Since ρ(Ai) is homologous to −Ai, we have
∫

Ai

ψGdh = −
∫

ρ(Ai)

ψGdh = −
∫

Ai

ψρ∗(Gdh)
τ→0−→

∫

Ai

G−1dh .

So

lim
τ→0

Λ

∫

Ci

ψGdh = lim
τ→0

Λ

∫

Ci

G−1dh

which we have already computed above. We compute the remaining term

lim
τ→0

Λ

∫

Ci

(1 − ψ)Gdh = lim
τ→0

−Λt

∫

Ci

Gdh
((z − pi)

−εi(z − pi−1)
−εi−1)

t − 1

t

=
(
lim
τ→0

−Λ2t
)
c0

∫

Ci

log
(
(z − pi)

−εi(z − pi−1)
−εi−1

)
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where we have used that lim
t→0

zt − 1

t
= log z. It is an elementary exercise to

compute
∫

Ci

−εi log(z − pi) − εi−1 log(z − pi−1) = 2π
√
−1(pi − pi−1) .

The main Ansatz of the paper is that we now choose t as a function of τ so
that the limit of Λ2t when τ → 0 exists and is nonzero. The actual value
of the limit is a matter of normalization of the scaling of the configuration.
(It looks like we are loosing one parameter here, but this is not the case:
choosing t in function of τ turns out to be a way to normalize scaling in C 1.)
It is convenient to choose

lim
τ→0

Λ2t =
4

c02
.

That this is possible follows easily from the estimate (5), which gives that t
is of the order of r2

1. This implies, collecting all terms,

lim
τ→0

Λ

∫

Ci

µ =
4π

√
−1

c0

(
∑

j 6=i

εj

pi − pj
−
∑

j 6=i−1

εj

pi−1 − pj
+ pi − pi−1

)
.

Define the renormalized period Fi, i ≥ 2, by

Fi(τ, p1, · · · , pn) =
c0Λ

4π
Im

(∫

Ci

µ

)
.

It follows from the above computations that Fi extends smoothly to τ = 0.
To see this, simply observe that all integrals are computed on paths staying
at distance at least ǫ/2 from the cuts, so Lemma 1 applies. Moreover, we
have

Fi|τ=0 = Fi − Fi−1 .

So when τ = 0, the period problem is equivalent to Fi = constant, indepen-
dant of i. By translation of p1, . . . , pn, we may assume that the constant is
zero. This gives the balancing condition Fi = 0 stated in the introduction.
In fact choosing the constant equal to zero is only a way to normalize the
translation of the configuration. It is straightforward to see that the nonde-
generacy condition stated in the introduction is equivalent to the fact that the
partial differential of (F2, · · · ,Fn) with respect to (p1, · · · , pn) is surjective.

We apply the implicit function theorem at the point τ = 0 and p1, · · · , pn

equal to the given configuration to obtain:
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Proposition 4 For τ in a neighborhood of 0, there exists smooth functions
p1(τ), · · · , pn(τ), such that Fi(τ, p1(τ), · · · , pn(τ)) = 0 so the period problem
is solved.

5.6 Embeddedness

Let X : Σ → R3 be the minimal immersion given by the Weierstrass data
we have constructed. It is multi-valued but well defined modulo the screw
motion St. In this section, we prove that its image is embedded and actually
has all the desired geometric properties built into its definition.

From our choice of t we have c0Λ ∼ 2/
√
t when τ → 0. Fix some ǫ > 0

and let K1 be the compact subset of C 1 defined by |z − pi| > ǫ ∀i. From
Lemma1 and Lemma 4, we have on K1

dX1 +
√
−1dX2 = µ ∼ −c0Λ

2
dz ∼ −dz√

t
when τ → 0

lim
τ→0

X3(z) = Re

∫ z

z0

n∑

i=1

−
√
−1εi

z − pi
dz =

n∑

i=1

εi arg

(
z − pi

z0 − pi

)
.

Hence, up to translation and scaling the horizontal part by −
√
t, the image

of K1 converges to the graph of the multi-valued function

f(z) =

n∑

i=1

εi arg(z − pi) z ∈ C \ {p1 · · · , pn} .

