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Abstract : we construct an embedded minimal surface in euclidean space which
has infinitely many catenoidal ends, one limit end, and unbounded Gaussian
curvature.

1 Introduction

The main goal of this paper is to prove the following theorem.

Theorem 1 There exists a complete, properly embedded minimal surface in
euclidean space R3 which has unbounded Gaussian curvature. It has infinite
genus, infinitely many catenoid type ends, and one limit end.

In my knowledge, it is the first example with unbounded Gaussian curvature,
and also the first one with one limit end.

Let me first argue why all examples of complete embedded minimal surfaces
known so far have bounded Gaussian curvature. The vast majority of examples
either have finite total curvature, or are periodic and have finite total curvature
in the quotient by the period. The surface, or its quotient by the period in
the periodic case, is then diffeomorphic to a compact surface punctured at a
finite number of points which correspond to the ends. Moreover, the ends are
asymptotically flat, so the Gaussian curvature tends to zero at the punctures so
is a bounded function on the surface.

A few examples do not have finite total curvature in any quotient, like the
genus one helicoid [5] and the Riemann examples with handles constructed in [4].
These two examples have finite genus. By a recent result of Meeks, Perez and
Ros [10], a properly embedded minimal surface with finite genus has bounded
curvature. We also know a few examples which have infinite genus : the Sad-
dle Towers with infinitely many ends [7] and the quasi-periodic examples con-
structed in [8]. Both are proven to have bounded Gaussian curvature in these
papers.

Next we recall the definition of a limit end from [1]. For any connected
manifold M , the set of ends E has a natural topology that makes E into a
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compact space. The limit points in E are by definition the limit ends of M . For
example, the Riemann minimal examples have infinitely many ends and two
limit ends.

Collin, Kusner, Meeks and Rosenberg [1] have proven that a properly em-
bedded minimal surface with infinitely many ends has at most two limit ends.
Meeks, Perez and Ros [10] have proven that a properly embedded minimal sur-
face with infinitely many ends and finite genus must have precisely two limit
ends. Therefore, an example with one limit end must have infinite genus. No
example with one limit end was known, so it seems interesting to construct an
example to illustrate the theory.

Let me point out that the existence of such an example is not completely
unexpected. Indeed, at least heuristically, one can imagine how to construct
one by inductively desingularizing a family of suitable catenoids. However, we
don’t have a general enough desingularization theorem at our disposal yet, and
there are fantastic technicalities in trying to carry out such a construction. So
the purpose of this paper is to contruct an example using another idea, in a
somewhat more economical way.

Another remark is that if we relax the embeddedness condition, then there
are plenty of known complete, immersed minimal surfaces with unbounded
Gaussian curvature. For example, the example of Nadirashvili [11] of a complete
minimal immersion in a ball certainly has unbounded curvature. Embeddedness
is a strong constraint on the geometry of minimal surfaces.

Heuristically, our example is constructed inductively as follows. Start with
the catenoid and stack a plane on top of it. Glue a finite number of catenoidal
necks in between. After this first step one gets a Costa Hoffman Meeks surface
with three ends. Then iterate this process infinitely many times, increasing the
number of ends by one at each step. What we need to carry on this construction
is a theorem which, from a minimal surface with n ends, produces a minimal
surface with one more end. This theorem is the main result of this paper and
is stated in the next section.

Figure 1: A sketch of the surface we get after two steps. Only two catenoidal
necks have been represented at each level for clarity.
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2 Main result

Given an embedded minimal surface M of finite total curvature in R3 with n
catenoidal ends, we denote c1(M), c2(M), · · · , cn(M) the logarithmic growths
of its ends, ordered from bottom to top.

Theorem 2 Let M be an embedded minimal surface in R3 with finite total
curvature, genus G and n horizontal catenoidal ends with logarithmic growths
satisfying

c1(M) < c2(M) · · · < cn−1(M) < 0 < cn(M).

Assume that M has a vertical plane of symmetry and non-degenerate Weier-
strass Representation.

Consider an integer m ≥ 2 such that

m− 1 >
cn(M)

|cn−1(M)| . (1)

There exists a one parameter family of embedded minimal surfaces (Mt)0<t<ε

which has the following properties:

1. Mt has finite total curvature, genus G+m− 1 and n+ 1 catenoidal ends,
whose logarithmic growths satisfy

c1(Mt) < c2(Mt) · · · < cn(Mt) < 0 < cn+1(Mt).

2. (Mt)0<t<ε converges smoothly to M on compact subsets of R3 when t→ 0.

3. Mt has a vertical plane of symmetry and has non-degenerate Weierstrass
Representation.

4. The limit of the logarithmic growth of the ends of Mt are

lim
t→0

ck(Mt) =





ck(M) if 1 ≤ k ≤ n− 1
−1

m−1cn(M) if k = n
m

m−1cn(M) if k = n+ 1
(2)

5. The maximum of the absolute value of the Gaussian curvature on Mt is

greater than
(m− 1)2

2cn(M)2
.

This theorem will be proven in section 5. The definition of “non-degenerate
Weierstrass Representation” will be given in section 4. In particular, the catenoid
has non-degenerate Weierstrass Representation.

Heuristically, Mt is constructed by stacking a horizontal plane on top of M
and gluing m catenoidal neck placed on a circle in between. When t → 0, the
catenoids drift off to infinity, which explains the second point of the theorem.

The necks have waist radius approximately cn(M)
m−1 , which explains the last point
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of the theorem. Observe that condition (1) and point 4 ensures that cn−1(Mt) <
cn(Mt) as required.

As far as technique goes, the proof of theorem 2 follows the lines of [15], using
Weierstrass representation and opening nodes. The new feature is that we allow
the minimal surface M as a building block in this construction, whereas in the
former construction we only used catenoids. To do this, we need to develop the
notion that M has non-degenerate Weierstrass Representation, which we will
do in section 4.

3 Proof of theorem 1

In this section, we prove theorem 1 as a consequence of theorem 2. We construct
inductively a sequence of minimal surfaces (Sn)n≥2, an increasing sequence of
balls (Bn)n≥2 and a sequence of positive numbers (Cn)n≥2 with the following
properties:

1. Each Sn is an embedded minimal surface of finite total curvature with n
catenoidal ends satisfying

c1(Sn) < c2(Sn) < · · · < cn−1(Sn) < 0 < cn(Sn)

and with a vertical plane of symmetry and non-degenerate Weierstrass
Representation.

2. For all ` ≥ k ≥ 2, one has

k − 2 < sup
S`∩Bk

|K| < Ck and Area(S` ∩ Bk) < Ck (3)

where K denotes the Gaussian curvature.

The process is initiated with S2 equal to the standard catenoid, B2 = B(0, 2)
and C2 a suitable constant. Take n ≥ 2 and assume that S`, B` and C` have
been constructed for all ` ≤ n, so that (3) is satisfied for all 2 ≤ k ≤ ` ≤ n.
We apply theorem 2 with M = Sn and m = mn chosen large enough so that

condition (1) is satisfied and (m−1)2

2cn(Sn)2 > n − 1. The output of the theorem is

a family of minimal surfaces (Mt)0<t<ε which converges to Sn on each Bk for
k ≤ n. Hence we can choose t small enough so that Sn+1 = Mt satisfies (3)
for all k ≤ n. By the last item of theorem 2, there are points on Sn+1 where
|K| > n− 1. We take a ball Bn+1 large enough to contain one such point, and
containing Bn. Then we can choose a constant Cn+1 so that Sn+1 satisfies (3)
for k = n+ 1 and we are done.