From the symmetries, the image of K2 = ρ(K1) converges to the same graph
translated vertically by π. Note that these two multigraphs may be com-
pleted into a smooth surface by adding the vertical lines through each pi.
This proves that the image of K1 ∪K2 is embedded for τ small enough.

We now consider the image of the domain in C 1 defined by |z− pi| < cri

and Im (z) > 0 for some fixed i and c≫ 1. Write

r = ri z = pi + rζ ξ =
√

1 + ζ2 + ζ .

Note that ξ is a conformal representation of the domain |ζ | < c in C 1 minus
the cut. We obtain,

lim
τ→0

dh = −
√
−1εi

dξ

ξ
lim
τ→0

ω =
dξ

ξ
.
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with uniform convergence on |ζ | < c. Since |G| = 1 at the point z =
pi +

√
−1ri, namely ξ =

√
−1, this gives

lim
τ→0

G = eiθ dξ

ξ
.

This is the Weierstrass data of a right or left helicoid, depending on εi = 1
or εi = −1. This proves that the image of |z − pi| < cri converges to a piece
of a helicoid, so is embedded.

It remains to understand what happens in the region cri < |z − pi| < ǫ.
First observe that from the proof of Lemma 3,

|G(z)| =

( |z − pi|
r

)1+tεi

×O(1) ,

so provided c is large enough, we have |G| > 1 in the domain under consid-
eration. This implies that the map (X1, X2) is regular.

Consider the domain in C 1 defined by cri < |z − pi| < ǫ and Im (z) > 0.
The image Ω of this domain is bounded by two straight line segments and
two curves close to helices, see Figure 14. Let f be the projection onto the
horizontal plane and D be the domain in the plane bounded by f(∂Ω). Then
f is a local homeomorphism, D is simply-connected and f : ∂Ω → ∂D is a
homeomorphism. This implies that f : Ω → D is a homeomorphism, so that
Ω is a graph over D hence embedded. (Proof: this is a topological issue, so
we may assume by uniformization that D is the unit disk. Then ||f || attains
its maximum on the boundary of Ω because f is a local homeomorphism.
Since ||f || = 1 on the boundary, we have ||f || < 1 in Ω so f(Ω) ⊂ D. Since
f is proper, this implies that f : Ω → D is a covering map. Since there is
only one sheet in a neighborhood of the boundary, f is a homeomorphism.)

Figure 14: Ω is a graph.

This implies that the whole surface is embedded. We now prove that the
convergence to the multigraph holds everywhere. Consider the multigraph
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in a neighborhood of pi and scale its horizontal part by 1/
√
t. Call it the

rescaled multigraph. Given some α > 0, we may choose ǫ > 0 so that
the rescaled multigraph is at vertical distance less than α from the piece
of helicoid bounded by the two straight line segments. Then for τ small
enough, both boundary curves are at vertical distance less than α from the
helicoid. By the maximum principle for minimal graphs, Ω is at vertical
distance less than α from the helicoid, so at distance less than 2α from the
rescaled multigraph. This remains true when we scale the horizontal part
by

√
t, and proves that the whole surface, after rescaling, converges to the

multigraph as a set.

6 Examples of Non-degenerate Balanced Con-

figurations

In this section, we will prove the existence of two families of non-degenerate
balance configurations with arbitrarily many points from Theorem 2.

Both families are intimately related to the zeroes of Hermite polynomials.

6.1 Review of Hermite polynomials

The Hermite polynomials Hn(x) are polynomials of degree n which can be
conveniently defined as

Hn(x) = ex2

(−1)n

(
d

dx

)n

e−x2

(11)

The first few are

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

They satisfy the recurrence relation

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (12)
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For our purposes important is the following differential equation:

H ′′
n(x) − 2xH ′

n(x) + 2nHn(x) = 0 (13)

We will also need
H ′

n(x) = 2nHn−1(x) (14)

Assuming (14), differentiating (11) proves (12), and differentiating once
further and using (14) for n+ 1 instead of n again shows (13).

We refer to [7] for the proofs of these formulas as well as for a proof of
Proposition 5 below.