For each k ≥ 2, the sequence (Sn ∩ Bk)n≥k has uniform curvature and
area estimate, so has a subsequence which converges smoothly by a standard
compactness result (theorem 4.2.1 in [13]). By a diagonal process, the sequence
(Sn)n≥2 has a subsequence which converges smoothly on each Bk, to a complete
embedded minimal surface S∞. Now for all k ≥ 2, supS∞∩Bk

|K| ≥ k − 2, so
S∞ has unbounded Gaussian curvature and the theorem is proven. �
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Remark 1 All the catenoidal ends of S∞ have negative logarithmic growth.

In the above argument, we have chosen the sequence (mn)n≥2 so that the limit
surface S∞ has unbounded Gaussian curvature, but can we choose it so that
S∞ has bounded Gaussian curvature ?

The sequence (mn)n≥2 must be chosen so that condition (1) is satisfied at
each step. Using formula (2), we have

cn(Sn+1) '
−1

mn − 1
cn(Sn)

cn+1(Sn+1) '
mn

mn − 1
cn(Sn)

where ' means that it can be chosen arbitrarily close by taking t small enough.
So condition (1) reads as mn+1 − 1 > mn. Take an arbitrary sequence (mn)n≥2

satisfying
m2 ≥ 3 and ∀n ≥ 2, mn+1 ≥ mn + 2 (4)

By the above process, we obtain a sequence of minimal surface (Sn)n≥2 which
converges to an embedded minimal surface S∞ with infinitely many catenoidal
ends. By induction, we have mn ≥ 2n− 1 and

cn(Sn) '
n−1∏

i=2

mi

mi − 1
≤

n−1∏

i=2

(
1 +

1

2i− 2

)
= O(

√
n).

Hence, lim cn(Sn)
mn−1 = 0. By the last item of theorem 2, this means that whatever

the choice of the sequence (mn)n≥2 satisying (4), the minimal surface S∞ will
have unbounded Gaussian curvature.

Also, we have

∀n ≥ 2, cn(S∞) ' −1

mn − 1

n−1∏

i=2

mi

mi − 1

so depending on the choice of the sequence (mn)n≥2, the series
∑
cn(S∞) can

be convergent or divergent.

5



4 Non-degenerate Weierstrass Representation

Let M be an embedded minimal surface in R3 with genus G and n horizontal
catenoidal ends. Let (Σ, g, φ3) be its Weierstrass Representation. Here Σ is
a compact Riemann surface, the Gauss map g : Σ → C = C ∪ {∞} is a
meromorphic function and the height differential φ3 is a meromorphic 1-form
on Σ with n simple poles which we call q1, · · · , qn. These points correspond to
the ends of M and are called the punctures. The degree of the Gauss map is
d = G+ n− 1. Define

φ1 =
1

2
(g−1 − g)φ3, φ2 =

i

2
(g−1 + g)φ3.

Our minimal surface M is parametrized on Σ \ {q1, · · · , qn} by

z 7→ Re

∫ z

z0

(φ1, φ2, φ3). (5)

We assume that M has a vertical plane of symmetry. Without loss of generality
we assume that M is symmetric with respect to the plane x2 = 0. On Σ, this
symmetry corresponds to a antiholomorphic involution σ such that g ◦ σ = g
and σ∗φ3 = φ3. Moreover, σ fixes the punctures q1, · · · , qn.

Definition 1 We say that the triple (Σ, g, φ3) is σ-symmetric if there exists a
antiholomorphic involution σ : Σ → Σ satisfying g ◦ σ = g and σ∗φ3 = φ3.

Let us pretend we would like to deform M , keeping the vertical plane of sym-
metry. In the following sections, we count how many parameters are available
for σ-symmetric deformation of the Weierstrass data and how many equations
need to be solved. “Non-degenerate Weierstrass Representation” means that
the jacobian matrix of equations with respect to parameters has maximal rank.

4.1 Deformation of Weierstrass data

4.1.1 The Gauss map

We assume that we are given a holomorphic deformation (Σa, ga)a∈A of (Σ, g).
Here, the parameter space A is an open set in C

N and the number N of pa-
rameters should be at least 4G+ n− 3.

There are several ways to define the meaning of the sentence : (Σa, ga)
depends holomorphically on a ∈ A. We adopt the following algebraic geometric
point of view. We assume that we are given a complex manifold M of dimension
N + 1, a proper holomorphic submersion π : M → A and a meromorphic
function G : M → C . We define Σa = π−1(a), this is a compact Riemann
surface. We define ga to be the restriction of G to Σa. We assume that the
polar divisor G−1(∞) is transverse to the fibers of π so that ga is a meromorphic
function on Σa. We also assume that there exists a ∈ A such that (Σa, ga) is
isomorphic to (Σ, g), and we identify them.
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Recall that our initial Riemann surface Σ = Σa admits a anti-holomorphic
involution σ such that g◦σ = g. We assume that it extends to a anti-holomorphic
involution σM of M, and that there exists a anti-holomorphic involution σA
of A such that π ◦ σM = σA ◦ π and G ◦ σM = G. We define Aσ = {a ∈
A |σA(a) = a}. This is a real analytic manifold of dimension N . For a ∈ Aσ ,
we call σa : Σa → Σa (or more simply σ) the restriction of σM. This is a
antiholomorphic involution of Σa such that ga ◦ σa = ga.

All this structure is what we call a σ-symmetric deformation of (Σ, g). We
write (Σa, ga)a∈Aσ

for short.

Remark 2 In this construction, we do not need to parametrize all deformations
of (Σ, g). We only need to have enough parameters. Still, to define “non-
degenerate Weierstrass Representation”, it would be natural to assume that the
family (Σa, ga)a∈A parametrizes all deformations of (Σ, g), up to isomorphism
of branched coverings.

Recall that a branched covering g : Σ → C of degree d is simple if each fiber
contains at least d − 1 points (so each fiber contains at most one branch point,
and it has branching order 1). The moduli space of simple branched coverings
of genus G and degree d is called a Hurwitz space. It has a structure of analytic
complex manifold of dimension 2G+ 2d− 2. Moreover, the branching values of
g can be used as local coordinates on this space [3]. This means that if (Σ, g)
is simple, then we can parametrize its deformations using N = 2G + 2d − 2
complex parameters.

Now if our covering has a branch point of higher branching order, when
deforming it, this branch point may split into several smaller order branch points.
It is not true anymore that the list of branching values provide local coordinates,
contrarily to what is claimed in [9]. Consider for example the following two
deformations of the covering z 7→ z4 of the Riemann sphere :

ft(z) = z4 + 4tz3,

gt(z) = z4 + 4tαz3 + 4t2α2z2, with α4 = −27.

By explicit computations, they have the same branching values close to 0, namely
0, 0 and −3t. They are not isomorphic because ft has a branch point of branch-
ing order 2 at the origin and a simple branch point (at −3t), whereas gt has
three simple branch points (at 0, −tα and −2tα).

Still, it is possible to parametrize locally all deformations of a branched cov-
ering with a higher order branch point by 2G+2d− 2 complex numbers. I could
not find a reference for this fact. In a previous version of this paper, I explained
how to do this, but that made the paper much longer, and also was not needed
for our construction.

4.1.2 The height differential

We need to write all candidates for the height differential φ3 on Σa. The
most natural way to define such a meromorphic 1-form is to prescribe its poles,
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residues and periods. Recall that on our initial Riemann surface Σ, the height
differential has n simple poles at q1, · · · , qn, and the Gauss map g has, alter-
nately, a simple zero or a simple pole at these points. For a close enough to a,
there exists q1(a), · · · , qn(a) in Σa, depending holomorphically on a, such that
ga has either a simple zero or a simple pole at each qi(a). We need that the
height differential has simples poles at these points.

Consider a canonical homology basis A1, · · · , AG, B1, · · · , BG of Σ. We may
extend it to a canonical basis of Σa depending continuously on a. Given complex
parameters c = (c1, · · · , cn−1) ∈ C

n−1 and α = (α1, · · · , αG) ∈ C
G we define φ3

as the unique meromorphic 1-form on Σa with simple poles at q1(a), · · · , qn(a)
and the following residues and A-periods :

Resqi(a)φ3 = −ci 1 ≤ i ≤ n− 1,

∫

Ai

φ3 = 2πiαi 1 ≤ i ≤ G.

Geometrically, the number ci represents the logarithmic growth of the end qi,
thanks to the minus sign. The residue at qn(a) is c1 + · · ·+ cn−1 by the Residue
theorem.

It is a standard fact that φ3 depends holomorphically on the parameter a,
in the following sense : Since π : M → A is a submersion, there exists locally
a holomorphic function z : M → C such that (z, π) : M → C × A is a local
diffeomorphism. Then the restriction of z to Σa is a local coordinate on Σa, and
in term of this coordinate, we may write φ3 = h(z, a)dz where h is a holomorphic
function.

Next assume that a ∈ Aσ so Σa admits a antiholomorphic involution σ.
We would like φ3 to satisfy σ∗φ3 = φ3. The involution σ fixes the points
q1(a), · · · , qn(a).

Definition 2 Let Σ be a Riemann surface with a antiholomorphic involution
σ. We say that a canonical homology basis {A1, · · · , AG, B1, · · · , BG} is σ-
symmetric if there exists an involution of {1, · · · , G} (also denoted σ) such that
for all 1 ≤ i ≤ G, σ(Ai) ∼ −Aσ(i) and σ(Bi) ∼ Bσ(i).

We assume that we are given a σ-symmetric canonical homology basis. The
condition σ∗φ3 = φ3 is then equivalent to ασ(i) = αi, for 1 ≤ i ≤ G, and ci ∈ R

for 1 ≤ i ≤ n− 1.

At this point we have defined a family of σ-symmetric triples (Σa, ga, φ3)
depending on the parameter X = (a, c, α). We write X = (a, c, α) for the value
of X which gives the Weierstrass data of the minimal surface M we were given.
We call X the central value of the parameter X . We will need the parameter X
to be close enough to X , and we will restrict the parameter space A accordingly.
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4.2 The equations

In this section, we do not write explicitely the dependance of objects on param-
eters, so we write (Σ, g) for (Σa, ga), being understood that everything depends
on parameters. We write (Σ, g, φ

3
) for the Weierstrass data of the minimal

surface we are given (namely, at the central value of the parameters).

In order to be define an immersed minimal surface, the triple (Σ, g, φ3) must
satisfy the following conditions :

1. At any zero of the height differential φ3, the Gauss map g needs a zero or
a pole, with the same multiplicity.

2. At each puncture q1, · · · , qn, the residues of φ1, φ2 and φ3 must be real.

3. For all ν = 1, 2, 3 and 1 ≤ i ≤ G, we need Re

∫

Ai

φν = Re

∫

Bi

φν = 0.

Point 2 and 3 guarantee that (5) is well defined, and point 1 that it is an
immersion. Let us count how many equations we have to solve, taking into
account the symmetry.

1. Regarding point 1, the height differential φ3 has 2G+n−2 zeros, counting
multiplicity. Let us first assume that the zeros of φ

3
are simple. Then for

X close enough to X, φ3 still has simple zeros, and we may label them
ζ1(X), · · · , ζ2G+n−2(X) so that they depend continuously on X . If g has
a zero (resp. a pole) at ζi(X), we need to solve the equation g(ζi(X)) = 0
(resp. g(ζi(X))−1 = 0). By symmetry, the map (g(ζi(X))±1)1≤i≤2G+n−2

takes values into a real space of dimension 2G+ n− 2.

2. Regarding point 2, the residues of φ1 and φ3 are already real by symmetry.
The residue of φ2 at qj is i

2 Res g−1φ3 if g(qj) = 0, and i
2 Res gφ3 if

g(qj) = ∞. Provided point 1 is satisfied, the only poles of gφ3 and g−1φ3

are at the punctures. Applying the Residue Theorem to gφ3 and g−1φ3, it
suffices to solve the equation Im Resqj

φ2 = 0 for 1 ≤ j ≤ n−2. Therefore,
point 2 counts as n− 2 real equations.

3. Regarding point 3, we have by symmetry σ∗φν = (−1)ν+1φν for ν = 1, 2, 3.
From this we obtain, for 1 ≤ i ≤ G, provided point 2 is satisfied so that
all residues are real,

Re

∫

Aσ(i)

φν = (−1)νRe

∫

Ai

φν

Re

∫

Bσ(i)

φν = (−1)ν+1Re

∫

Bi

φν .

So the map (Re
∫

Ai
φν ,Re

∫
Bi
φν)1≤i≤G,1≤ν≤3 takes values into a real

space of dimension 3G.
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4. In case φ
3

has a zero of multiplicity k ≥ 2 at some point ζ, the problem
is that this zero may split into several zeros of smaller multiplicity when
we deform the Weierstrass data. Let us assume for example that g has
a zero (of multiplicity k) at ζ. We introduce a local coordinate z on Σa

as in section 4.1.2. In term of this coordinate, we may write ga = f(z, a)
where f is a holomorphic function (specifically, f = G ◦ (z, π)−1). By the
Weierstrass Preparation Theorem, we can write locally

ga = f1(z, a)(z
k +

k−1∑

i=0

µi(a)z
i)

where the function f1 does not vanish and the coefficients µi are holomor-
phic functions of a. The polynomial zk+

∑
µi(a)z

i is called the Weierstrass
Polynomial of ga, it depends on the choice of the local coordinate z. In
the same way, we can write locally

φ3 = f2(z,X)(zk +

k−1∑

i=0

νi(X)zi)dz

where f2 does not vanish and the coefficients νi(X) are holomorphic func-
tions of the parameter X = (a, c, α). We need to solve the k equations
µi(a) = νi(X) for 0 ≤ i ≤ k− 1, which ensure that ga and φ3 have locally
the same zeros. These equations replace the k equations that we had in
the case of simple zeros.

Let us write all these equations as F(X) = 0. The map F takes values into a
real space of dimension 5G+ 2n− 4.

Definition 3 We say that M has non-degenerate Weierstrass Representation
if there exists a family of σ-symmetric deformations (ga)a∈A of g such that the
differential of F with respect to the parameter X at X is onto.