6.2 Relation Between the Roots

In this section, we use a well-known formula for polynomials with isolated
roots together with the differential equation of the Hermite polynomials to
prove a key identity for their roots.

Proposition 5 Let

P (x) = c

n∏

i=1

(x− xi)

be a polynomial with n distinct roots xi. Then

P ′′(xi) = 2P ′(xi)

n∑

j=1

j 6=i

1

xi − xj

We can apply this proposition to the Hermite polynomials. That the
roots are isolated follows from the differential equation (13): At a double
order zero, all derivatives of Hn(x) would vanish.

If we evaluate the differential equation (13) of the Hermite polynomial at
the root xj , we get

H ′′
n(xj) = 2xjH

′
n(xj)

Using this in Proposition 5 we get

Corollary 1 The zeroes xi of the Hermite polynomial Hn(x) satisfy

xi =

n∑

j=1

j 6=i

1

xi − xj
(15)
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We close this section with another little lemma:

Lemma 5 Let x0 be a zero of Hn+1. Then

H ′
n

Hn
(x0) = 2x0

Proof: By the recurrence relation (12) and the differential equation (14)
we have

0 = Hn+1(x0)

= 2x0Hn(x0) − 2nHn−1(x0)

= 2x0Hn(x0) −H ′
n(x0)

Q.E.D.

6.3 Two Families of Balanced Configurations

In this section we will discuss two families of balanced configurations. We
will call the first case the definite case, and the second case the indefinite
case.

Proposition 6 (Definite Case) Let n ≥ 1 be an integer and let {xi} be
the ordered set of roots of the Hermite polynomial Hn. Then pi = xi form a
balanced configuration for the charges ǫi = −1.

Proof: This is a direct consequence of equation (15) and the definition.

For n = 2, one can check that the surface family obtained has all the
properties of the twisted Karcher-Scherk surfaces ([4]). For n = 3 the surfaces
were discussed by Hoffman, Karcher and Wohlrab as screw-motion invariant
versions of singly periodic surfaces found by Fischer and Koch. The surfaces
for larger n are new.

Proposition 7 (Indefinite Case) Let m ≥ 0 be an integer and let n =
2m+ 1. Let {pi} be the ordered set of zeroes of the two Hermite polynomials
Hm and Hm+1. Then the pi form a balanced configuration for the charges
ǫi = −(−1)i, i = 1, . . . , n.
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Proof: Denote by xi, i = 1, . . . , m + 1 the roots of Hm+1, and by
yi, i = 1, . . . , m the roots of Hm. Observe that by equation 14 these are
interlaced like

xi < yi < xi+1

We need to distinguish two cases: First let i = 2k be even so that pi = yk.
Then we compute

pi +
2m+1∑

j=1

j 6=i

ǫj
pi − pj

= yk +
m+1∑

j=1

1

yk − xj
−

m∑

j=1

j 6=k

1

yk − yj

= yk +

(
d

dx
logHm+1(x)

)
(yk) − yk

= 0

where we have used equation (15) and the fact that H ′
m+1(x) = 2(m +

1)Hm(x) so that yk is a zero of H ′
m+1(x).

Now let i = 2k − 1 be odd so that pi = xk. Then

pi +
2m+1∑

j=1

j 6=i

ǫj
pi − pj

= xk +
m+1∑

j=1

j 6=k

1

xk − xj

−
m∑

j=1

1

xk − yj

= xk + xk −
(
d

dx
logHm(x)

)
(xk)

= 0

with the help of Lemma 5.
Thus we obtain in both cases

pi +
2m+1∑

j=1

j 6=i

ǫj
pi − pj

and the claim follows. Q.E.D.
For n = 3, the surface family satisfies all properties of the screw motion

invariant helicoids with handles discussed by [3, 10, 12] .The surface families
for larger n are new.

Remark 1 1. Are there other (real) balanced configurations? We believe
that this is not the case, but don’t have a complete proof of this.
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As an example, we can see that there are no balanced configurations
with all charges ǫi = 1 as follows: Evaluate

∑

i

piFi =
∑

i

p2
i +

∑

j 6=i

pi

pi − pj

=
∑

i

p2
i +

∑

i<j

1

> 0

Therefore, not all forces Fi can be zero.

2. In particular we would like to know, whether there are other choices for
the pi with the same distribution of charges as in the indefinite case.

3. The situation changes when one looks at the complex version of the
balance equations. These lead in the non-degenerate situation to more
general screw-motion invariant embedded surfaces. Here we have found
many exotic examples that most likely will defy any attempt of classifi-
cation.

6.4 Nondegeneracy in the definite case

In this section, we will prove that the family of balanced configurations is
non-degenerate in the definite case, thus concluding the proof of part one of
Theorem 2.

Fix a positive integer n and let xk denote the zeroes of the Hermite
polynomial Hn. Consider the matrix

H = (hij) =





1
(xi−xj)2

if i 6= j

−
n∑

k=1

k 6=i

1
(xi−xk)2

if i = j

Observe that the non-degeneracy condition is equivalent to the condition
that the matrix 1 − H is regular. We will compute all eigenvalues of H by
finding a basis with respect to which H has upper triangular shape.

Definition 4 Let xi be the ordered zeroes of the nth Hermite polynomial.
Write x = (xi) and xs = (xs

i ). In particular, x0 = (1, 1, . . . , 1).
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The following proposition is key main step of our computation:

Proposition 8 H · xs is a linear combination of x0, x1, . . . , xs, and the co-
efficient of xs is −s.

Corollary 2

det(H − λI) = (−1)nλ · (λ+ 1) · . . . · (λ+ n− 1)

In particular, λ = 1 is not an eigenvalue of H, and the balanced configuration
in the definite case is non-degenerate.

We begin the proof of Proposition 8 with a simple observation:

Lemma 6 For all s = 0, 1, 2, . . .

n∑

i=1

i6=k

xs
i = const− xs

k

where const depends only on s and n but not on k. In other words, the
left hand side of the equation is a polynomial in xk of degree s with leading
coefficient −1.

Proposition 9 For all s = 0, 1, 2 . . .

n∑

i=1

i6=k

xs
i

xk − xi

is a polynomial in xk with leading coefficient +1 of degree s+ 1.

Proof: We will use the ‘reproductive’ property of the xk from equation
(15):

n∑

i=1

i6=k

1

xk − xi

= xk
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Write
n∑

i=1

i6=k

xs
i

xk − xi
=

n∑

i=1

i6=k

xs
k

xk − xi
− xs

k − xs
i

xk − xi

= xs
k ·

n∑

i=1

i6=k

1

xk − xi
−

s−1∑

j=0

xj
k

n∑

i=1

i6=k

xs−1−j
i

= −xs+1
k −

s−1∑

j=0

xj
k

n∑

i=1

i6=k

xs−1−j
i

By Lemma 6, the last sum is a polynomial in xk of degree at most s − 1.
Q.E.D.

Lemma 7 We have H · x0 = 0 and H · x1 = −x1

Proof: Only the second statement requires work:

(H · x1)k =
n∑

i=1

hk,ixi

= hk,kxk +

n∑

i=1

i6=k

hk,ixi

= −
n∑

i=1

i6=k

xk

(xk − xi)2
+

n∑

i=1

i6=k

xi

(xk − xi)2

= −
n∑

i=1

i6=k

1

xk − xi

= −xk

Q.E.D.
Proof: (Proposition 8)
Now let r ≥ 1. By the same computation as above we get

(H · xr)k =
n∑

i=1

i6=k

xr
k − xr

i

xk − xi
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=

r−1∑

s=0

xr−s−1
k ·

n∑

i=1

i6=k

xs
i

xk − xi

The summands xr−s−1
k ·

∑n
i=1

i6=k

xs
i

xk−xi
are polynomials of degree r with leading

coefficient −1, and there are r such summands. Q.E.D.

6.5 Non-degeneracy in the Indefinite Case

Let x1, · · · , xm+1 be the zeroes of Hm+1, y1, · · · , ym be the zeroes of Hm. It
will be convenient to arrange the configuration points pi slightly differently
here, namely so that

ǫi = +1, pi = xi, 1 ≤ i ≤ m+ 1

ǫm+1+i = −1, pm+1+i = yi, 1 ≤ i ≤ m .