For example, the catenoid has non-degenerate Weierstrass Representation, be-
cause in this case, G = 0 and n = 2, so there are no equations to solve.

Remark 3 As was already pointed out in remark 2, one can parametrize all σ-
symmetric deformations of g using 2G+2d−2 real parameters. In this case, the
total number of real parameters is 5G+ 3n− 5. A stronger, and more natural,
definition of “non-degenerate Weierstrass Representation” is to require that the
differential of F is onto for this choice of parameters. Equivalently, the kernel
of the differential of F has dimension n−1. By a straightforward application of
the implicit function theorem, if M has non-degenerate Weierstrass Represen-
tation in this stronger sense, it can be deformed into a family of non-congruent
minimal surfaces depending on n − 1 real parameters, the expected dimension
for the moduli space of embedded minimal surfaces of finite total curvature with
n catenoidal ends.
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5 Proof of theorem 2

Without loss of generality, we may assume by scaling that the logarithmic
growth of the top end of M is 1, and by choice of orientation that the Gauss
map has a zero at the top end. To construct the family of minimal surfaces
(Mt)0<t<ε, we write down candidates for its Weierstrass Representation, de-
pending on enough parameters. We define the Riemann surface and the Gauss
map by opening nodes. The height differential φ3 is defined by prescribing peri-
ods and residues. The equations are solved using the implicit function theorem,
using the fact that M has non-degenerate Weierstrass Representation.

5.1 Opening nodes

5.1.1 The Riemann surface with nodes

Since M has non-degenerate Weierstrass Representation, we are given a holo-
morphic family (Σa, ga)a∈A. Let qn(a) ∈ Σa be the point which corresponds to
the top end. We have ga(qn(a)) = 0 by our choice of orientation.

Consider two copies of the complex plane, denoted C
− and C

+. We choose
m distinct, non-zero points p−1 , · · · , p−m in C

− and m distinct points p+
1 , · · · , p+

m

in C
+. Consider the disjoint union Σa∪C

−∪C
+. Identify the point qn(a) ∈ Σa

with the point 0 in C
−. For 1 ≤ i ≤ m, identify the point p−i ∈ C

− with the
point p+

i ∈ C
+. This defines a Riemann surfaces with m+ 1 nodes.

5.1.2 Coordinates in a neighborhood of the nodes

We define two meromorphic functions g− on C
− and g+ on C

+ by

g−(z) =
−1

z
+

m∑

i=1

β−
i

z − p−i

g+(z) =

m∑

i=1

β+
i

z − p+
i

.

Here β−
1 , · · · , β−

m and β+
1 , · · · , β+

m are non-zero complex parameters. We write
β± = (β±

1 , · · · , β±
m) and p± = (p±1 , · · · , p±m).

Since ga has a simple zero at qn(a) and g± have simple poles, we can fix a
small number 0 < ε < 1 such that v−0 := ga is a diffeomorphism from a small
neighborhood U−

0 of qn(a) to the disk D(0, ε), v+
0 := 1/g− is a diffeomorphism

from a small neighborhood U+
0 of 0 in C

− to D(0, ε) and for each i = 1, · · · ,m,
v±i := 1/g± is a diffeomorphism from a small neighborhood U±

i of p±i in C
± to

D(0, ε).
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5.1.3 Opening nodes

Consider a complex parameter t such that 0 < |t| < ε2. We remove the disk
|v−0 | < t

ε from U−
0 and the disk |v+

0 | < t
ε from U+

0 . We identify the point

z ∈ U−
0 ⊂ Σa with the point z′ ∈ U+

0 ⊂ C
− such that v−0 (z)v+

0 (z′) = t. This is
equivalent to

ga(z) = tg−(z′). (6)

For each 1 ≤ i ≤ m, we remove the disks |v−i | < t2

ε from U−
i and |v+

i | < t2

ε from

U+
i . We identify the point z ∈ U−

i ⊂ C
− with the point z′ ∈ U+

i ⊂ C
+ such

that v−i (z)v+
i (z′) = t2. This is equivalent to

tg−(z) =
1

tg+(z′)
. (7)

This defines a Riemann surface of genus G̃ = G+m− 1. We call it Σ̃a,b, where
b = (p+, p−, β+, β−, t) ∈ C

4m+1 denotes the collection of the new parameters.
We compactify it by adding the points at infinity in C

− and C
+.

By a slight abuse of language, we will denote by Σa ⊂ Σ̃a,b, C
− ⊂ Σ̃a,b and

C
+ ⊂ Σ̃a,b the domains Σa, C

− and C
+ minus the disks that were removed

when opening nodes.

5.1.4 The Gauss map

The point of choosing the coordinates v±i in this particular way, is that by

construction the following function is well defined on Σ̃a,b : let

g̃a,b(z) =





ga(z) if z ∈ Σa

tg−(z) if z ∈ C
−

1

tg+(z)
if z ∈ C

+

This is a well defined meromorphic function on Σ̃a,b by equations (6) and (7).

5.1.5 Central value of the parameters

The parameter t is in the punctured disk of radius ε2. The parameters p± and
β± are in a small neighborhood of a central value denoted p± and β± given by

p+
i

= ω−i, p−
i

= ωi, 1 ≤ i ≤ m,

β+

i
= β−

i
=

1

m− 1
, 1 ≤ i ≤ m,

where ω = e2πi/m is a primitive m-th root of unity. We denote by B ⊂ C
4m+1

the domain of the parameter b. At the central value of the parameters, we have

g−(z) =
−1

z
+

1

m− 1

m∑

i=1

1

z − ωi
=

−1

z
+

mzm−1

(m− 1)(zm − 1)
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g+(z) =
1

m− 1

m∑

i=1

1

z − ωi
=

mzm−1

(m− 1)(zm − 1)
.

Proposition 1 The family (Σ̃a,b, g̃a,b)(a,b)∈A×B depends holomorphically on (a, b),
in the sense explained in section 4.1.1.

To prove this proposition, we simply have to define a complex manifold M̃, a
holomorphic submersion π̃ : M̃ → A×B and a meromorphic function G̃ : M̃ →
C , such that Σ̃a,b = π̃−1(a, b) and g̃a,b = G̃ restricted to Σ̃a,b. We give the
details in appendix B. �

5.1.6 Symmetry

Next we restrict the parameters (a, b) so that Σ̃a,b admits a antiholomorphic
involution. We define δ : C

m → C
m by

δ(z1, z2, · · · , zm) = (zm−1, zm−2, · · · , z1, zm).

Observe that the central values p± and β± are invariant under δ. We define σB
on B by

σB(p+, p−, β+, β−, t) = (δ(p+), δ(p−), δ(β+), δ(β−), t).

Let Bσ = {b ∈ B |σB(b) = b}. This is a real space of dimension 4m + 1. If
(a, b) ∈ Aσ × Bσ, then ga ◦ σ = ga and g±(z) = g±(z). Consequently, the map

σ̃ : Σ̃a,b → Σ̃a,b given by

σ̃(z) =

{
σ(z) if z ∈ Σa

z if z ∈ C
±

is well defined on Σ̃a,b and satisfies g̃a,b ◦ σ̃ = g̃a,b.

5.2 The height differential

As in section 4.1.2, we define the height differential on Σ̃a,b by prescribing

periods and residues, so we need to define a canonical homology basis of Σ̃a,b.

Recall that its genus is G̃ = G+m− 1. The cycles A1, · · · , AG, B1, · · · , BG on
Σa define us 2G cycles on Σ̃a,b by inclusion. For 1 ≤ i ≤ m− 1, let AG+i be the
homology class of the circle C(p+

i , ε) with the positive orientation. This circle
is homologous to the circle C(p−i , ε) with the negative orientation. Also one has
σ(AG+i) = −AG+m−i.

For 1 ≤ i ≤ m
2 , we define BG+i as the composition of the following paths :

1. a path from the point v+
m = ε to the point v+

i = −ε in C
+,

2. the segment from v+
i = −ε to v+

i = − t2

ε ,

3. a path from the point v−i = −ε to the point v−m = ε in C
−,
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4. the segment from v−m = ε to v−m = t2

ε .

For m
2 < i ≤ m−1, we defineBG+i as σ(BG+m−i). ThenA1, · · · , A eG, B1, · · · , B eG

is a σ-symmetric canonical homology basis of Σ̃a,b.

In point 1 and 3, the paths may be choosen to depend continuously on
parameters, and must avoid all disks around the nodes. Actually in case m is
even and i = m

2 , some care must be taken when choosing these paths : we use
the upper half of the circle of radius 2 and connect it to the endpoints using real
segments. This way, BG+ m

2
− σ(BG+ m

2
) is homologous to the circle of radius

2 in C
+ minus the circle of radius 2 in C

−, which are both null-homotopic in
Σ̃a,b (because we compactified by adding the points at infinity).

Let ∞− and ∞+ denote the point at infinity in C
− and C

+. The punctures,
corresponding to the n + 1 catenoidal ends, are at q1, · · · , qn−1,∞− and ∞+.

We define the height differential φ̃3 on Σ̃a,b as in section 4.1 by prescribing its
A-periods and its residues at all punctures but one. Actually, by the residue
theorem, prescribing the residue at ∞+ is equivalent to prescribe the period on
the circle C(p+

m, ε). So we define φ̃3 on Σ̃a,b as the unique meromorphic 1-form
with simple poles at the punctures with the following residues and periods :

∫

Aj

φ̃3 = 2πiαj , 1 ≤ j ≤ G

Resqi
φ̃3 = −ci, 1 ≤ i ≤ n− 1,

∫

C(p+
j

,ε)

φ̃3 = 2πiγj , 1 ≤ j ≤ m

The central values of the new parameter γ = (γ1, · · · , γm) is given by

γ
j

=
1

m− 1
, 1 ≤ j ≤ m.

Regarding symmetry, we assume that the parameters c = (c1, · · · , cn−1) and
α = (α1, · · · , αG) are as in section 4.1.2, and that the parameter γ satisfies

δ(γ) = γ, where δ is defined in section 5.1.6. This ensures that σ̃∗φ̃3 = φ̃3.

Next, by the Residue Theorem in C
+ we have

Res∞+ φ̃3 = −
m∑

j=1

γj , (8)

and by the Residue Theorem in Σ̃a,b we have

Res∞− φ̃3 =

n−1∑

j=1

cj +

m∑

j=1

γj . (9)
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Proposition 2 The differential φ̃3 depends analytically on all parameters. More-
over, it extends analytically at t = 0, with value

φ̃3 =





φ3 in Σa,

−
n−1∑

i=1

ci
dz

z
−

m∑

i=1

γi

z − p−i
dz in C

−,

m∑

i=1

γi

z − p+
i

dz in C
+.

In particular, at the central value of the parameters, we have φ̃3 = −g−dz in
C

− and φ̃3 = g+dz in C
+ when t = 0.

Proof : the analytic dependance on parameters is standard since we have a
holomorphic family of Riemann surfaces. For the analytic extension at t = 0
we may fix the value of all parameters but t. It is proven in [6] that φ̃3 extends
at t = 0 to a regular differential on the noded Riemann surface, namely a
meromorphic differential which has simple poles at the nodes. The residues at
the nodes are determined by the prescribed periods. This gives the claimed
formula for φ̃3 at t = 0. The last point comes from the fact that γ = β− = β+

and c1 + · · ·+ cn−1 = −1, since we assumed that the logarithmic growth of the
top end of M is 1. �

5.3 The equations

In this section, we do not write explicitely the dependance of objects on param-
eters, so we write (Σ̃, g̃) for (Σ̃a,b, g̃a,b). Let X̃ = (a, c, α, p+, p−, β+, β−, γ) be

the collection of all parameters but t. We write X̃ for the central value of the
parameter X̃. As in section 4.2, in order to define an immersed minimal surface,
the triple (Σ̃, g̃, φ̃3) must satisfy the following conditions :

1a. At each zero of φ̃3 in Σ ⊂ Σ̃, g needs a zero or a pole, with the same
multiplicity.

1b. At each zero of φ̃3 in C
−, g− needs a zero with the same multiplicity.

1c. At each zero of φ̃3 in C
+, g+ needs a zero with the same multiplicity.

2. At each puncture q1, · · · qn−1,∞−,∞+, the residues of φ1 and φ2 must be
real.

3. Re

∫

Ai

φ̃ν = Re

∫

Bi

φ̃ν = 0 for 1 ≤ i ≤ G+m− 1, ν = 1, 2, 3.

In the following points, we study how to write these conditions as equations
which extend smoothly at t = 0.

1. Let us see first the equations which concern only the restriction of the
Weierstrass data to the domain Σ of Σ̃. For (t, X̃) close to (0, X̃), φ̃3 has
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2G+n−2 zeros in Σ, which we may write as ζi(t, X̃) for 1 ≤ i ≤ 2G+n−2,

depending continously on (t, X̃). We define

F̂1(t, X̃) =
(
(g(ζi))

±1
)
1≤i≤2G+n−2

where the exponent ±1 is chosen as in point 1 of section 4.2. In case of
multiple zeros, this definition is adapted as in point 4 of the same section.
Also define

F̂2(t, X̃) = (Im Resqi
φ̃2)1≤i≤n−2

F̂3(t, X̃) =

(
Re

∫

Ai

φ̃ν ,Re

∫

Bi

φ̃ν

)

1≤i≤G,1≤ν≤3

.

Let F̂(t, X̃) = (F̂1(t, X̃), F̂2(t, X̃), F̂3(t, X̃)). When t = 0, we have, φ̃3 =

φ3 in Σ by proposition 2 and g̃ = g in Σ by definition, so F̂(0, X̃) =
F(X), where the map F was defined in section 4.2. The non-degeneracy
hypothesis will take care of this equation.

2. Next we consider the equations which concern the restriction of the Weier-
strass data to C

− and C
+, starting with point 1b. When (t, X̃) = (0, X̃),

φ̃3 = −g−dz in C
− by proposition 2, so φ̃3 has m simple zeros in C

−.
Hence, for (t, X̃) close enough to (0, X̃), φ̃3 has m simple zeros in C

−

which we may label ξ1(t, X̃), · · · , ξm(t, X̃) so that ξm+1−i = ξi. Let

Z−(t, X̃) = (g−(ξ1), · · · , g−(ξm)). (The letter Z stands for “zero”). This
is an analytic function of all parameters.