As we have seen in Proposition 7, this configuration satisfies

Fi = pi +
∑

j 6=i

ǫj
pi − pj

= 0 .

Similar to the previous section we introduce the notation

xr = (xr
1, · · · , xr

m+1, 0, · · · , 0)

yr = (0, · · · , 0, yr
1, · · · , yr

m) .

Then {x0, · · · , xm, y0, · · · , ym−1} is a basis of Rn, with n = 2m+ 1.

Lemma 8 With respect to this basis, the matrix of the jacobian ∂Fi

∂pj
has the

following form:

M =

(
A B
C D

)
.

Let us say that a non-square matrix is triangular if it is zero below the ‘diago-
nal’ starting at the top left corner. Then A, B, C, D are triangular matrices,
A and D are square of respective sizes m+ 1 and m. The coefficients on the
“diagonals” are

Aii = n+ 1 − i

Bii = −2(m+ 1 − i)

Cii = −2(m+ 1)

Dii = n + 1 − i .
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Corollary 3 We have

det(M) = det(A′) det(D′) = (m+ 1)(m!)2 ,

and the balanced configuration is non-degenerate in the indefinite case.

Proof: From Lemma 8 it is easy to compute the determinant of the
jacobian: Perform the following row and columns operations on M :

Rm+1+k → Rm+1+k +Rk, 1 ≤ k ≤ m

and then
Ck → Ck + Cm+1+k, 1 ≤ k ≤ m .

We obtain a matrix of the same form

M =

(
A′ B′

C ′ D′

)

where C ′ is zero on the diagonal, and

A′
ii = i

D′
ii = i .

Then, by performing more rows operations one can make C ′ zero without
affecting the diagonals. So we obtain:

det(M) = det(A′) det(D′) = (m+ 1)(m!)2 .

Q.E.D.
The proof of Lemma 8 follows the same method as the proof of Proposition

8, we just need a few more identities. Recall that the zeroes of the Hermite
polynomials satisfy

∑

j 6=i

xs
j

xi − xj
= xs+1

i +O(xs
i ) .

The meaning of this equality is that the vector in Rm+1 whose components
are the left side, for 1 ≤ i ≤ m+1, is equal to xs+1 plus a linear combination
of xr, r ≤ s. In the same way

∑

j 6=i

ys
j

yi − yj

= ys+1
i +O(ys

i ) .

We need identities for the quantities which involve both x and y.
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Lemma 9 ∑

j

ys
j

xi − yj
= 2xs+1

i +O(xs−1
i )

∑

j

xs
j

yi − xj

= O(ys−1
i )

∑

j

1

(xi − yj)2
= 2m

∑

j

1

(yi − xj)2
= 2(m+ 1)

Proof: Write

P = Hm+1, Q = Hm .

From Lemma 5 we get

∑

j

1

xi − yj

=
P ′′(xi)

P ′(xi)
= 2xi (16)

This proves the first formula in the case s = 0. The general case is obtained
by induction as in the proof of Proposition 9.

By differentiating
Q′(z)

Q(z)
=
∑

j

1

z − yj

and using the differential equation

Q′′ = 2zQ′ − 2mQ

we obtain
∑

j

−1

(z − yj)2
=

2zQ′ − 2mQ

Q
−
(
Q′

Q

)2

This gives

∑

j

−1

(xi − yj)2
= (2xi)

2 − 2m− (2xi)
2 = −2m .

42



This proves the third equation. For the second equation at s = 0 use

∑

j

1

z − xj
=
P ′(z)

P (z)
(17)

and
P ′(yi) = 2(m+ 1)Q(yi) = 0 .

The general case follows again by induction. For the last equation, we dif-
ferentiate equation (17):

∑

j

−1

(z − xj)2
=
P ′′

P
−
(
P ′

P

)2

Then P ′(yi) = 0 and using the differential equation for P ,

P ′′(yi) = −2(m+ 1)P (yi)

which gives the result.
Now Lemma 8 can be proven as in the proof of Proposition 8, using the

additional identities to deal with the mixed terms. Q.E.D.
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