3. When (t, X̃) = (0, X̃), φ̃3 = g+dz in C
+ has a zero of multiplicity m− 1

at the origin. As in point 4 of section 4.2 in the case of a multiple zero,
we introduce the Weierstrass polynomials of g+ and φ̃3 in a neighborhood
of 0 in C

+ in term of the standard z coordinate. We need that these
two polynomials have the same coefficients, this gives us m− 1 equations
which we write as Z+(t, X̃) = 0.

4. Regarding point 2, as explained in point 2 of section 4.2, it suffices to
ensure that the residues of φ̃2 are real at all punctures where the Gauss
map has a pole, except one, and all punctures where the Gauss map has a
zero, except one. Provided the equation F̂2(t, X̃) = 0 is solved, it suffices

to ensure that the residue of φ̃2 at ∞+ is real. This will be taken care of
in the next point.

5. Regarding the A-periods in point 3, we define the vertical A-periods as

VA
j (t, X̃) = Re

∫

C(p+
j

,ε)

φ̃3 = −2πIm(γj), 1 ≤ j ≤ m− 1,

and the renormalised horizontal A-periods as

HA
j (t, X̃) =

1

2πit

(
Re

∫

C(p+
j

,ε)

φ̃1 + iRe

∫

C(p+
j

,ε)

φ̃2

)
, 1 ≤ j ≤ m.
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Let VA = (VA
1 , · · · ,VA

m−1) and HA = (HA
1 , · · · ,HA

m). By the Residue

theorem in C
+, the equation HA(t, X̃) = 0 implies that the residue of φ̃2

at ∞+ is real as required in the previous point.

The function HA extends analytically at t = 0 by the following computa-
tion :

HA
j (t, X̃) =

1

4πit

(∫

C(p+
j

,ε)

g̃−1φ̃3 −
∫

C(p+
j

,ε)

g̃φ̃3

)

=
1

4πit

(∫

C(p+
j

,ε)

g̃−1φ̃3 +

∫

C(p−
j

,ε)

g̃φ̃3

)

=
1

4πi

(∫

C(p+
j

,ε)

g+φ̃3 +

∫

C(p−
j

,ε)

g−φ̃3

)
(10)

6. By lemma 1 in [15], the function
∫

BG+i
φ̃3 − (γi − γm) log t2 extends to

an analytic function of all parameters at t = 0. We make the change of
variable t = exp(−1

τ2 ) where τ is a real parameter in a neighborhood of
zero. We define the renormalised vertical B-periods as

VB
i (τ, X̃) = τ2Re

∫

BG+i

φ̃3, 1 ≤ i ≤ m− 1.

It extends as a smooth function of the parameters τ and X̃ at τ = 0, with
value

VB
i (0, X̃) = −2Re(γi − γm).

We define VB = (VB
1 , · · · ,VB

m−1).

7. We define the renormalised horizontal B-periods as

HB
j (τ, X̃) = t

(
Re

∫

BG+j

φ̃1 + iRe

∫

BG+j

φ̃2

)
, 1 ≤ j ≤ m− 1

By lemma 2 in [15], it extends to a smooth function of the parameters τ

and X̃ at τ = 0 with value

HB
i (0, X̃) =

1

2

∫ p−
m

p−
i

φ̃3

g−
− 1

2

∫ p+
i

p+
m

φ̃3

g+
. (11)

We define HB = (HB
1 , · · · ,HB

m−1)

Let F̃(τ, X̃) be the collection of the equations that we have to solve, namely

F̃ = (F̂ ,Z−,Z+,VA,HA,VB ,HB).
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Because of the symmetries, the map F takes values into a certain real vector
space. Let us determine this space and compute its dimension.

The map F̂ takes values in the same space as the map F in section 4.2.

The map Z− satisfies Z−
m+1−i = Z−

i for 1 ≤ i ≤ m. This defines a real
subspace of dimension m of C

m. The map Z+ takes values into Rm−1 because
the Weierstrass polynomials have real coefficients by symmetry. The map VA

satisfies VA
i = −VA

m−i for 1 ≤ i ≤ m − 1. This defines a space of dimension

[m−1
2 ] of Rm−1. The map HA satisfies HA

m−i = HA
i for 1 ≤ i ≤ m − 1 and

HA
m ∈ R. This defines a real subspace of dimension m of C

m. The map VB

satisfies VB
m−i = VB

i for 1 ≤ i ≤ m−1. This defines a subspace of dimension [m
2 ]

of Rm−1. The map HB satisfies HB
m−i = HB

i for 1 ≤ i ≤ m− 1. This defines a

real subspace of dimension m− 1 of C
m−1.

Everything together, the map F̃ takes values into a real vector space of
dimension

5G+ 2n+ 5m− 7 = 5G̃+ 2(n+ 1) − 4

which is the expected dimension in the definition of non-degenerate Weierstrass
Representation for a minimal surface of genus G̃ and n+ 1 ends.

5.4 Solving the equations

We want to solve the equation F̃(τ, X̃) to get X̃ as an implicit function of τ .

Proposition 3 We have F̃(0, X̃) = 0, and the partial differential of F̃ with

respect to X̃ at (0, X̃) is onto.

Proof : we make a change of parameters so that the partial differential is trian-
gular by blocks. Let

γi = γm + γ̇i, 1 ≤ i ≤ m− 1,

β−
i = γi + β̇−

i , 1 ≤ i ≤ m,

β+
i = γi + β̇+

i , 1 ≤ i ≤ m,

p+
i = p−i + ṗ+

i , 1 ≤ i ≤ m.

We write γ̇ = (γ̇1, · · · , γ̇m−1), β̇
± = (β̇±

1 , · · · , β̇±
m) and ṗ+ = (ṗ+

1 , · · · , ṗ+
m). The

central value of each of these new parameters is 0. Now the parameters are a,
α, c, γm, γ̇, β̇−, β̇+, p−, ṗ+ and τ . In the following points, we evaluate the
partial differential at the central value of each equation with respect to all these
parameters except τ . In all this discussion, the parameter τ is equal to 0 so
t = 0. The height differential φ̃3 is explicitely given by proposition 2.

1. The partial differential of F̂ with respect to the parameters (a, α, c) is onto.
Moreover, its partial derivative with respect to all other parameters is zero.

The first point comes from the non-degeneracy hypothesis, and the second
from the fact that when t = 0, the restriction of the Weierstrass data to
Σ only depends on the parameters a, α and c.
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2. The partial differential of Z− with respect to β̇− is onto. The partial
derivatives of Z− with respect to all other parameters except c are zero.

To see the first statement, we assume that all parameters except β̇− have
their central value. Observe that the noded Riemann surface Σ̃ does not
depend on β−, so the zeros ξ1, · · · , ξm of φ̃3 are fixed. Hence we have

∂Z−
i

∂β̇−
j

=
1

ξi − p−j
.

If we forget about the symmetries, so β̇− and Z− are in C
m, then the

partial differential is an isomorphism (we recognise a Cauchy determinant)
When we impose the symmetries, β̇− is restricted to a real space of di-
mension m and Z− takes values in a space of the same dimension so the
partial differential remains an isomorphism.

Regarding the second point, assume that β̇− = 0 and c = c. Then φ̃3 =
−g−dz in C

−, so they have the same zeros and Z− = 0.

3. The partial differential of Z+ with respect to β̇+ is onto. All other partial
derivatives of Z+ are zero.

To see the first point, we fix the value of all parameters except β+ and we
compute Z+. We have

g+ =
1

zm − 1

m∑

j=1

β+
j (zm−1 + p+

j z
m−2 + · · · + (p+

j )m−1).

From this we see that the Weierstrass polynomial of g+ in a neighborhood
of 0 is

zm−1 +

∑m
j=1 β

+
j (p+

j z
m−2 + · · · + (p+

j )m−1)
∑m

j=1 β
+
j

.

Since φ̃3 does not depend on β+, it has a zero of multiplicity m− 1 at 0
and its Weierstrass polynomial is zm−1. Hence

Z+
i =

∑m
j=1 β

+
j (p+

j )i

∑m
j=1 β

+
j

for 1 ≤ i ≤ m− 1

and
∂Z+

i

β̇+
j

=
m− 1

m
(p+

j )i.

We recognise a Van der Monde matrix. From this it follows that the
partial differential has a one dimensional kernel, so is onto.

The second point is clear because if β̇+ = 0 then φ̃3 = g+dz in C
+ so

they have the same zeros and Z+ = 0.
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4. The partial differential of (VA,VB) with respect to γ̇ is an isomorphism.
All other partial derivatives are zero.

Indeed, in term of the new parameters we have VA
i = −2πIm(γ̇i) and

VB
i = −2Re(γ̇i), so the partial derivative is injective. Because of the

symmetry, the domain and target spaces have the same dimension, namely
m− 1.

5. The partial differential of HB with respect to ṗ+ is onto. The partial
derivatives with respect to all other parameters except β̇+, β̇− and c are
zero.

Indeed, if β̇+ = 0, β̇− = 0 and c = c, then φ̃3 = −g−dz in C
− and

φ̃3 = g+dz in C
+. By equation (11), we get HB

i = 1
2 (ṗ+

m − ṗ+
i ). The

statement readily follows.

6. The partial differential of HA with respect to (p−1 , · · · , p−m−1, γm) is an
isomorphism.

To prove this, assume that all parameters but p− and γm have their central
value. Then φ̃3 = −g−dz in C

− and φ̃3 = g+dz in C
+, so formula (10)

gives

HA
i = −1

2
Resp+

i
(g+)2 − 1

2
Resp−

i
(g−)2

= −
∑

j 6=i

γ2
m

p+
i − p+

j

−
∑

j 6=i

γ2
m

p−i − p−j
+
γm

p−i

= −2
∑

j 6=i

γ2
m

p−i − p−j
+
γm

p−i
.

This implies that

m∑

i=1

p−i HA
i = −m(m− 1)γ2

m +mγm. (12)

When γm has its central value, namely 1
m−1 , the right hand side is zero.

When p−1 , · · · , p−m have their central value, all terms in the left sum are
equal, so all are zero. This proves that HA = 0 at the central value, which
can also be verified by explicit computation.

To prove that the partial differential is an isomorphism, we first forget the
symmetry, so that p−1 , · · · , p−m and γm are complex numbers and HA ∈
C

m. We compute, for 1 ≤ i, j ≤ m− 1

∂HA
i

∂p−j
=

−2γ2
m

(p−i − p−j )2
if j 6= i,

∂HA
i

∂p−i
=
∑

j 6=i

2γ2
m

(p−i − p−j )2
− γm

(p−i )2
.
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This square matrix of order m− 1 is proven to be invertible in appendix
A. By differentiating (12) we get

m∑

i=1

p−i
∂HA

i

∂γm
= −m.

It follows that the partial differential of HA with respect to (p−1 , · · · , p−m−1, γm)
is an isomorphism.

Now if we impose symmetries, (p−1 , · · · , p−m−1, γm) is restricted to a real
space of dimension m, and HA takes values into a real space of the same
dimension, so the differential remains an isomorphism.

The lemma readily follows from these statements : the matrix of the differential
of (F̂ ,Z−,Z+, (VA,VB),HB ,HA) with respect to ((α, a, c), β̇−, β̇+, γ̇, ṗ+, (p−, γm))
is block-triangular. �

Remark 4 We can see in point 6 why we imposed the symmetry σ to the whole
construction. This symmetry ensures that the parameter γm is real, which is
required by the period problem. Without assuming symmetry, we would need the
parameter γm to be a complex number for point 6 to hold.

Since imposing the symmetry adds a lot of bulk to the construction, let me
explain why the construction is hard without the symmetry. If we do not im-
pose the symmetry with respect to a vertical plane, then the minimal surface M
can be freely rotated around the vertical axis. This introduces an extra param-
eter. Determining the value of this parameter depends in a subtle way on the
interaction between M and the catenoidal necks.

5.5 Proof of Theorem 2

By proposition 3 and the Implicit Function Theorem, for τ in a neighborhood
of 0, there exists a smooth function X̃(τ) such that F̃(τ, X̃(τ)) = 0. For t > 0

close to zero, let use write (Σ̃t, g̃t, φ̃3,t) for the Weierstrass data corresponding to

the value τ = (− log t)−1/2 and X̃ = X̃(τ) of the parameters. This Weierstrass

data defines us a minimal immersion ψ̃t on Σ̃t minus the punctures. Let Mt be
its image. In the following points we prove that the family (Mt)0<t<ε has all
the properties claimed in Theorem 2.

1. Mt has n+ 1 catenoidal ends at q1, · · · , qn−1, ∞− and ∞+. The logarith-

mic growths are the opposite of the residue of φ̃3 at these points, so by
equations (8) and (9), their limit value when t → 0 are c1, · · · , cn−1, 1 −

m
m−1 and m

m−1 . Since we have scaled M so that cn(M) = 1, this gives
formula (2).

2. Mt converges to M on compact subsets of R3.

This follows from the fact that g̃t converges to g on Σ and φ̃3,t converges
to φ3 on compact subsets of Σ minus the punctures, where (Σ, g, φ3) is
the Weierstrass data of M .
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3. Mt has non-degenerate Weierstrass Representation.

Indeed, the differential of F̃ with respect to X̃ at (τ, X̃(τ)) remains onto
for τ close to 0.

4. Mt is embedded.

To prove this statement, we study the asymptotic behavior of ψ̃t on each
of the domains Σ, C

− and C
+ when t→ 0. On C

+ we have

lim
t→0

tφ̃1 = −dz
2
, lim

t→0
tφ̃2 = i

dz

2
, lim

t→0
φ̃3 =

1

m− 1

m∑

i=1

dz

z − ωi
.

Define ψ̂t on C
+ as the composition of ψ̃t − ψ̃t(0) with the affine trans-

formation (x1, x2, x3) 7→ (−2tx1,−2tx2, x3). Then

lim
t→0

ψ̂t(z) = (Re z, Im z, u+(z))

where u+ is the harmonic function

u+(z) =
1

m− 1

m∑

i=1

log |z − ωi|.

So the image of ψ̂t converges to the graph of u+. For h large enough, the
graph of u+ intersects the plane x3 = −h in m closed convex curves, so
the same is true for the image of ψ̂t for t small enough. As a conclusion,
we can find a height c1 (depending on t) such that the image of C

+ by

ψ̃t cuts the plane x3 = c1 in m closed convex curves. We call S+ the part
which is above this plane. The surface S+ is embedded (as a graph) and
has one upward-going catenoidal end.

In the same way, after horizontal scaling by −2t and vertical translation,
the image of C

− by ψ̃ converges to the graph of u−(z), where

u−(z) = − log |z| + 1

m− 1

m∑

i=1

log |z − ωi|.

For h large enough, the graph of u− intersects the plane x3 = h in m
closed convex curves and the plane x3 = −h in two closed convex curves,
one inside the other. Again we may find some heights c2 and c3, with
c3 < c2 < c1 such that for t small enough, the image of C

− by ψ̃t cuts
the plane x3 = c2 in m closed convex curves and the plane x3 = c3 in two
closed convex curves, one inside the other. Let S− be the part bounded by
the m top curves and the inside bottom curve. It is an embedded surface
with one downward catenoidal end.

Finally, since the top end of M is catenoidal, we may find some height
c4 < c3 such that the image of Σ by ψ̃t cuts the plane x3 = c4 in one
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closed convex curves (and what is above is an annulus). Let S be the part
which is below this plane. It is embedded because M is.

The pieces S, S− and S+ are disjoint. (For S− and S, this uses the
maximum principle and the fact that the logarithmic growth of the end
of S− is larger than the logarithmic growth of the top end of S). Each
component of the complementary set in Mt of S ∪ S− ∪ S+ is a minimal
annulus bounded by two closed convex curves in parallel planes. By a
theorem of Shiffman [14], such an annulus is fibered by horizontal curves.
It follows that Mt is embedded.

−S

S+

S

Figure 2: The pieces S+, S− and S (in case M is a catenoid).

5. For t small enough, the maximum of |K| on Mt is greater than 1
2 (m−1)2.

Indeed, assume by contradiction that this is not true. Then we can find
a sequence (tn)n converging to zero such that the Gaussian curvature
on Mtn

is bounded by 1
2 (m − 1)2. Let An be the image of the annulus

bounded by the circles |v+
1 | = ε and |v−1 | = ε in Mtn

. Translate An so that
the point where the Gauss map is one is at the origin. The images of the
boundary circles are close to circles of radiusO( 1

tn
), so for any ball B(0, R),

An ∩ B(0, R) is properly embedded in B(0, R) for n large enough. As we
have uniform Gaussian curvature and area estimate (by the monotonicity
formula) for An, a subsequence of (An)n converges smoothly on compact
subsets of R3 to a complete embedded minimal annulus ([13], theorem
4.2.1) hence a catenoid. As the flux of An converges to (0, 0, 2π

m−1 ), the

limit catenoid has waist radius 1
m−1 . Since the maximum of the Gaussian

curvature on this catenoid is (m− 1)2, we have a contradiction. �
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A A matrix computation

Lemma 1 Consider an integer m ≥ 2. Let ω = e2πi/m. Define pi = ωi for
1 ≤ i ≤ m. Consider the order m− 1 square matrix A defined by

aii =
m− 1

(pi)2
−
∑

1≤j≤m

j 6=i

2

(pi − pj)2

aij =
2

(pi − pj)2
if j 6= i

Then A is invertible.

Proof. We prove that A has dominant diagonal. The proof relies on the following
elementary observation : if z ∈ C is such that |z| = 1, then

1− 2Re
1

(1 + z)2
=

2

|1 + z|2

We have

(pi)
2aii =

m−1∑

j=1

(
1 − 2

(1 − ωj)2

)
.

Since this is a real number,

(pi)
2aii =

m−1∑

j=1

Re

(
1 − 2

(1 − ωj)2

)
=

m−1∑

j=1

2

|1 − ωj |2

|aii| =

m−1∑

j=1

2

|1 − ωj |2 =
∑

1≤j≤m−1
j 6=i

|aij | +
2

|pi − 1|2 .

Hence |aii| >
∑

j 6=i

|aij | so A is invertible by Hadamard theorem. �

B Proof of proposition 1

We need to define a complex manifold M̃, a holomorphic submersion π̃ : M̃ →
A × B, a meromorphic function G : M̃ → C and a antiholomorphic involution
σ̃M : M̃ → M̃. To define M̃ we consider the disjoint union

(M×B) ∪ (C − ×A×B) ∪ (C + ×A×B)

and we make some identifications.

Recall that b = (p+, p−, β+, β−, t). We write t(b) for the last component of
the vector b, and g±(z, b) to emphasize that g±(z) also depends on the compo-
nents β± and p± of b. Let U−

0 be the component of

{(z, b) ∈ M×B : |G(z)| < ε}
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containing {qn} × B, and let

V−
0 = {(z, b) ∈ U−

0 : |G(z)| < |t(b)|
ε

}.

In the same way let U+
0 be the component of

{(z, a, b) ∈ M− ×A×B | : |g−(z, b)| > 1

ε
}

containing {0} × A × B. Let

V+
0 = {(z, a, b) ∈ U+

0 : |t(b)g−(z, b)| > ε}.

Finally define

W = {(z, a, b) ∈ C ×A×B :
|t(b)|
ε

< |z| < ε}.

Then the applications ϕ±
0 : U±

0 \ V±
0 → W defined by

ϕ−
0 (z, b) = (G(z), π(z), b)

ϕ+
0 (z, a, b) = (t(b)g−(z, b), a, b)

are holomorphic and bijective, hence biholomorphic. Remove the domains V−
0

from M×A and V+
0 from C

−×A×B. Identify the point (z, b) ∈ U−
0 \V−

0 with
the point (z′, a, b) ∈ U+

0 \ V+
0 such that ϕ−

0 (z, a) = ϕ+
0 (z′, a, b). This defines a

complex manifold. We do the same kind of definitions and identifications for
the other nodes. We call M̃ the resulting complex manifold.

The holomorphic submersion π̃ : M̃ → A×B is defined by

{
π̃(z, b) = (π(z), b) on M×B
π̃(z, a, b) = (a, b) on C

± ×A×B

The meromorphic function G̃ : M̃ → C is defined by




G̃(z, b) = G(z) on M×B
G̃(z, a, b) = t(b)g−(z, b) on C

− ×A×B
G̃(z, a, b) = 1

t(b)g+(z,b) on C
+ ×A×B

The anti-holomorphic involution σ̃M is defined by

{
σ̃M(z, b) = (σM(z), σB(b)) on M×B
σ̃M(z, a, b) = (z, σA(a), σB(b)) on C

± ×A×B

By construction, these maps are well defined on M̃ and have the desired proper-

ties, namely G̃ ◦ σ̃M = G̃ and π̃ ◦ σ̃M = σ̃A ◦ π̃, where σ̃A(a, b) = (σA(a), σA(b)).

Moreover, π̃−1(a, b) = Σ̃a,b and the restriction of G̃ to Σ̃a,b is g̃a,b. �
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[10] W. H. Meeks III, J. Pérez, and A. Ros. The geometry of minimal surfaces
of finite genus II; nonexistence of one limit end examples. Invent. Math.,
158:323–341, 2004. MR2096796, Zbl 1070.53003.

[11] N. Nadirashvili. Hadamard’s and Calabi-Yau’s conjectures on nega-
tively curved and minimal surfaces. Invent. Math., 126(3):457–465, 1996.
MR1419004, Zbl 0881.53053.
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